Tunable magnetic vortex dynamics in ion-implanted permalloy disks
Tunable magnetic vortex dynamics in ion-implanted permalloy disks
Ramasubramanian, L.; Kákay, A.; Fowley, C.; Yildirim, O.; Matthes, P.; Sorokin, S.; Titova, A.; Hilliard, D.; Böttger, R.; Hübner, R.; Gemming, S.; Schulz, S. E.; Kronast, F.; Makarov, D.; Faßbender, J.; Deac, A. M.
Nanoscale, low-phase noise, tunable transmitter-receiver links are key for enabling the progress of wireless communi-cation. We demonstrate that vortex-based spin-torque nano-oscillators, which are intrinsically low-noise devices due to their topologically-protected magnetic structure, can achieve frequency tunability when submitted to local ion im-plantation. In the experiments presented here, the gyrotropic mode is excited with spin-polarized alternating currents and anisotropic magnetoresistance measurements yield discreet frequencies from a single device. Indeed, chromium-implanted regions of permalloy disks exhibit different saturation magnetisation than the surrounding, non-irradiated areas, and thus different resonance frequency, corresponding to the specific area where the core is gyrating. Our study proves that such devices can be fabricated without the need of further lithographical steps, suggesting ion irradiation can be a viable and cost-effective fabrication method for densely-packed networks of oscillators.
Keywords: electrical detection; vortex dynamics; frequency tunability; ion implantation; reduced saturation magnetisation
Related publications
- DOI: 10.17815/jlsrf-3-159 is cited by this (Id 30380) publication
-
ACS Applied Materials and Interfaces 12(2020)24, 27812-27818
DOI: 10.1021/acsami.0c08024
Cited 6 times in Scopus
Downloads
Permalink: https://www.hzdr.de/publications/Publ-30380
Publ.-Id: 30380