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Kurzfassung:

Die Methode der QCD Summenregeln wird auf D-Mesonen sowohl im Vakuum als
auch bei endlicher Dichte angewendet. Die Operatorprodukt-Entwicklung wird bis zur
Massendimension 5 und bis zur 1. Ordnung in der starken Kopplung αs durchgeführt.
Da durch die schwere Charm-Quarkmasse eine neue Skala eingeführt wird, treten nicht-
störungstheoretische Effekte in Form von Infrarotdivergenzen für den Grenzfall einer ver-
schwindenden Down-Quarkmasse auf. Um eine konsistente Separation der störungsthe-
oretischen und nicht-störungstheoretischen Skalen zu gewährleisten, werden physikalis-
che Kondensate anstelle von normalgeordneten Kondensaten eingeführt. Es werden Gle-
ichungen für die Renormierung der Kondensate gegeben, welche für die Aufhebung der
Massenlogarithmen bis fixierter Ordnung in αs und für endliche Dichten sorgen. Die
Schwere-Quark-Massen-Entwicklung wird im selben Zusammenhang nachvollzogen. Die
Borel-transformierten Summenregeln werden im Rahmen des ”Pol + Kontinuum”-Ansatzes
ausgewertet und die Ergebnisse mit der Literatur verglichen. Die Massenaufspaltung in
den D-Mesonen-Iso-Dubletts kann in diesem Zusammenhang mit ungefähr 32 MeV bes-
timmt werden, während die Bestimmung der mittleren Massenverschiebung stark von der
verwendeten Methode zur Bestimmung des durch den ”Pol + Kontinuum”-Ansatz einge-
führten Schwellenparameters abhängt.

Abstract:

The method of QCD sum rules is applied to D mesons in vacuum as well as at fi-
nite density. The operator product expansion is performed up to mass dimension 5 and
next-to-leading order in the strong coupling αs. Because the heavy charm quark mass
introduces a new scale, non-perturbative effects emerge as infrared divergences for van-
ishing down quark mass. In order to ensure a consistent separation of perturbative and
non-perturbative scales, physical condensates instead of normal ordered ones are intro-
duced. Equations for the renormalization of condensates, which allow for a cancellation
of the mass logarithms at a fixed order in αs and for finite densities, are presented. The
heavy-quark-mass expansion is reproduced in the same context. The Borel transformed
sum rules are analyzed using a ”pole + continuum” ansatz and the results are compared
to the literature. In this context a mass splitting within the D meson iso-doublets of
approximately 32 MeV is determined, while the determination of the shift of the mass
centroid strongly depends on the methods used to determine the threshold of the ”pole
+ continuum” ansatz and, therefore, can not be reliable determined within the presented
approach.
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1 Introduction

Many different efforts in many different directions have been made, and are still made,
in order to clarify and to understand the origin of the mass of the matter that surrounds
us. The most popular one is the search for the Higgs boson, which has been postulated in
order to explain the masses of the gauge bosons. Moreover, the interaction of the Higgs
boson with the fermion fields within the standard model also gives masses to the quarks
and some of the leptons. However, the main contribution to the mass that surrounds us
has a different origin. The mass of usual matter resides in nuclei composed of nucleons.
Nucleons belong to the hadrons. Hadrons are strongly interacting, subatomic particles
which are made up of quarks and gluons. The masses of quarks are more or less well
known from several experiments, while gluons are supposed to be massless. But against
naive intuition, summing up all constituents masses of a hadron, one can not explain its
mass. In contrast, the hadron masses are much larger than the sum of their constituents
masses.

Let us consider, for example, the nucleon. In the naive quark model it consists of three
light quarks with the sum of their masses being less than 20 MeV, while the nucleon mass
is about 938 MeV. Hence, the masses are even of different scales. In this special case,
i.e. for nucleons, we might think of nearly massless quarks but still would be surrounded
by nucleons having a mass of several hundred MeV. Another example is given by the
D± meson, which consists of a charm quark with the mass being mc = 1.25 . . . 1.45 GeV,
and a down quark, having the mass md = 4 . . . 8 MeV. In contrast the mass of the D±

meson is about mD± = 1.87 GeV, which is again larger than the sum of its constituents
masses. This mass difference is a direct result of the complicated structure of the strong
interaction which binds quarks and gluons into hadrons. The given examples tell us that
genuine quark masses, as supposed to be generated by the Higgs mechanism in the electro-
weak sector in the standard model, are of minor importance in an explanation of the mass
of the matter around us. It is the strong interaction which has to be understood in order
to understand our ”massive world”.

Quantum Chromodynamics (QCD) is the accepted theory which describes the strong
interaction at quark level. It is a non-Abelian gauge field theory. (Basic details of QCD
which are needed throughout this work are reviewed in appendix A.) One success of QCD
is ”asymptotic freedom”, which means that in scattering experiments at large momentum
transfer a projectile, say an electron, being scattered off a proton behaves as being scattered
off almost free quarks. QCD entails this feature and tells us that the coupling strength
of strong interaction decreases with increasing momentum. This enables one to apply
perturbative techniques in the high momentum regime.

On the other side, one can not observe isolated individual quarks. This feature of strong
interaction is called confinement. Quarks are always bound into hadrons as color singlets.
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Unfortunately, it is not yet clear how confinement is reproduced by QCD. Moreover,
because the coupling strength of the strong interaction grows with decreasing momentum
(or increasing distance), perturbative techniques are not applicable anymore and one has
to look for different methods in order to perform calculations in the low momentum regime.

As hadrons are composite objects consisting of confined quarks and gluons, hadronic
properties should be related to the quark and gluon structure of the hadron, thus, to
the non-perturbative properties of the theory. Instead of calculating directly hadronic
properties from first principles, a tool in order to connect low momentum properties of
the hadron to its large momentum structure is provided by the method of QCD sum rules
(QSR).

The method is based on dispersion relations, which are used to relate different en-
ergy regimes, and introduces phenomenological parameters, called condensates, in order
to introduce non-perturbative physics and to understand and to reproduce hadronic prop-
erties, e.g. hadron masses. These parameters enter the theory as ground state expectation
values of quantum field operators and, hence, are directly connected to the fundamental
properties of QCD and its ground state.

Loosely speaking, a condensate can be read as a measure for the probability of a particle
being annihilated by a virtual particle from the ground state and therefore creating another
real particle somewhere else. A non-vanishing condensate indicates a particle interaction
with the ground state. Hence, the hadron appears much heavier than its QCD constituents,
because not only interactions among quarks transmitted by gluons or among gluons have to
be considered, but also interactions of these particles with the ground state. The hadrons
acquire an effective mass by the interaction of their constituents with the ground state of
QCD. This can be taken as a very simplified illustration of the mass effects mentioned at
the beginning of this chapter. Such a concept might be known from many-particle physics
and indeed many concepts, like the Lehmann representation or dispersion relations, are
also subject to this field. Furthermore, if we continue in this illustrative language, the
probability of a virtual light-quark pair creation from the ground state must be much
larger than the probability of a heavy-quark pair creation. Therefore, the mass increase
via coupling of a quark to a condensate shall be much lower for a heavy quark than for a
light quark. This explains why the mass of the nucleon compared to its constituent quarks
is of different scales, while the D meson is only somewhat heavier than its constituents.
The charm quark does not contribute to the mass acquirement. Moreover, we see that
the appearance of the heavy quark must require a different treatment than the light-quark
systems, because it seems to be unaffected by non-perturbative effects.

However, QSR play a twofold role. On the one side, they are used to determine the
condensates in order to get valuable information about the structure of QCD and strong
interaction. On the other side, they are used to evaluate hadronic properties, like masses,
in terms of the condensates.

But QSR enable us to go even further and to look for hadron masses and conden-
sates, when the hadronic system under consideration is embedded in a strongly interacting
medium, e.g. an atomic nucleus as displayed in fig. 1.0.1, instead of being considered in vac-
uum. For such a system, one observes a change of the hadron mass with increasing density,
which directly can be translated by QSR to a density dependence of the condensates.
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Figure 1.0.1: Illustrative picture of a D− meson in vacuum and placed in nuclear matter. Gluon
lines and ”clouds” symbolize the non-perturbative ground state.

The chiral condensate 〈q̄q〉, with q being a light quark, is connected to the chiral
symmetry breaking of the theory. The symmetry is expected to be restored at finite density
and temperature, which is signaled by a change of the condensate in nuclear matter.

In view of the planned experiments at FAIR in Darmstadt, where charm-quark systems
will be accessible to detailed experimental investigations, it is reasonable to apply QSR
to D mesons. The large charm quark mass is expected to amplify the importance of the
chiral condensate compared to other condensates. Moreover, due to the new mass scale,
new effects concerning a separation of low-momentum and large-momentum physics will
show up.

This thesis is organized as follows. In chapter 2 we give a short introduction to the
method of QSR. We focus on the aspects that are connected to the D meson and to
medium modifications. The starting point is the current-current correlator. Its analytic
structure is investigated using a Lehmann representation. Dispersion relations in vacuum
and in medium are derived, relating large momenta to low momenta. The operator product
expansion is introduced as an asymptotic expansion and the Fock Schwinger gauge is used
to introduce the background field method as a tool for calculating an operator product
expansion. Finally we give a detailed discussion of Borel transformed sum rules.

In chapter 3, the sum rules for the D meson in vacuum and medium are calculated.
Thereby, we discuss the role of the charm-quark mass as a new scale parameter and show
that a meaningful operator product expansion automatically leads to the heavy-quark
mass expansion. The chapter ends with a detailed analysis of the vacuum and medium
sum rules. We also investigate the influence of specific condensates to the results.

Finally, in chapter 4 the main results are collected and reviewed. Possible extensions
of the preceding analysis are also presented.
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The main subject of this thesis is the investigation of D mesons in vacuum and in
nuclear matter within QCD sum rules. There are other approaches to the relativistic
bound state. For instance, the Bethe-Salpeter equation is suitable for two-body bound
states. A useful formalism is recollected in appendix B; however, the application to heavy
quarks bound in mesons is outside of the scope of this thesis.

For a didactic introduction to quantum field theory and renormalization we recommend
[Ro69]. Details about dimensional regularization and connected techniques can be found in
[It80]. Also, many paragraphs are dealing directly or indirectly with the theory of complex
functions, especially Cauchy’s theorem plays an important role for dispersion relations,
Wick rotation and Laurent expansions, which are presented in according textbooks [Fr95,
Ja96]



2 QCD Sum Rules

2.1 Current-Current Correlator

As known from quantum field theory, n-point functions play an important role in calcu-
lating observables. Many quantities can be calculated directly if an appropriate n-point
function is known. The main object of investigations within QCD sum rules is the current-
current correlation function Π(q) defined as the two-point function

Π(q) = i

∫
d4x eiqx〈Ω|T

[
j(x)j†(0)

]
|Ω〉 (2.1.1)

being the Fourier transform of the expectation value of the time-ordered product of two
currents. Here the physical ground state |Ω〉 satisfies

H |Ω〉 = EΩ|Ω〉 , (2.1.2a)
〈Ω|Ω〉 = 1 , (2.1.2b)
a−|Ω〉 6= 0 , (2.1.2c)

with H being the full Hamiltonian of the theory and |Ω〉 being its lowest lying eigenstate.
The operator a− is an annihilation operator which annihilates the canonical ground state
of free particles a−|0〉 = 0 used in perturbation theory. The latter one is, in contrast to the
physical ground state |Ω〉, the lowest lying eigenstate of the free Hamiltonian. The state
|0〉 is often referred to as the vacuum state, but in order to prevent confusions we will only
refer to it as perturbative ground state. (2.1.2) reflects the non-perturbative physics of the
strong interaction, hence, it is referred to as non-perturbative or physical ground state.
We will distinguish between the in-medium ground state, i.e. the non-perturbative ground
state when embedded in strongly interacting matter, and the vacuum ground state, i.e. the
non-perturbative ground state considered at zero temperature and density. The properties
of the physical ground state change when the system is embedded in a strongly interacting
medium, instead of being considered in vacuum. Although the vacuum ground state must
still be understood as non-perturbative ground state it is defined to satisfy EΩ = 0; it
is Lorentz invariant and invariant under time-reversal and parity transformations. In
contrast, the in-medium ground state is only assumed to be invariant under time reversal
and parity in its local rest frame. It is not invariant under all Lorentz transformations,
but expectation values calculated in this state, e.g. the above current-current correlator
Π(q), transform covariant [Fu92]. As a result of (2.1.2a), the in-medium ground state is
not translational invariant but obeys

eiPx|Ω〉 = eipΩx|Ω〉 , (2.1.3)
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where P is the momentum operator and pΩ the related momentum of the in-medium
ground state. The latter one is proportional to the medium four-velocity vµ. Hence,
application of the translation operator results in a phase factor.

The current j(x) in (2.1.1) is a composite operator consisting of field operators in
the Heisenberg picture. It has to reflect the quantum numbers of the particle under
consideration. The correlator Π(q) can be understood then as a function describing the
propagation of a particle from 0 to x. In the high momentum regime, i.e. at small distances,
it must reflect the quark structure of the particle, while at low momentum, i.e. large
distances, it is determined by hadronic properties of the respective particle.

If perturbation theory is applicable, i.e. the coupling strength g is small, (2.1.1) can
be calculated by the following expansion [Pa84,Ge51]

Π(q) = i

∫
d4x eiqx

〈0|T
[
j(x)j†(0)ei

∫
d4yL

(0)
int (y)

]
|0〉

〈0|T
[
ei
∫
d4yL

(0)
int (y)

]
|0〉

, (2.1.4)

where L
(0)
int (x) is the interaction Lagrange density and the superscript (0) indicates that

all fields have to be taken as free fields.
The basic idea of QCD sum rules is to connect large-momentum properties of the cor-

relation function to properties in the region of small momenta [Sh78]. Instead of deriving
properties of hadrons which are results of the non-perturbative character of the interaction
from first principles of the theory, one introduces non-vanishing ground state expectation
values of quantum field operators, called condensates, in order to reproduce the hadronic
properties of the current-current correlator. In this sense, by introducing condensates, a
possibility is offered to implement non-perturbative physics. Either hadronic phenomenol-
ogy is used to determine the condensates or known condensates are used to predict and to
understand hadronic properties. The condensates as expectation values of QCD operators
are accessible, e.g. , in lattice QCD.

2.2 Analytic Properties and Dispersion Relations

2.2.1 Analytic Properties

We will now relate the different energy regimes of the current-current correlator (2.1.1)
to each other. Therefore, we study its analytic properties. In doing so we will be able to
perform the analytic continuation to complex values of the energy variable q0.

Let us start with the Lehmann representation following [Fe71]. We write out the
time-ordered product in (2.1.1) explicitly as

Π(q) = i

∫
d4x eiqx

(
Θ(x0)〈Ω|j(x)j†(0)|Ω〉+ Θ(−x0)〈Ω|j†(0)j(x)|Ω〉

)
. (2.2.1)

The positive sign reflects the bosonic character of the current under consideration.1 In-

1If one would consider fermions instead, e.g. nucleons, there should be a negative sign.
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serting a complete set of physical eigenstates

1 =
∑
α

|α〉〈α| (2.2.2)

with

P|α〉 = pα|α〉 , pα,0 ≥ 0 , p2
α ≥ 0 , (2.2.3)

which means that the momentum lies in the forward light-cone. Extracting the coordinate
dependence of the Heisenberg operators using

Ψ(x) = eiPxΨ(0)e−iPx , (2.2.4)

we can write

Π(q) = i

∫
d4x eiqx

(
Θ(x0)

∑
α

e−i(pα−pΩ)x |〈Ω|j(0)|α〉|2

+Θ(−x0)
∑
α

ei(pα−pΩ)x
∣∣∣〈Ω|j†(0)|α〉

∣∣∣2) , (2.2.5)

with pΩ being the above defined momentum of the physical ground state, P|Ω〉 = pΩ|Ω〉.
Now we introduce the Fourier representation of the Heaviside function

Θ(x0) = − 1
2πi

∫ ∞
−∞

dω
e−iωx0

ω + iη
, (2.2.6)

where the limit η → 0 is understood in order to ensure convergence of the integral. This
enables us to perform the space-time integration:

Π(q) = − 1
2πi

i

∫
d4x eiqx

(∫ ∞
−∞

dω
e−iωx0

ω + iη

∑
α

e−i(pα−pΩ)x |〈Ω|j(0)|α〉|2

+
∫ ∞
−∞

dω
eiωx0

ω + iη

∑
α

ei(pα−pΩ)x
∣∣∣〈Ω|j†(0)|α〉

∣∣∣2)

= −
∑
α

∫ ∞
−∞

dω

(
(2π)3δ(q0 − (pα,0 − EΩ)− ω)δ(3)(~q − (~pα − ~pΩ))

|〈Ω|j(0)|α〉|2
ω + iη

+(2π)3δ(q0 + (pα,0 − EΩ) + ω)δ(3)(~q + (~pα − ~pΩ))

∣∣〈Ω|j†(0)|α〉
∣∣2

ω + iη

)
.

(2.2.7)

The Lehmann representation of the current-current correlator therefore reads

Π(q0, ~q ) = −
∑
α

(2π)3

(
δ(3)(~q − (~pα − ~pΩ))

|〈Ω|j(0)|α〉|2
q0 − (pα,0 − EΩ) + iη

−δ(3)(~q + (~pα − ~pΩ))

∣∣〈Ω|j†(0)|α〉
∣∣2

q0 + (pα,0 − EΩ)− iη

)
. (2.2.8)
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The advantage of this representation is that the whole energy dependence is contained in
the denominator. The first term is the particle contribution and gives rise to simple poles
below the positive real energy axis at the excitation energies of the particle with quantum
numbers encoded in j(0).2 The second term is the antiparticle (hole) contribution, giving
rise to simple poles above the negative real energy axis. The nominator of each term is
the probability to find the ground state |Ω〉 in the state j(0)|α〉 for the first term and in
j†(0)|α〉 for the second term. Both are positive, real numbers and are only non-zero when
the state |α〉 arises from |Ω〉 by adding one particle with the quantum numbers of j(x) for
the first term and by subtracting such a particle, i.e. creating a hole, for the second term.
Hence, the poles appear at the excitation energies of a particle (antiparticle) with the
quantum numbers encoded in j(0) (j†(0)).3 Beside this, the current-current correlation
function is analytic everywhere in the complex energy plane except for the real axis.

