A van der Waals Heterostructure with an Electronically Textured Moiré Pattern: PtSe₂/PtTe₂

A van der Waals Heterostructure with an Electronically Textured Moiré Pattern: PtSe₂/PtTe₂

Li, J.; Ghorbani Asl, M.; Lasek, K.; Pathirage, V.; Krasheninnikov, A.; Batzill, M.

The interlayer interaction in Pt-dichalcogenides strongly affects their electronic structures. The modulations of the interlayer atom-coordination in vertical heterostructures based on these materials are expected to laterally modify these interlayer interactions and thus provide an opportunity to texture the electronic structure. To determine the effects of local variation of the interlayer atom coordination on the electronic structure of PtSe₂, van der Waals heterostructures of PtSe₂ and PtTe₂ have been synthesized by molecular beam epitaxy. The heterostructure forms a coincidence lattice with 13-unit cells of PtSe₂ matching 12-unit cells of PtTe₂, forming a moiré superstructure. The interaction with PtTe₂ reduces the band gap of PtSe₂ monolayers from 1.8 to 0.5 eV. While the band gap is uniform across the moiré unit cell, STS and dI/dV mapping identify gap states that are localized within certain regions of the moiré unit cell. Deep states associated with chalcogen pz-orbitals at binding energies of ~-2 eV also exhibit lateral variation within the moiré unit cell, indicative of varying interlayer chalcogen interactions. Density functional theory calculations indicate that local variations in atom coordination in the moiré unit cell causes variations in the charge transfer from PtTe2 to PtSe2 thus affecting the value of the interface dipole. Experimentally this is confirmed by measuring the local work function by field emission resonance spectroscopy, which reveals a large work function modulation of ~0.5 eV within the moiré structure. These results show that the local coordination variation of the chalcogen atoms in the PtSe2/PtTe2 van der Waals heterostructure induces a nanoscale electronic structure texture in PtSe₂.

Keywords: platinum dichalcogenides; van der Waals heterostructure; work function modulation; scanning tunneling microscopy; density functional theory

Related publications


  • Secondary publication expected from 17.03.2024

Permalink: https://www.hzdr.de/publications/Publ-36696
Publ.-Id: 36696