Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Charakterisierung von Lithium-Ionen-Batterien (LIB) in Recyclingprozessen und Abschätzung der Aufschlusseffizienz von Elektroden mithilfe automatisierter Mineralogie

Bachmann, K.; Vanderbruggen, A.; Hayagan, N. L.; Rudolph, M.

Lithium-Ionen-Batterien (LIBs) gehören zu den derzeit wichtigsten elektrochemischen Energiespeichersystemen für elektronische Mobilgeräte und Elektrofahrzeuge. Die wachsende weltweite Nachfrage nach LIBs, geht mit einer Erhöhung des Bedarfs an Co, Mn, Ni, Li und Graphit einher. Diese Erhöhung der Nachfrage dieser Rohstoffe stellt eine besondere Herausforderung für den schon jetzt angespannten weltweiten Rohstoffmarkt dar, verbunden mit Versorgungsrisiken, Preisschwankungen und Marktmonopolen. Tatsächlich sind Co und natürlicher Graphit in Europa seit 2010 als kritische Rohstoffe (CRM) geführt, Li sowie Mn befinden sich an der Grenze der Kritikalität. Um potenziell die Kluft zwischen Angebot und Nachfrage zu verringern sowie die europäischen Nachhaltigkeitsziele zu erreichen, hat das Recycling von Lithium-Ionen-Batterien (LIB) hat in den letzten Jahren viel Aufmerksamkeit auf sich gezogen. Hierbei wird sich hauptsächlich auf die wertvollen Metalle wie Kobalt, Nickel und Lithium konzentriert. Allerdings gehen während des Recyclingprozesses erhebliche Mengen anderer Komponenten wie Elektrolyt, Separator oder Graphit verloren. So kann Graphit zum Beispiel während der pyrometallurgischen Behandlung entweder abgeschlackt oder als Reduktionsmittel verbraucht werden. Darüber hinaus gehen einige andere wertvolle Metalle wie Co in den Grobfraktionen durch einen zu geringen Aufschlussgrad an die Berge verloren. Aus diesem Grund müssen neue und umfassende LIB-Recyclingverfahren gefunden werden.
In dieser Studie werden zur Freisetzung von aktiven Materialien aus Elektroden sowohl eine mechanische als auch thermo-mechanische Recyclingprozessroute angewendet. Dabei wird neben den werthaltigen Metallen insbesondere die Rückgewinnung von Graphit in den Fokus gestellt. Die mechanische Route arbeitet mit einem Schlagscherbrecher, während für die thermo-mechanischen Versuche die Batterien vor dem Zerkleinern bei 500-650 °C vakuumpyrolysiert wurden. Die sogenannte Schwarzmasse-Fraktion kleiner als 1 mm wurde abgetrennt und basierend auf der Partikelgrößenverteilung in 4 Größenfraktionen klassifiziert. Eine genaue Charakterisierung sowohl der Hauptchemie als auch eine detaillierte Charakterisierung der enthaltenen Phasen im recycelten Materials stellt nach wie vor eine große Herausforderung dar. Deshalb wurde jede Fraktion wurde durch verschiedene analytische Methoden charakterisiert, einschließlich Röntgenfluoreszenz (XRF), Röntgenbeugung (XRD), Atomabsorptionsspektrometrie (AAS). Für eine gute Visualisierung und Quantifizierung der Ergebnisse des Aufbereitungserfolgs und Prozesseffizienz ist eine detailliertere analytische Charakterisierung erforderlich. Diese Studie schlägt eine innovative und neuartige neue Charakterisierungsmethode vor, die auf automatisierter Mineralogie basiert. Dabei werden verschiedene wichtige Partikelparameter wie Größe, Zusammensetzung und Verwachsung analysiert und quantitativ ausgewertet. Das für die Messungen genutzte Mineral Liberation Analyzer (MLA) System nutzt eine Kombination aus Rasterelektronenmikroskopie (REM) -Bildanalyse und energie-dispersiver Röntgenspektroskopie (EDS) und ist im primären Rohstoffsektor als leistungsstarke Methode etabliert. Allerdings fehlen für den Einsatz im sekundären Rohstoffsektor dezidierte Datenbanken, um die Partikel der Schwarzmasse schnell und präzise analysieren zu können. Eine analytische Herausforderung dieser Studie ist es demnach auch eine Datenbank zur Batteriecharakterisierung zu erstellen und für breite Anwendungsbereiche einsetzen zu können.
Im Ergebnis zeigt die hier vorgestellte Studie, dass bei den angewendeten Zerkleinerungsverfahren eine Freisetzungsselektivität der Elektrodenfolien beobachtet werden konnte. Der thermo-mechanische Prozess setzt dabei mehr aktive Partikel aus den Folien frei als ein mechanischer Prozess allein. Infolgedessen sind insbesondere bei thermo-mechanisch zerkleinerten Proben die meisten Graphitpartikel in der <63 um-Fraktion konzentriert. Cu-Folien werden generell besser aufgeschlossen als Al-Folien. Es wurde jedoch festgestellt, dass der Prozesstyp unterschiedliche Auswirkungen auf die Freisetzung von Al-Folie hat. Der thermomechanische Prozess setzt mehr Metalloxide aus der Al-Folie frei als nur der mechanische Prozess. Der Al-Bruch wird jedoch stärker durch die Wärmebehandlung beeinflusst, wodurch feinere Al-Partikel entstehen, die für weitere hydrometallurgische Wege problematisch sein können.

  • Poster (Online presentation)
    Aufbereitung und Recycling, 12.-13.11.2020, Freiberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-32215
Publ.-Id: 32215