Contact

Dr. René Heller

Head Ion Beam Analysis
r.hellerAthzdr.de
Phone: +49 351 260 3617

Publications - Ion Beam Analysis

Here you are finding current publications that have emerged from user experiments and collaborations with our group.

Year incl. Online First >= 2019
"Online First" included
OU: Ion Beam Analysis (FWIZ-A)

Syntetic Spectra Data used in publication "Differential evolution optimization of Rutherford back-scattering spectra"

Heller, R.; Meersschaut, J.; Claessens, N.; Merckling, C.; Klingner, N.

The zip-file contains all synthetic spectra as used for and  described in the publication "Differential evolution optimization of Rutherford back-scattering spectra" and all simulation input files for the code RUTHELDE presented therein. Naming according to the text in the paper. All files are in human readable ASCII format. The simulation input files can be best viewed with any kind of JSON file editor.

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2022-04-14
    DOI: 10.14278/rodare.1541
    License: CC-BY-4.0

Downloads


Dataset: spatially resolved temperature distribution in a rare-earth-doped transparent glass-ceramic

Podlipec, R.; Sedmak, I.

Dataset of glass-ceramic temperature-dependent fluorescence emission used for the calibration of the time measurements of spatially resolved temperature distribution in rare-earth-doped glass-ceramic materials for the studies of thermal processes within optically transparent materials.   

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2022-03-02
    DOI: 10.14278/rodare.1490
    License: CC-BY-4.0

Downloads


Spatially resolved temperature distribution in a rare-earth-doped transparent glass-ceramic

Sedmak, I.; Podlipec, R.; Urbancic, I.; Strancar, J.; Mortier, M.; Golobic, I.

Knowing the temperature distribution within the conducting walls of various multilayer-type materials is crucial for a better understanding of heat-transfer processes. This applies to many engineering fields, good examples being photovoltaics and microelectronics. In this work, we present a novel fluorescence technique that makes possible the non-invasive imaging of local temperature distributions within a transparent, temperature-sensitive, co-doped Er:GPF1Yb0.5Er glass-ceramic with micrometer spatial resolution. The thermal imaging was performed with a high-resolution, fluorescence microscopy system, measuring different focal planes along the z-axis. This ultimately enabled a precise axial reconstruction of the temperature distribution across a 500-µm-thick glass-ceramic sample. The experimental measurements showed excellent agreement with computer-modeled heat simulations and suggest that the technique could be adopted for the spatial analyses of local thermal processes within optically transparent materials. For instance, the technique could be used to measure the temperature distribution of intermediate, transparent layers of novel ultra-high-efficiency solar cells at the micron and sub-micron levels.

Keywords: Temperature-dependent fluorescence; co-doped glass-ceramic; axial temperature distribution; micro-scale temperature measurements

Related publications


Trajectory-dependent electronic excitations at keV ion energies

Lohmann, S.; Holeňák, R.; Primetzhofer, D.

We present experiments directly demonstrating the significance of charge-state dynamics in close collisions at ion velocities below the Bohr velocity resulting in a drastic trajectory dependence of the specific energy loss.
Experiments were performed with the time-of-flight medium energy ion scattering set-up at Uppsala University [1]. In our 3D-transmission approach [2], pulsed beams of singly charged ions are transmitted through self-supporting Si(100) nanomembranes and detected behind the sample. We record ion energy together with the angular distributions of deflected particles and can additionally insert a deflector to measure exit charge states [3].
We specifically studied the difference in energy loss between channelled (ΔEch) and random trajectories (ΔEr) for ions with masses ranging from 1 (protons) to 40 u (Ar+) as shown in Fig. 1 [4,5]. For protons, the observed effect can be explained with increasing contributions of core-electron excitations in close collisions only attainable in random geometry. For He and heavier ions we observe a reverse trend – a decrease of the ratio ΔEch/ ΔEr with decreasing ion velocity. Due to the inefficiency of core-electron excitations at these velocities, we explain this behaviour by contributions of collision-induced charge-exchange events along random trajectories. The resulting higher mean charge state leads to higher electronic stopping along random trajectories. For heavier ions, local losses due to electron promotion, also including several electrons, are expected to contribute strongly to the energy deposition in random geometry. By studying the trajectory dependence of the statistical distribution of electronic excitations (electronic energy straggling), we present evidence that for heavier ions, individual events with large energy transfer indeed significantly contribute to the energy loss. Finally, we show that our experimental approach leads to results that can serve to benchmark dynamic theories such as time-dependent density functional theory [5].

References
[1] M. A. Sortica et al., Nucl. Instrum. Methods Phys. Res. B 463 (2020) 16-20.
[2] R. Holeňák, S. Lohmann and D. Primetzhofer, Ultramicroscopy 217 (2020) 113051.
[3] R. Holeňák et al., Vacuum 185 (2021) 109988.
[4] S. Lohmann and D. Primetzhofer, Phys. Rev. Lett. 124 (2020) 096601.
[5] S. Lohmann, R. Holeňák and D. Primetzhofer, Phys. Rev. A 102 (2020) 062803.

  • Invited lecture (Conferences) (Online presentation)
    25th International Conference on Ion Beam Analysis & 17th International Conference on Particle Induce X-ray Emission & International Conference on Secondary Ion Mass Spectrometry, 11.-15.10.2021, Online, Online

Trajectory-dependent electronic excitations of keV ions

Lohmann, S.; Holeňák, R.; Primetzhofer, D.

We present experiments directly demonstrating the significance of charge-exchange events for the energy deposition of ions with velocities below the Bohr velocity. The observed effects lead to a drastic trajectory-dependence of the specific energy loss.
Experiments were performed with the time-of-flight medium energy ion scattering set-up at Uppsala University [1]. We employed pulsed beams of singly charged ions with masses ranging from 1 (H+) to 40 u (Ar+) and energies between 20 and 350 keV. Ions were transmitted through self-supporting Si(100) nanomembranes and detected behind the sample. We assessed the energy and angular distributions of deflected particles for different alignments of the initial beam direction with the crystal axes and planes. A set-up for measuring the exit charge state was constructed to support the analysis [2].
For all ions we observe lower electronic stopping for channelled trajectories as compared to random ones as shown in Fig. 1 [3]. For protons, this difference is explained by increasing contributions of core-electron excitations more likely to happen at small impact parameters accessible only in random geometry. For heavier ions, core-electron excitations at employed ion velocities are inefficient and we, therefore, explain these results by reionisation events occurring in close collisions of ions with target atoms [4]. These events in turn result in trajectory-dependent mean charge states, which heavily affects the energy loss, and could be confirmed by first qualitative measurements of the trajectory dependence of exit charge states. The simplicity of our experimental geometry leads to results that can serve as excellent benchmark systems for calculations using time-dependent density functional theory.

References
[1] M. A. Sortica et al., Nucl. Instrum. Methods Phys. Res. B, 463 (2020) 16-20.
[2] R. Holeňák et al., Vacuum, 185 (2021) 109988.
[3] S. Lohmann et al., Phys. Rev. A, 102 (2020) 062803.
[4] S. Lohmann and D. Primetzhofer, Phys. Rev. Lett., 124 (2020) 096601.

  • Lecture (Conference)
    Applied Nuclear Physics Conference, 12.-16.09.2021, Prague, Czech Republic

Ion-electron dynamics studied in a 3D-transmission approach

Lohmann, S.; Holeňák, R.; Grande, P. L.; Primetzhofer, D.

We present experiments demonstrating trajectory-dependent electronic excitations at low ion velocities attributed to charge-exchange events. Experiments were performed with the time-of-flight medium energy ion scattering set-up at Uppsala University [1]. We employed pulsed beams of singly charged ions with masses from 1 (H+) to 40 u (Ar+) and energies between 20 and 300 keV. Ions are transmitted through self-supporting Si(100) nanomembranes and detected behind the sample. Fig. 1 demonstrates our experimental approach, in which ion energy loss is measured together with angular distributions for different beam-crystal alignments. We have analysed both trajectory-dependent electronic stopping and electronic energy-loss straggling. Our results show higher electronic stopping for random than for channelled trajectories for all studied ions [2]. For ions heavier than protons, direct core-electron excitations at employed ion velocities are inefficient. We, therefore, explain our observation by reionisation events occurring in close collisions of ions with target atoms mainly accessible in random geometry [3]. These events result in trajectory-dependent mean charge states, which heavily affects the energy loss. The electronic energy-loss straggling likewise exhibits a strong dependence on ion type, velocity and trajectory. For all ions, straggling in random geometry is higher than in channelling orientation. While for He straggling increases with ion velocity, for B travelling along random trajectories a minimum is observed in the studied velocity range. We compare experimental results for these two ions with predictions by the Chu model and transport cross section calculations (Penn-TCS model). We provide strong evidence that electron-hole pair creation alone cannot explain electronic excitations by slow ions other than protons. Especially for heavy ions, additional energy-loss processes such as charge exchange and autoionisation including possible alterations of the scattering potential [4] have to be taken into account.
References
[1] M. A. Sortica et al., Nucl. Instrum. Methods Phys. Res. B, 463 (2020) 16-20.
[2] S. Lohmann et al., Phys. Rev. A, 102 (2020) 062803.
[3] S. Lohmann and D. Primetzhofer, Phys. Rev. Lett., 124, (2020) 096601.
[4] R. A. Wilhelm and P. L. Grande, Communications Physics, 2 (2019) 89.