Before proceeding we will briefly investigate the discontinuities of the current-current
correlation function ∆Π(s) along the real axis with the help of the Lehmann representation
(2.2.8). For fixed three-momentum ~q of the respective particle we define

∆Π(s, ~q ) =
1
2i

lim
ε→0

[Π(s+ iε, ~q )−Π(s− iε, ~q )] , (2.2.9)

which corresponds to the discontinuities along the real axis for real energies. Inserting the
Lehmann representation we obtain

∆Π(q) =
1
2i

lim
ε→0

[Π(q0 + iε, ~q )−Π(q0 − iε, ~q )]

= −(2π)3

2i

∑
α

lim
ε→0

(
δ(3)(~q − (~pα − ~pΩ))

|〈Ω|j(0)|α〉|2
q0 − (pα,0 − EΩ) + iη + iε

− δ(3)(~q + (~pα − ~pΩ))

∣∣〈Ω|j†(0)|α〉
∣∣2

q0 + (pα,0 − EΩ)− iη + iε

− δ(3)(~q − (~pα − ~pΩ))
|〈Ω|j(0)|α〉|2

q0 − (pα,0 − EΩ) + iη − iε

+δ(3)(~q + (~pα − ~pΩ))

∣∣〈Ω|j†(0)|α〉
∣∣2

q0 + (pα,0 − EΩ)− iη − iε

)

= −(2π)3

2i

∑
α

lim
ε→0

(
δ(3)(~q − (~pα − ~pΩ))

−2iε |〈Ω|j(0)|α〉|2
(q0 − (pα,0 − EΩ) + iη)2 + ε2

− δ(3)(~q + (~pα − ~pΩ))
−2iε

∣∣〈Ω|j†(0)|α〉
∣∣2

(q0 + (pα,0 − EΩ)− iη)2 + ε2

)
. (2.2.10)

2We omit the chemical potential µ here. A non-vanishing chemical potential would lead to poles above
the real axis for q0 < µ, and below for q0 > µ. For a detailed discussion see [Fe71].

3Actually we have to introduce the chemical potential of the ground state in (2.2.8) in order to understand
that the poles are located at the exact excitation energies. But, for now it is sufficient to understand that
the poles are located at the real axis.
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Using a representation of Dirac’s δ distribution in the form of Lorentz curves

δ(x) =
1
π

ε

x2 + ε2
, (2.2.11)

where the limit ε→ 0 is to be understood, we arrive at

∆Π(q) = (2π)3π
∑
α

(
δ(4)(q − (pα − pΩ)) |〈Ω|j(0)|α〉|2

−δ(4)(q + (pα − pΩ))
∣∣∣〈Ω|j†(0)|α〉

∣∣∣2) , (2.2.12)

where we omitted the η prescription, which is understood to be absorbed in q0. We note
here that, by the last equation, the discontinuities along the real axis, defined in this way,
are real.

Let us now return to the current-current correlation function Π(q) itself. Due to
Lorentz covariance of the current-current correlator and by the Theorem of Hall and
Wightman (cf. for example [Ro69]) Π(q) (and also ∆Π(q)) is merely a function of all
possible scalar products of the Lorentz vectors it depends on, i.e. q for the vacuum case
and q and v, for the in-medium case, where v stands for the medium four-velocity. If we
consider vacuum sum rules, Π(q) therefore only depends on q2, Π(q) = Π(q2). Asking for
the analytic structure of Π(q2) in the complex q2 plane, we recall that |α〉 is a physical
state satisfying (2.2.3) with real momentum. By the occurrence of the δ distribution and
due to the vanishing four-momentum of the vacuum ground state, i.e. pΩ = 0, we see that
q2 < 0 requires q2

0 6= p2
0. Hence, Π(q2) has poles only on the positive real axis, i.e. for

q2 ≥ 0.
However, considering in-medium sum rules, the ground state also depends on the

medium four-velocity vµ. Hence one has Π(q) = Π(q, v) = Π(q2, v2, qv). For fixed medium
velocity the current-current correlation function remains a function of q0 and ~q, and we can
not make further restrictions to the pole structure. Thus, Π(q) is analytic in the complex
energy plane apart from the real q0-axis.

In the following subsections we relate the values of the current-current correlation
function for complex values of q0 (or q2) to its values at the real axis (positive real axis), i.e.
to its pole structure and hence, due to (2.2.8), to the excitation energies of the considered
particle. This enables us to relate large momentum properties, determined by the quark
structure, to hadronic observables. Due to the additional dependence of the current-
current correlation function on the medium velocity these relations differ in vacuum and
medium.

2.2.2 Vacuum Dispersion Relations

By the analytic structure of the correlation function, Cauchy’s theorem enables us to give
an integral representation for it, called dispersion relation [Fu92, Su61]. Therefore, we
use the analyticity of Π(q2) for the vacuum case in the area surrounded by the contour
exhibited in the left diagram of fig. 2.2.1.
For q2 off the positive real axis, q2 /∈ R+ ∪ 0, one gets the identity
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Re q2

Im q2

s
q2

x

Re q
0

Im q
0

s
q

0x

Figure 2.2.1: Integration contours Γ in the complex q2-plane in the left panel and in the complex
q0-plane in the right panel. The parallel integration paths tend to the real axis (but do not coincide
with it), while the outer circle or half-circles tend to infinity.

Π(q2) =
1

2πi

∫
Γ

Π(s)
s− q2

ds (2.2.13)

=
1

2πi

∫ +∞

0

Π(s+ iε)
s− q2

ds+
1

2πi

∫ 0

+∞

Π(s− iε)
s− q2

ds

+
1

2πi

∮
ε

Π(s)
s− q2

ds+
1

2πi

∮
∞

Π(s)
s− q2

ds , (2.2.14)

where the last integral is for the integration over the outer circle for the radius tending to
infinity, and the third is for integration on the semicircle at the origin. As the distance
of the poles to the real axis emerges from the η-prescription for the Heaviside function,
where the limit η → 0 is understood, we also understand the limit ε→ 0 for the integrals
above. Thus, the integral over the semicircle becomes zero.

One can now show that the contribution of the integral over the infinitely large circle
is a finite polynomial in q2 if and only if

∣∣Π(q2)
∣∣ ≤ ∣∣q2

∣∣N for
∣∣q2
∣∣ → ∞, where N ∈ N is

a finite and fixed number [Su61]. Because
∣∣q2
∣∣ < |s|, if s goes along the outer circle, one

can write

1
s− q2

=
∞∑
n=0

1
s

(
q2

s

)n
. (2.2.15)

By making use of the boundary condition for Π(q2) the integral over the outer circle reads

1
2πi

∮
∞

Π(s)
s− q2

ds =
∞∑
n=0

(q2)n

2πi

∮
∞

Π(s)
sn+1

ds =
∞∑
n=0

(q2)n

2πi

∮ 2π

0

Π(s)
sn

dφ

=
N∑
n=0

(q2)n

2πi

∮ 2π

0

Π(s)
sn

dφ =
N∑
n=0

an(q2)n (2.2.16)
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which is a finite polynomial in q2. This polynomial is not equal to the so-called sub-
tractions, which we will introduce later. The exact dispersion relation in vacuum then
reads

Π(q2) =
1
π

∫ ∞
0

∆Πvac(s)
s− q2

ds+
N∑
n=0

anq
n
0 (2.2.17)

with ∆Πvac being defined analogue to (2.2.9) as

∆Πvac(q2) =
1
2i

lim
ε→0

[
Π(q2 + iε)−Π(q2 − iε)

]
, (2.2.18)

which is a real function. From this we see: If Π(q2) does not vanish fast enough when∣∣q2
∣∣ approaches infinity, the boundary condition is essential and adequate that we can

eliminate the contribution of the infinite circle by subtracting a finite polynomial in q2.
It is important to note that the coefficients an are not proportional to the derivatives
of Π(q2) for q2 = 0 even if Π(q2) is analytic in an open circle around the origin (unless
the circle is the infinite circle itself, which would require infinite excitation energies in
(2.2.8)). Because of the pole structure along the real axis, the current-current correlation
function is not analytic inside the infinite circle and Cauchy’s theorem is therefore not
applicable to the integral over the infinite circle. Instead, in [Su61], the authors show that
the contribution from the infinite circle can be expressed by the boundary values of Π(q2)
along the real axis.

However, there are several methods to get rid of the polynomial contributions. One
possibility is to take the N + 1-st derivative of (2.2.17). The polynomial vanishes and one
gets (

d

dq2

)N+1

Π(q2) =
(N + 1)!

π

∫ ∞
0

∆Πvac(s)
(s− q2)N+2

ds . (2.2.19)

Of course, we also could have done this right at the beginning in (2.2.13) and by the
boundary condition the integral over the outer circle would vanish. This method is called
the method of power moments Mn(q2), and the nth moment is given by

Mn(q2) =
1
n!

(
d

dq2

)n
Π(q2) . (2.2.20)

We mention this method just for completeness. It will not be considered anymore through-
out this thesis.

However, if Π(q2) is also analytic in an open (finite) circle around the origin we can give
a dispersion relation which is free from the polynomial contribution of the infinite circle. In
this case the lower bound for the integration along the positive real axis effectively starts
from a lower boundary threshold s0,4 because then the integrations above and below the
positive real axis cancel each other up to the threshold due to analyticity. The dispersion
relation then can be obtained from (2.2.13) by subtracting a polynomial of degree N − 1,

4s0 corresponds to the lowest-lying excitation energy.
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with coefficients ∝ Π(n)(0). Here the derivatives are solely calculated from (2.2.13), which
means that we use the contour given in the left panel of fig. 2.2.1.

In order to clarify the difference between the subtractions and the polynomial coeffi-
cients an in (2.2.17), we emphasize that the derivatives Π(n)(0) used as coefficients for the
subtractions are not calculated from an integral over the infinite circle, in contrast to the
polynomial coefficients an, i.e.

Π(q2)−
N−1∑
n=0

Π(n)(0)
n!

(q2)n =
1

2πi

∫
Γ

Π(s)
s− q2

ds−
N−1∑
n=0

(q2)n

2πi

∫
Γ

Π(s)
sn+1

ds . (2.2.21)

Again by using the standard expression for geometric series

1
s− q2

−
N−1∑
n=0

(q2)n

sn+1
=
∞∑
n=N

1
s

(
q2

s

)n
=

1
s

(
q2

s

)N ∞∑
n=0

(
q2

s

)n
=
(
q2

s

)N 1
s− q2

, (2.2.22)

one ends up with

Π(q2)−
N−1∑
n=0

Π(n)(0)
n!

(q2)n =
1

2πi

∫
Γ

(
q2

s

)N Π(s)
s− q2

ds . (2.2.23)

By the boundary condition of the current-current correlation function the integral over
the infinite circle vanishes now:

1
2πi

∮
∞

(
q2

s

)N Π(s)
s− q2

ds =
∞∑
n=0

(q2)n+N

2πi

∮
∞

Π(s)
sN+n+1

ds = 0 . (2.2.24)

The N − 1 times subtracted dispersion relation in vacuum finally reads

Π(q2)−
N−1∑
n=0

Π(n)(0)
n!

(q2)n =
1
π

∫ ∞
0

(
q2

s

)N ∆Πvac(s)
s− q2

ds

=
1
π

∫ ∞
s0

(
q2

s

)N ∆Πvac(s)
s− q2

ds . (2.2.25)

Now, the coefficients of the polynomial are well known functions. Additionally one could
also take the Nth derivative of (2.2.25) to get also rid of these polynomials.

2.2.3 In-Medium Dispersion Relations

For the in-medium case we can proceed in a similar way as in the previous subsection, but
with the difference that we now work in the complex q0 plane and not in the complex q2

plane and explicitly exclude the entire real axis. Using the integration contour given in
the right panel of fig. 2.2.1 and the analyticity of Π(q0, ~q ) in the area surrounded by the
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integration contour, we can write for fixed ~q

Π(q0, ~q ) =
1

2πi

∫
Γ

Π(s, ~q )
s− q0

ds

=
1

2πi

∫ +∞

−∞

Π(s+ iε, ~q )
s− q0

ds+
1

2πi

∫ −∞
+∞

Π(s− iε, ~q )
s− q0

ds

+
1

2πi

∮
∞

Π(s, ~q )
s− q0

ds . (2.2.26)

Following the same arguments as for the vacuum case we can note the exact dispersion
relation for the in-medium case as

Π(q0, ~q ) =
1
π

∫ +∞

−∞

∆Π(s, ~q )
s− q0

ds+
N∑
n=0

anq
n
0 , (2.2.27)

where the polynomial again corresponds to the contribution of the infinite circle and
∆Π(s, ~q ) is defined in (2.2.9). If Π(q0, ~q ) is analytic in an open (finite) area at the origin,
the integration along the cuts at the real axis effectively starts from thresholds s+

0 , s
−
0 .5

In this case one can again arrive at a subtracted dispersion relation which is free from
polynomial contributions arising from the integral over the infinite circle. Similar to the
vacuum case we get

Π(q0, ~q )−
N−1∑
n=0

Π(n)(q0 = 0, ~q )
n!

qn0 =
1

2πi

∫
Γ

Π(s, ~q )

( ∞∑
n=0

−
N−1∑
n=0

)(q0

s

)n 1
s
ds

=
1

2πi

∫
Γ

(q0

s

)N Π(s, ~q )
s− q0

ds . (2.2.28)

The integral over the infinite circle again vanishes due to the boundary condition, giving
the N − 1 times subtracted dispersion relation in q0

Π(q0, ~q )−
N−1∑
n=0

Π(n)(0, ~q )
n!

(q0)n

=
1
π

∫ +∞

−∞

(q0

s

)N ∆Π(s, ~q )
s− q0

ds

=
1
π

∫ +∞

s+0

(q0

s

)N ∆Π(s, ~q )
s− q0

ds+
1
π

∫ s−0

−∞

(q0

s

)N ∆Π(s, ~q )
s− q0

ds . (2.2.29)

For purposes which will become evident later on, we are more likely to work with a
dispersion relation in q2

0 rather than a dispersion relation in q0. Therefore we split the
current-current correlation function Π(q0, ~q ) into a part that is even (e) in q0 and a part
that is odd (o) in q0

Π(q0, ~q ) =
1
2

(Π(q0, ~q ) + Π(−q0, ~q )) +
1
2

(Π(q0, ~q )−Π(−q0, ~q ))

= Πe(q0, ~q ) + q0Πo(q0, ~q ) , (2.2.30)
5This corresponds to an energy gap between the lowest-lying particle state and the lowest-lying antipar-

ticle excitation.
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where the energy factor in front of Πo(q0, ~q ) is just convention. By the above definition
we only assume certain reflection symmetries for the even and odd parts of the correlation
function

Πe(q0, ~q ) =
1
2

(Π(q0, ~q ) + Π(−q0, ~q )) = Πe(−q0, ~q ) , (2.2.31)

Πo(q0, ~q ) =
1

2q0
(Π(q0, ~q )−Π(−q0, ~q )) = Πo(−q0, ~q ) , (2.2.32)

whereas nothing is said about the actual dependence on q0. Summation and subtraction
of the dispersion relation (2.2.29) for Π(q0, ~q ) and Π(−q0, ~q ) now result in the following
separate dispersion relations for the even part Πe(q0, ~q ) of the current-current correlation
function

Πe(q0, ~q )− 1
2

N−1∑
n=0

Π(n)(0, ~q )
n!

(q0)n (1 + (−1)n)

=
1

2π

∫ +∞

−∞
ds∆Π(s, ~q )

qN0
sN−1

(
1 + (−1)N

)
+ q0

s

(
1− (−1)N

)
s2 − q2

0

(2.2.33)

and for the odd part of the correlation function

Πo(q0, ~q )− 1
2

N−1∑
n=0

Π(n)(0, ~q )
n!

(q0)n−1 (1− (−1)n)

=
1

2π

∫ +∞

−∞
ds∆Π(s, ~q )

qN−1
0

sN−1

(
1− (−1)N

)
+ q0

s

(
1 + (−1)N

)
s2 − q2

0

. (2.2.34)

From these two equations we recognize that both functions, Πe(q0, ~q ) and Πo(q0, ~q ), can
only depend on q2

0. Hence, one can write

Π(q0, ~q ) = Πe(q2
0, ~q ) + q0Πo(q2

0, ~q ) . (2.2.35)

The not subtracted dispersion relations can be obtained from these expressions by setting
N = 1. At this point we remark the similarity of the vacuum dispersion relation and the
even in-medium dispersion relation, which can be seen be substituting s2 = t in (2.2.33).
This is not the case for the odd in-medium dispersion relation (2.2.34).

Due to the reality of ∆Π(s) for the vacuum and in-medium case, we can read off from
the corresponding dispersion relations

Π(q2∗) = Π∗(q2) (2.2.36)

for the vacuum case and

Π(q∗0, ~q ) = Π∗(q0, ~q ) (2.2.37)

for the in-medium case. By the definition of ∆Π(s) we can then write

∆Π(s) = ImΠ(s) (2.2.38)
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for both, vacuum and medium.
By the dispersion relations an exact relation between the current-current correlation

function at arbitrary (complex) values of q0 or q2 respectively off the real axis (positive
real axis) and its values at the real axis (positive real axis) is given. This enables us to
relate properties of the current-current correlation function at real (physical) values of the
energy q0 for the in-medium case and positive real values of the momentum squared q2

for the vacuum case to the hadronic properties of the correlation function encoded in the
discontinuities along the real axis.

