Atomistic simulations on the mobility of di- and tri-interstitials in Si

related publications (since 2001):

Posselt, M., Gao, F., Zwicker, D., *Atomistic study of the migration of di- and tri-interstitials in silicon*, **Phys. Rev. B 71 (2005) 245202**

Posselt, M., Gao, F., Zwicker, D, *Migration of di- and tri-interstitials in silicon*, **Nucl. Instr. Meth. B 228 (2005) 212**

M. Posselt, Institute of Ion Beam Physics and Materials Research

methods to determine diffusion coefficients

self-diffusion coefficient per defect D_s

sum of the squared displacements of all atoms vs. time

 $ssd_a(t) = \sum_{i=1}^{N} (\mathbf{r}_i(t) - \mathbf{r}_i(0))^2 = const. + 6D_s t$ D_s: mobility of the lattice atoms due to the presence of the defect

defect diffusivity D_d

is obtained by monitoring the trajectory of the center-of-mass of the defect using the Wigner-Seitz-cell analysis

trajectory is decomposed into n_s segments for each segment m the squared displacement is calculated $D_d = \frac{1}{n} \sum_{m=1}^{n_s} \frac{sd_d(m)}{6\Delta t}$

$$sd_d(m) = (\mathbf{R}(t_m) - \mathbf{R}(t_{m-1}))^2,$$

$$t_m = t_{m-1} + \Delta t$$

(tracer) correlation factor
$$f = \frac{D_s}{D_A}$$

$$sd_{d}(m) = (\mathbf{R}(t_{m}) - \mathbf{R}(t_{m-1}))$$
$$t_{m} = t_{m-1} + \Delta t$$

Mitalied der Leibniz-Gemeinschaft

di-interstitial

structure and energetics

CP: Gilmer 1995 (SW): 5.70 eV; Marques 2001 (T3): 6.32 eV

TB: Rasband 1996: 8.0 eV; Hane 2000: 5.85 eV

DFT: Richie 2004: 6.46 eV

M. Posselt, Institute of Ion Beam Physics and Materials Research

similar configuration (found by TB and DFT): "triangle in $\{111\}$ " (C_{1h})

TB: Rasband 1996: 7.3 eV; Hane 2000: 5.64 eV; Bongiorno 2000: 4.91 eV

DFT: Kim 1999: 4.9-6.0 eV; Jones 2002: 5.19 eV; Chichkine 2002: 4.84-4.96 eV; *Richie 2004: 5.66 eV; Lopez 2004: 5.76-5.84 eV*

TB: Rasband 1996: 7.7 eV; Hane 2000: 6.07 eV

M. Posselt, Institute of Ion Beam Physics and Materials Research

migration

center of mass trajectories over a period of 4.4 ns

temperature dependent migration mechanism

low T – high mobility along <110> axes, change between equivalent directions occurs seldom and requires a long time

high T – frequent change between equivalent <110> directions

Mitalied der Leibniz-Gemeinschaft

migration along <110>: in a {110} plane, as I_2^A ...

M. Posselt, Institute of Ion Beam Physics and Materials Research

Mitglied der Leibniz-Gemeinschaft

2 ps

movie 1c (~3 ps)

migration distance: 2nd n.n. distance

{110}

atoms belonging to the defect change continuously

bond switching

place the cursor on the figure and double click to start the movie

Mitglied der Leibniz-Gemeinschaft

change between different <110> directions ({110} planes) via transformation: $I_2^A \rightarrow I_2^B$ (immobile) $\rightarrow I_2^A$

M. Posselt, Institute of Ion Beam Physics and Materials Research

M. Posselt, Institute of Ion Beam Physics and Materials Research

T (K) 2000 1500 1000 **10**¹² **10**⁻⁴ diffusivity within rate for the change the {110} planes between different {110} planes 1687 K **10**¹¹ **10**⁻⁵ ¹⁰ (cm² s⁻¹ 00_d (s⁻¹) II F **10**¹⁰ **10**⁻⁶ 15 5 10 $E_a = 0.46 \text{ eV}$ $E_a = 0.20 \text{ eV}$ 1/kT (eV⁻¹)

Mitglied der Leibniz-Gemeinschaft

Mitglied der Leibniz-Gemeinschaft

tri-interstitial

near (110)

near (1-10)

CP: Gilmer 1995 (SW): 7.08 eV; Lenosky 2000 (EDIP): 8.85 eV; Lenosky 2000 (L): 6.03 eV

similar configuration (found by TB and DFT): "tetrahedron" ($C_{2\nu}$)

Mitalied der Leibniz-Gemeinschaft

TB: Bongiorno 2000: 6.69 eV; Lenosky 2000: 7.83

DFT: Kim 2000: ~6 eV; Chichkine 2002: 6.05 eV;

Richie 2004: 6.96-7.11 eV; Lopez 2004: 7.27 eV

 $E_{f} = 7.54 \text{ eV}$

 $E_{h} = 4.22 \text{ eV}$

I₃^B

"mod. bond-centered triple I" ($C_{3\nu}$)

E_f = 7.59 eV E_b = 4.17 eV

similar configuration (found by DFT): "bond-centered triple" (C_{3v})

DFT: Chichkine 2002: 6.09 eV; *Lopez 2004: 7.32 eV*

Mitglied der Leibniz-Gemeinschaft

migration

trajectories over a period of 14.4 ns

Forschungszentrum Dresden Rossendorf

Mitglied der Leibniz-Gemeinschaft

Mitglied der Leibniz-Gemeinschaft

 I_3^B

M. Posselt, Institute of Ion Beam Physics and Materials Research

Mitglied der Leibniz-Gemeinschaft

comparison with experimental data (di- and tri-I)

a) "direct" observation of di- and tri-I (?)