  • Invited lecture (Conferences) (Online presentation)
    27th International Symposium on Ion-Atom Collisions (ISIAC), 14.-16.07.2021, Online, Online

Sputter Deposited Magnetostrictive Layers for SAW Magnetic Field Sensors

Thormählen, L.; Seidler, D.; Schell, V.; Munnik, F.; McCord, J.; Meyners, D.

For the best possible limit of detection of any thin film‐based magnetic field sensor, the functional magnetic film properties are an essential parameter. For sensors based on magnetostrictive layers, the chemical composition, morphology and intrinsic stresses of the layer have to be controlled during film deposition to further control magnetic influences such as crystallographic effects, pinning effects and stress anisotropies. For the application in magnetic surface acoustic wave sensors, the magnetostrictive layers are deposited on rotated piezoelectric single crystal substrates. The thermomechanical properties of quartz can lead to undesirable layer stresses and associated magnetic anisotropies if the temperature increases during deposition. With this in mind, we compare amorphous, magnetostrictive FeCoSiB films prepared by RF and DC magnetron sputter deposition. The chemical, structural and magnetic properties determined by elastic recoil detection, X‐ray diffraction, and magneto‐optical magnetometry and magnetic domain analysis are correlated with the resulting surface acoustic wave sensor properties such as phase noise level and limit of detection. To confirm the material properties, SAW sensors with magnetostrictive layers deposited with RF and DC deposition have been prepared and characterized, showing comparable detection limits below 200 pT/Hz(^1/2) at 10 Hz. The main benefit of the DC deposition is achieving higher deposition rates while maintaining similar low substrate temperatures.

Keywords: Magnetron Sputter Deposition; FeCoSiB; ERDA; XRD; film stress; magnetic field sensor; magnetic prop

Related publications


Determination of high-time resolution mineral dust concentration in real-time by optical absorption measurements

Ivančič, M.; Ježek, I.; Rigler, M.; Gregorič, A.; Alföldy, B.; Podlipec, R.; Drinovec, L.; Pikridas, M.; Unga, F.; Sciare, J.; Yus-Díez, J.; Pandolfi, M.; Griša, M.

Mineral dust is an important natural source of aerosols and significantly influences air quality (Querol et al.,
Environ. Int., 2019) and the global radiation budget (Schepanski, Geosci., 2018). Frequent dust intrusions are
observed in the Mediterranean region (Ealo et al., Atmos. Chem. Phys., 2016; Pikridas et al., Atmos. Environ.,
2018) and Central Europe (Collaud Coen et al., Atmos. Chem. Phys., 2004; Schauer et al., Aerosol Air Qual.
Res., 2016), with high potential to cause exceedances of daily PM10 levels. To separate the influence of
anthropogenic and natural contribution to the PM10 levels, the new method was developed within the DNAAP
project (Detection of non-anthropogenic air pollution – http://www.aerosol.si/dnaap/).
Dust weakly absorbs light in the near ultra-violet and short wavelengths of the visible range, while the light
absorption of dust in longer wavelengths from the visible and near infra-red range is negligible. We used
filter-based photometer Aethalometer AE33 (Drinovec et al., Atmos. Meas. Tech., 2015) to measure the light
absorption at seven wavelengths, from 370 to 950 nm. The mineral dust is not the only light-absorbing aerosol
in the air. Black carbon (BC), a unique primary tracer for combustion emissions, strongly absorbs light across
the entire visual, near infra-red and near ultra-violet spectral range. Since optical absorption of mineral dust is
weaker than the optical absorption of black carbon, the coarse mode mineral particles have to be concentrated
using the high-volume virtual impactor (VI). The method is based on the optical absorption measurements of
the two sample streams, sampling particle size below 1 µm and sample stream with the concentrated coarse
mode particles, where mineral dust contribution is substantial. Experimental configuration includes two
Aethalometers AE33 with different size selective inlets: VI inlet for sampling coarse aerosol mode (mostly
mineral dust) and PM1 inlet for sampling fine mode of aerosols (mainly BC). The optical absorption of mineral
dust can be determined by subtracting the absorption of fine aerosol fraction (PM1) from the absorption of
aerosol sampled by the VI, taking into account the enhancement factor of VI setup (Drinovec et al., Atmos.
Meas. Tech., 2020). The mineral dust mass concentration is then calculated using mass absorption cross-section
(MAC) for dust which could be site and source-region specific.
The results from the measurement campaigns performed at six locations in the Mediterranean region will be
presented. The measurements took place in NE Spain (Barcelona – BCN, Montseny – MSY, Montsec – MSA),
on Cyprus (Nicosia – NI, Agia Marina Xyliatou – AMX), and in Slovenia (Ljubljana – LJ). Two year-long
datasets will be presented, focusing on the analyses of aerosol optical properties of PM1 and VI fractions. The
results were validated using low time resolution chemical specification of offline filters and a statistical
approach where dust was extracted from PM10 measurements for dust intrusions periods determined by models
and back-trajectory studies. For better understanding, helium ion microscopy (HIM) was applied to study the
microscopic differences between mineral dust and black carbon captured on the AE33 filter tapes.
This work was supported by SPIRIT Slovenia – Public Agency for Entrepreneurship, Internationalization,
Foreign Investments and Technology, project DNAAP.

Related publications

  • Lecture (Conference)
    DUST 2021, 04.-07.10.2021, Torre Cintola Conference Centre, MONOPOLI, Italy

Indirect bandgap, optoelectronic properties, and photoelectrochemical characteristics of high-purity Ta₃N₅ photoelectrodes

Eichhorn, J.; Lechner, S. P.; Jiang, C.-M.; Folchi, G.; Munnik, F.; Sharp, I. D.

The (opto)electronic properties of Ta3N5 photoelectrodes are often dominated by defects, such as oxygen impurities, nitrogen vacancies, and reduced tantalum centers, impeding fundamental studies of its electronic structure, chemical stability, and photocarrier transport. Here, we synthesize high quality Ta3N5 thin films by reactive magnetron sputtering and subsequent NH3 annealing at varying temperatures. The resulting films are characterized by nearly-ideal N/Ta stoichiometry, low O content, and small Urbach energies. Both the crystallinity and material quality improve with increasing annealing temperatures up to 940 °C, while higher annealing temperatures introduce additional disorder within the Ta3N5 lattice, leading to reduced photoelectrochemical performance. These changes are also reflected in the surface and bulk composition, showing the elimination of oxygen impurities at moderate annealing temperatures and the loss of nitrogen at high annealing temperatures. As a consequence, defect-related sub-gap optical absorption initially decreases due to reduced oxygen impurity concentration, and subsequently increases due to increased formation of nitrogen vacancies. The high material quality enables us to unambiguously identify the nature of the Ta3N5 band gap as indirect, thereby resolving a long-standing controversy regarding the most fundamental characteristic of this material as a semiconductor. The assignment of Ta3N5 as indirect semiconductor is further supported by the suppression of disorder-induced band-edge photoluminescence with improved structural order within the Ta3N5 films.

Related publications


Correlated effects of fluorine and hydrogen in fluorinated tin oxide (FTO) transparent electrodes deposited by sputtering at room temperature

Morán-Pedroso, M.; Gago, R.; Julin, J. A.; Salas-Colera, E.; Jimenez, I.; de Andrés, A.; Prieto, C.