2.3 Operator Product Expansion

We now relate the correlation function to the quark degrees of freedom encoded in the
respective currents. This can be done by applying the operator product expansion [Wi69].
Intuitively, it is clear that such a relation can only be valid at large external momenta q2.
At low momentum the fundamental degrees of freedom are hadrons, while we can only
observe the quark structure of the hadron at high external momenta. In fact, the operator
product expansion has only be proven in perturbation theory [Zi72]. Therefore, we restrict
ourselves to the high momentum regime when applying the operator product expansion.

Considering the product of two local field operators, j(x)j†(y), for x→ y one can show
that this product is not well defined. Instead, it is singular [Mu87]. This also holds true
for the time-ordered product of two local field operators, T

[
Ψ(x)Ψ†(y)

]
, as can be seen

by applying Wick’s theorem to the time-ordered product6

T
[
j(x)j†(y)

]
=: j(x)j†(y) : +j(x)j†(y) , (2.3.1)

introducing the free-field propagators and setting x = y. The singularities are then con-
tained in the free-field propagators. For matrix elements of two interacting local field
operators this can also be seen by investigating the Lehman representation in coordinate
space for x→ y. The same holds true for operator products which are not time ordered.

Wilson proposed [Wi69] that an operator product can be written as a sum of c-number
functions CO(x − y), which are singular for x → y, and non-singular operators O. Being
non-singular means that the singularities of the operator product for x → y are com-
pletely contained in the coefficient functions CO(x − y). For the time-ordered product,
this expansion therefore reads

T
[
j(x)j†(y)

]
=
∑
O

CO(x− y)O , (2.3.2)

where CO(x − y) are so-called Wilson coefficients or coefficient functions, being singular
and O being finite in the limit x→ y. The operators in the sum can be ordered according
to their mass dimension and, in principle, the sum runs over all possible products of field

6: . . . : means normal ordering and indicates a contraction.
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operators of the theory under consideration. We list all operators and their mass-dimension
that are considered throughout this work

Dµ : dimm = 1 , (2.3.3a)

q : dimm =
3
2
, (2.3.3b)

Gµν : dimm = 2 , (2.3.3c)

and the operator products

q̄q : dimm = 3 , (2.3.4a)
q̄Dµq : dimm = 4 , (2.3.4b)

G2 : dimm = 4 , (2.3.4c)
q̄DµDνq : dimm = 5 , (2.3.4d)
q̄σµνGµνq : dimm = 5 . (2.3.4e)

In [Zi72] a generalized form of normal ordered products and Wick’s theorem were
used to proof this expansion in perturbation theory. Moreover, one can show that, in the
framework of a theory which contains non-perturbative effects, a consistent separation of
large distance and short distance physics is necessary. All the non-perturbative effects
must be contained in the operators O, while the coefficients are completely determined by
perturbative physics.

It is important to note that (2.3.2) can only be understood as an asymptotic expansion.
This is clear, because convergence of the series is by no means obvious and the series of
partial sums could have more than one accumulation point, i.e. being divergent. But the
series is supposed to be a good approximation to the operator product, when truncated
and only a finite number of terms is taken [Sh78] into account. Then it has to fulfill [It80]

lim
x→y

T
[
j(x)j†(y)

]
−∑Omax

O CO(x− y)O
COmax(x− y)

= 0 ∀Omax , (2.3.5)

being merely the definition for a divergent series which is asymptotic to the operator prod-
uct for x→ y, i.e. an asymptotic expansion of the divergent operator product. In contrast
to a Taylor expansion of a function f(x) at x = 0, where the quality of the approxima-
tion increases with increasing number of terms that have been taken into account, the
asymptotic series of a, possibly divergent, function g(x) at x = 0 has to be truncated at
some order N to give the best approximation that can be achieved.7 Taking more or less
terms into account, the approximation gets worse. Thereby, N depends on the value of
x at which point the function g(x) is to be approximated by the asymptotic series, i.e. x

7A Laurent expansion would only be a possible expansion if the function g(x) has isolated singularities.
Moreover, such an expansion would mean, that the series is convergent inside some ring around the sin-
gularity. Instead, an asymptotic expansion can also be used to approximate functions g(x) that are well
defined in some region, e.g. x > 0, have a divergence at x = 0 and are ill defined for x < 0. In such a case
it is impossible to find a Laurent series for the function g(x) at x = 0 with maximum radius of convergence
being R > 0.
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determines the point where the asymptotic series has to be truncated. We will use this
property of asymptotic expansions for the analysis of our sum rule.

As the operator product expansion is an expansion at operator level, the coefficient
functions are state independent. They are completely determined by the structure of
the operator product. This means that the choice of a certain current to express the
quark structure of the considered particle completely determines the coefficient functions.
Therefore, the coefficient functions must be the same for all particles that have the same
quantum numbers.

Calculating matrix elements of (2.3.2) using the non-perturbative vacuum ground state
or the in-medium ground state |Ω〉, one obtains

〈Ω|T
[
j(x)j†(y)

]
|Ω〉 =

∑
O

CO(x− y)〈Ω|O|Ω〉 . (2.3.6)

The matrix elements of the operators 〈Ω|O|Ω〉 on the r.h.s. of (2.3.6) are called conden-
sates. If one would work in perturbation theory using the perturbative ground state, only
the unity operator would give a contribution to the sum, because all the other matrix
elements would vanish. But as we have to include non-perturbative effects and by (2.1.2),
this is not true anymore. In this sense, by introducing non-vanishing matrix elements we
were able to deal with non-perturbative physics. From (2.3.6) we also see that the whole
medium dependence must be contained in the condensates, because the Wilson coefficients
are state independent.

There is a subtlety about the last point. In fact, the operator product expansion
differs in vacuum and in medium. But this is not a result of vanishing Wilson coefficients.
Rather, it is a result of matrix elements of certain operators that vanish in vacuum, but
do not vanish in medium. Therefore, the complete medium dependence is contained in
the condensates, although the operator product expansions themselves already differ.

On the other side, the condensates can be considered at this stage as phenomenolog-
ical parameters used to reproduce the properties of the correlation function in the non-
perturbative, i.e. hadronic, region. Knowledge of the current-current correlation function
in the low momentum regime, i.e. the hadronic properties of the particle under inves-
tigation, together with the dispersion relations reviewed in subsection 2.2 will result in
restrictions for the correlator in the large-momentum regime. By virtue of the operator
product expansion, this gives us valuable information about the condensates.8

Moreover, instead of reproducing hadronic properties which are related to the non-
perturbative character of the theory, e.g. hadron masses, from first principles of quantum
chromodynamic, the condensates are used to reproduce hadron properties which depend
on the large-distance behavior of the theory. As the condensates are expectation values of
the ground state, they can give us valuable information about the dynamical structure of
the theory. Some of the most popular condensates are shown in fig. 2.3.1. They can be read
as particles, propagating in the ground state of QCD, being annihilated by virtual particles
from the ground state and creating another real particle (the remaining virtual particle
becomes real) somewhere else. During this work we will meet these and other diagrams,

8Strictly speaking, QCD sum rules give us information about certain combinations of condensates.
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�∝ 〈q̄q〉 �∝ 〈q̄gsσG q〉 �∝ 〈αsπ GµνGµν〉

Figure 2.3.1: Graphical visualization of the chiral condensate (left panel), the mixed quark-gluon
condensate (middle panel) and the pure gluon condensate (right panel). Plain lines depict quarks,
curly lines gluons and crosses symbolize annihilation of the corresponding particles with virtual
particles from the ground state.

where the coupling of particles to condensates is depicted in a similar way, embedded
in larger diagrams. Although Feynman diagram techniques are applicable, we prefer to
use them only as visualizations of the formulas which are evaluated and as an intuitive
notation in order to indicate the terms that have to be inserted for further calculations.

However, because the operators O appearing in the sum (2.3.2) are completely deter-
mined by the theory, they do not depend on the specific currents used to calculate the
operator product. Of course, a certain operator could be absent from the sum, if the
corresponding Wilson coefficient vanishes due to the structure of the currents, but the
operator itself is independent of this. Hence, the condensates can be considered as univer-
sal parameters in the sense that their knowledge is not restricted to a specific sum rule.
Knowledge of the condensates from the investigation of one sum rule gives the possibility
to make restrictions for other sum rules.

Instead of going to higher and higher orders in the perturbative expansion (2.1.4) we
apply the operator product expansion to (2.1.1):

ΠOPE(q) =
∑
O

CO(q)〈Ω|O|Ω〉 . (2.3.7)

In doing so we introduce the notion of condensates in order to reproduce or to predict
hadronic properties, which can not be understood from a perturbative point of view. A
graphical representation can be found in fig. 2.3.2.

Recapitulatory we recall that the singular behavior of operator products like j(x)j†(y)
for x→ y gives rise to the operator product expansion (2.3.2), while the non-perturbative
large distance behavior gives rise to the introduction of condensates 〈Ω|O|Ω〉.

2.4 Fock Schwinger Gauge and Background Field Method

In this section we will discuss the so-called Fock-Schwinger gauge, which enables us to
give simple expressions for gluon fields and quark propagators. These are then used to
develop simple techniques for the calculation of the operator product expansion. This
section follows closely [No83].

The Fock-Schwinger gauge reads

(xµ − xµ0 ) Aµ(x) = 0 . (2.4.1)
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Figure 2.3.2: Graphical representation of an operator product expansion. To expand the exact
propagator, one can go to higher orders in the perturbative expansion, only including scattering
events of the quark. On the other side, creation and annihilation processes emerging from the
complicated structure of the QCD ground state can also be taken into account.

Usually one chooses xµ0 = 0. Obviously, this gauge is not translation invariant. The
invariance is broken due to the special role of x0. Therefore, a shift in space-time would
destroy the gauge condition. But, as we will see, this condition is crucial to the techniques
used in the calculations performed afterwards. Hence, we must restrict ourselves to one
selected frame. By (2.4.1) we can write

0 = ∂µ
(
yνAAν (y)

)
= AAµ (y) + yν∂µA

A
ν (y) . (2.4.2)

Furthermore, using (A.9) one obtains

yν∂µA
A
ν = yνGAµν + yν∂νA

A
µ , (2.4.3)

where the non-Abelian term in (A.9) vanishes due to the gauge condition (2.4.1). Together
with (2.4.2) one ends up with

AAµ (y) + yν∂νA
A
µ = yνGAνµ . (2.4.4)

Substituting yν = αxν and inserting (2.4.4) again leads to

d

dα
(αAµ(αx)) = αxνGAνµ(αx) . (2.4.5)

Integration over α from 0 to 1 finally yields

AAµ (x) =
∫ 1

0
dααxνGAνµ(αx) . (2.4.6)

We observe that the Fock-Schwinger gauge (2.4.1) enables us to express the gluon fields
in terms of the gluon field strength tensor. Expanding the gluon field Aµ in (2.4.1) in x

xµ

( ∞∑
n=0

1
n!
xα1 . . . xαn∂α1 . . . ∂αnAµ(0)

)
= 0 (2.4.7)
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for all x, we conclude

xµxα1 . . . xαn∂α1 . . . ∂αnAµ(0) = 0 . (2.4.8)

As a direct consequence of the last equation one can show that

xα1 . . . xαn (∂α1 . . . ∂αnGµν)x=0 = xα1 . . . xαn (Dα1 . . . DαnGµν)x=0 . (2.4.9)

Therefore, one can expand the gluon field strength tensor in (2.4.6) for small x

Aµ(x) =
∫ 1

0
dααxνGνµ(αx)

=
∫ 1

0
dααxν

∞∑
n=0

αn

n!
xα1 . . . xαn (∂α1 . . . ∂αnGνµ)x=0

=
∫ 1

0
dααxν

∞∑
n=0

αn

n!
xα1 . . . xαn (Dα1 . . . DαnGνµ)x=0 . (2.4.10)

Integration over α then yields the covariant expansion for the gluon fields in terms of the
gluon field strength tensor only:

Aµ(x) =
∞∑
n=0

xν

n!(n+ 2)
xα1 . . . xαn (Dα1 . . . DαnGνµ)x=0 . (2.4.11)

The Fock-Schwinger gauge also provides a covariant expansion for the quark fields:

Ψ(x) =
∞∑
n=0

1
n!
xα1 . . . xαn

(−→
Dα1 . . .

−→
DαnΨ

)
x=0

, (2.4.12a)

Ψ̄(x) =
∞∑
k=0

1
k!
xα1 . . . xαk

(
Ψ̄
←−
Dαk . . .

←−
Dα1

)
x=0

. (2.4.12b)

The method used to simulate the non-perturbative vacuum and medium effects of the
physical ground state is the background field method. When a quark is propagating it
interacts with the virtual particles emerging from the ground state. These particles can
effectively be modeled by a classic weak gluonic background field, and the interaction is
then described by a propagation within this field. As it is a weak field, it is possible to
give a perturbative expansion of the quark propagator in terms of the coupling constant:

iS(x, y) = iS(0)(x− y)

+
∞∑
n=1

∫
iS(0)(x− z1)gÂ(z1)iS(0)(z1 − z2) . . . gÂ(zn)iS(0)(zn − y)dz1 . . . dzn , (2.4.13)

where S(0)(x− y) denotes the free propagator satisfying

(i∂̂x −m)S(0)(x− y) = δ(4)(x− y) . (2.4.14)
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Figure 2.4.1: Perturbative quark propagator in a weak glounic background field. The gluons are
supposed to emerge from the ground state.

The expansion is depicted in fig. 2.4.1. If we think about the gluons emerging from the
ground state, the fields can be understood as operators acting on the Fock space and
creating an additional gluon. Thus we use a classical expansion for the quark propagator,
but also bring into account creation or annihilation of gluons from the ground state.

The Fourier transformed free propagator reads

S(0)(p) =
∫
d4x eipxS(0)(x) =

p̂+m

p2 −m2
. (2.4.15)

Using (2.4.14) one can show that (2.4.13) satisfies

(i∂̂x + gÂ(x)−m)S(x, y) = δ(4)(x− y) , (2.4.16)

telling that S(x) is indeed the propagator of a quark in a weak gluonic background field.
In order to ensure the gauge condition (2.4.1), one has to permit shifts in space-time.
Hence, one is not allowed to perform the transformation x → x′ = x − y. This means
that, as a result of the gauge, the propagator does not only depend on the differences of
the coordinates, i.e. x − y. Thus, S(x, y) and S(x − y, 0) are different quantities. Let us
introduce the Fourier transformed expressions

S(p) =
∫
d4x eipxS(x, 0) , (2.4.17)

S̃(p) =
∫
d4x e−ipxS(0, x) , (2.4.18)

Aµ(p) =
∫
d4x eipxAµ(x) , (2.4.19)

where we also introduce the quantity S̃(p) in order to ensure the gauge condition. We first
calculate the Fourier transform of Aµ(x) giving

Aµ(p) =
∞∑
n=0

(−i)n+1 (2π)4

n!(n+ 2)

(−→
Dα1 . . .

−→
DαnGρµ(0)

)(
∂ρ∂α1 . . . ∂αnδ(4)(p)

)
, (2.4.20)
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where ∂ denotes a derivative with respect to the momentum. The transformed expression
of (2.4.13) then reads

S(p) = S(0)(p) +
∞∑
n=1

(−g)nS(0)(p)

×
∫

d4k1

(2π)4
. . .

d4kn
(2π)4

Â(p− k1)S(0)(k1)Â(k1 − k2) . . . S(0)(kn) . (2.4.21)

By partial integration we now observe for an arbitrary function f(k)∫
d4k

(2π)4
gÂ(p− k)f(k) = (γÃ)f(p) , (2.4.22)

where we have defined

Ãµ =
∞∑
n=0

Ã(n)
µ (2.4.23)

with

Ã(0)
µ =i

g

2
Gµν∂

ν ,

Ã(n)
µ =− (−i)n+1g

n!(n+ 2)
(Dα1 . . . DαnGµν(0)) ∂ν∂α1 . . . ∂αn (2.4.24)

which is now a derivative operator. This enables us to give a more comfortable expression
for the perturbative quark propagator. Successive partial integration of the momentum
integrals in (2.4.21) and using (2.4.22) yield

S(p) =
∞∑
n=0

S(n)(p) (2.4.25)

with

S(n)(p) = (−1)nS(n−1)(p)
(
γÃ
)
S(0)(p)

= (−1)nS(0)(p)
(
γÃ
)
S(n−1)(p)

= (−1)nS(0)(p)
(
γÃ
)
S(0)(p)× . . . × S(0)(p)

(
γÃ
)

︸ ︷︷ ︸
n

S(0)(p) . (2.4.26)

Here the derivatives contained in (γÃ) act on all functions to the right of them. Moreover,
performing the same steps for S̃(p), one can show that S(p) = S̃(p). Although (2.4.13) is
not translational invariant, the Fourier transform of S(x, 0) and S(0, x) are identical. The
corresponding expression for S̃(p) in terms of Ãµ reads

S̃(p) = S(0)(p)+
∞∑
n=1

(−1)nS(0)(p)
(
γ
←−̃
A

)
S(0)(p)× . . . × S(0)(p)

(
γ
←−̃
A

)
︸ ︷︷ ︸

n

S(0)(p) (2.4.27)
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which is equal to (2.4.25). Using a very useful formula for further calculations

∂

∂pρ
S(0)(p) = −S(0)(p)γρS(0)(p) , (2.4.28)

which can be confirmed by a direct calculation, we write out the first terms of (2.4.26) in
lowest order of the gluon field Ãµ

S(0)(p) =
p̂+m

p2 −m2
, (2.4.29)

S(1)(p) =i
g

2
Gµν(0)S(0)(p)γµS(0)(p)γνS(0)(p) , (2.4.30)

S(2)(p) =
(
i
g

2

)2
Gµν(0)Gκλ(0)Tµνκλ(p) , (2.4.31)

where we have defined

Tµνκλ(p) :=S(0)(p)γµS(0)(p)γνS(0)(p)γκS(0)(p)γλS(0)(p)

+S(0)(p)γµS(0)(p)γκS(0)(p)γνS(0)(p)γλS(0)(p)

+S(0)(p)γµS(0)(p)γκS(0)(p)γλS(0)(p)γνS(0)(p) . (2.4.32)

The operator product expansion of the current-current correlator is then obtained
by applying Wick’s theorem to the operator product j(x)j†(0) in terms of quark fields.
While pure quark condensates directly enter in virtue of Wick’s theorem, gluonic operators
and gluonic condensates enter via quark-gluon interactions of the current-quarks with the
background field. On the one hand side the perturbative expansion of the quark propagator
contributes, on the other side, the covariant expansion of the quark fields (2.4.12) together
with the field equations (A.28) of chromodynamics contribute.

