HZDR Research Magazine "discovered"

discovered

Social Media

Facebook Icon     Twitter-Logo         HZDR-Blog “ResearchIn’ the World” auf helmholtz.de    

Upcoming Events

Initiatives & Cooperation

HZDR: Partner at "Network Dresden - City of Science"

In 2006, the city of Dresden carried the title "City of Science", and founded the network Dresden - City of Science, which has been active ever since. One popular event supported by the network partners in Dresden is the Dresden Long Night of Sciences.


"Charter of Diversity"

HZDR is a member of the "Charter of Diversity", an initiative encouraging diversity in business companies and public institutions. It is supported by the German federal government, the chancellor of Germany being its patron.

In Neptune, it’s raining diamonds

International team of researchers uncovers the inner workings of cosmic ice giants

Press release of August 21, 2017

By conducting experiments at the Linac Coherent Light Source – one of the world’s most powerful X-ray lasers – an international team of researchers led by HZDR physicist Dr. Dominik Kraus was able to demonstrate that hydrocarbon compounds split into carbon and hydrogen inside ice giants such as Neptune, shown here. The carbon turns into a “diamond shower”.

Researchers were able to demonstrate that hydrocarbon compounds split into carbon and hydrogen inside ice giants such as Neptune. The carbon turns into a “diamond shower”.

Illustration: Greg Stewart / SLAC National Accelerator Laboratory

Download

In cooperation with colleagues from Germany and the United States, researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have managed to demonstrate ‘diamond showers’ forming in the ice giants of our solar system. Using the ultra-strong X-ray laser and other facilities at the Stanford Linear Accelerator Center (SLAC) in California, they simulated the conditions inside the cosmic giants. For the first time ever, they were able to observe the fission of hydrocarbon and the conversion of carbon into diamonds in real time. They published their results in the journal “Nature Astronomy” (DOI: 10.1038/s41550-017-0219).

The interior of planets like Neptune or Uranus consists of a solid core swathed in thick layers of “ice”, which is mostly made up of hydrocarbons, water and ammonia. For a long time, astrophysicists have been speculating that the extreme pressure that reigns more than 10,000 kilometers beneath the surface of these planets splits the hydrocarbons causing diamonds to form, which then sink deeper into the planet’s interior. “So far, no one has been able to directly observe these sparkling showers in an experimental setting,” says Dr. Dominik Kraus, who is the head of a Helmholtz Young Investigator Group at HZDR. That was precisely the breakthrough Kraus and his international team have now achieved: “In our experiment, we exposed a special kind of plastic – polystyrene, which also consists of a mix of carbon and hydrogen – to conditions similar to those inside Neptune or Uranus.”

Shock waves charging through the sample

They did this by driving two shock waves through the samples, triggered by an extremely powerful optical laser in combination with the X-ray source Linac Coherent Light Source (LCLS) at SLAC. At a pressure of about 150 gigapascal and temperatures of about 5,000 degrees Celsius, they compressed the plastic. “The first smaller, slower wave is overtaken by another stronger second wave,” Dominik Kraus explains. “Most diamonds form the moment both waves overlap.” And since this process takes only a fraction of a second, the researchers used ultrafast X-ray diffraction to take snapshots of the diamonds’ creation and the chemical processes involved. “Our experiments show that nearly all the carbon atoms compact into nanometer-sized diamonds,” the Dresden researcher summarizes.

Based on these results, the authors of the study assume that the diamonds on Neptune and Uranus are much larger structures and likely sink down to the planet core over a period of thousands of years. “Our experiments are also providing us with better insights into the structure of exoplanets,” Kraus anticipates. Researchers can measure two main metrics in these cosmic giants outside of our solar system: The first one is mass, based on positional changes of the mother star; and the other is its radius, derived from the shadow that is cast as the planet passes a star. The relation between these two metrics offers clues about the planet’s chemical make-up, for instance, whether it consists of light or heavy elements.

“And, for their part, these chemical processes inside the planet tell us something about its vital properties,” Dominik Kraus continues. “This allows us to improve planetary models. As our studies show, previous simulations have not been accurate.” In addition to astrophysical insights, these experiments also hold potential for practical application. The nano-diamonds created in the experiments can be used in electronic instruments, medical procedures, or as cutting materials in industrial production. Current production of such diamonds is mainly done by blasting. Laser-based production could mean a cleaner and more controllable process.

The researchers from HZDR and SLAC were joined by scientists from the University of California in Berkeley, the Lawrence Livermore National Laboratory, the Lawrence Berkeley National Laboratory, the GSI Helmholtzzentrum für Schwerionenforschung, the Osaka University, the TU Darmstadt, the European XFEL, the University of Michigan and the University of Warwick.


Publication:

D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, R. W. Falcone: Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions, in Nature Astronomy, 2017 (DOI: 10.1038/s41550-017-0219)


For more information contact:

Dr. Dominik Kraus
Institute of Radiation Physics at HZDR
Phone +49 351 260-3657 | email: d.kraus@hzdr.de

Media contact:

Simon Schmitt | Science editor
Phone +49 351 260-3400 | email: s.schmitt@hzdr.de