The optical and electrical properties of fluorinated tin oxide (FTO) films deposited at room temperature by sputtering have been investigated varying the fluorine content and the hydrogen atmosphere. The complex behavior of the obtained films is disclosed using a wide set of characterization techniques that reveals the combined effects of these two parameters on the generated defects. These defects control the electrical transport (carrier density, mobility and conductivity), the optical properties (band gap and defects-related absorption and photoluminescence) and finally promote the amorphization of the samples. H₂ in the sputtering gas does not modify the H content in the films but induces the partial reduction of tin (from Sn4+ to Sn2+) and the consequent generation of oxygen vacancies with shallow energy levels close to the valence band. A variation of up to four orders of magnitude in electrical conductivity is reported in samples with the appropriate fluorine doping and hydrogen fraction in the sputtering gas, maintaining excellent optical transparency. Optimized room temperature grown electrodes reach sheet resistance ~20 Ω/□ and transparency >90%. This room temperature deposition process enables film preparation on flexible organic substrates, such as polyethylene terephthalate (PET), with identical performance of doubtless interest in flexible and large scale electronics.

Keywords: Transparent conductive materials; Fluorinated tin oxide; Room temperature film preparation

Related publications


Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings

Jager, N.; Meindlhumer, M.; Zitek, M.; Spor, S.; Hruby, H.; Nahif, F.; Julin, J.; Keckes, J.; Mitterer, C.; Daniel, R.

The resistance of wear protective coatings against oxidation is crucial for their use at high temperatures. Here, three nanocomposite AlCr(Si)N coatings with a fixed Al/Cr atomic ratio of 70/30 and a varying Si-content of 0 at.%, 2.5 at.% and 5 at.% were analyzed by differential scanning calorimetry, thermogravimetric analysis and X-ray in order to understand the oxidation behavior depending on their Si-content. Additionally, a partially oxidized AlCrSiN coating with 5 at.% Si on a sapphire substrate was studied across the coating thickness by depth-resolved cross-sectional X-ray nanodiffraction and scanning trans-mission electron microscopy to investigate the elemental composition, morphology, phases and residual stress evolution of the oxide scale and the non-oxidized coating underneath. The results reveal enhanced oxidation properties of the AlCr(Si)N coatings with increasing Si-content, as demonstrated by a retarded onset of oxidation to higher temperatures from 1100 °C for AlCrN to 1260 °C for the Si containing coatings and a simultaneous deceleration of the oxidation process. After annealing of the AlCrSiN sample with 5 at.% Si at an extraordinary high temperature of 1400 °C for 60 min in ambient air, three zones developed throughout the coating strongly differing in their composition and structure: (i) a dense oxide layer comprising an Al-rich and a Cr-rich zone formed at the very top, followed by (ii) a fine-grained transition zone with incomplete oxidation and (iii) a non-oxidized zone with a porous structure. The varying elemental composition of these zones is furthermore accompanied by micro-structural variations and a complex residual stress development revealed by cross-sectional X-ray nanodiffraction. The results provide a deeper understanding of the oxidation behavior of AlCr(Si)N coatings depending on their Sicontent and the associated elemental, microstructural and residual stress evolution during high-temperature oxidation.

Keywords: AlCrSiN; Nanocomposite; Cathodic arc; Oxidation behaviour; Cross-sectional X-ray nanodiffraction

Related publications


Ion Microprobe analysis of wear processes in tribological ta-C coatings.

Munnik, F.; Habenicht, C.; Lorenz, L.; Krause, M.

Solid lubricants are an active research topic due to many factors, an important one being the elimination of current liquid lubrication because of its environmental impact. The tribological behaviour of different solid lubricants depends on the gas en¬vironment while testing. The most often-used solid lubricant coating is MoS2. A newer one still under research is ta-C (hydrogen-free, tetra-edic, amorphous carbon) that behaves like a polar opposite to MoS2. ta-C relies on free hydrogen and hydroxide ions to passivate free bonds resulting from the wear testing.
In a first test, a ta-C coating has been subjected to tribological tests with counter bodies made of various materials. The aim is to study tribological surface changes like material loss of the coating or material transfer from the counter body, processes which aren’t fully understood yet. Both the wear tracks on the ta-C coating and the counter bodies have been subjected to Ion Beam Analysis using a high energy ion microprobe. Both PIXE (Particle Induced X-ray Emission) and RBS (Rutherford Backscattering Spectrometry) measurements have been performed using a 2 MeV He ion beam and a 3 MeV H ion beam. Results for the wear tracks obtained with a brass and a Al2O3 counter body are presented as well as results on the counter bodies themselves. The advantages and drawbacks of the results obtained with different ions and different methods are presented. These results show that it is important to combine the measurements in order to obtain a complete picture of the damage caused by the wear tests.

Keywords: Tribilogy; Ion beam analysis

Related publications

  • Lecture (Conference) (Online presentation)
    Ion beam workshop 2021 - virtual meeting, 24.-25.03.2021, online, Deutschland

Experimental electronic stopping cross section of tungsten for light ions in a large energy interval

Moro, M. V.; Wolf, P. M.; Bruckner, B.; Munnik, F.; Heller, R.; Bauer, P.; Primetzhofer, D.

Electronic stopping cross section of tungsten for light ions was experimentally measured in a wide energy interval (20 to 6000 keV for protons and 50 to 9000 keV for helium) in backscattering and transmission geometries. The measurements were carried out in three laboratories (Austria, Germany and Sweden) using five different set-ups, the stopping data deduced from different data sets showed excellent agreement amongst each other, with total uncertainty varying within 1.5–3.8% for protons and 2.2–5.5% for helium, averaged over the respective energy range of each data set. The final data is compared to available data and to widely adopted semi-empirical and theoretical approaches, and found to be in good agreement with most adopted models at energies around and above the stopping maximum. Most importantly, our results extend the energy regime towards lower energies, and are thus of high technological relevance, e.g., in fusion research. At these low energies, our findings also revealed that tungsten – featured with fully and partially occupied f- and d-subshells, respectively – can be modeled as an electron gas for the energy loss process.

Keywords: Stopping power; Tungsten; Free electron gas; Bragg peak; Protons; Helium; Fusion

Related publications


Reaction Pathways for Atomic Layer Deposition with Lithium Hexamethyl Disilazide, Trimethyl Phosphate, and Oxygen Plasma

Werbrouck, A.; Mattelaer, F.; Minjauw, M.; Nisula, M.; Julin, J. A.; Munnik, F.; Dendooven, J.; Detavernier, C.

Atomic layer deposition (ALD) of lithium-containing films is of interest for the development of next-generation energy storage devices. Lithium hexamethyl disilazide (LiHMDS) is an established precursor to grow these types of films. The LiHMDS molecule can either be used as a single-source precursor molecule for lithium or as a dual-source precursor molecule for lithium and silicon. Single-source behavior of LiHMDS is observed in the deposition process with trimethylphosphate (TMP) resulting in the deposition of crystalline lithium phosphate (Li3PO4). In contrast, LiHMDS exhibits dual-source behavior when combined with O-2 plasma, resulting in a lithium silicate. Both processes were characterized with in situ ellipsometry, in situ time-resolved full-range mass spectrometry, X-ray photoelectron spectroscopy (XPS), and elastic recoil detection analysis (ERDA). When we combined both reactants into a three-step LiHMDS-TMP-O-2* or LiHMDS-O-2*-TMP process, the dual-source nature of LiHMDS emerged again. By carefully combining our measurements, it is shown that film growth with LiHMDS (in combination with TMP and O-2 plasma) is driven by dipole-driven self-saturated surface interactions combined with dissociative chemisorption. We show that when hydroxyl groups are present on the surface, silicon will be incorporated in the films. These insights benefit the general understanding of the behavior of the LiHMDS and TMP precursors and may facilitate their effective use in ternary or quaternary processes.

Keywords: Reaction products; Adsorption; Precursors; Molecules; Plasma

Related publications


RBS raw data for publication "Tuning the Co/Sr stoichiometry of SrCoO2.5 thin films by RHEED assisted MBEgrowth"

Schöffmann, P.; Pütter, S.; Schubert, J.; Zander, W.; Barthel, J.; Zakalek, P.; Waschk, M.; Heller, R.; Brückel, T.

RBS raw date for publication "Tuning the Co/Sr stoichiometry of SrCoO2.5 thin films by RHEED assisted MBEgrowth"

Simulation results using SIMNRA included as well

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-11-06
    DOI: 10.14278/rodare.657
    License: CC-BY-4.0

Downloads


Tuning the Co/Sr stoichiometry of SrCoO2.5 thin films by RHEED assisted MBEgrowth

Schöffmann, P.; Pütter, S.; Schubert, J.; Zander, W.; Barthel, J.; Zakalek, P.; Waschk, M.; Heller, R.; Brückel, T.