If we restrict ourselves to small distances in (2.1.1), a restriction to large momenta is
required. Nevertheless, unlike the expectation that perturbative methods are adequate in
this energy regime, especially for the example of D mesons, non-perturbative effects will
prohibit us from a pure perturbative treatment even in the high energy regime. Details
about this effect and about calculating the operator product expansion by applying the
background field method can be found in chapter 3 for the example of the D meson.

2.5 Sum Rules

Now we have collected all the necessary tools and are able to set up the sum rules. There-
fore, we return to the dispersion relations in vacuum (2.2.25) and in medium (2.2.33),
(2.2.34). We now suggest that the current-current correlator Π(q) for large space-like
momenta q2 = −Q2 � 0 is determined by its quark structure, represented via the oper-
ator product expansion, i.e. Π(q) = ΠOPE(q) for q2 → −∞. While it is determined by
hadronic properties, i.e. the excitation spectrum ∆Πph(q) (here the subscript ’ph’ exposes
the phenomenological character), encoded by the Lehmann representation of the ground
state matrix element of the two composite field operators j(x) and j†(0). Hence, we have
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to split up the integrals into a low-momentum and a large-momentum contribution. For
the vacuum case the sum rules read

ΠOPE(q2)−
N−1∑
n=0

Π(n)
ph (0)

n!
(q2)n

=
1
π

∫ s0

0

(
q2

s

)N ∆Πph(s)
s− q2

ds+
1
π

∫ +∞

s0

(
q2

s

)N ∆ΠOPE(s)
s− q2

ds , (2.5.1)

where we introduced the threshold parameter s0.9 Similar, for the in-medium case the
sum rules for the even part read

Πe
OPE(q2

0, ~q )− 1
2

N−1∑
n=0

Π(n)
ph (0, ~q )

n!
(q0)n (1 + (−1)n)

=
1

2π

∫ s+0

s−0

ds∆Πph(s, ~q )
qN0
sN−1

(
1 + (−1)N

)
+ q0

s

(
1− (−1)N

)
s2 − q2

0

+
1

2π

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds∆ΠOPE(s, ~q )

qN0
sN−1

(
1 + (−1)N

)
+ q0

s

(
1− (−1)N

)
s2 − q2

0

, (2.5.2)

and for the odd part

Πo
OPE(q2

0, ~q )− 1
2q0

N−1∑
n=0

Π(n)
ph (0, ~q )

n!
(q0)n (1− (−1)n)

=
1

2πq0

∫ s+0

s−0

ds∆Πph(s, ~q )
qN0
sN−1

(
1− (−1)N

)
+ q0

s

(
1 + (−1)N

)
s2 − q2

0

+
1

2πq0

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds∆ΠOPE(s, ~q )

qN0
sN−1

(
1− (−1)N

)
+ q0

s

(
1 + (−1)N

)
s2 − q2

0

. (2.5.3)

If the full hadronic spectrum would be known, it would not be necessary to split up
the integrals. Usually, the threshold parameters s±0 are chosen to cover the lowest-lying
hadronic excitation, while higher momentum contributions are collected at the OPE side.
This recipe, also called semi-local quark hadron duality, is by no means obvious, but rather
relies upon its success in many applications.

2.6 Borel Transformed Sum Rules

In section 2.3 we mentioned that convergence of the operator product expansion is not
ensured. Instead it diverges and can only be considered as an asymptotic expansion.
The infinite sum approximates the current-current correlation function for x ≈ 0 if it

9The quantity s0 differs from the threshold parameter introduced in section 2.2 to characterize the
regions of analyticity.
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is truncated at a certain mass dimension, only taking into account a finite number of
operators.

One way to deal with asymptotic series is to consider the Borel transformed sum. The
Borel transform of a function f(Q2) is defined as [Fu92]

B [f ]
(
M2
)

:= lim
n→∞

Q2=nM2

(Q2)n+1

n!

(
− d

dQ2

)n
f(Q2) , (2.6.1)

with Q2 ≥ 0. Sometimes [Na04] a slightly different definition is used

B [f ]
(
M2
)′ := lim

n→∞
Q2=nM2

(Q2)n+1

n!

(
− d

dQ2

)n+1

f(Q2) , (2.6.2)

and the connection between both is given by

B [f ]
(
M2
)

= M2B [f ]
(
M2
)′
. (2.6.3)

In order to spell out the Borel transformed sum rules, we have to give the transformed
expressions for typical functions which appear in the OPE. For simple functions f , e.g.
f(Q2) = (Q2)n lnQ2 or f(Q2) = 1/(Q2 + m2)n, the transformed expressions can be cal-
culated directly from (2.6.1) by using general rules for the nth derivative, e.g. the Leibniz
rule (

d

dx

)n
(uv) =

n∑
m=0

(
n

m

)(
dm

dxm
u

)(
dn−m

dxn−m
v

)
. (2.6.4)

As can be seen from (2.6.1) all functions which are merely finite polynomials in Q2 vanish
under Borel transformation. For more complex functions, direct calculations are rather
difficult. Instead, one can use the connection between the Borel transformation and the
Laplace transformation [Wi46], which is an integral transformation. The Laplace trans-
form of a function g(t) is defined as [Br01]

L [g] (s) :=
∫ ∞

0
e−stg(t)dt . (2.6.5)

Here g(t) is assumed to be piecewise smooth for t ≥ 0 and to be bounded by eαt for t→∞;
g(t) ≤ eαt for some α > 0. The integral converges for Res > α and is an analytic function
in s in that area.

Now, the beneficial point is that an inverse operation to the Laplace transformation is
given by (see chapter VII.6 in [Wi46])10

g(t) = lim
n→∞

1
n!

(n
t

)n+1 [
−L [g]

(n
t

)](n)
, (2.6.6)

10Another representation of the inversion of the Laplace transform is given by the Bromwich integral
g(t) = 1

2πi

∫ c+i∞
c−i∞ eptL [g] (p) dp for t > 0.
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where [. . .](n) denotes the nth derivative . Setting t = 1/M2 and n/t = nM2 = Q2 one
obtains

g

(
1
M2

)
= lim

n→∞
Q2=nM2

(
Q2
)n+1

n!

(
− d

dQ2

)n
L [g]

(
Q2
)
. (2.6.7)

Comparison with (2.6.1) shows that the Borel transform obeys

B [f ]
(
M2
)

= g(1/M2) , (2.6.8)

if the function f is the Laplace transform of g [Ra81]. This enables us to give the Borel
transformed expressions for a broad range of functions if we are able to identify them as
the Laplace transform of other known functions. Moreover, we can now safely use well
known properties of the Laplace transformation to simplify many calculations, e.g. the
momentum shift

f(s− a) L−1

→ eatg(t) , (2.6.9)

giving for the Borel transformation

B
[
f(Q2 +m2)

] (
M2
)

= e−m
2/M2

B
[
f(Q2)

] (
M2
)
. (2.6.10)

Although, by the above criteria, the Borel transformation can be performed for a broad
range of functions, we will merely need the transform of one type of functions during this
work, namely

f(s) =
1

sα+1

1
(ln s)β+1

. (2.6.11)

If Reα > −1 and Res > 1, then f(s) is the Laplace transform of the transcendental
function µ(t, β, α) [Er55b]∫ ∞

0
e−stµ(t, β, α)dt =

1
sα+1

1
(ln s)β+1

, (2.6.12)

where µ(t, β, α) is defined by the following integral representation

µ(x, β, α) =
∫ ∞

0

xα+1tβdt

Γ(β + 1)Γ(α+ t+ 1)
. (2.6.13)

By repeated partial integration one can bring this into a form that is more convenient for
further calculations:

µ(x,−n, α) = (−1)n−1

(
d

du

)n−1 xα+u

Γ(α+ u+ 1)

∣∣∣∣
u=0

(2.6.14)

with n = 1, 2, · · · . In particular we get

µ(x,−1, α) =
xα

Γ(α+ 1)
, (2.6.15)

µ(x,−2, α) =
xα

Γ(α+ 1)

[
− lnx+

Γ′(α+ 1)
Γ(α+ 1)

]
(2.6.16)
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with

Γ′(n) = −(n− 1)!

[
1
n

+ γE −
n∑
k=1

1
k

]
(2.6.17)

and γE being the Euler constant

γE = lim
n→∞

(
n∑
k=1

1
k
− lnn

)
. (2.6.18)

From (2.6.12) we are now able to represent the Borel transform of (2.6.11) without per-
forming too many elaborate calculations by means of the initial definition of the Borel
transformation (2.6.1)

B

[
1

(Q2)α+1

1
(lnQ2)β+1

] (
M2
)

= µ

(
1
M2

, β, α

)
. (2.6.19)

In particular, for β = −1 and α = n− 1 the result reads

B

[
1

(Q2)n

] (
M2
)

= µ

(
1
M2

,−1, n− 1
)

=
1

(n− 1)!
1

(M2)n−1
, (2.6.20)

and for β = −2 and α = n− 1 we get

B

[
1

(Q2)n
lnQ2

] (
M2
)

= µ

(
1
M2

,−2, n− 1
)

=
1

(n− 1)!
1

(M2)n−1

[
lnM2 − 1

n
− γE +

n∑
k=1

1
k

]
. (2.6.21)

Let us now apply the Borel transformation to the subtracted dispersion relations
(2.2.25), as well as (2.2.33) and (2.2.34). As the operator product expansion is only valid
for large space like momenta, i.e. q2 << 0, we can substitute q2 = −Q2. Furthermore the
limiting procedure in the definition of the Borel transformation is not in conflict with the
operator product expansion. For the dispersion relation in vacuum we get

ΠOPE(Q2)−
N−1∑
n=0

Π(n)
ph (0)

n!
(−Q2)n

=
1
π

∫ s0

0

(
−Q

2

s

)N ∆Πph(s)
s+Q2

ds+
1
π

∫ +∞

s0

(
−Q

2

s

)N ∆ΠOPE(s)
s+Q2

ds . (2.6.22)

For the in-medium dispersion relations we introduce q2
0 = −ω2. This is equivalent to the
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consideration of imaginary values for the energy q0. For the even part one obtains

Πe
OPE(ω2, ~q )− 1

2

N−1∑
n=0

Π(n)
ph (0, ~q )

n!
(ω2)n/2 (1 + (−1)n)

=

[
1
π

∫ s+0

s−0

ds
∆Πph(s, ~q )
s2 + ω2

+
1
π

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds

∆ΠOPE(s, ~q )
s2 + ω2

]

× 1
2

(
(−ω2)N/2

sN−1

(
1 + (−1)N

)
+

(−ω2)(N+1)/2

sN
(
1− (−1)N

))
, (2.6.23)

and for the odd part

Πo
OPE(ω2, ~q )− 1

2

N−1∑
n=0

Π(n)
ph (0, ~q )

n!
(ω2)(n−1)/2 (1− (−1)n)

=

[
1
π

∫ s+0

s−0

ds
∆Πph(s, ~q )
s2 + ω2

+
1
π

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds

∆ΠOPE(s, ~q )
s2 + ω2

]

× 1
2

(
(−ω2)(N−1)/2

sN−1

(
1− (−1)N

)
+

(−ω2)N/2

sN
(
1 + (−1)N

))
. (2.6.24)

Application of the Borel transformation (2.6.1) to the vacuum dispersion relation (2.6.22)
yields

B

[(
−Q

2

s

)N 1
s+Q2

] (
M2
)

=
e−s/M

2

(−s)N B

[
(Q2 − s)N

Q2

] (
M2
)

=
e−s/M

2

(−s)N B

[
(−s)N
Q2

] (
M2
)

= e−s/M
2
, (2.6.25)

where we have used that only the term ∝ 1/Q2 survives the Borel transformation. Hence,
one finally ends up with

B
[
ΠOPE(Q2)

] (
M2
)

=
1
π

∫ s0

0
e−s/M

2
∆Πph(s)ds+

1
π

∫ +∞

s0

e−s/M
2
∆ΠOPE(s)ds . (2.6.26)

In the same way, we obtain for the in medium dispersion relation (2.6.23) by applying the
Borel transformation (2.6.1) with respect to ω2

B

[
(−ω2)N/2

sN−1

1
s2 + ω2

] (
M2
)

= (−1)N/2
e−s

2/M2

sN−1
B

[
(ω2 − s2)N/2

ω2

] (
M2
)

= (−1)N/2
e−s

2/M2

sN−1
B

[
(−s2)N/2

ω2

] (
M2
)

= (−1)Nse−s
2/M2

, (2.6.27)
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where we have used that, due to the factor
(
1 + (−1)N

)
in the first term of the last line

in (2.6.23), N/2 can only have integer values. The same holds true for (N + 1)/2 in the
second term. Thus, we arrive at

B
[
Πe
OPE(ω2, ~q )

] (
M2
)

=

[
1
π

∫ s+0

s−0

ds∆Πph(s, ~q ) +
1
π

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds∆ΠOPE(s, ~q )

]
se−s

2/M2
. (2.6.28)

For the odd part we use (2.6.25) and obtain

B
[
Πo
OPE(ω2, ~q )

] (
M2
)

=

[
1
π

∫ s+0

s−0

ds∆Πph(s, ~q ) +
1
π

(∫ s−0

−∞
+
∫ +∞

s+0

)
ds∆ΠOPE(s, ~q )

]
e−s

2/M2
. (2.6.29)

As a byproduct we see that the subtraction terms vanish under Borel transformation, as
they are polynomials in Q2.

In section 2.2 we reviewed the method of subtracted dispersion relations. They enable
us to suppress polynomial contributions to the dispersion relations from the integral over
the infinite circle and ensure the convergence of the dispersion integral. From the definition
of the Borel transformation we see that all functions that are merely polynomials in Q2

vanish. Hence, by applying (2.6.1) to the dispersion relations (2.2.27) or (2.2.17) one gets
rid of the polynomial contribution from the outer circle integral. Thus, we do not need to
consider subtracted dispersion relations and could have started from the non-subtracted
dispersion relation. The result, however, is the same. The divergence of the operator
product expansion makes it necessary to introduce the Borel transformation.

We note the occurrence of the exponential weighting function in the Borel transformed
sum rules (2.6.26), (2.6.28) and (2.6.29). This weighting function gives a possible physical
interpretation of the transformation. It emphasizes the contribution of the lowest lying
hadronic excitations in contrast to the exponential suppression of higher energy contribu-
tions.





3 Sum Rules for D Mesons

We are now well equipped to approach the sum rules for D mesons. Therefore we will
briefly summarize the main properties of D mesons that are necessary to formulate the
sum rules. Then we will calculate the operator product expansion up to next-to-leading
order in αs and mass dimension 5. Afterward we will set up the sum rule.

3.1 D Mesons

Mesons are bosonic hadrons consisting of an even number of valence quarks. Systems with
one constituent being a charm quark and the other being one of the light quark flavors
”up” or ”down” are called D mesons. The lowest lying excitations are D±, D0 and D 0.
They are pseudoscalar particles having negative parity, and they belong to the isotopic
doublet having isospin 1/2. Their spin is J = 0. Thus, their quark constituents point to
the following interpolating currents

jD+(x) = id̄γ5c , (3.1.1)
jD−(x) = ic̄γ5d , (3.1.2)
jD0(x) = iūγ5c , (3.1.3)
j
D

0(x) = ic̄γ5u , (3.1.4)

where the quark field operators in Heisenberg picture are denoted by u, d, c. From the
definitions the currents fulfill

(jD+(x))† = jD−(x) , (3.1.5a)

(jD0(x))† = j
D

0(x) . (3.1.5b)

The current-current correlation functions are defined as (2.1.1). Using the translation
properties of Heisenberg operators (2.2.4), we obtain the following connection between the
current-current correlators

ΠD+(−q) = ΠD−(q) , (3.1.6)
ΠD0(−q) = Π

D
0(q) . (3.1.7)

Of course, the current-current correlation function for D0 can be obtained from D+ by the
replacement d→ u.
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3.2 Operator Product Expansion for the D Meson

The OPE of the product of two nonlocal composite field operators is an expansion at
operator level which can be proven for small distances, i.e. in the perturbative region (see
discussion in subsection 2.3). This means that the Wilson coefficients are independent of
the states we use to calculate scalar products. Moreover, if we restrict the momentum q
to large space like values q2 < 0 we can use perturbative techniques to calculate Wilson
coefficients. Wick’s theorem is such a technique and enables us to evaluate time ordered
products in terms of normal ordered products and Wick contracted operators:

T [A . . . Z] =: A . . . Z : + : AB . . . Z : + . . . + : AB . . . Y Z : , (3.2.1)

whereas a contraction ’ ’ is defined as

AB := 〈0|T [AB] |0〉 (3.2.2)

and normal ordering ’: . . . :’ means that all annihilation operators are brought to the
right of the operator product. At this point it is important to note that normal ordering
only refers to the perturbative field operators. In order to expand a field operator in
creation and annihilation operators it is necessary to give a unique and covariant Fourier
decomposition of the field operators into positive and negative frequency parts. This is
always possible for free field operators. It is also possible for field operators calculated
in perturbation theory, because these operators are merely expanded in terms of free
field operators. But, generally speaking, it is not possible to decompose an interacting
field operator into positive and negative frequencies in a covariant way.1 In other words,
normal ordering refers accordingly to perturbation theory [Ro69]. In this sense Wick’s
theorem is a perturbative tool. The perturbative ground state |0〉 is defined to satisfy

a|0〉 = 0 (3.2.3)

being an important assumption in the derivation of Wick’s theorem. One cannot use the
physical ground state |Ω〉 instead (cf. (2.1.2)).

