Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Radiotherapy Beamline Design for Laser-driven Proton Beams

Masood, U.

Motivation: Radiotherapy is an important modality in cancer treatment commonly using photon beams from compact electron linear accelerators. However, due to the inverse depth dose profile (Bragg peak) with maximum dose deposition at the end of their path, proton beams allow a dose escalation within the target volume and reduction in surrounding normal tissue. Up to 20% of all radiotherapy patients could benefit from proton therapy (PT). Conventional accelerators are utilized to obtain proton beams with therapeutic energies of 70 – 250 MeV. These beams are then transported to the patient via magnetic transferlines and a rotatable beamline, called gantry, which are large and bulky. PT requires huge capex, limiting it to only a few big centres worldwide treating much less than 1% of radiotherapy patients. The new particle acceleration by ultra-intense laser pulses occurs on micrometer scales, potentially enabling more compact PT facilities and increasing their widespread. These laser-accelerated proton (LAP) bunches have been observed recently with energies of up to 90 MeV and scaling models predict LAP with therapeutic energies with the next generation petawatt laser systems.

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-104 2019
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads

Permalink: https://www.hzdr.de/publications/Publ-29631