Strontium cobaltite (SrCoO2.5+δ, SCO) is a fascinating material because of its topotactic structural phase transition caused by a change in oxygen stoichiometry. In the brownmillerite phase (δ = 0) it is an insulating antiferromagnet whereas in the perovskite phase (δ = 0.5) it is a conducting ferromagnet. In contrast, the impact of the varying Co/Sr stoichiometry on the structure has not yet been studied in SCO thin films. Using molecular beam epitaxy we have fabricated SCO thin films of varying Co/Sr stoichiometry. Films with Co excess exhibit a brownmillerite crystal structure with CoO precipitates within the thin film and on the surface. Co deficient films are amorphous. Only for 1:1 stoichiometry a pure brownmillerite structure is present. We find a clear dependence of the Reflection High Energy Electron Diffraction (RHEED) pattern of these thin films on the stoichiometry. Interestingly, RHEED is very sensitive to a Co excess of less than 12% while x-ray diffraction fails to reveal that difference. Hence, using RHEED, the stoichiometry of SCO can be evaluated and tuned in-situ to a high degree of precision, which allows for a quick adjustment of the growth parameters during a sample series.

Keywords: This films; SrCoO; Rutherford Backscattering; RHEED; MBE; growth

Related publications


MEIS raw data and maps for publication "Stopping and straggling of 60–250-keV backscattered protons on nanometric Pt films"

Selau, F. F.; Trombini, H.; Marmitt, G. G.; de Andrade, A. M. H.; Morais, J.; Grande, P. L.; Alencar, I.; Vos, M.; Heller, R.

MEIS raw data and maps for publication "Stopping and straggling of 60–250-keV backscattered protons on nanometric Pt films"

Including stiched spectra and 2D ESTAT maps

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-09-14
    DOI: 10.14278/rodare.655
    License: CC-BY-4.0

Downloads


Stopping and straggling of 60–250-keV backscattered protons on nanometric Pt films

Selau, F. F.; Trombini, H.; Marmitt, G. G.; de Andrade, A. M. H.; Morais, J.; Grande, P. L.; Alencar, I.; Vos, M.; Heller, R.

The stopping power and straggling of backscattered protons on nanometric Pt films were measured at low to medium energies (60–250 keV) by using the medium-energy ion scattering technique. The stopping power results are in good agreement with the most recent measurements by Primetzhofer Phys. Rev. B 86, 094102 (2012) and are well described by the free electron gas model at low projectile energies. Nevertheless, the straggling results are strongly underestimated by well-established formulas up to a factor of two. Alternatively, we propose a model for the energy-loss straggling that takes into account the inhomogeneous electron-gas response, based on the electron-loss function of the material, along with bunching effects. This approach yields remarkable agreement with the experimental data, indicating that the observed enhancement in energy-loss straggling is due to bunching effects in an inhomogeneous electron system. Nonlinear effects are of minor importance for the energy-loss straggling.

Keywords: Stopping cross sections; Rutherford Backscattering; Medium Energy Ion Scattering; Energy Straggling

Related publications


RBS raw data for publication "Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites"

Zehner, J.; Soldatov, I.; Schneider, S.; Heller, R.; Khojasteh, N. B.; Schiemenz, S.; Fähler, S.; Nielsch, K.; Schäfer, R.; Leistner, K.

RBS raw data for publication "Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites"

Simulation results using SIMNRA are included as well

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-09-16
    DOI: 10.14278/rodare.653
    License: CC-BY-4.0

Downloads


Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites

Zehner, J.; Soldatov, I.; Schneider, S.; Heller, R.; Khojasteh, N. B.; Schiemenz, S.; Fähler, S.; Nielsch, K.; Schäfer, R.; Leistner, K.

High energy efficiency of magnetic devices is crucial for applications such as data storage, computation, and actuation. Redox‐based (magneto‐ionic) voltage control of magnetism is a promising room‐temperature pathway to improve energy efficiency. However, for ferromagnetic metals, the magneto‐ionic effects studied so far require ultrathin films with tunable perpendicular magnetic anisotropy or nanoporous structures for appreciable effects. This paper reports a fully reversible, low voltage‐induced collapse of coercivity and remanence by redox reactions in iron oxide/iron films with uniaxial in‐plane anisotropy. In the initial iron oxide/iron films, Néel wall interactions stabilize a blocked state with high coercivity. During the voltage‐triggered reduction of the iron oxide layer, in situ Kerr microscopy reveals inverse changes of coercivity and anisotropy, and a coarsening of the magnetic microstructure. These results confirm a magneto‐ionic deblocking mechanism, which relies on changes of the Néel wall interactions, and of the microstructural domain‐wall‐pinning sites. With this approach, voltage‐controlled 180° magnetization switching with high energy‐efficiency is achieved. It opens up possibilities for developing magnetic devices programmable by ultralow power and for the reversible tuning of defect‐controlled materials in general.

Keywords: iron films; magnetic domains; magnetoelectrics; magneto‐ionic mechanisms

Related publications


RBS raw data for publication "High quality epitaxial Mn2Au (001) thin films grown by molecular beam epitaxy "

Bommanaboyena, S. P.; Bergfeldt, T.; Heller, R.; Kläui, M.; Jourdan, M.

RBS raw data for publication "High quality epitaxial Mn2Au (001) thin films grown by molecular beam epitaxy "

Simulation results using SINRA are included as well.

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-06-22
    DOI: 10.14278/rodare.651
    License: CC-BY-4.0

Downloads


High quality epitaxial Mn2Au (001) thin films grown by molecular beam epitaxy

Bommanaboyena, S. P.; Bergfeldt, T.; Heller, R.; Kläui, M.; Jourdan, M.

The recently discovered phenomenon of Néel spin-orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependent resistance measurements. The thin film composition was determined using both inductively coupled plasma optical emission spectroscopy and Rutherford backscattering spectrometry techniques. The MBE-grown films were found to show a superior smooth morphology and a low defect concentration, resulting in reduced scattering of the charge carriers.

Keywords: Atomic force microscopy; Electron diffraction; Epitaxy; Inductively coupled plasma atomic emission spectroscopy; Thin films; Rutherford backscattering spectrometry

Related publications

Downloads


RBS raw data for publication "Solid–liquid interface analysis with in‐situ Rutherford backscattering and electrochemical impedance spectroscopy "

Bergmann, U.; Apelt, S.; Khojasteh, N. B.; Heller, R.

RBS raw data for publication "Solid–liquid interface analysis with in‐situ Rutherford backscattering and electrochemical impedance spectroscopy "

Simulation results using SIMNRA-Code also included

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-06-08
    DOI: 10.14278/rodare.649
    License: CC-BY-4.0

Downloads


Solid–liquid interface analysis with in‐situ Rutherford backscattering and electrochemical impedance spectroscopy

Bergmann, U.; Apelt, S.; Khojasteh, N. B.; Heller, R.

A novel Rutherford backscattering spectrometry (RBS) method is presented to investigate the interface between a solid surface and a surrounding liquid. The introduced measurement system allows to observe and quantify adsorption at the solid–liquid interface and the formation of the electrochemical double layer (EDL). BaCl2 as a bicomponent electrolyte and a Si3N4 membrane surface are chosen as a model system to prove the capabilities of the setup. The results of these RBS measurements are combined with electrochemical impedance spectroscopy (EIS) to validate the findings for the solid–liquid interface under study. Complementary results and discrepancies regarding the formation of the EDL are discussed.
Author keywords: electrochemical double layer, electrochemical impedance spectroscopy, Rutherford backscattering spectroscopy, silicon nitride

Keywords: Rutherford backscattering spectrometry; electrochemical double layer; electrochemical impedance spectroscopy; point of zero charge

Related publications


RBS Raw data for publication: ""Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas"

Mientus, R.; Weise, M.; Seeger, S.; Heller, R.; Ellmer, K.

Raw data for pub. "Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas"

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2020-02-26
    DOI: 10.14278/rodare.647
    License: CC-BY-4.0

Downloads


Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas

Mientus, R.; Weise, M.; Seeger, S.; Heller, R.; Ellmer, K.