We now apply Wick’s theorem to the correlation function ΠD+(q) of the two currents
j(x), j†(0) and thereby introduce normal ordered products and Wick contracted terms,
whereas the normal ordered terms do not vanish due to (2.1.2):

ΠD+(q) = i

∫
d4x eiqx〈Ω|T

[
id̄(x)γ5c(x)ic̄(0)γ5d(0)

]
|Ω〉

= −i
∫
d4x eiqxγ5,ijγ5,kl〈Ω| : d̄i(x)dl(0)cj(x)c̄k(0) : + : d̄i(x)cj(x)c̄k(0)dl(0) :

+ : d̄i(x)cj(x)c̄k(0)dl(0) : + : d̄i(x)dl(0)cj(x)c̄k(0) : |Ω〉

= −i
∫
d4x eiqx〈Ω| : TrC,D [γ5Sd(0, x)γ5Sc(x, 0)] : +i : d̄(x)γ5Sc(x, 0)γ5d(0) :

+ i : c̄(0)γ5Sd(0, x)γ5c(x) : + : d̄(x)γ5c(x)c̄(0)γ5c(0) : |Ω〉 , (3.2.4)
1For interaction picture field operators it is always possible to define a covariant Fourier decomposition,

because they fulfill the free equations of motion.
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Figure 3.2.1: Contributions Π(0),Π(2) and Π(4) (from left to the right) to the OPE for the D
meson. Dashed lines depict the D meson, continuous lines represent heavy or light quarks, curly
lines represent gluons, and the crosses symbolize the creation or annihilation of a quark by virtual
particles. γ5 exposes the pseudoscalar character of the particle. All lines represent perturbative
propagators.

where the trace TrC,D refers to color and Dirac indices. In the last step we have used

iSij(x, y) = 〈0|T [qi(x)q̄j(y)] |0〉 = qi(x)q̄j(y) . (3.2.5)

Again, we have to emphasize the usage of the vacuum state |0〉 which leads to the pertur-
bative propagator, describing the propagation of a quark in a weak gluonic background
field.

Let us introduce the following notation

ΠD+(q) =Π(0)(q) + Π(2)(q) + Π(4)(q) , (3.2.6)

Π(0)(q) =− i
∫
d4x eiqx〈Ω| : TrC,D [γ5Sd(0, x)γ5Sc(x, 0)] : |Ω〉 , (3.2.7)

Π(2)(q) =
∫
d4x eiqx〈Ω| : d̄(x)γ5Sc(x, 0)γ5d(0) : + : c̄(0)γ5Sd(0, x)γ5c(x) : |Ω〉 ,

(3.2.8)

Π(4)(q) =− i
∫
d4x eiqx〈Ω| : d̄(x)γ5c(x)c̄(0)γ5c(0) : |Ω〉 , (3.2.9)

where the labels (0), (2) and (4) denote the numbers of non-contracted quark fields or, more
illustratively, the number of quarks which participate in the formation of a condensate.
These contributions are depicted graphically in fig. 3.2.1.

Each diagram can give a contribution to the Wilson coefficients belonging to operator
products, where the number of quark field operators is equal to or larger than the number
of quarks which couple to condensates. In the language of mass dimensions, this means
that each diagram of fig. 3.2.1 can contribute to condensates with mass dimension ≥ n,
where n is the number of non-contracted quark fields.

The left diagram for Π(0), in principle, could give contributions to all Wilson coeffi-
cients. It is the diagrammatic description of two quarks propagating in a weak gluonic
background field. The respective quark propagators can be calculated in perturbation
theory using the Fock-Schwinger gauge. Beside the purely perturbative result it also gives
contributions to other Wilson coefficients, e.g. gluonic operators like G2, G3 or higher
powers in the gluon field strength.
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The middle diagram for Π(2) belongs to condensates containing at least two quark field
operators. It can be read as one quark propagating in a background field and the other
one propagating, being annihilated by a virtual quark and, therefore, creating another real
quark propagating somewhere else (the other virtual quark becomes real). This diagram
not only gives contributions to two-quark condensates but also to condensates containing
gluon operators or with more quark field operators, e.g. the four-quark condensates.

The right diagram for Π(4) is dedicated to condensates containing at least four quark
field operators. It contributes only in first-order perturbation theory, as indicated by the
exchange of one gluon. Otherwise this diagram would not be connected and no momentum
could flow. This is why this gluon is a so-called hard one, meaning that it carries high
momentum. Hence, this diagram can not be evaluated by the weak background field
method. Instead, it requires the introduction of condensates at the next-to-leading order
perturbative expansion (2.1.4) in αs. As mentioned above, it is not the only source of
four-quark condensates. However, as four-quark condensates are of mass dimension 6, and
their numerical importance is supposed to be small, they will not be considered throughout
this work.

We now proceed with the calculation of the contribution of the fully contracted term
Π(0)(q). Inserting the Fourier transformed propagators (2.4.19)

Π(0)(q) = −i
∫
d4x eiqx〈Ω| : TrC,D [γ5Sd(0, x)γ5Sc(x, 0)] : |Ω〉

= −i
∫

d4p

(2π)4
〈: TrC,D [γ5Sc(p+ q)γ5Sd(p)] :〉

= Πper(q) + ΠG2
(q) + . . . , (3.2.10)

where we have introduced the notation

Πper(q) = −i
∫

d4p

(2π)4
〈: TrC,D

[
γ5S

(0)
c (p)γ5S

(0)
d (p− q)

]
:〉 (3.2.11)

with S(0) as the free propagator. ΠG2
(q), to be discussed in section 3.2.2, corresponds

to the insertion of higher-order propagators, e.g. S(1), S(2), and lowest-order gluon fields.
Therefore, it will lead to the gluon condensate. The dots in (3.2.10) stand for higher-order
insertions of propagators and/or higher-order insertions of gluon fields, while Πper(q) fol-
lows from the insertion of lowest-order perturbation propagators. It is the Wilson coeffi-
cient of the unity operator. This term appears in the OPE as well as in the lowest-order
perturbative calculation of the correlation function (2.1.4). We also added the perturba-
tive correction ∝ αs, being the next-to-leading order term in (2.1.4), which is not included
in (3.2.11).2 The corresponding diagrams are shown in fig. 3.2.2.

Both terms, Πper and ΠG2
, are not well defined in the limit md → 0 as they are

infrared divergent. The occurrence of these divergences at the perturbative level signals
some influence of the long-distance behavior at small distances [Sp88]. As (3.2.11) is just

2Only weak fields, i.e. soft gluons can be modeled by the background field, while a perturbative expansion
also includes hard gluons. They can not be modeled by a weak field.
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Figure 3.2.2: Diagrams regarding to the perturbative calculation of the correlation function ΠD+ .
In contrast to fig. 3.2.1, solid lines depict the free quark propagator. Curly lines stand for the free
gluon propagator. The left diagram is the lowest-order contribution Π(0). The middle and right
ones are higher-order perturbative corrections to Πper.

the Wilson coefficient of the unity operator, it must not be governed by non-perturbative
physics. In order to perform a consistent separation of scales, these divergences must be
absorbed into the condensates [Tk83]. In section 3.2.4 we will come back to this item
again and we will show how this procedure works in vacuum and in medium.

The infrared stable Wilson coefficient for the unity operator can only be obtained
within the MS scheme [Tk83]. It can be obtained from the imaginary part of the correlation
function in form of a twice subtracted dispersion relation [Al83]

Πper
D+(ω2) = c0(ω2) = c0(0) + ω2c′0 +

ω4

π

∫ ∞
m2
c

ds
ImΠper

D+(s)
s2(s− ω2)

, (3.2.12)

where ImΠper(s) in first order of αs and for md = 0 reads

ImΠper
D+(q2)

=
3

8π
(q2 −m2

c)
2

q2

{
1 +

4αs(q2)
3π

[
9
4

+ 2Li2

(
m2
c

q2

)
+ ln

(
q2

m2
c

)
ln
(

q2

q2 −m2
c

)
+

3
2

ln
(

m2
c

q2 −m2
c

)
+ ln

(
q2

q2 −m2
c

)
+
m2
c

q2
ln
(
q2 −m2

c

m2
c

)
+

m2
c

q2 −m2
c

ln
(
q2

m2
c

)]}
.

(3.2.13)

Here, the Spence function is defined as Li2(x) = −
∫ x

0 t
−1 ln(1− t)dt. Borel transformation

with respect to ω2 of (3.2.12) gives the common result

B
[
c0(ω2)

] (
M2
)

=
1
π

∫ ∞
m2
c

ds e−s/M
2
ImΠper

D+(s) . (3.2.14)

Before we turn to the calculation of the other Wilson coefficients we will give a list of
all projections that are essential in the calculation of the OPE.

3.2.1 Projections

Condensates are vacuum expectation values of quantum field operators. They reflect basic
properties of the QCD ground state. Condensates are assumed to be color singlets, Lorentz
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invariants and invariants under parity transformations and time reversal. Therefore, one
has to project out color, spinor and Lorentz indices from several structures that appear
during our calculations. Vacuum expectation values which are not invariant under parity
transformations and time reversal are supposed to vanish. In the following description we
adopt the method described in [Ji93].

Up to mass dimension 5 we meet the following structures

〈: q̄ ai qbj :〉 , 〈: (q̄iDµ)a qbj :〉 , 〈: (q̄iDµDν)a qbj :〉 ,
〈: GAµνGBκλ :〉 , 〈: q̄ ai G ab

µνq
b
j :〉 . (3.2.15)

The meaning of various indices is explained in appendix A. The last structure is already
invariant under color rotations, thus one does not need to take care of color projections
for this one. One can expand the remaining other condensates using an orthogonal basis.
For Nc ×Nc dimensional matrices such a set is given by the generators t of SU(Nc) (A.6)
supplemented by the unity matrix 1 in Nc dimensions; an appropriate scalar product
is given by the trace operation (A,B) = Tr(AB). Using (A.8) the prescription for the
expansion in terms of the generators of SU(Nc) reads as follows

Mab =
∑
A

cAt
A
ab + c11ab ,

cA =
2

TrC(tAtA)
TrC(tAM) and c1 =

1
Nc

TrC(M) . (3.2.16)

In order to retain just color singlets the only non-vanishing expansion coefficient is c1.
All the other coefficients belong to vacuum expectation values which do not transform as
scalars under color transformations.

The projection of spinor indices proceeds in an analog way. A complete set is given
by the elements Ok of the Clifford algebra, i.e. Ok ∈ {1, γµ, σµ<ν , iγ5γµ, γ5}, satisfying
TrD

(
OiO

j
)

= 4δji . The expansion reads

〈: q̄iAµν...qj :〉 =
∑
k

dkO
k
ji , dk =

1
4
〈: q̄OkAµν...q :〉 (3.2.17)

resulting in

〈: q̄iAµν...qj :〉 =
1
4

(
〈: q̄Aµν...q :〉1ji + 〈: q̄γµAµν...q :〉γµji +

1
2
〈: q̄σµνAµν...q :〉σµνji

− 〈: q̄γ5γµAµν...q :〉γ5γ
µ
ji + 〈: q̄γ5Aµν...q :〉γ5,ji

)
. (3.2.18)

Together with color projection one gets

〈: q̄ai Aµν...qbj :〉 =
δab

12

(
〈: q̄Aµν...q :〉1ji + 〈: q̄γµAµν...q :〉γµji +

1
2
〈: q̄σµνAµν...q :〉σµνji

− 〈: q̄γ5γµAµν...q :〉γ5γ
µ
ji + 〈: q̄γ5Aµν...q :〉γ5,ji

)
. (3.2.19)
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Here Aµν... stands for an arbitrary operator with Lorentz indices µν · · · . [Ji93] states that
terms corresponding to the projection onto σµν , γ5γµ, γ5 do not appear due to parity and/or
time reversal. This statement can be misunderstood. It is true for γ5γµ, γ5, however not
for σµν , which does not contribute because there is no independent Lorentz structure that
reflects the symmetry properties of σµν . In fact, it contributes if the gluon field strength
tensor enters the operator product (i.e. Aµν = Gµν).

A striking difference of vacuum and in-medium projections appears when projecting
Lorentz indices. It is important to note that this projection is not an expansion in terms of
a complete orthogonal set. It strongly depends on the structures available to perform the
projection. In vacuum, there are only two independent objects, the metric tensor gµν and
the total antisymmetric symbol εµναβ , being a pseudo-tensor under parity transformations.
In medium the condensates also depend on the medium’s four-velocity vµ which, therefore,
is an additional structure for projections. As a result, also pseudo-vectorial structures can
be invariant under parity transformations.

Now we give a list of the in-medium projections up to mass dimension 5. Terms that
violate time reversal or parity invariance are omitted. Equations of motion (A.32) enable
us to rewrite the condensates in terms of canonical condensates [Gr94].

(i) Condensates of mass dimension 3:

〈: q̄q :〉 = 〈: q̄q :〉 , (3.2.20)

〈: q̄γµq :〉 = 〈: q̄v̂q :〉vµ
v2

. (3.2.21)

A condensate of the type 〈: q̄σµνq :〉 occurs neither in vacuum nor in a medium since
there is no possibility to create an antisymmetric structure in the Lorentz indices µ, ν.
Condensates of the type 〈: q̄γ5γµq :〉, 〈: q̄γ5q :〉 can not be projected onto structures that
are invariant under parity transformations.

(ii) Condensates of mass dimension 4:

〈: q̄Dµq :〉 = −〈: q̄v̂q :〉imqvµ
v2

, (3.2.22)

〈: q̄γµDνq :〉 = −〈: q̄q :〉imq

4
gµν

−
[
i
mq

4
〈: q̄q :〉+ 〈: q̄v̂ (vD)

v2
q :〉
]

1
3

(
gµν − 4

vµvν
v2

)
, (3.2.23)

〈: GAµνGBκλ :〉 =
δAB

96
(gµαgνβ − gµβgνα) 〈: G2 :〉

− δAB

24
〈:αs
π

(
(vG)2

v2
− G2

4

)
:〉Sµνκλ . (3.2.24)

Again, terms of the form 〈: q̄γ5γµDµq :〉, 〈: q̄γ5Dµq :〉 do not have a projection due to the
requirement of parity invariance. The same holds true for 〈: q̄σµνDκq :〉, which can be
contracted with εµνκλv

λ giving an odd term with respect to parity.
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(iii) Condensates of mass dimension 5:

〈: q̄DµDνq :〉 = −〈: q̄q :〉
m2
q

4
gµν + 〈: q̄gσG q :〉1

8
gµν

−
[
m2
q

4
〈: q̄q :〉 − 1

8
〈: q̄gσG q :〉+ 〈: q̄ (vD)2

v2
q :〉
]

1
3

(
gµν − 4

vµvν
v2

)
, (3.2.25)

〈: q̄γµDνDαq :〉

=
1
v4
〈: q̄v̂(vD)2q :〉

(
2vµvνvα
v2

− 1
3

(vµgνα + vνgµα + vαgµν)
)

− 1
6v2
〈: q̄v̂gσGq :〉

(vµvνvα
v2

− vµgνα
)

+
m2
q

3v2
〈: q̄v̂q :〉

(vµvνvα
v2

− vµgνα
)

+
imq

3v2
〈: q̄(vD)q :〉

(
2vµvνvα
v2

− vνgµα − vαgµν
)
, (3.2.26)

〈: q̄γ5γµDνDαq :〉

= − 1
6v2

εµναβv
β

[
i

2
〈: q̄v̂gσGq :〉+ im2

q〈: q̄v̂q :〉+ im2
q〈: q̄(vD)q :〉

]
, (3.2.27)

〈: q̄σµνDαDβq :〉 = − i

24
(gµαgνβ − gµβgνα) 〈: q̄gσG q :〉

−
[
i

8
〈: q̄gσG q :〉 −mq〈: q̄v̂

(vD)
v2

q :〉 − i〈: q̄ (vD)2

v2
q :〉
]

Sµναβ , (3.2.28)

〈: q̄γ5γαGµνq :〉 =
1

6v2
〈: q̄v̂gσGq :〉εαµνσvσ , (3.2.29)

〈: q̄gσαβGµνq :〉 = 〈: q̄gσG q :〉 1
12

(gαµgβν − gανgβµ)

+
[

1
12
〈: q̄gσG q :〉 − i2mq

3
〈: q̄v̂ (vD)

v2
q :〉 − 2

3
〈: q̄ (vD)2

v2
q :〉
]

Sαβµν , (3.2.30)

where we have defined

Sαβµν =
(
gαµgβν − gανgβµ − 2

(
gαµ

vβvν
v2
− gαν

vβvµ
v2

+ gβν
vαvµ
v2
− gβµ

vαvν
v2

))
.

