Kontakt

Prof. Dr. Nina Maria Huittinen

Leiterin Festphasenchemie der Radionuklide
n.huittinenAthzdr.de
Tel.: +49 351 260 2148

Abteilung Festkörperchemie von Radionukliden


Forschung

Foto: Icon der Abteilung Festkörperchemie von Radionukliden des IRE ©Copyright: Prof. Dr. Nina Maria Huittinen

Wie der Name schon sagt, konzentriert sich die Abteilung Festkörperchemie der Radionuklide auf die Forschung im Zusammenhang mit der Struktur und den Eigenschaften von Festphasen, die radioaktive Elemente enthalten. Unser besonderes Interesse gilt kristallinen anorganischen Festphasen wie Zirkon (ZrSiO4), Zirkoniumdioxid (ZrO2) und Pyrochlor (Ln2Zr2O7) sowie Lanthanid-(Ln-)Orthophosphaten vom Typ Monazit (LnPO4). Diese festen Phasen sind von Bedeutung für die Korrosion der Zircaloy-Hülle, die abgebrannte Kernbrennstäbe umgibt, oder sie sind als keramische Träger für die Immobilisierung und sichere Entsorgung bestimmter aktinidhaltiger Abfallströme vorgesehen, die in den letzten Phasen des Kernbrennstoffkreislaufs anfallen. Wir stellen polykristalline Pulver oder Einkristalle her, die mit Aktinidelementen dotiert sind, indem wir hydrothermale Verfahren, Flusswachstum und Festkörpersynthese anwenden. Durch die Kombination von Röntgenbeugung und verschiedenen mikroskopischen und spektroskopischen Techniken erforschen wir die Mikrostruktur, die Redoxchemie und lokale strukturelle Ordnungs- und Störungsphänomene in den dotierten Festphasen. Damit wollen wir ein detailliertes Verständnis der Immobilisierung von Aktiniden in kristallinen Matrizen auf atomarer Basis entwickeln und verlässliche Aussagen über die Leistungsfähigkeit der Wirtsmaterialien unter Endlagerbedingungen treffen.


Neuste Publikation

Self-healing ThSiO4-ZrSiO4 system under conditions relevant to underground nuclear waste repositories

Svitlyk, V.; Weiß, S.; Garbarino, G.; Shams Aldin Azzam, S.; Hübner, R.; Worbs, A.; Huittinen, N. M.; Hennig, C.

Abstract

Two series of Th1-xZrxSiO4 phases were synthesized hydrothermally under weakly basic (pH = 8) and strongly acidic (pH = 1) conditions. Changes in pH were found to have a significant effect on experimental phase diagrams. Synthesis at pH = 8 favors the formation of Th-rich phases with resulting Th1-xZrxSiO4 solid solution for x = 0 – 0.5. Contrary, synthesis at pH = 1 results in the formation of pure end-members of the ThSiO4-ZrSiO4 pseudo-binary system separated by multiple miscibility gaps. Phases formed both under basic and acidic conditions were found to retain water, which can be discharged from the structure upon heating. A different high-pressure (HP) behaviour was found for Th-rich and Zr-rich solid solutions. While Th-rich Th0.9Zr0.1SiO4 and Th0.6Zr0.4SiO4 phases retain their stoichiometry and crystal structure upon compression at HP, a significant reduction of the Th occupancy related to a decrease of the Th-O distances is observed for the Th-poor Th0.26Zr0.74SiO4 phase at P > 8 GPa, with the subsequent formation of a Th-rich amorphous phase. The Th diffusion between the crystalline and amorphous phases was found to be fully reversible. This unique self-healing property makes these phases promising candidates for nuclear applications under extreme pressure and temperature conditions, in particular those found in underground repositories.

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-39571


Mehr Publikationen


Neuste Publikation

Self-healing ThSiO4-ZrSiO4 system under conditions relevant to underground nuclear waste repositories

Svitlyk, V.; Weiß, S.; Garbarino, G.; Shams Aldin Azzam, S.; Hübner, R.; Worbs, A.; Huittinen, N. M.; Hennig, C.

Abstract

Two series of Th1-xZrxSiO4 phases were synthesized hydrothermally under weakly basic (pH = 8) and strongly acidic (pH = 1) conditions. Changes in pH were found to have a significant effect on experimental phase diagrams. Synthesis at pH = 8 favors the formation of Th-rich phases with resulting Th1-xZrxSiO4 solid solution for x = 0 – 0.5. Contrary, synthesis at pH = 1 results in the formation of pure end-members of the ThSiO4-ZrSiO4 pseudo-binary system separated by multiple miscibility gaps. Phases formed both under basic and acidic conditions were found to retain water, which can be discharged from the structure upon heating. A different high-pressure (HP) behaviour was found for Th-rich and Zr-rich solid solutions. While Th-rich Th0.9Zr0.1SiO4 and Th0.6Zr0.4SiO4 phases retain their stoichiometry and crystal structure upon compression at HP, a significant reduction of the Th occupancy related to a decrease of the Th-O distances is observed for the Th-poor Th0.26Zr0.74SiO4 phase at P > 8 GPa, with the subsequent formation of a Th-rich amorphous phase. The Th diffusion between the crystalline and amorphous phases was found to be fully reversible. This unique self-healing property makes these phases promising candidates for nuclear applications under extreme pressure and temperature conditions, in particular those found in underground repositories.

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-39571


Mehr Publikationen


Team