By reactive magnetron sputtering from a ceramic SnO2:Ta target onto unheated substrates, X-ray amorphous SnO:Ta films were prepared in gas mixtures of Ar/O2(N2O, H2O). The process windows, where the films exhibit the lowest resistivity values, were investigated as a function of the partial pressure of the reactive gases O2, N2O and H2O. We found that all three gases lead to the same minimum resistivity, while the width of the process window is broadest for the reactive gas H2O. While the amorphous films were remarkably conductive (ρ ≈ 5 × 10−3 Ωcm), the films crystallized by annealing at 500 °C exhibit higher resistivities due to grain boundary limited conduction. For larger film thicknesses (d ≳ 150 nm), crystallization occurs already during the deposition, caused by the substrate temperature increase due to the energy influx from the condensing film species and from the plasma (ions, electrons), leading to higher resistivities of these films. The best amorphous SnO2:Ta films had a resistivity of lower than 4 × 10−3 Ωcm, with a carrier concentration of 1.1 × 1020 cm−3, and a Hall mobility of 16 cm2/Vs. The sheet resistance was about 400 Ω/□ for 100 nm films and 80 Ω/□ for 500 nm thick films. The average optical transmittance from 500 to 1000 nm is greater than 76% for 100 nm films, where the films, deposited with H2O as reactive gas, exhibit even a slightly higher transmittance of 80%. These X-ray amorpous SnO2:Ta films can be used as low-temperature prepared transparent and conductive protection layers, for instance, to protect semiconducting photoelectrodes for water splitting, and also, where appropriate, in combination with more conductive TCO films (ITO or ZnO).

Related publications


Influence of precursor thin-film quality on the structural properties of large-area MoS2 films grown by sulfurization of MoO3 on c-sapphire

Spanková, M.; Sojková, M.; Dobrocka, E.; Hutár, P.; Bodík, M.; Munnik, F.; Hulman, M.; Chromik, S.

In recent years, molybdenum disulfide (MoS2) has been investigated due to its unique electronic, optical, and mechanical properties with a variety of applications. Sulfurization of pre-deposited MoO3 layers is one of the methods of the preparation of large-area MoS2 thin films. The MoO3 layers have been grown on c-sapphire substrates, using two different techniques (rf sputtering, pulsed laser deposition). The films were subsequently annealed in vapors of sulfur at high temperatures what converted them to MoS2 films. The quality of MoS2 is strongly influenced by the properties of the precursor MoO3 layers. The pre-deposited MoO3, as well as the sulfurized MoS2, have been characterized by several techniques including Raman, Rutherford backscattering spectroscopy, atomic force microscopy, scanning electron microscopy, and X-ray diffraction. Here we compare two types of MoS2 films prepared from different MoO3 layers to determine the most suitable MoO3 layer properties providing good quality MoS2 films for future applications.

Keywords: Molybdenum disulfide; Sulfurization; Sputtering; Pulsed laser deposition; Structural properties

Related publications


Nanoparticle emission by electronic sputtering of CaF2 single crystals

Alencar, I.; Hatori, M.; Marmitt, G. G.; Trombini, H.; Grande, P. L.; Dias, J. F.; Papaléo, R. M.; Mücklich, A.; Assmann, W.; Toulemonde, M.; Trautmann, C.

Material sputtered from CaF2 single crystals by 180 MeV Au ions impinging at different incidence angles were collected on high-purity amorphous C-coated Cu grids and Si100 wafer catcher surfaces over a broad angular range. These catcher surfaces were characterized complementary by transmission electron microscopy, atomic force microscopy and medium energy ion scattering, revealing the presence of a distribution of partially buried CaF2 nanoparticles in conjunction to a thin layer of deposited CaF2 material. Particle size distributions do not follow simple power laws and depend on the angles of ion incidence and particle detection. It is shown that the particle ejection is directly related to the jet-like component of sputtering, previously observed in ionic crystals, contributing significantly to the total yield. This contribution enhances as the impinging ions approach grazing incidence. Possible scenarios for the emission of particles are discussed in light of these observations.

Keywords: Atomic force microscopyCatcher technique; Nanoparticle; Medium energy ion scattering; Electronic sputtering; Swift heavy ions; Transmission electron microscopy

Related publications


High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization

Sojkova, M.; Dobročka, E.; Hutár, P.; Tašková, V.; Pribusová-Slušná, L.; Stoklas, R.; Píš, I.; Bondino, F.; Munnik, F.; Hulman, M.

Few-layer PtSe2 films are promising candidates for applications in high-speed electronics, spintronics and photodetectors. Reproducible fabrication of large-area highly crystalline films is, however, still a challenge. Here, we report the fabrication of epitaxially aligned PtSe2 films using one-zone selenization of pre-sputtered platinum layers. We have studied the influence of growth conditions onstructural and electrical properties of the films prepared from Pt layers with different initial thickness. The best results were obtained for the PtSe2 layers grown at elevated temperatures (600 °C). The films exhibit signatures for a long-range in-plane ordering resembling an epitaxial growth. The charge carrier mobility determined by Hall-effect measurements is up to 24 cm²/V.s

Keywords: PtSe2; epitaxial films; Laue oscillations; Raman spectroscopy

Related publications


Unusual scandium enrichments of the Tørdal pegmatites, south Norway. Part I: Garnet as Sc exploration pathfinder

Steffenssen, G.; Müller, A.; Munnik, F.; Friis, H.; Erambert, M.; Kristoffersen, M.; Rosing-Schow, N.

The granitic pegmatites of the Tørdal area in southern Norway have been known for their Sc enrichment for about 100 years. Scandium is a compatible element in garnet. In this study, 32 garnet samples from 16 pegmatite localities across the Tørdal pegmatite field were investigated to determine the Sc distribution within garnets (crystal scale), within pegmatite bodies (pegmatite scale) and across the Tørdal pegmatite field (regional scale). In the Tørdal pegmatites, Sc content in garnet is representative for the Sc bulk composition of pegmatites, defining garnet as a reliable pathfinder mineral for the exploration of Sc mineralization in pegmatite fields. Garnets with highest Sc concentrations of up to 2197 µg/g have a spessartine component ranging from 50 to 60 mol.%. Since most garnets crystallized during the early stage of pegmatite formation (wall zone stage) Sc decreases in the remaining pegmatite melt, as documented by generally decreasing Sc from core to rim of crystals and by the occurrence of late-stage garnets (albite zone stage) with low Sc. Thus, with progressing crystallization Sc decreases in the melt. The regional Sc distribution in the Tørdal pegmatite field revealed that the Skardsfjell-Heftetjern-Høydalen pegmatites have highest Sc enrichments to sub-economic levels, with an average bulk Sc content of 53 µg/g and an average Sc content in garnet of about 1900 µg/g in the Heftetjern 2 pegmatite.
The assumed resources of the Skardsfjell-Heftetjern-Høydalen area are about 125,000 t ore grading c. 50 µg/g Sc resulting in a total of 625 t Sc, which is too small to have economic potential. However, the strong Sc enrichment of the Tørdal pegmatites is unusual for granitic pegmatites, making them a specific Sc deposit type. The amphibolitic host rocks of the Tørdal pegmatites are identified as the source rocks of Sc. The host rocks, which are part of the Nissedal Outlier supracrustals, are enriched in Sc (mean 34 µg/g) compared to average crustal compositions (mean 14 µg/g). Scandium of amphiboles was preferentially released at the onset of partial melting of the amphibolites. Thus, the Sc content in the pegmatite is strongly dependent on the degree of partial melting.

Keywords: scandium; pegmatite; garnet; Sveconorwegian orogeny; Tørdal

Related publications


Silicon Surface Passivation by ALD-Ga₂O₃: Thermal vs. Plasma-Enhanced Atomic Layer Deposition

Hiller, D.; Julin, J. A.; Chnani, A.; Strehle, S.

Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, the annealing time to activate the surface passivation is found to be significantly shorter. The best surface saturation current densities (JOs) or surface recombination velocities (Seff) are 6 and 9 fA/cm² or 0.6 and 1.5 cm/s for n- and p-type Si, respectively. We correlate the surface passivation with the negative fixed charge density (Qfix; field-effect passivation) and the interface defect density (Dit; chemical passivation). It turns out that a high Qfix is present, irrespective of the utilized ALD-method, deposition temperature, or postannealing, whereas low Dit is only achieved fo rplasma-enhanced ALD at low temperatures. A critical H-density of∼10¹⁶ cm−2 is identified as a necessary but not sufficient condition for excellent surface passivation. Finally, contact resistivities are measured to investigate the possibility of using ALD-Ga2O3 as passivating contact material. In order to understand the current-voltage measurements, the energetic positions of the band edges and the Fermi level are determined by ultraviolet photoelectron spectroscopy and Kelvin probe.

