High-Energy Ion Implantation

HE IonenimplantationHigh-energy ion implantation has been well-established in production technology of  a number of semiconductor devices. Known advantages of targeted doping, defect creation, or a combination of both are utilized with high-energy ion implantation.

High ion energies of typically some megaelectron-volts (MeV) induce high ion penetration depths in material, thus, facilitating buried doping or defect profiles, unlike any other technology.

Low fluences of 1010 to 1013 cm-2  in typical application fields make the high-energy ion implantation also financially attractive.

Typical application fields of high-energy ion implantation include:

  • Implantation of light ions (H, He) to improve the switching behavior in power electronic semiconductor devices (power diodes, thyristors, or power MOSFETs)
  • Implantation of doping elements (H, B, P, As, ...) to tune field strength distributions in photodiodes, particle detectors or high-voltage devices
  • Implantation of heavy ions to improve emission characteristics of laser diodes

Following implantation chambers and wafer handling systems are offered to perform high-energy ion implantation at our 6 MV Tandetron and 3 MV Tandetron high-energy ion accelerators:


6 MV Tandetron

  • Manufacturer:
High Voltage Engineering Europa B.V.
  • Ion source:
Duoplasmatron model 358 + Li charge exchange channel (only for He-) Cs sputter source, model 860C 
  • Terminal voltage:
0.3 - 6 MV
  • Ion energy:
0.6 - 50 MeV (depending on charge state)

(I) Channel 3: Single wafer implantation chamber

6 MV Kanal 3
  • Scanning system:
x, y electrostatic (f ≈ 1 kHz)
  • Substrates:
wafers or other planar samples
  • Substrate size:
up to 150 mm wafers
  • Implant angle (tilt):
7° (other on request)
  • Substrate temperature:
no cooling, typically room temperature
  • Fluences:
starting from 1x1010 cm-2
  • Air cleanliness:
class 6 (DIN EN ISO 14644)
  • Wafer throughput:
typically 20 per h (depending on fluence)

(II) Channel B2: Automated wafer handler

6 MV Kanal 3
  • Scanning system:
≤ 150 mm: x, y electrostatic;
>150mm, combination of electrostatic/mechanic 
  • Substrates:
wafers only
  • Substrate size:
up to 200 mm wafers
  • Implant angle (tilt):
7° (other on request)
  • Substrate temperature:
no cooling, typically room temperatur
  • Fluences:
starting from 1x1010 cm-2
  • Air cleanliness:
class 5 (DIN EN ISO 14644)
  • Wafer throughput:
up to 50 per h (depending on fluence)

3 MV Tandetron

  • Manufacturer:
High Voltage Engineering Europa B.V. 
  • Ion source:
Duoplasmatron model 358 + Li-charge exchange channel (only for He-) Cs sputter source, model 860C
  • Terminal voltage:
0.1 - 3 MV
  • Ion energy:
0.2 - 8 MeV (depending on charge state)

(I) Channel 2: Single wafer, large implantation chamber

6 MV Kanal 3
  • Scanning system:
x, y electrostatic (f ≈ 1 kHz)
  • Substrates:
wafers or other planar samples
  • Substrate size:
up to 125 mm wafers
  • Implant angle (tilt):
  • Substrate temperature:
no cooling, typically room temperature
  • Fluences:
starting from 5x1010 cm-2
  • Air cleanliness:
class 5 (DIN EN ISO 14644)
  • Wafer throughput:
typically 20 per h (depending on fluence)

(II) Channel 2: Single wafer, small implantation chamber

6 MV Kanal 3
  • Scanning system:
x, y electrostatic (f ≈ 1 kHz)
  • Substrates:
wafers or other planar samples
  • Substrate size:
up to 100 mm wafers
  • Implant angle (tilt):
7° or 0°
  • Substrate temperature:
from LN2 up to 800 °C
  • Fluences:
starting from 5x1010 cm-2
  • Air cleanliness:
not controlled
  • Wafer throughput:
typically 10 per h (depending on fluence)

(III) Channel 4: Semi-automated wafer handler EATON NV-10

6 MV Kanal 3
  • Scanning system:
x, y (mechanic)
  • Substrates:
wafers only
  • Substrate size:
100 mm, 125 mm and 150 mm wafers
  • Implant angle (tilt):
  • Substrate temperature:
no cooling, typically room temperature
  • Fluences:
starting from 1x1012 cm-2
  • Air cleanliness:
class 5 (DIN EN ISO 14644)
  • Wafer throughput:
up to 100  per h