Nano-Krater: Hochgeladene Ionen verdampfen Atome von Kristalloberfläche

Wissenschaftler vom Forschungszentrum Dresden-Rossendorf (FZD) konnten ein weiteres Mal erfolgreich ihr Know-how in der Nano-Strukturierung von Oberflächen demonstrieren. Hierzu setzten sie hochgeladene Ionen ein, also Atome, denen ein Großteil ihrer Elektronen entzogen wurde. Jedes einzelne hochgeladene Ion hat somit "potentielle" (interne) Energie gespeichert, die beim Auftreffen auf die Oberfläche freigesetzt wird. So entstehen winzig kleine Löcher in der obersten Materialschicht. Die Löcher selbst sind wenige Nanometer breit und genau eine Atomlage tief, also nur ein Bruchteil eines Nanometers. Darüber berichten die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Physical Review Letters".

Die Nanotechnologie ist die Schlüsseltechnologie des 21. Jahrhunderts. Viele Forschergruppen arbeiten daran, immer kleinere Strukturen punktgenau bis hinab in den Nanometer-Bereich (1 Nanometer = 1 Millionstel Millimeter) zu erzeugen. Oft verwenden sie dabei Materialien, die heute in der Mikroelektronik zum Einsatz kommen. Die Mikroelektronik selbst hat die Schwelle zur Nanotechnologie überschritten, denn lithographische Verfahren für die Strukturierung der Chips bewegen sich bereits in der Größenordnung unterhalb eines Mikrometers (1 Mikrometer = 1 Tausendstel Millimeter).

Potentielle Energie lässt Atome aus der Oberfläche verdampfen
Neuen, effektiven und zuverlässigen Verfahren für die Nano-Strukturierung von Halbleitermaterialien kommt somit eine große Bedeutung zu. Die Ionenstrahl-Technologie spielt für die Strukturierung von Chips eine große Rolle und ein Schwerpunkt der Forschungen im Ionenstrahlzentrum des FZD ist die Erzeugung von Nanostrukturen mittels Ionen (geladenen Atomen). Die Rossendorfer Gruppe um Dr. Stefan Facsko setzt hier auf hochgeladene Ionen. Wenn man einem Atom einen Großteil seiner Elektronen entzieht, so hat das zurückbleibende Ion viel potentielle Energie gespeichert. Diese interne Energie wird in sehr kurzer Zeit auf unvorstellbar kleinem Raum freigesetzt und kann somit für die effektive Modifizierung von Oberflächen benutzt werden.

Als Material für den Beschuss mit hochgeladenen Ionen wählten die Forscher in ihren aktuellen Untersuchungen Kaliumbromid. Dabei handelt es sich um ein kristallines und nichtleitendes Material, das beispielsweise bei der Herstellung von Linsen und Prismen Verwendung findet. Solche Isolator-Materialien kommen aber auch in der Mikro-Elektronik als Gate-Material vor. Vielfach untersucht ist die Elektronen-Bestrahlung von Kaliumbromid. Die Elektronen dringen tief in die Oberfläche ein und erzeugen dort viele kleine Defekte im Gitter des Kristalls. Einige der Defekte wandern an die Oberfläche und können dort zur Erzeugung einzelner Leerstellen führen.

Diese bekannte Methode ist nicht sehr effektiv, da sehr viele Elektronen notwendig sind, um kollektiv ein einzelnes Loch zu bilden. Anders bei hochgeladenen Ionen. Jedes einzelne Teilchen gibt seine hohe potentielle Energie direkt an die Oberfläche des Materials ab und erzeugt deshalb besonders effektiv viele Leerstellen auf kleinstem Bereich, die sich zu einem Krater zusammenfügen. Die Anzahl der abgelösten Atome hängt dabei nur von der abgegebenen inneren Projektilenergie ab. Somit ist die Größe der Nano-Strukturen, die erzeugt werden, durch die Wahl der Ladung des Ions einstellbar. Verblüffend ist, dass die Tiefe immer genau einer Atomlage der Materialoberfläche entspricht. Der Grund hierfür ist, dass die frei werdende potentielle Energie der Ionen an der Oberfläche konzentriert ist und nur hier Atome aus dem Gitter verdampfen können. Dabei ist die Effizienz der Ionen-Projektile verblüffend: im Gegensatz zur schon lange bekannten, direkten Elektronen-Bestrahlung erzeugt jedes Ion genau ein wohldefiniertes Nano-Loch. Ein weiterer Vorteil der hochgeladenen Ionen ist, dass sie keine Schäden in tiefer liegenden Kristallschichten hervorrufen. Hochgeladene Ionen stellen damit ein vielversprechendes Instrument zur effektiven Modifikation von Materialoberflächen dar.

Die durchgeführten Experimente mit hochgeladenen Ionen im Rossendorfer Ionenstrahlzentrum führten zu äußerst interessanten Effekten, die es nun weiter zu untersuchen gilt. Zunächst treibt die Forscher das grundlegende Interesse zur Wechselwirkung von langsamen hochgeladenen Ionen mit Festkörper-Oberflächen an, denn sie wollen die Anregung, die durch die potentielle Energie der Ionen verursacht wird, noch besser verstehen. Dr. Stefan Facsko: "Uns reizt es aber auch, hochgeladene Ionen in Zukunft gezielt auf der Materialoberfläche zu platzieren, also den Auftreffpunkt genau zu bestimmen. Wenn uns das gelänge, könnten wir komplexe Strukturen aus lauter Nano-Löchern schreiben, die genau eine Atomlage tief sind. In diese Strukturen könnte man selektiv Metall aufdampfen und hätte so interessante "plasmonische" Strukturen mit vielversprechenden Eigenschaften".

 

Nano-Löcher auf Kaliumbromid-Oberfläche

Raster-Kraft-Mikroskop-Aufnahme von Nano-Löchern auf der Kaliumbromid-Oberfläche nach Beschuss mit 25fach geladenen Xenon-Ionen.

 

Veröffentlichung:
R. Heller, S. Facsko, R. A. Wilhelm, W. Möller, "Defect Mediated Desorption of the KBr(001) Surface Induced by Single Highly Charged Ion Impact", in: Physical Review Letters, Vol. 101 (9/2008), DOI: 10.1103/PhysRevLett.101.096102.

Weitere Informationen:
Dr. Stefan Facsko / René Heller
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2987 / - 3577

Pressekontakt:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128
01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700