Keywords: Atomic layer deposition (ALD); gallium oxide(Ga2O3); hydrogen; silicon surface passivation

Related publications


Lithium Diffusion in Ion-Beam Sputter-Deposited Lithium-Silicon Layers

Strauss, F.; Hüger, E.; Julin, J. A.; Munnik, F.; Schmidt, H.

Lithium-silicon compounds are used as active material in negative electrodes of Li-ion batteries. The knowledge of Li diffusion in these materials is of importance for an optimization of charging/discharging rates and achievable maximum specific capacity as well as for an understanding of the basic lithiation mechanism. We carried out Li tracer self-diffusion experiments on ion-beam sputter-deposited LixSi(O) thin films for x ~ 0.25 and x ~ 4.5 using LixSi/6LixSi hetero-structures in combination with secondary ion mass spectrometry in line scan like mode. Measurements with elastic recoil detection analysis revealed the presence of a considerable amount of oxygen in the films. The diffusivities follow the Arrhenius law in the temperature range between 300 and 500 °C with an activation energy of 0.8 – 0.9 eV. The film containing a higher amount of Li shows faster diffusion by one order of magnitude. The Li diffusivities in the investigated Li-rich materials are several orders of magnitude higher than in Li-poor LixSi films (x = 0.02 to 0.06) as given in literature because of a lower activation energy. This indicates the presence of a direct interstitial-like mechanism. Oxygen present in samples with the same Li concentration of x = 0.06 also enhances diffusion but does not lead to a reduction in the activation energy.

Related publications


The role of gas impurities on the optical properties of sputtered Ti(Al)N coatings

Bohovičová, J.; Meško, M.; Méndez, Á.; Julin, J. A.; Munnik, F.; Hübner, R.; Grenzer, J.; Čaplovič, Ľ.; Krause, M.

In this study, we investigated the role of impurities, such as H, C, and O on the optical properties of the Ti(Al)N coatings. For comparison, coatings were prepared by direct-current magnetron sputtering (DC-MS) and high-power impulse magnetron sputtering (HiPIMS) at the same average power. The elemental composition of the thin films was measured by elastic recoil detection analysis. Regardless of the deposition technique used, no significant difference in H and C concentrations were found. The analysis showed, that HiPIMS coatings contain less O impurities than the corresponding DC-MS films, despite the lower deposition rate. The reduced residual O content in HiPIMS coatings can be explained by the cleaning effect of the bombarding ions. Moreover, densification effects presumably suppress post-deposition oxidation. Given the reduced O content, HiPIMS films showed higher optical reflectance for the entire measured spectral range.

Related publications

  • Lecture (Conference)
    The 15th International Symposium on Sputtering and Plasma Processes, ISSP 2019, 11.-14.06.2019, Kanazawa, Japan
  • Poster
    The 15th International Symposium on Sputtering and Plasma Processes, ISSP 2019, 11.-14.06.2019, Kanazawa, Japan
  • Contribution to proceedings
    The 15th International Symposium on Sputtering and Plasma Processes, ISSP 2019, 11.-14.06.2019, Kanazawa, Japan

Modern Ion Beam Techniques for Elemental Analysis of Surfaces and Interfaces at the nm Scale

Heller, R.

The general trend in technology and science to create, process and analyze small structures on the nm scale leads to new challenges in modern ion beam analysis (IBA). This is accompanied by higher demands on the lateral resolution as well as on high precision determination of elemental compositions on an atomic depth scale.

Thinner layer structures are closely related to an increased sensitivity on external impacts. Even the transport of a sample to the place of analysis under ambient conditions can lead to unwanted (chemical) modifications at the surface. Furthermore, in technological developments not only the state of a system after processing but the process itself may be of particular interest. “Online” IBA under process conditions is thus highly desired.

Classical IBA methods like RBS (Rutherford Backscattering Spectrometry), ERD (Elastic Recoil Detection Analysis), PIXE (Particle Induced X-Ray Emission) or PIGE (Particle Induced Gamma Emission), either applied as broad beam or as a micro probe, can therefore quickly reach their limits.

In the present contribution, we give an overview on recent and ongoing developments of new IBA techniques and approaches at the HZDR Ion Beam Center (IBC) addressing the above-mentioned difficulties. These developments include in particular

  • the implementation of IBA in a helium ion microscope enabling elemental mapping on the nm scale,
  • the unification of different IBA techniques in complex experimental chambers including in-situ capabilities,
  • a new setup for in-operando, online and quantitative analysis of solid-liquid interfaces with sub mono-layer sensitivity,
  • A new low-energy ion laboratory equipped with a Medium Energy Ion Scattering (MEIS) chamber for quantitative elemental depth profiling on the nm scale.

We will give an overview on these techniques and their capabilities. Since the IBC is an international user facility all presented techniques are available for external users experiments.

Keywords: Ion beam analysis; elemental composition; imaging; materials analysis; nano scale; backscattering

Related publications

  • Poster
    18th European Conference on Applications of Surface and Interface Analysis, 15.-20.09.2019, Dresden, Deutschland

Characterization of Goethe’s prisms by external ion beam

Munnik, F.; Mäder, M.; Heller, R.; Schreiber, A.; Müller, O.

Johann Wolfgang von Goethe is known the world over as a renowned writer. However, he was also involved in scientific studies and has written several scientific books, of which he considered the “Theory of colours” (“Farbenlehre”, 1400 pages published in 1810) his most important work overall. In this work, he characterises colours as arising from the interplay between light and dark. This is in contrast to Newton’s analytical treatment of colour from one century earlier, which is based on the observation that white light can be separated into colours with a prism, that Goethe opposed. Over the centuries, Goethe’s theory was discredited and Newton’s theory prevailed. However, Goethe performed systematic and accurate optical measurements.
For these experiments, he and his partner J. Ritter, who discovered UV-light, used water prisms and glass prisms ordered from a glassmaker in Jena. The aim of current research is to reconstruct these optical experiments and the observed spectra [1]. For this, detailed knowledge of the composition of the glass prisms is important. This knowledge is, for example, also important to evaluate how innovative his prisms were.
Therefore, eleven prisms from Goethe’s estate or from contemporary sources belonging to the Klassik Stiftung Weimar have been analysed at the external beam setup of the Ion Beam Center at the HZDR. A 4 MeV proton beam has been used to acquire PIXE, PIGE and RBS spectra, sometimes on several areas. Care had to be taken to minimise damage by using short measurement times and measuring on inconspicuous areas because the glass quickly showed dark spots under irradiation. The PIXE and PIGE spectra have been used for quantitative analysis in an iterative procedure and the RBS spectra have only been evaluated quantitatively. The results of this analysis and the interpretation are presented in this work.

Related publications

  • Lecture (Conference)
    16th International Conference on Particle Induced X-ray Emission, 24.-29.03.2019, Caldas da Rainha, Portugal

High energy ion beams as a powerful tool for the surface analysis of the elemental composition of almost any sample

Munnik, F.; Heller, R.

High energy ion beams as a powerful tool for the surface analysis of the elemental composition of almost any sample.

Keywords: Ion Beam Analysis

Related publications

  • Lecture (others)
    Vortrag am Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 17.12.2019, Leipzig, Deutschland

Impact of Hydrogen-Rich Silicon Nitride Material Properties on Light-Induced Lifetime Degradation in Multicrystalline Silicon

Bredemeier, D.; Walter, D. C.; Heller, R.; Schmidt, J.

The root cause of “Light and Elevated Temperature Induced Degradation” (LeTID) of the carrier lifetime in multicrystalline silicon (mc-Si) wafers is investigated by depositing hydrogen-rich silicon nitride (SiN x :H) films of different compositions on boron-doped mc-Si wafers. The extent of LeTID observed in mc-Si after rapid thermal annealing (RTA) shows a positive correlation with the amount of hydrogen introduced from the SiN x :H layers into the bulk. The concentration of in-diffused hydrogen is quantified via measuring the resistivity change due to the formation of boron–hydrogen pairs in boron-doped float-zone silicon wafers processed in parallel to the mc-Si wafers. The measurements clearly show that the in-diffusion of hydrogen into the silicon bulk during RTA depends on both the atomic density of the SiN x :H film as well as the film thickness. Importantly, the impact of SiN x :H film properties on LeTID shows the same qualitative dependence as the hydrogen content in the silicon bulk, providing evidence that hydrogen is involved in the LeTID defect activation process.

Keywords: carrier lifetime; hydrogen; LeTID defects; light-induced lifetime degradation; silicon nitride; ulticrystalline silicon

Related publications


High energy ion beams as a powerful tool for the analysis of the elemental composition of thin layers

Munnik, F.