(3.2.31)

We have explicitly separated the medium specific contributions from the vacuum pro-
jections. Medium specific contributions are either condensates that contain the medium
four-velocity v or combinations of condensates that appear in vacuum and medium. The
latter ones are always written with angled brackets. Applying vacuum projections to the
medium specific terms makes them zero in the vacuum limit.

In order to give an example for this procedure we briefly proof (3.2.29). Due to Lorentz
covariance we write

〈: q̄γ5γαGµνq :〉 = Aεαµνσv
σ . (3.2.32)
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Our aim is to determine the Lorentz scalar A. Using (A.31), we can write for any four-
vector vµ

v̂σµνGµν = ivαγ
αγµγνGµν . (3.2.33)

Expanding the product of Dirac matrices in terms of the Clifford algebra, one obtains

γαγµγν = gµνγα + gναγµ + gαµγν + iεσαµνγ5γσ . (3.2.34)

Due to the equations of motion (A.28) and by the definition of the gluon field strength
tensor, one can show that

〈: d̄vµγνGµνd :〉 = 0 . (3.2.35)

Altogether, this gives the relation

〈: d̄v̂σµνGµνd :〉 = −〈: d̄γ5γσGµνd :〉εσαµνvα . (3.2.36)

Contracting (3.2.32) with εαµνσ and using εαµνσε τ
αµν = −6gστ , one can show the desired

relation (3.2.29).
Let us define the operator T̂ in such a way that it creates a traceless expression with

respect to Lorentz indices. For two Lorentz indices T̂ reads

T̂ (Oµν) = Oµν −
gµν
4
Oαα (3.2.37)

and we immediately observe that the medium specific terms in (3.2.23) and in (3.2.25)
originate from the contraction of vµvν/v2 with a certain traceless expression:

vµvν

v2
〈: q̄ T̂ (γµDν) q :〉 =

[
i
mq

4
〈: q̄q :〉+ 〈: q̄v̂ (vD)

v2
q :〉
]
, (3.2.38)

vµvν

v2
〈: q̄ T̂ (DµDν) q :〉 =

[
m2
q

4
〈: q̄q :〉 − 1

8
〈: q̄gσG q :〉+ 〈: q̄ (vD)2

v2
q :〉
]
. (3.2.39)

This is clear since the additional medium contributions can be obtained by performing the
complete projection of the structure to be projected minus the vacuum projection, which is
proportional to products of the metric tensor, Oµν− gµν

4 gαβOαβ. Therefore, the additional
medium contributions must be traceless. The generalization to arbitrary Lorentz indices
is obvious.

Now we can proceed with the calculation of the Wilson coefficients. We always consider
the in-medium OPE; the vacuum OPE can be easily derived from these expressions by
setting all medium specific contributions zero.

3.2.2 Gluon Condensates from Π
(0)

D+

We are going to calculate the contribution of the left diagram in fig. 3.2.1 to the gluon
condensate 〈: G2 :〉. This means, we consider an insertion of higher-order perturbative
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Figure 3.2.3: Contributing diagrams to the Wilson coefficient of 〈:αs

π G
2:〉.

quark propagators, namely S
(1)
c , S

(1)
d or S(2)

c , S
(0)
d or S(0)

c , S
(2)
d , and lowest-order gluon

fields, thus, taking into account first order quark-gluon interactions in a weak background
field. The gluon condensate, therefore, is of next-to-leading order in αs. Let us introduce
the following notation for the three different contributions

ΠG2

D+(q) = ΠG2,1
D+ (q) + ΠG2,2

D+ (q) + ΠG2,3
D+ (q) , (3.2.40)

with

ΠG2,1
D+ (q) =− i

∫
d4p

(2π)4
〈: TrC,D

[
γ5S

(1)
c (p)γ5S

(1)
d (p− q)

]
:〉 , (3.2.41)

ΠG2,2
D+ (q) =− i

∫
d4p

(2π)4
〈: TrC,D

[
γ5S

(2)
c (p)γ5S

(0)
d (p− q)

]
:〉 , (3.2.42)

ΠG2,3
D+ (q) =− i

∫
d4p

(2π)4
〈: TrC,D

[
γ5S

(0)
c (p+ q)γ5S

(2)
d (p)

]
:〉 . (3.2.43)

The change of variables in the last expression is just for calculational convenience. These
terms can be visualized by the diagrams in fig. 3.2.3. All line codes in this and the following
subsection are according to the line codes used in fig. 3.2.2.

The occurring integrals can be calculated for Euclidean momenta after performing a
Wick rotation. The results can be found in many textbooks about quantum field theory,
e.g. [It80]. We list the necessary expressions in D dimensions. The limit D → 4 can safely
be taken as there will not be any divergences for the required integrals in (3.2.41), (3.2.42)
and (3.2.43) which are connected to dimensional regularization and the limit D → 4.3 In
the following equations all momenta are in Euclidean space-time.

For simplicity we introduce the following notation:

Iijk(q2,m2
1,m

2
2) :=

∫ 1

0
dα

αi(1− α)j

[α(1− α)q2 + αm2
1 + (1− α)m2

2]k
. (3.2.44)

Obviously, the mass dimension of these integrals is always 2k. There are useful relations
among these integrals which sometimes simplify their calculation or, at least, give a good

3Terms which are divergent in the limit md → 0 will occur. They require a different treatment. See
section 3.2.4.
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possibility to check the results:

∂

∂m2
1

Iijk(q2,m2
1,m

2
2) =− kIi+1,j,k+1(q2,m2

1,m
2
2) , (3.2.45)

∂

∂m2
2

Iijk(q2,m2
1,m

2
2) =− kIi,j+1,k+1(q2,m2

1,m
2
2) , (3.2.46)

∂

∂q2
Iijk(q2,m2

1,m
2
2) =− kIi+1,j+1,k+1(q2,m2

1,m
2
2) . (3.2.47)

With this notation the required integrals read∫
dDp

(2π)D
1

[(p− q) +m2
1]n(p2 +m2

2)p

=
1

(4π)D/2
Γ
(
n+ p− D

2

)
Γ(n)Γ(p)

In−1,p−1,n+p−D/2(q2,m2
1,m

2
2) , (3.2.48)∫

dDp

(2π)D
pµ

[(p− q) +m2
1]n(p2 +m2

2)p

=
qµ

(4π)D/2
Γ
(
n+ p− D

2

)
Γ(n)Γ(p)

In,p−1,n+p−D/2(q2,m2
1,m

2
2) , (3.2.49)∫

dDp

(2π)D
pµpν

[(p− q) +m2
1]n(p2 +m2

2)p
=

1
(4π)D/2

1
Γ(n)Γ(p)

×
{
gµν
2

Γ
(
n+ p− D

2
− 1
)

In−1,p−1,n+p−D/2−1(q2,m2
1,m

2
2)

+ qµqνΓ
(
n+ p− D

2

)
In+1,p−1,n+p−D/2(q2,m2

1,m
2
2)
}
. (3.2.50)

In order to get the expression belonging to three Lorentz indices we have to take the first
derivative of (3.2.50) with respect to qκ and obtain∫

dDp

(2π)D
pµpνpκ

[(p− q) +m2
1]n(p2 +m2

2)p
= qκ

∫
dDp

(2π)D
pµpν

[(p− q) +m2
1]n(p2 +m2

2)p

+
1

2(n− 1)
∂

∂qκ

∫
dDp

(2π)D
pµpν

[(p− q) +m2
1]n−1(p2 +m2

2)p
. (3.2.51)

Inserting (3.2.49) and making use of xΓ(x) = Γ(x + 1) leads to the final result for the
desired integral:∫

dDp

(2π)D
pµpνpκ

[(p− q) +m2
1]n(p2 +m2

2)p
=

1
(4π)D/2

1
Γ(n)Γ(p)

×
{
gµνqκ + gµκqν + gνκqµ

2
Γ
(
n+ p− D

2
− 1
)

In,p−1,n+p−D/2+1(q2,m2
1,m

2
2)

+ qµqνqκΓ
(
n+ p− D

2

)
In+2,p−1,n+p−D/2(q2,m2

1,m
2
2)
}
. (3.2.52)
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For concrete evaluations one can use algebraic software. Solving the required integrals
for both masses m1 and m2 being non-zero leads to cumbersome expressions. On the
other side, it is not possible to set one mass equal to zero from the beginning, because
the integrals contain structures like m−1

d and lnmd, while md lnmd terms vanish in the
limit md → 0. In order to extract the corresponding terms ∝ m−1

d one has to multiply
the integral with the lowest power n of md that gives a finite result for the mass going
to zero. What remains is the corresponding coefficient for the m−nd term. All the other
coefficients can be obtained by taking suitable derivatives of mn

dIijk with respect to md

and setting afterward md equal to zero. The terms ∝ lnmd can be obtained by taking the
first derivative of Iijk and extracting the term ∝ m−1

d from that expression in the same
way.

Sometimes, some additional manipulations have to be made in order to obtain mean-
ingful expressions. Using

arctan z =
1
2i

ln
1 + iz

1− iz (3.2.53)

one gets

arctan
(
i
q2 −m2

q2 +m2

)
=

1
2i

ln
m2

q2
, (3.2.54)

which is a source of mass logarithms. Another source of terms ∝ lnmd arises from a
slightly different expression, namely

arctan

(
i

q2 +m2
1 +m2

2√
−2q2m2

2 − q4 − 2q2m2
1 −m4

1 + 2m2
1m

2
2 −m4

2

)
m2=0→ arctan(−i) , (3.2.55)

which is not well defined. Expanding the fraction in m2 and keeping only the lowest power,
which is the dominant contribution for m2 → 0, leads to

arctan

(
i

q2 +m2
1 +m2

2√
−2q2m2

2 − q4 − 2q2m2
1 −m4

1 + 2m2
1m

2
2 −m4

2

)
m2≈0=

1
2i

ln
q2m2

2

(q2 +m2
1)2

.

(3.2.56)

This term arises in the medium contribution of ΠG2,3 and causes an infrared divergent
Wilson coefficient. It prohibits us from taking the limit md → 0 at this stage.

These formulas now enable us to calculate the gluon contribution of the completely
contracted term. Inserting the appropriate propagator terms and evaluating the trace over
color indices we get

ΠG2,1(q) = −
(
i
g

2

)2 δAB

2
〈: GAµνGBκλ :〉

∫
d4p

(2π)4
TrD

[
γ5S

(0)
c (p)γµS(0)(p)γνS(0)(p)

× γ5S
(0)(p− q)γκS(0)(p− q)γλS(0)(p− q)

]
, (3.2.57)
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ΠG2,2(q) = −i
(
i
g

2

)2 δAB

2
〈: GAµνGBκλ :〉

∫
d4p

(2π)4
TrD

[
γ5T

µνκλ
c (p)γ5S

(0)
d (p− q)

]
,

(3.2.58)

ΠG2,3(q) = −i
(
i
g

2

)2 δAB

2
〈: GAµνGBκλ :〉

∫
d4p

(2π)4
TrD

[
γ5S

(0)
c (p+ q)γ5T

µνκλ
d (p)

]
(3.2.59)

with Tµνκλ defined in (2.4.32). We now see the advantage of separating vacuum projections
from medium projections as we are now able to calculate the results for the vacuum case
and the additional medium contributions separately. For the vacuum case we obtain for
md ≈ 0 and for Euclidean momenta

ΠG2,1(q) =
1
8
〈:αs
π
G2:〉 1

q2
E +m2

c

, (3.2.60)

ΠG2,2(q) = − 1
24
〈:αs
π
G2:〉 1

q2
E +m2

c

, (3.2.61)

ΠG2,3(q) = 〈:αs
π
G2:〉

(
1
12
mc

md

1
q2
E +m2

c

− 1
24

1
q2
E +m2

c

− 1
24

m2
c

(q2
E +m2

c)2

)
. (3.2.62)

We recognize that the term ∝ m−1
d prohibits us from regarding one quark to be massless

in the vacuum case. For the additional medium contributions we obtain for md ≈ 0 and
for Euclidean momenta

ΠG2,1(q) = 〈:αs
π

(
(vG)2

v2
− G2

4

)
:〉
(
q2
E − 4

(vq)2
E

v2
E

)
×
(
−1

3
m2
c

q6
E

ln
(

m2
c

q2
E +m2

c

)
+

1
6q2
E

1
q2
E +m2

c

− 1
3q4
E

)
, (3.2.63)

ΠG2,2(q) = 〈:αs
π

(
(vG)2

v2
− G2

4

)
:〉
(
q2
E − 4

(vq)2
E

v2
E

)(
1

9q4
E

+
1

18q2
E

1
q2
E +m2

c

+
1

9q4
E

ln
(

m2
c

q2
E +m2

c

)
+
m2
c

9q6
E

ln
(

m2
c

q2
E +m2

c

))
, (3.2.64)

ΠG2,3(q) = 〈:αs
π

(
(vG)2

v2
− G2

4

)
:〉
(
q2
E − 4

(vq)2
E

v2
E

)(
2

9q4
E

− 1
18q2

E

1
q2
E +m2

c

− 1
6q2
E

m2
c

(q2
E +m2

c)2
−
(

1
9q4
E

− 2m2
c

9q6
E

)
ln
(

m2
c

q2
E +m2

c

)
− 1

9q2
E

(
m2
c

(q2
E +m2

c)2
− 1
q2
E +m2

c

)
ln
(
m2
d

m2
c

)
− 2

9q2
E

(
m2
c

(q2
E +m2

c)2
− 1
q2
E +m2

c

)
ln
(

m2
c

q2
E +m2

c

))
. (3.2.65)

Here, we observe the occurrence of a term ∝ lnmd, which again prohibits us from taking
the limit md → 0. The divergent terms cancel, however, after the introduction of physical
condensates. This will be described in detail in section 3.2.4.
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Figure 3.2.4: Contributing diagrams to the Wilson coefficient of 〈G3〉.

Summation of all contributions and transformation to Minkowski momenta gives the
contribution of the completely contracted term to the gluonic operator:

ΠG2
(q) = 〈:αs

π
G2:〉

(
− 1

24
1

q2 −m2
c

− 1
12
mc

md

1
q2 −m2

c

− 1
24

m2
c

(q2 −m2
c)2

)
+ 〈:αs

π

(
(vG)2

v2
− G2

4

)
:〉
(
q2 − 4

(vq)2

v2

)(
− 1

6q2

1
q2 −m2

c

− 1
6q2

m2
c

(q2 −m2
c)2

− 1
9q2

(
m2
c

(q2 −m2
c)2

+
1

q2 −m2
c

)
ln
(
m2
d

m2
c

)
− 2

9q2

(
m2
c

(q2 −m2
c)2

+
1

q2 −m2
c

)
ln
(
− m2

c

q2 −m2
c

))
.

(3.2.66)

If it would not be necessary to introduce physical condensates instead of normal ordered
ones, ΠG2

(q) would already contain the complete Wilson coefficient for the gluon con-
densate. But as already mentioned above we have to absorb the divergences into the
condensates leading to a mixing of the condensates. Therefore, additional terms enter the
OPE and give further contributions to the Wilson coefficients of the gluonic condensates.

It is worth emphasizing that the completely contracted term also gives contributions to
other Wilson coefficients. Of course, inserting higher-order propagators, like S(3)

c together
with S

(0)
d or S(2)

c together with S
(1)
d (or the same with d ↔ c), and the gluon field in the

lowest order leads to the 〈G3〉 condensate (see fig. 3.2.4). It is of mass dimension 6 and
∝ g3 and will therefore not be considered here.
The completely contracted term also contributes to quark condensates. Insertion of S(1)

c

together with S(0)
d or vice versa and the next-to-leading order gluon field will give rise to a

di-quark condensate. These terms are depicted in fig. 3.2.5. This can be seen by applying
the equation of motion of the gluon field strength tensor. An insertion of S(1)

c together
with S

(1)
d and the next-to-leading order gluon field will result in a four-quark condensate,

which is exhibited in fig. 3.2.6. Finally, the insertion of S(1)
c and the next-to-leading order

gluon field together with S
(1)
d and the lowest order gluon field (or vice versa) will cause a

mixed quark-gluon condensate, see fig. 3.2.7.
These are just some examples of diagrams emerging from Π(0)(q) which give contri-

butions to the Wilson coefficients of other condensates apart from the gluon condensate
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Figure 3.2.7: Contributing diagrams to the Wilson coefficient of the mixed quark-gluon conden-
sate.
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<: G2 :> and must not be taken as a complete list. They are of higher order in αs or
mass dimension and are not considered throughout this work. Also, some of the above
mentioned contributions might vanish due to projection properties or vanishing traces. At
least they will give different results for vacuum and medium analysis.

3.2.3 Quark Condensates from Π
(2)

D+

Let us now turn to the computation of the Wilson coefficients belonging to operators which
emerge from the calculation of Π(2)

D+ . As the mass of the charm quark is supposed to be
large, at least much larger than the light quark masses, it does not couple to condensates.
This means that it is too heavy to be created from the vacuum. Therefore 〈: c̄ . . . c :〉 → 0.
Later we will see that the physical heavy charm quark condensate can be expressed by
other condensates due to the heavy-quark mass expansion in section 3.2.4. One can show
that this happens in the already mentioned framework of a consistent separation of scales
and the absorption of divergences into the physical condensates [Tk83]. Π(2)

D+ reduces to

Π(2)(q) =
∫
d4x eiqx〈: d̄(x)γ5S

c(x, 0)γ5d(0) :〉 (3.2.67)

which is exhibited by the middle diagram in fig. 3.2.1. So we have not missed anything by
leaving out the adequate diagram with a cut charm quark line as this diagram does not
contribute.

Applying the covariant expansion of the quark fields and carrying out the Fourier
transformation (2.4.19), one obtains (summation over color indices a, b is to be understood)

Π(2)(q) =
∞∑
k=0

(−i)k
k!
〈:
(
d̄i
←−
Dα1 . . .

