Positronen Emissions Tomographie in der Onkologie

Wolfgang Enghardt Technische Universität Dresden OncoRay – Zentrum für Strahlenforschung in der Onkologie und Forschungszentrum Dresden-Rossendorf, Institut für Strahlenphysik

Lehrerfortbildung im FZD, 16. Februar 2007

Gliederung

- 1. Positronen Emissions Tomographie (PET)
- 2. PET zur Tumordiagnostik
- 3. PET zur Planung und zum Monitoring der Strahlentherapie
- 4. PET zur Qualitätssicherung der Ionentherapie

Krebs in Deutschland

- Neuerkrankungen 425.000
- Sterbefälle 201.000
- Zweithäufigste Todesursache
- Hohe Prävalenz

Strahlentherapie

- > 50% aller Krebspatienten
- Anwendung steigend
- Hohes kuratives Potential
- Funktionserhaltend
- Effektive palliative Therapie
- Günstige Kosten-Effizienz

1. Positronen Emissions Tomographie (PET) Überblick

Quantitatives Schnittbildverfahren

- Einsatz radioaktiver Tracer (Positronen-Strahler): ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ...
- Einbau in physiologisch u. biochemisch relevante Moleküle (Wasser, Zucker, Aminosäuren,...)
- Quantitative Erfassung von Transport- und Stoffwechselprozessen in vivo
- Gleichzeitige Aufnahme aller Schichten
- Axiales Gesichtsfeld ≈ 15 cm (künftig ≈ 40 cm)
- Räumliche Auflösung:
 - klinische Geräte: ≈ 5 mm (künftig ≈ 2.5 mm)
 - experimentelle Geräte: 2 mm (künftig ≈ 1 mm)
- Zeitliche Auflösung ≈ Sekunden Minuten

1. Positronen Emissions Tomographie (PET) Technologie

1. Positronen Emissions Tomographie (PET) Technologie

= PET/CT

- Schwächungskorrektur für PET

- Anatomische Zuordnung

2. PET zur Tumordiagnostik Metastasen eines Prostata-Karzinoms

2. PET zur Tumordiagnostik

Auffinden von Metastasen

Hodgkin-Lymphom:

Radiotracer: ¹⁸F-Fluor-Desoxy-Glucose Zucker-Stoffwechsel

Diagnose und Verlaufskontrolle nach Chemotherapie

3. PET in der Strahlentherapie Tumor-Hypoxie

Mundbodenkarzinom: PET/CT

10

3. PET in der Strahlentherapie

Präzisionsbestrahlungen - Beschleuniger

Elektronen-Linearbeschleuniger: Photonen und Elektronen

3. PET in der Strahlentherapie Präzisionsbestrahlungen - IMRT

Intensitäts modulierte Radiotherapie - IMRT (Photonen)

Dynamischer Multi-Leaf-Kollimator:

- paarweise Wolframscheiben
- computergesteuert verstellbar
- inhomogene Dosisverteilungen über die Bestrahlungszeit

3. PET in der Strahlentherapie PET/CT gestützte Bestrahlungsplanung

3. PET in der Strahlentherapie PET/CT gestütztes Strahlentherapie-Monitoring

Toleranzdosis: $\overline{D}_{\text{Lunge}} < 20 \text{ Gy}$

Tumordosis : $D_{\text{Tumor}} = 66 \text{ Gy} \rightarrow 78 \text{ Gy}$ 14

4. In-beam PET bei der Ionentherapie

Präzisions-Radiotherapie mit Ionenstrahlen (I)

Ionenreichweite in Gewebe

4. In-beam PET bei der Ionentherapie

Präzisions-Radiotherapie mit Ionenstrahlen (II)

Ionenreichweite in Gewebe

4. In-beam PET bei der Ionentherapie Präzisions-Radiotherapie mit Ionenstrahlen (III)

Reichweitestreuung

Laterale Ablenkung

4. In-beam PET bei der Ionentherapie Präzisions-Radiotherapie mit Ionenstrahlen (IV)

Vorteile von Ionenstrahlen gegenüber den "konventionellen" Strahlenarten der Krebstherapie: Elektronen und Photonen:

- durch die Strahlenergie wohl bestimmte Reichweite
- invertierte Dosisverteilung, Bragg Peak
- geringe Seitenstreuung des Strahles
- erhöhte RBW im Bragg-Maximum für Ionen mit Z > 2 - 6 (?)

Indikationen für eine Ionen-Therapie:

- kompakte, tief liegende Tumoren
- in der Nähe von Risikoorganen
- Strahlen resistente Tumoren

4. In-beam PET bei der Ionentherapie Anatomische Veränderungen und Dosis (I)

Bestrahlungsplanung

Bestrahlung /ährend der fraktionierten

4. In-beam PET bei der Ionentherapie Anatomische Veränderungen und Dosis (II)

Dichteveränderung im bestrahlten Volumen und Ionendosis

4. In-beam PET bei der Ionentherapie

Die Erzeugung von Positronenemittern – ¹²C-Ionen

4. In-beam PET bei der Ionentherapie Die Erzeugung von Positronenemittern – Protonen

4. In-beam PET bei der Ionentherapie Technologie

In-beam PET: ¹²C-Therapie bei Gesellschaft für Schwerionenforschung Darmstadt ₂₃

4. In-beam PET bei der Ionentherapie Technologie

Off-beam PET: Protonentherapie am Massachusetts General Hospital

4. In-beam PET bei der Ionentherapie In-beam PET: Klinische Implementierung

4. In-beam PET bei der Ionentherapie Ergebnisse Off-beam

Chordom, 0.96 GyE / Feld, $t_{Mess} \sim 26$ min, $t_{B-P} \sim 16$ min

Übereinstimmung von 1-2 mm für die Position des Aktivitätsmaximums

Massachusetts General Hospital, Boston