Keywords: Ion Beam Analysis

Related publications

  • Lecture (others)
    Kolloquium am Ferdinand-Braun-Institut, Berlin, 29.11.2019, Berlin, Germany

Microstructural evolution and thermal stability of AlCr(Si)N hard coatings revealed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction

Jäger, N.; Meindlhumer, M.; Spor, S.; Hruby, H.; Julin, J.; Stark, A.; Nahif, F.; Keckes, J.; Mitterer, C.; Daniel, R.

An extensive understanding about the microstructural evolution and thermal stability of the metastable AlCr(Si)N coating system is of considerable importance for applications facing high temperatures, but it is also a challenging task since several superimposed processes simultaneously occur at elevated temperatures. In this work, three AlCr(Si)N coatings with 0 at.%, 2.5 at.% and 5 at.% Si were investigated by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction (HT-HE-GIT-XRD) and complementary differential scanning calorimetry and thermogravimetric analysis measurements combined with conventional ex-situ X-ray diffraction. The results revealed (i) a change in the microstructure from columnar to a fine-grained nano-composite, (ii) a reduced decomposition rate of CrN to Cr₂N, also shifted to higher onset temperatures from ∼ 1000 ℃ to above 1100 ℃ and (iii) an increase of lattice defects and micro strains resulting in a significant increase of compressive residual strain with increasing Si content. While the Si-containing coatings in the as-deposited state show a lower hardness of 28 GPa compared to AlCrN with 32 GPa, vacuum annealing at 1100℃ led to an increase in hardness to 29 GPa for the coatings containing Si and a decrease in hardness to 26 GPa for AlCrN. Furthermore, the in-situ HT-HE-GIT-XRD method allowed for simultaneously accessing temperature-dependent variations of the coating microstructure (defect density, grain size), residual strain state and phase stability up to 1100℃. Finally, the results established a deeper understanding about the relationships between the elemental composition of the materials, the resulting microstructure including crystallographic phases and residual strain state, and the coating properties from room temperature up to 1100℃.

Keywords: AlCrSiN; nano-composite; cathodic arc; thermal stability

Related publications


Thermo-physical properties of coatings in the Ti(B,N) system grown by chemical vapor deposition

Kainz, C.; Schalk, N.; Tkadletz, M.; Saringer, C.; Winkler, M.; Stark, A.; Schell, N.; Julin, J.; Czettl, C.

Hard protective coatings are commonly subjected to temperatures exceeding 1000 °C, which has significant influence on their thermo-physical properties and the associated performance in application. Within the present work, temperature dependent physical properties of coatings within the Ti(B,N) system grown by chemical vapor deposition were correlated with their chemical composition. High-energy X-ray diffraction experiments in inert atmosphere proved that TiN, TiB₂ and ternary TiBxNy coatings with varying B contents are thermally stable up to 1000 °C. First order lattice strains of TiN and TiBxNy coatings diminish during heating, whereas TiB₂ exhibits compressive strain enhancement up to the deposition temperature. Nanocrystalline TiB₂ exhibits more pronounced grain growth during annealing compared to coarse grained columnar TiN. Within the investigated coatings, the mean thermal expansion coefficient decreases as the B content increases. The same trend was observed for the thermal conductivity, which correlates with the grain size of the coatings.

Keywords: Chemical vapor deposition; X-ray diffraction; Ti(B,N); thermal conductivity; strain

Related publications


High temperature plasma immersion ion implantation using hollow cathode discharges in small diameter metal tubes

Ueda, M.; Silva, C.; de Souza, G. B.; Pichon, L.; Reuther, H.

High temperature nitrogen plasma immersion ion implantation (HT-NPIII) method was used to treat the internal walls of small diameter metal tubes made of SS304 and of Ti6-Al4-V (TAV). Using a lid in one side of the tubes was essential to reach high temperatures of 700-900 °C, necessary for high thermal diffusion of nitrogen in Ti alloy samples placed inside the metal tubes for monitoring the HT-NPIII process. The used metal tubes also reached such high temperatures. New phases of TiN and Ti2N were successfully attained in the TAV samples with the treated layer thickness of more than 1.3 μm for all the tested cases. For tubes made of SS304, HT-NPIII treatments resulted in redeposition of FeN thick layers with high hardness on the surfaces of the internal walls of the tubes and on the monitoring samples. Obtaining such HT-NPIII conditions in these small metallic tubes was possible by achieving high plasma density through hollow cathode discharges inside those tubes. These results were compared to the ones obtained on the nitrogen implantation treatments of TAV samples in moderate to high temperatures carried out previously in the laboratory which indicated the superior performance of the presently reported method of surface modification.

Related publications


Round Robin: Composition And Thickness of Nitride and Oxide Thin Films Grown by Atomic Layer Deposition

Julin, J.; Sajavaara, T.

A round robin characterization of the elemental composition and thickness of Al₂O₃ and TiN thin films using IBA methods was organized. The samples were grown by atomic layer deposition (ALD) on 200 mm Si wafers. The Al₂O₃ films with different thicknesses (10–100 nm) were deposited using Al(CH₃)₃ and water as precursors at low temperatures, known to produce films with high impurity concentrations and non-stoichiometric O/Al ratio. The TiN films, sandwiched between thinner ALD-Al₂O₃ films, were grown using TiCl₄ and NH₃ precursors. The samples were chosen to represent a typical thin film analysis problem with real-world applications.

The participating institutes were mainly using heavy ion elastic recoil detection analysis (HI-ERDA) as a single measurement technique capable of providing all the requested information. Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were employed as multi-technique complementary analysis (so called Total-IBA) or to give partial results. In addition, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were employed as complementary techniques.

The main goal of this study was not to promote the HI-ERDA technique but to identify the possible weaknesses and limitations of different analysis techniques and approaches, and thereafter improve the accuracy and reliability of the results given by the ion beam analysis community. A special emphasis was put on transparency of the results obtained – all the raw measurement data are publicly available for e.g. comparison and educational use via open data portal.

Related publications

  • Lecture (Conference)
    IBA2019 - 24th International conference on Ion Beam Analysis, 13.-18.10.2019, Antibes, France

Experimental and computational studies of the influence of grain boundaries and temperature on the radiation-induced damage and hydrogen behavior in tungsten

Panizo-Laiz, M.; Díaz-Rodríguez, P.; Rivera, A.; Valles, G.; Martín-Bragado, I.; Perlado, J. M.; Munnik, F.; González-Arrabal, R.

We study the influence of grain boundaries on radiation-induced vacancies, as well as, on the hydrogen (H) behavior in tungsten (W) samples with different grain sizes in the temperature range from 300 K to 573 K, both experimentally and by computer simulations. For this purpose, coarse-grained and nanostructured W samples were sequentially irradiated with carbon (C) and H ions at energies of 665 keV and 170 keV, respectively. A first set of the implanted samples was annealed at 473 K and a second set at 573 K. Object kinetic Monte Carlo simulations were performed to account for experimental outcomes. Results show that the number of vacancies for nanostructured W is always larger than for single crystal W samples in the whole studied temperature range and that the number of vacancies is only reduced in samples with a large density of grain boundaries and at temperatures high enough to activate the vacancy motion (around 573 K). Results also indicate that the migration of H along vacancy free grain boundaries is more effective than along the bulk, and that the retained H is trapped in vacancies located within the grains. These results are used to explain the experimental outcomes.

Related publications


Thermal expansion of magnetron sputtered TiCxN1-x coatings studied by high-temperature X-ray diffraction

Saringer, C.; Kickinger, C.; Munnik, F.; Mitterer, C.; Schalk, N.; Tkadletz, M.

The coefficient of thermal expansion (CTE) of TiCxN1-x can be adjusted by changing the value x between 0 (i.e. pure TiN) and 1 (pure TiC), which makes this material exceptionally useful as base layer to adapt the mismatch between the CTEs of substrate and coating. However, no comprehensive data on the CTE of sputtered TiCxN1-x has been reported up to now. Thus, in this work eleven coatings with compositions ranging from pure TiN to pure TiC were deposited using non-reactive magnetron sputtering. The elemental and phase composition were obtained by elastic recoil detection analysis and Raman spectroscopy, respectively. Powders of the coating material were analyzed using high-temperature X-ray diffraction between room temperature and up to 1000 °C to determine the temperature dependent lattice parameters. Subsequently, these lattice parameters were fitted using second order polynomials with coefficients linearly depending on the carbon content. Thus, a formula for the CTE of TiCxN1-x valid between 25 and 1000 °C was deduced which showed that at room temperature TiN has the highest CTE of 8.12 × 10-6 K-1. The CTE gradually decreases with increasing carbon content to 7.55 × 10-6 K-1 for pure TiC. While the value for TiC only shows a small increase with temperature, the CTE of TiN increases strongly up to 11.1 × 10-6 K-1 at 1000 °C. The presented formula for the temperature dependent CTE of sputtered TiCxN1-x coatings allows to calculate the required composition for TiCxN1-x base layers, in order to tune their thermal expansion for the use in complex multilayered coatings.