←−
Dαk

)a
(γ5∂

α1 . . . ∂αkSc(q)γ5)ijab d
b
j :〉 . (3.2.68)

The quark fields and their covariant derivatives are to be calculated at the origin, i.e.
x = 0. From here we can go to higher quark field derivatives or to higher orders in the
perturbative propagator or to higher orders in the gluon field, which enters through the
perturbative quark propagator. The quark fields are of mass dimension 3/2. Each covariant
derivative and the gluon fields Ãµ enlarge the mass dimension by one unit. Thus working
in lowest order of the gluon fields the following terms have to be considered up to mass
dimension 5:

Π(2)(q) = 〈: d̄ai
(
γ5S

(0)
c (q)γ5

)ij
ab
dbj :〉 − i〈:

(
d̄
←−
Dµ

)a
i

(
γ5∂

µS(0)
c (q)γ5

)ij
ab
dbj :〉

− 1
2
〈:
(
d̄
←−
Dµ
←−
Dν

)a
i

(
γ5∂

µ∂νS(0)
c (q)γ5

)ij
ab
dbj :〉

+ 〈: d̄ai
(
γ5S

(1)
c (q)γ5

)ij
ab
dbj :〉 . (3.2.69)

If one investigates the vacuum OPE, the second term is not present. In this case the
individual terms can be given a diagrammatic interpretation as in fig. 3.2.8. The right
diagram corresponds to the insertion of the next-to-leading order perturbative heavy quark
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Figure 3.2.8: Diagrams for Π(2) calculated in vacuum.

propagator which is the last term in (3.2.69). The left and middle diagrams reflect the
covariant expansion of the quark fields.

Unfortunately, there is no such simple diagrammatic interpretation for all the occurring
terms when the in-medium case is considered, since new types of condensates appear. For
completeness and later purposes we give the result of projecting color and Dirac indices

Π(2)(q) = 〈: d̄d :〉 mc

q2 −m2
c

− 〈: d̄−→Dµd :〉i 2mcq
µ

(q2 −m2
c)2

− 〈: d̄γλd :〉 qλ

q2 −m2
c

+ i〈: d̄γλ
−→
Dµd :〉

(
2

qµqλ

(q2 −m2
c)2
− gµλ

q2 −m2
c

)
+ 〈: d̄−→Dµ

−→
Dνd :〉

(
mcg

µν

(q2 −m2
c)2
− 4

mcq
µqν

(q2 −m2
c)3

)
+ 〈: d̄γλ

−→
Dµ
−→
Dνd :〉

(
4

qµqνqλ

(q2 −m2
c)3
− qµgνλ + qνgµλ + qλgµν

(q2 −m2
c)2

)
− 〈: d̄gσαβGµνd :〉mc

4
gαµgβν − gανgβµ

(q2 −m2
c)2
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(3.2.70)

The results for the complete projections of the condensates onto invariant structures
read:4

〈: d̄ai
(
γ5S

(0)
c (q)γ5

)ij
ab
dbj :〉 = 〈: d̄d :〉 mc

q2 −m2
c

− 〈: d̄v̂d :〉(vq)
v2

1
q2 −m2

c

, (3.2.71)

− i〈:
(
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Dµ

)a
i

(
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c (q)γ5
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2
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2
(
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(vq)2
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)
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c)2

, (3.2.72)

4To apply the projection formulas given in section 3.2.1 we have to make use of the translation invariance

of the condensates [Ji93], e.g. 〈q̄ΓDµq〉 = −〈q̄Γ
←−
Dµq〉 and 〈q̄ΓDµDνq〉 = −〈q̄Γ

←−
DµDνq〉 = 〈q̄Γ

←−
Dµ
←−
Dνq〉.
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− 1
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〈: d̄ai
(
γ5S

(1)
c (q)γ5

)ij
ab
dbj :〉

= −〈: d̄gσG d :〉1
2

mc

(q2 −m2
c)

2 − 〈: d̄v̂gσG d :〉1
2

mc

(q2 −m2
c)

2 . (3.2.74)

Summing up all contributions one eventually obtains

Π(2)
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+ 〈: d̄v̂gσG d :〉(vq)
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(3.2.75)

These results account for masses md,c being non-zero and for any arbitrary frame. Addi-
tional structures emerging from Π(2)(q) are exhibited in fig. 3.2.9 (four-quark condensates)
and fig. 3.2.10 (〈q̄G2q〉 condensate). The left diagram of fig. 3.2.9 results from an insertion
of the next-to-leading order heavy quark propagator and the next-to-leading order gluon
field. Application of the equation of motion for the gluon fields then yields the four-quark
condensate. The right diagram corresponds to the consideration of higher covariant quark
field derivatives. The diagrams of fig. 3.2.10 originate from the insertion of the next-
to-next-to-leading order heavy quark propagator (middle panel) or higher covariant field
derivatives together with the next-to-leading order heavy quark propagator (left panel) or
higher covariant field derivatives together with the lowest order heavy quark propagator
(right panel). They will lead to the 〈q̄G2q〉 condensate which is of mass dimension 7.

�mc

md
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γ5

g
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md

γ5
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Figure 3.2.9: Diagrams for Π(2) which contribute to 〈q̄q∑n n̄n〉.
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Figure 3.2.10: Diagrams for Π(2) which contribute to 〈q̄G2q〉.

3.2.4 Physical Condensates and Heavy-Quark Mass Expansion

In order to perform a consistent separation of scales, which means that the coefficient
functions are only determined by the short distance behavior, while the non-perturbative
effects are encoded in the condensates, all the infrared divergences have to be absorbed
into the condensates. In [Ch82, Tk83] it has been shown that the dependence of the
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coefficient functions on the masses is polynomial only when they are calculated in the
MS scheme.5 In contrast, using normal ordered operators is not a minimal subtraction
scheme. By introducing normal ordered condensates the mass-logarithms do not simply
disappear, but have been absorbed into the coefficient functions [Tk83]. Thereby, the
needed separation of scales has been avoided. Moreover, these arguments can be taken as
a formalization of the heuristic arguments of [Sh78] to introduce non-vanishing vacuum
averages and the need for a proper separation of short-distance and long-distance behavior.

The method we used to calculate Wilson coefficients naturally leads to the introduction
of normal ordered condensates. In order to express the normal ordered condensates by
physical condensates which emerge from operator products renormalized in the MS scheme
and shall contain all the non-perturbative physics,6 we note Wick’s theorem for an arbi-
trary equal-time operator product of two quark fields. In doing so we partly follow [Gr94]
to get

T [q̄(x) (O [Dµ] q) (y)] =: q̄(x)O [Dµ] q(y) : +〈0|T [q̄(x) (O [Dµ] q) (y)] |0〉
=: q̄(x)O [Dµ] q(y) : −O [Dµ] (y)abij 〈0|T

[
qbj(y)q̄ ai (x)

]
|0〉

=: q̄(x)O [Dµ] q(y) : −iTrC,D [O [Dµ] (y)S(y, x)] . (3.2.76)

Here, O [Dµ] (y) denotes an arbitrary function of gluon fields, covariant derivatives and
Dirac structures. If O [Dµ] (y) contains any Fock operators one gets additional terms of
the type q̄〈0|T [O [Aµ] q] |0〉 which vanish when the expectation value is evaluated using the
physical ground state |Ω〉 and the result stays the same. We emphasize the occurrence of
the perturbative propagator and not the exact propagator in the last line. Setting x = 0
and introducing the Fourier transformed expressions for the operator function and the
quark propagator one obtains

T [q̄(0) (O [Dµ] q) (y)] =: q̄(0)O [Dµ] q(y) :

− i
∫

d4p

(2π)4
e−ipyTrC,D

[
O
[
−ipµ − iÃµ

]
S(p)

]
. (3.2.77)

O
[
−ipµ − iÃµ

]
denotes the Fourier transformed operator function with Ãµ defined in

(2.4.23). The derivatives are now contained in the gluon fields. Therefore, the ordering
among the Lorenz indices is important as the field operators act on everything to the
right. A generalization of (3.2.77) to x 6= 0 would require translation invariance of the
perturbative propagator S(x, y), which is broken due to the Fock-Schwinger gauge (see
section 2.4). Setting y = 0 and calculating the expectation value using |Ω〉, results in

〈Ω|q̄O [Dµ] q|Ω〉 = 〈Ω| : q̄O [Dµ] q : |Ω〉

− i
∫

d4p

(2π)4
〈Ω|TrC,D

[
O
[
−ipµ − iÃµ

]
S(p)

]
|Ω〉 . (3.2.78)

5One can also work in MS scheme. However, because dimensional regularization in D = 4−ε dimensions
and absorption of the divergence for ε→ 0 is crucial for a proper separation of the long and short distance
behavior, some minimal subtraction scheme has to be used. Thus, we prefer to employ the MS scheme.

6Many authors prefer to talk about non-normal ordered condensates, but due to the arguments given
above we think the term physical condensate is better justified
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We define (3.2.78) as the connection between physical condensates and normal ordered
condensates. Renormalizing the physical condensates by absorbing the divergent terms of
Π(0) on the r.h.s. of (3.2.78) cancels out the infrared divergences and yields infrared stable
Wilson coefficients.

The integrals do not depend on p, therefore, the Lorentz structure can be projected
out before the integration is performed. Evaluation of the integrals can then be done in
Euclidean space in the framework of dimensional regularization and renormalization in
MS scheme. It is important to note that the result for the physical condensates is still
obtained in Minkowskian space. Up to order αs, one gets the following equations

〈q̄q〉 = 〈: q̄q :〉 − i
∫

d4p

(2π)4
〈Tr [S0(p) + S2(p)]〉 , (3.2.79)

〈q̄γµq〉 = 〈: q̄γµq :〉 , (3.2.80)
〈q̄iDµq〉 = 〈: q̄iDµq :〉 , (3.2.81)

〈q̄γµiDνq〉 = 〈: q̄γµiDνq :〉 − i
∫

d4p

(2π)4
〈Tr [γµpν {S0(p) + S2(p)}]〉 , (3.2.82)

〈q̄iDµiDνq〉 = 〈: q̄iDµiDνq :〉

− i
∫

d4p

(2π)4
〈Tr

[
pµpν {S0(p) + S2(p)}+ ÃµÃνS0(p)

]
〉 , (3.2.83)

〈q̄γλiDµiDνq〉 = 〈: q̄γλiDµiDνq :〉 , (3.2.84)

〈q̄gσG q〉 = 〈: q̄gσG q :〉 − i
∫

d4p

(2π)4
〈Tr [σµνGµνS1(p)]〉 , (3.2.85)

〈q̄gγλσG q〉 = 〈: q̄gγλσG q :〉 , (3.2.86)

where the expectation value is calculated with the physical ground state |Ω〉. As 〈:αsπ G2:〉
is already of order αs we set 〈: αsπ G2 :〉 → 〈αsπ G2〉. In all cases above, where normal-
ordered and the physical condensates are matching, i.e. in (3.2.80), (3.2.81), (3.2.84) and
(3.2.86), the integral vanishes in all orders of αs and the identity is exact, if one works
in lowest order of the field Ãµ = Ã

(0)
µ .7 To clarify this, one has to note that S(p) is

merely the product of S(0)(p) and (γÃ), where each (γÃ) brings in two additional Dirac
matrices (2.4.28). In order to get a non-vanishing integral, the integrand must be even in p,
requiring an even number of Dirac matrices. By this it is clear that

∫
d4p pµTrC,D [S(p)] = 0

and similar terms are zero. Each Ãµ brings in one additional Dirac matrix, and by this∫
d4pTrC,D

[
ÃµS(p)

]
vanishes. Hence, only if the number of Lorentz indices (i.e. the

sum of Dirac matrices and covariant derivatives in the condensates) is even, physical and
normal ordered condensates differ. Dimensional regularization and minimal subtraction

7This corresponds to taking the lowest-order term of the covariant Taylor expansion of the gluon field
Aµ(x) for small x, which is sufficient as we set y = 0 in (3.2.78). Therefore, only the lowest-order term in the
expansion (2.4.11) and its Fourier transformed expression (2.4.20) is of importance. Thus the lowest-order
term of (2.4.23) is sufficient in all orders of αs.
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yield

〈q̄q〉 = 〈: q̄q :〉+
3

4π2
m3
q

(
ln
µ2

m2
q

+ 1
)
− 1

12mq
〈αs
π
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〈q̄gσG q〉 = 〈: q̄gσG q :〉 − 1
2
mq ln
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m2
q

〈αs
π
G2〉 , (3.2.87b)
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)
〉 , (3.2.87c)

〈q̄iDµiDνq〉 = 〈: q̄iDµiDνq :〉+
3m5

q

16π2
gµν

(
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µ2

m2
q

+ 1
)

+
mq

16
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(
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q

− 1
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)
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)(
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)
〉 . (3.2.87d)

These are the required relations for the purpose of obtaining infrared stable Wilson co-
efficients. They reproduce the definitions made to render the vacuum OPE free from
mass singularities [Ja92] and also give the correct expressions for the in-medium OPE. It
is worth to check these equations for self-consistency. If we contract (3.2.87c) with the
metric tensor, (3.2.87a) is reproduced. Contracting (3.2.87d) with the metric tensor, the
result can be verified from (3.2.87a) and (3.2.87b) by using the equations of motion (A.28)
and the identity (A.32). Of course, this only gives us confidence for the vacuum parts of
these equations, as the in-medium parts are traceless and vanish if contracted with the
metric tensor.

We want to remark, that the condensates are mixing under this procedure. Not only
the condensates of equal mass dimension are mixing, but also condensates of different mass
dimensions.

If we now consider the heavy-mass limit in the renormalized version of (3.2.87a), where
the perturbative contribution is canceled by the corresponding infrared divergence, we
meet again the heavy-quark mass expansion [Sh78,Ge83]

〈q̄q〉 ≈ − 1
12mq

〈αs
π
G2〉+ . . . , (3.2.88)

〈q̄gσG q〉 ≈ −1
2
mq ln

µ2

m2
q

〈αs
π
G2〉+ . . . . (3.2.89)

The idea behind this expansion is, that the interaction of the heavy quark with the physical
ground state mainly happens via gluon interactions, because the quark itself is too heavy
to couple directly to a condensate.

Before calculating the infrared stable Wilson coefficients, we would like to remark that
the medium specific combinations of condensates appearing in (3.2.75) do not have any
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contribution to the vacuum condensates when the physical condensates are inserted since
〈αsπ G2〉 cancels in all in-medium combinations. Using (3.2.37) or directly inserting (3.2.87)
into (3.2.75) yields[

md

12
〈: d̄d :〉 − 1

3
〈: d̄v̂ (ivD)

v2
d :〉
]

=
[
md

12
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3
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− 1
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(
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m2
d

− 1
3

)
〈αs
π

(
(vG)2

v2
− G2

4

)
〉
]
. (3.2.90)

We emphasize the occurrence of the lnm2
d term which does not vanish in the limit md → 0.

This term cancels out by the gluonic in-medium contribution of the completely contracted
term mentioned before. The same happens for the second medium specific contribution.
Here, no logarithmic terms, which correspond to infrared divergent contributions, appear,
i.e. [

m2
d

12
〈: d̄d :〉+

1
3
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24
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]
. (3.2.91)

This is clear as the medium contributions emerge from traceless expressions, while the
vacuum contributions of the physical condensates and of the perturbative contribution,
which is also a pure vacuum contribution, are again proportional to products of the metric
tensor. Therefore, it is clear that they cancel from the medium specific terms.

At this point we explicitly note the difference of a neat separation of scales in vacuum
and in medium. This has already been indicated in (3.2.66) by the occurrence of the
additional light-quark mass logarithm in the Wilson coefficient of the medium specific
gluon condensate. Hence, for in-medium sum rules the procedure of passing over from
normal-ordered condensates to condensates renormalized in MS scheme differs from the
vacuum case.

3.2.5 Operator Mixing

Expressing the normal ordered condensates in (3.2.75) in terms of physical condensates
(3.2.87), the complete contribution of Π(2)(q) reads
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. (3.2.92)

The terms that enter the Wilson coefficient of the unity operator are not displayed, because
the infrared stable perturbative contribution has been given in (3.2.13). We are now in
the position to calculate the complete OPE for the D meson in vacuum and in medium
with infrared stable Wilson coefficients. The result is

ΠD+(q) = Πper(q) + ΠG2
(q) + Π(2)(q) (3.2.93)
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We emphasize the cancellation of the infrared divergent lnm2
d term in the Wilson coefficient

of the medium specific gluon condensate and m−1
d term in the Wilson coefficient of the

vacuum gluon condensate. In some sense this result is still incomplete. In ΠG2
(q) we

omitted all terms proportional to md, while we kept these terms in Π(2)(q). Because the
gluon condensate enters the latter through the introduction of physical condensates in
terms of m−1

d , one would get wrong results omitting terms proportional to md. But we
see that all divergent terms cancel and that we can now safely take the limit md → 0:
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Transformation into the rest frame of the medium, v =
(

1,~0
)

, and considering the D

meson at vanishing spatial momentum, q =
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)
, we get
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As it is easier to apply the Borel transformation to terms which have a uniform q2
0 structure,

we performed elementary manipulations in the equation above in order to avoid terms like
q2

0/(q
2
0 −m2), although the expressions at this point could be simplified and shortened.
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The even and the odd part of the operator product expansion read
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and
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From these expressions we can immediately read off the corresponding results for the vac-
uum operator product expansion. For the vacuum case, only the first two lines in (3.2.97)
are existent. All the other terms are medium specific condensates or medium specific com-
binations of condensates. The odd part only contains medium specific condensates and,
thus, vanishes at zero density. It does not exist for the vacuum operator product expansion
and in (2.2.35), as the vacuum current-current correlator is symmetric under reflections,
which is mirrored by the fact that it only depends on q2. Hence, (2.2.32) vanishes in
vacuum.