EPR P6 center related to di-I? pro: Lee 1976, 1998 contra: Jones 2002 PL W center related to tri-I? pro: Jones 2002 contra: Lopez 2004

Mitglied der Leibniz-Gemeinschaft

b) "indirect" proofs for the existence of di- and tri-I

state-of-the-art description of defect evolution and TED of dopants (B) during post-implantation annealing:

Cowern et al. 1999..., Pelaz et al. 1997 ...

formation of interstitial clusters must be assumed

During ion implantation **only mono-interstitials and mono-vacancies** are formed. Their concentration is much higher than in the thermodynamic equilibrium.

> but - atomistic simulations of defect formation reveal: large variety of as-implanted defects is formed (also di- and tri-I)

Mitglied der Leibniz-Gemeinschaft Institute of Ion Beam Physics and Materials Research The mono-interstitial and the mono-vacancy are the only mobile intrinsic defects. They recombine or form immobile clusters. In particular self interstitial clusters - amongst them the di-interstitial - are introduced to obtain a transient storage of self-interstitials and to explain quantitatively the formation of {311} defects and dislocation loops as well as the TED

but - present investigations: mobile di- and tri-I

Cowern 1998...: OR model for defect evolution

600 °C

700 °C

800 °C

 $\{113\}_{(a)}$

Average

0

FIG. 2. Interstitial supersaturation, S, as a function of annealing temperature and time. Symbols with error bars represent experimental values with 2σ uncertainties. Curves represent fits using an Ostwald ripening model (see text).

M. Posselt, Institute of Ion Beam Physics and Materials Research

Pelaz 1997...: KMC simulation of defect evolution and TED

start: V,I from BCA

$$E_{b}^{di-l} \sim 1.6 \text{ eV}$$
 1.7 eV
 $E_{b}^{tri-l} \sim 1.8 \text{ eV}$ 2.5 eV

 $E_b^{c}(n)$ monotonic

Aboy 2003: $E_b^{c}(n)$ of Cowern E_m^{l} of Bracht

Mitglied der Leibniz-Gemeinschaft

c) explanation of the long-range, trap-limited migration of implantation-induced I-like defects observed at room temperature by the high mobility of the di-I

Mitglied der Leibniz-Gemeinschaft

Kyllesbech Larsen et al. 1996:

implantation and ex-situ SRP measurements of deactivation

(a) epitaxial (Δ) and Fz (O) silicon P doped at a level of

(a) epitatian (b) and (b) since (Δ) , (Δ) , (Δ) since (Δ) are even of (Δ) , (Δ) since (Δ) and (Δ) , (Δ) since (Δ) since (Δ) and (Δ) since (Δ) since (Δ) since (Δ) and (Δ) since (Δ)

injection and trapping of I-like defects

traps:

epi: [O]<10¹⁵ cm⁻³; [C]<10¹⁵ cm⁻³ FZ: [O]~10¹⁶ cm⁻³; [C]~10¹⁷ cm⁻³ Cz: [O]~10¹⁸ cm⁻³; [C]~10¹⁷ cm⁻³

dopants \rightarrow deactivation

a *very low* fraction (~10⁻⁵) of the ballistically formed defects is mobile and responsible for the deactivation

Mitglied der Leibniz-Gemeinschaft

Collart 1998: implantation and in-situ resistivity measurement

mobile I-like defects are formed <u>during</u> implantation

Fig. 5. Deactivation of a buried B layer as a function of Ar implant dose. The inset shows the deactivation in real time, during a two-second exposure of a previously unirradiated sample.

Privitera 1996: implantation and ex-situ SRP measurements

Depth (µm)

FIG. 1. Resistivity profiles for samples implanted with $1\times 10^{10}/cm^2$ He (solid line), $5\times 10^{13}/cm^2$ 40 keV Si (dotted line) and with both He and Si (dashed line). The energy of the He implant was 1 MeV (a), 2 MeV (b), or 3 MeV (c).

epi: [O]<10¹⁶ cm⁻³; [C]<10¹⁶ cm⁻³ n (phosphorus) doped ~10¹⁴ cm⁻³

Si implants: deactivation by I-like defects He implants: deactivation by V-like defects

Si after He: reduction of deactivation by V-like defects due to injection and trapping of I-like defects

lower bounds of the diffusivity of the I-like defects:

10⁻¹¹ cm² s⁻¹ (Kyllesbech Larsen, Privitera), 10⁻⁷ cm² s⁻¹ (Collart)

if this were the value for the mono-I diffusivity at RT:

- about twenty orders of magnitude larger than D^I(RT) obtained by diffusion experiments near the thermodynamic equilibrium (Bracht 1998...).
- much (5-10 orders of magnitude) larger than the mono-interstitial diffusivity often used in the interpretation of defect evolution and transition-enhanced diffusion of boron during post-implantation annealing (Pelaz 1997...)
- larger than many theoretical results (Colombo 2002)

it could be the value for the di-I diffusivity (10⁻⁸ cm² s⁻¹)!

M. Posselt,