Keywords: Thermal expansion; Titanium carbonitride; High-temperature X-ray diffraction; Physical vapor deposition; Hard coatings

Related publications


Revealing the Formation Dynamics of the Electric Double Layer by means of in-situ Rutherford Backscattering Spectrometry

Baghban Khojasteh Mohammadi, N.; Apelt, S.; Bergmann, U.; Facsko, S.; Heller, R.

We report on a new versatile experimental setup for in-situ Rutherford backscattering spectrometry at solid- liquid interfaces that enables investigations of electric double layers directly, in-situ and in a quantitative manner. A liquid cell equipped with a three electrode arrangement is mounted in front of the beam line and a thin Si3N4 window down to a thickness of 150 nm separates the vacuum of the detector chamber from the electrolyte in the cell. Since the contribution of the window to the measured spectra is minimized, a large variety of elements at the solid-liquid interface with sensitivities far below one mono layer can be monitored. The attachment of Ba onto the Si3N4 surface as a function of contact time and pH value of the electrolyte solution was chosen as example system. From our measurement we can not only read the evolution of the double layer but also derive limits for the point of zero charge for the Si3N4 surface. Our findings of 5.7 ≤ pH_PZC ≤ 6.2 are in good accordance with values found in the literature obtained by other techniques. Despite the measurements shown in this work, the presented setup allows for a large variety of in-situ investigations at solid-liquid interfaces such as tracing electro-chemical reactions, monitoring segregation, adsorption and dissolution and corrosion processes.

Keywords: Electric Double Layer; in-situ RBS; solid-liquid interface

Related publications

Downloads


Upgrade of the ERDA setup at the HZDR 6 MV tandem accelerator

Julin, J.; Aniol, R.; Munnik, F.; Heller, R.

During 2019 the elastic recoil detection (ERD) beamline attached to the 6 MV tandem accelerator at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has been modernized completely. Since many of the vacuum and electrical components of the previous setup had been showing signs of aging or failing, the decision was made to replace these and rebuild the setup. Additionally, during 2018 the construction of a new time-of-flight spectrometer for ERD was also completed, and it was seen that the ERD setup as a whole would benefit from a combination of a new chamber, mechanical supports and a control system.

The new setup incorporates the previously used Z-separating Bragg ionization chamber (BIC), which is typically used with 43 MeV 35Cl beam. It is connected to a port on the chamber giving 30 degree scattering angle. The time-of-flight branch is attached to the other side of the chamber at a 40 degree scattering angle. Various beams up to an energy of 20 MeV for 35Cl or 30 MeV for 63Cu can be used, or even higher if hydrogen depth profiling is not necessary. The detector branches can be operated independently of each other, minimizing downtime due to breakdowns of detectors or maintenance. This is exceedingly important since the ion beam center (IBC) is a user facility and the beam time for the 6 MV accelerator is allocated based on proposals and scheduled long in advance to the actual measurement.

This presentation will give an overview of the new ERD setup, including specifics on the design of the new chamber, control and vacuum systems, detectors and data acquisition as well as some experimental data, performance figures and experiences gained during the construction of the setup.

Keywords: IBA; ERDA

Related publications

  • Poster
    ECAART13 - 13th European Conference on Accelerators in Applied Research and Technology, 05.-10.05.2019, Split, Croatia

Oxyhydride Nature of Rare-Earth-Based Photochromic Thin Films

Cornelius, S.; Colombi, G.; Nafezarefi, F.; Schreuders, H.; Heller, R.; Munnik, F.; Dam, B.

Thin films of rare-earth (RE)−oxygen−hydrogen compounds prepared by reactive magnetron sputtering show a unique color-neutral photochromic effect at ambient conditions. While their optical properties have been studied extensively, the understanding of the relationship between photochromism, chemical composition, and structure is limited. Here we establish a ternary RE−O−H composition-phase diagram based on chemical composition analysis by a combination of Rutherford backscattering and elastic recoil detection. The photochromic films are identified as oxyhydrides with a wide composition range described by the formula REOxH3−2x where 0.5 ≤ x ≤ 1.5. We propose an anion-disordered structure model based on the face-centered cubic unit cell where the O2− and H− anions occupy tetrahedral and octahedral interstices. The optical band gap varies continuously with the anion ratio, demonstrating the potential of band gap tuning for reversible optical switching applications.

Related publications


Physical and electrical properties of nitrogen-doped hydrogenated amorphous carbon films

Fenker, M.; Julin, J.; Petrikowski, K.; Richter, A.

Nitrogen-doped hydrogenated amorphous carbon films (a-C:H:N) have been prepared by a plasma-activated chemical vapor deposition technique (PACVD) by using a plasma beam source (PBS). The properties of the a-C:H:N films were changed by varying the total pressure, the substrate temperature (100 °C, 300 °C) and nitrogen partial pressure p(N₂) by adding nitrogen to the precursor acetylene (C₂H₂). For the investigations, a-C:H:N films have been deposited onto glass slides and doped silicon wafers. The deposition rate decreased with increasing nitrogen content in the N₂/C₂H₂ gas mixture and with decreasing total pressure. The elemental composition of two sample series (300 °C) has been analyzed with Elastic Recoil Detection Analysis (ERDA). The highest N content and N/C ratio was estimated to be 16 at.% and 0.25 at the highest p(N₂), respectively. Microhardness measurements showed that the hardness decreased with increasing p(N₂). Electrical resistance of the a-C:H:N films was measured by 4-point probe. Electrically conductive coatings have been obtained by nitrogen-doped a-C:H films at higher substrate temperature (300 °C). The electrical resistance of the a-C:H:N films also decreases with ecreasing total pressure, with the lowest value being about 1 Ohm cm. The film density was determined by means of X-ray reflectometry (XRR).

Keywords: PACVD; DLC; carbon films; carbon nitride films; XRR; electrical conductivity

Related publications


Evolution of structure and residual stress of a fcc/hex-AlCrN multi-layered system upon thermal loading revealed by cross-sectional X-ray nano-diffraction

Jäger, N.; Klima, S.; Hruby, H.; Julin, J.; Keckes, J. F.; Mitterer, C.; Daniel, R.

Understanding the influence of process conditions and coating architecture on the microstructure and residual stress state of multi-layered coatings is essential for the development of novel thermally and mechanically stable coatings and requires advanced depth resolving characterization techniques. In this work, an arc-evaporated multi-layered coating, consisting of alternating Al₇₀Cr₃₀N and Al₉₀Cr₁₀N sublayers with an individual layer thickness between 120 nm and 380 nm, was investigated. The as-deposited state of the multi-layered coating and the state after vacuum annealing at 1000 ◦C for 30 min was studied along its cross-section by synchrotron X-ray nano-diraction using a beam with a diameter of 50 nm. The results revealed sublayers with alternating cubic and hexagonal phase, causing repeated interruption of the grain growth at the interfaces. The in-plane residual stress depth distribution across the coating thickness could be tuned in a wide range between pronounced compressive and slight tensile stress by combining the effects of the coating architecture and the modulated incident particle energy controlled by the substrate bias voltage ranging from −30 V to −250 V . This resulted in an oscillatory stress profile fluctuating between −2 GPa and −4.5 GPa or pronounced stress gradients with values between −4 GPa and 0.5 GPa. Finally, the decomposition routes of the metastable cubic Al₇₀Cr₃₀N phase could be controlled by the Al₉₀Cr₁₀N sublayers which acted as nucleation sites and governed the texture of the decomposition products as Cr₂N. The results demonstrate that the cross sectional combinatorial approach, relying on a sophisticated multi-layer architecture combining various materials synthesized under tailored conditions, allowed for resolving structural variations and stress proles in the individual layers within the complex architecture and pioneers the path for knowledge-based development of multi-layered coatings with predefined microstructure and a dedicated stress design.

Keywords: Coating; Multilayers; Microstructure design; Residual stress; X-ray nano-diffraction

Related publications


Contact

Dr. René Heller

Head Ion Beam Analysis
r.hellerAthzdr.de
Phone: +49 351 260 3617