3.3 Borel transformed Sum Rules for the D Meson

3.3.1 OPE Terms

Before calculating the Borel transformed sum rules, we analytically continue the energy
to complex values q0 = iω getting

Πe
D+(ω2)

= c0(ω2)− 〈d̄d〉 mc

ω2 +m2
c

+ 〈d̄gσG d〉1
2

(
m3
c

(ω2 +m2
c)3
− mc

(ω2 +m2
c)2

)



64 3.3 Borel transformed Sum Rules for the D Meson

+ 〈αs
π
G2〉 1

12
1

ω2 +m2
c

+ 〈αs
π

(
(vG)2

v2
− G2

4

)
〉
(

7
18

+
1
3

ln
µ2

m2
c

+
2
3

ln
(

m2
c

ω2 +m2
c

))
×
(

m2
c

(ω2 +m2
c)2
− 1
ω2 +m2

c

)
+ 〈d†iD0d〉2

(
m2
c

(ω2 +m2
c)2
− 1
ω2 +m2

c

)
+
[
〈d̄D2

0d〉 −
1
8
〈d̄gσG d〉

]
4
(

m3
c

(ω2 +m2
c)3
− mc

(ω2 +m2
c)2

)
(3.3.1)

and
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The Borel transformed dispersion relation can now simply be read of from (3.2.97) and
(3.2.98) by applying the results obtained in section 2.6.
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for the even part and for the odd part
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3.3.2 Comparison with Literature

In tabs. 3.3.1, 3.3.2 and 3.3.3 we compare our results with the various sum rules in the
literature. In all these tables we list the Borel transformed Wilson coefficient cÔ/e

−m2
c/M

2
.

For the vacuum OPE we see that, apart from the Wilson coefficient for 〈αsπ G2〉 in [Ha04]
and the sign of the same coefficient in [Al83], everything seems to be correct. The coefficient
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Table 3.3.1: Comparison of Borel transformed vacuum sum rules for D mesons. From (3.3.3)
only the vacuum part has been listed.

for the chiral condensate 〈d̄d〉 given in [Al83] contains the factor (αs(µ2)/αs(m2))4/9 which
emerges from the renormalization group analysis of the operator product d̄d under a change
of the normalization point. As the quark mass also depends on the normalization point,
this factor can be absorbed into the mass [Sh78]. Hence, we omitted this term.

For the in-medium OPE, which we compare in tabs. 3.3.2 and 3.3.3, we see that the
agreement with [Ha00] is rather poor. In contrast, apart from the Wilson coefficient of
〈αsπ
(

(vG)2

v2 − G2

4

)
〉 where we obtain some additional terms, the consistency with [Zs06]

becomes apparent. Unfortunately, it is not possible to compare directly our in-medium
OPE to that of [Mo01], as it is somehow hidden in their work. Nevertheless, for the
unprojected OPE, which one obtains before introducing physical condensates, the lowest
order term in an expansion in the quark massmd is given. Although, this is less meaningful,
because many calculations still have to be done from this point on, we compare our results
of the same status of evaluations with their results. Using (A.28) as well as (A.30) we
obtain from (3.2.70) up to lowest order in md
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where the last term emerges from the Wilson coefficient of the condensates 〈: d̄γλ ~Dµ
~Dνd :〉
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Table 3.3.2: Comparison of Borel transformed in-medium sum rules for D mesons (even part)
up to mass dimension 4.

(3.3.4) [Ha00] [Zs06]

〈d+d〉 1 (∗) 1

Table 3.3.3: Comparison of Borel transformed in-medium sum rules for D mesons (odd part)
up to mass dimension 4. We cited [Ha00] as (∗), because it is not clear whether the odd part is
considered or not.

and 〈: d̄gγ5γαGµνd :〉8. The result given in [Mo01] reads
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where the authors omitted the vacuum terms 〈: d̄d :〉 and 〈: d̄gσαβGµνd :〉, and only
listed the additional in-medium contributions. We see there is a mismatch in the Wilson
coefficient of the last term. The origin of this mismatch is unclear.

8The derivation of (3.2.29) only uses the property of vµ being a four-vector. Hence, one could also use
the external momentum qµ for projection.
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3.3.3 Perturbative Term

In order to write down the sum rules we make the assumption, that the large momentum
contribution of ∆ΠOPE(q) is mostly determined by the perturbative part of Π(q). Hence,
we assume

1
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where we have used (2.2.38) in the second last line and substituted s2 → s in the last line.
Similarly, we obtain for the odd part
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Note that the integral over the perturbative contribution of the current-current correlation
function given in (3.3.8) cancels from the spectral integral for the odd dispersion relation
(2.6.29) if equal threshold parameters are assumed.

3.3.4 Pole + Continuum Ansatz

Furthermore, we employ the so called ”pole + continuum” ansatz, see fig. 3.3.1. It consists
of the assumption that only the lowest lying excitations contribute to the low-momentum
properties of ∆Π(q). Higher excitations are described by the perturbative continuum.
The last argument already led us to the results obtained in section 2.5 and to the relations
(3.3.7) and (3.3.8). In the following we are working in the rest frame of the medium with
the D meson being at rest, ~pΩ = ~q = 0. This means ∆Πph(q) can be approximated from
(2.2.12) by

∆Πph(s) = πF+δ(s− (M+ −MΩ))− πF−δ(s+ (M− −MΩ)) , (3.3.9)

where we have introduced F± = (2π)3
∣∣∣〈Ω|j(†)(0)|α〉

∣∣∣2 and the subscript ”minus” refers to

the matrix element of the adjoint current, pα = (Mα,~0 ) and pΩ = (MΩ,~0 ). Hence, only
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s−0 s+
0(MΩ −M−) (M+ −MΩ)0

Figure 3.3.1: Schematic plot of ∆Πph(s,~0 ) as a function of s in the ”pole + continuum” approx-
imation.

the lowest lying excitation contributes as pole in our spectral function ∆Πph(s), while all
higher excitations are modeled by the continuum. Assuming equal threshold parameters,
s+

0 = −s−0 =
√
s0, (3.3.7) together with (2.6.28) eventually leads us to the following

relation for the even part
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and for the odd part
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. (3.3.11)

Because we have chosen equal thresholds, there is no continuum contribution in (3.3.11)
and, hence, no perturbative contribution to the odd sum rules. (The odd part of the
operator product expansion can not have any perturbative contributions.)

For the vacuum sum rules we choose similar to (3.3.9) an ansatz for the phenomeno-
logical part of the current-current correlation function

∆Πvac
ph (s) = πF+δ(s

1/2 − (M+ −MΩ))− πF−δ(s1/2 + (M− −MΩ)) . (3.3.12)

Because the integral of the vacuum dispersion relation (2.2.25) only runs over positive
values of the squared energy, the term proportional to δ(s1/2 + (M− − MΩ)) does not
contribute.9 Hence, there is no antiparticle contribution to the vacuum sum rules. Using

9Remember that M− −MΩ > 0 because MΩ is the lowest lying energy eigenstate.
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the scaling property of Diracs δ distribution

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, (3.3.13)

where the xi are the roots of g(x) and the sum is running over all roots, one can write

∆Πvac
ph (s) = 2πF+(M+ −MΩ)δ(s− (M+ −MΩ)2) . (3.3.14)

Thus, if we define M̃ = M+ to be the vacuum D meson mass and introduce

F̃ = 2F+(M̃ −MΩ) , (3.3.15)

the following phenomenological ansatz for ∆Πvac
ph (s) is justified

∆Πvac
ph (s) = πF̃ δ(s− (M̃ −MΩ)2) . (3.3.16)

It is not necessary to assume the equality of the threshold parameters s+
0 and s−0 , because

the correlator only depends on q2 and, hence, s+
0 = s−0 is naturally fulfilled. Therefore, we

get the following relation for the vacuum case

B
[
ΠOPE(Q2)

] (
M2
)

= F̃ e−(M̃−MΩ)2/M2
+

1
π

∫ ∞
s0

e−s/M
2
ImΠper(s)ds . (3.3.17)

3.3.5 Complete Sum Rules

We conclude this section by giving the complete sum rules for the vacuum and the in-
medium case up to mass dimension 5 and next-to-leading order in αs. Therefore, we
introduce m± = M± −MΩ and m̃ = M̃ −MΩ as the D meson mass.10 For the vacuum
case one obtains

F̃ e−m̃
2/M2

+
1
π

∫ ∞
s0

e−s/M
2
ImΠper(s)ds =

1
π

∫ ∞
m2
c

dse−s/M
2
ImΠper(s)

+ e−m
2
c/M

2

(
−mc〈d̄d〉+

1
2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉+

1
12
〈αs
π
G2〉

)
. (3.3.18)

Hence, the vacuum sum rules up to mass dimension 5 read

F̃ e−m̃
2/M2

=
1
π

∫ s0

m2
c

dse−s/M
2
ImΠper(s)

+ e−m
2
c/M

2

(
−mc〈d̄d〉+

1
2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉+

1
12
〈αs
π
G2〉

)
. (3.3.19)

10Actually, we have MΩ = 0 for the vacuum sum rules, because the vacuum ground state has zero energy
(see section 2.1).
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Likewise, we get for the even part of the in-medium sum rules up to mass dimension 5

m+F+e
−m2

+/M
2

+m−F−e−m
2
−/M

2
=

1
π

∫ s0

m2
c

dse−s/M
2
ImΠper(s)

+ e−m
2
c/M

2

(
−mc〈d̄d〉+

1
2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉+

1
12
〈αs
π
G2〉

+
[(

7
18

+
1
3

ln
µ2m2

c

M4
− 2γE

3

)(
m2
c

M2
− 1
)
− 2

3
m2
c

M2

]
〈αs
π

(
(vG)2

v2
− G2

4

)
〉

+2
(
m2
c

M2
− 1
)
〈d†iD0d〉+ 4

(
m3
c

2M4
− mc

M2

)[
〈d̄D2

0d〉 −
1
8
〈d̄gσG d〉

])
, (3.3.20)

and for the odd part

F+e
−m2

+/M
2 − F−e−m

2
−/M

2

= +e−m
2
c/M

2

(
〈d†d〉 − 4

(
m2
c

2M4
− 1
M2

)
〈d†D2

0d〉 −
1
M2
〈d†gσG d〉

)
. (3.3.21)

In all the above equations ImΠper(s) is defined in (3.2.13). These are the desired relations
to relate the D meson mass to the QCD condensates. For simplicity, we rewrite (3.3.20)
and (3.3.21) as

m+F+e
−m2

+/M
2

+m−F−e−m
2
−/M

2 ≡ f(M, s0,mc, µ) , (3.3.22a)

F+e
−m2

+/M
2 − F−e−m

2
−/M

2 ≡ g(M,mc) , (3.3.22b)

where we did not explicitly label the dependence of the functions f and g on the conden-
sates.

In order to obtain equations for the D meson mass m̃ for the vacuum sum rule, we
take a derivative of (3.3.19) with respect to 1/M2 and divide by (3.3.19) giving

−m̃2 =

[
− 1
π

∫ s0

m2
c

dsse−s/M
2
ImΠper(s) + e−m

2
c/M

2 1
2

(
m3
c

M2
−mc

)
〈d̄gσG d〉

−m2
ce
−m2

c/M
2

(
−mc〈d̄d〉+

1
2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉+

1
12
〈αs
π
G2〉

)]
×
[

1
π

∫ s0

m2
c

dse−s/M
2
ImΠper(s) + e−m

2
c/M

2

(
−mc〈d̄d〉+

1
12
〈αs
π
G2〉

+
1
2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉

)]−1

. (3.3.23)

In doing so, we have assumed that the resonance mass m̃, considered as physical quantity,
does not depend on the Borel mass M2.

In order to give expressions for the D meson mass m± for the in-medium sum rules,
we derive from (3.3.22)

(m+ +m−)F+e
−m2

+/M
2

= f(M, s0,mc, µ) +m−g(M,mc) , (3.3.24a)

(m+ +m−)F−e−m
2
−/M

2
= f(M, s0,mc, µ)−m+g(M,mc) . (3.3.24b)
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Taking a derivative of (3.3.24) with respect to 1/M2, again assuming that the D meson
masses m± do not depend on the Borel mass M2, and dividing each resulting equation by
the corresponding equation of (3.3.24) yields the following system of coupled, non-linear
equations for the masses m± in medium

−m2
+ =

d
d(1/M2)

f(M, s0,mc, µ) +m− d
d(1/M2)

g(M,mc)

f(M, s0,mc, µ) +m−g(M,mc)
, (3.3.25a)

−m2
− =

d
d(1/M2)

f(M, s0,mc, µ)−m+
d

d(1/M2)
g(M,mc)

f(M, s0,mc, µ)−m+g(M,mc)
. (3.3.25b)

The Borel mass M2 and the threshold parameter s0 enter the coefficient functions f and
g for the in-medium sum rules as well as the vacuum sum rule (3.3.23). They have to be
fixed numerically according to appropriate physical requirements.

In the limit of vanishing density, we deduce the vacuum sum rules from (3.3.25). In
this case one has g = 0 and f reduces to the r.h.s. of (3.3.19). Therefore, (3.3.25) reduces
to (3.3.23). From (3.3.21) we derive F+e

−m2
+/M

2
= F−e−m

2
−/M

2
. Taking one derivative

with respect to 1/M2 of this expression, we observe that m2
− = m2

+ and , hence, F− = F+.
Inserting these results into the zero density limit of (3.3.20), where the r.h.s. simply reduces
to the vacuum OPE, we rediscover the vacuum sum rule (3.3.19).

Rewriting these equations as polynomials in the masses m+ and m−

0 = −m2
+f(M, s0,mc, µ)−m2

+m−g(M,mc)

− d

d (1/M2)
f(M, s0,mc, µ)−m−

d

d (1/M2)
g(M,mc) , (3.3.26a)

0 = −m2
−f(M, s0,mc, µ) +m2

−m+g(M,mc)

− d

d (1/M2)
f(M, s0,mc, µ) +m+

d

d (1/M2)
g(M,mc) , (3.3.26b)

we can derive equations that are more handsome for calculations than the non-linear
system of equations in (3.3.25). The latter ones would require numerical procedures.
Subtracting (3.3.26b) from (3.3.26a) on the one hand side and summing the products of
(3.3.26a) with m− and (3.3.26b) with m+ on the other side, we derive the following system
of linear equations for ∆m and m+m−

0 = −2∆mf(M, s0,mc, µ)−m+m−g(M,mc)−
d

d (1/M2)
g(M,mc) , (3.3.27a)

0 = −m+m−f(M, s0,mc, µ) + 2∆m
d

d (1/M2)
g(M,mc)

− d

d (1/M2)
f(M, s0,mc, µ) . (3.3.27b)

Here we have introduced the following quantities

∆m =
1
2

(m+ −m−) , m =
1
2

(m+ +m−) . (3.3.28)
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Therefore, we have

m± = m±∆m , m2 = ∆m2 +m+m− (3.3.29)

and the solution of (3.3.27) reads

∆m =
1
2

g(M,mc) d
d(1/M2)

f(M, s0,mc, µ)− f(M, s0,mc, µ) d
d(1/M2)

g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)
,

(3.3.30)

m+m− = −
f(M, s0,mc, µ) d

d(1/M2)
f(M, s0,mc, µ) +

(
d

d(1/M2)
g(M,mc)

)2

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)
. (3.3.31)

Hence, the meson masses are given by

m =[
1
4

(
g(M,mc) d

d(1/M2)
f(M, s0,mc, µ)− f(M, s0,mc, µ) d

d(1/M2)
g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

)2

−
f(M, s0,mc, µ) d

d(1/M2)
f(M, s0,mc, µ) +

(
d

d(1/M2)
g(M,mc)

)2

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

] 1
2

, (3.3.32a)

m+ =[
1
4

(
g(M,mc) d

d(1/M2)
f(M, s0,mc, µ)− f(M, s0,mc, µ) d

d(1/M2)
g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

)2

−
f(M, s0,mc, µ) d

d(1/M2)
f(M, s0,mc, µ) +

(
d

d(1/M2)
g(M,mc)

)2

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

] 1
2

+
1
2

g(M,mc) d
d(1/M2)

f(M, s0,mc, µ)− f(M, s0,mc, µ) d
d(1/M2)

g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)
, (3.3.32b)

m− =[
1
4

(
g(M,mc) d

d(1/M2)
f(M, s0,mc, µ)− f(M, s0,mc, µ) d

d(1/M2)
g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

)2

−
f(M, s0,mc, µ) d

d(1/M2)
f(M, s0,mc, µ) +

(
d

d(1/M2)
g(M,mc)

)2

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)

] 1
2

− 1
2

g(M,mc) d
d(1/M2)

f(M, s0,mc, µ)− f(M, s0,mc, µ) d
d(1/M2)

g(M,mc)

f2(M, s0,mc, µ) + g(M,mc) d
d(1/M2)

g(M,mc)
, (3.3.32c)

where the functions f(M, s0,mc, µ) and g(M,mc) are defined in (3.3.20), (3.3.21) and
(3.3.22).
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3.4 Numerical Evaluations

We now turn to the numerical analysis of the sum rules, i.e. equations (3.3.32) and (3.3.31).
We will only use the in-medium equations, because, as shown in section 3.3.5, the vacuum
case is naturally reproduced by the zero density limit of the in-medium sum rules.

3.4.1 Parameters

We will work in linear density approximation in order to estimate in-medium values for
the condensates, i.e.

〈Ô〉 = 〈Ô〉vac + n〈Ô〉med , (3.4.1)

where we denoted the medium density by n. The following parameterizations are used
[Ji93]

〈d̄d〉 = 〈d̄d〉vac +
σN
2mq

n , (3.4.2a)

〈αs
π
G2〉 = 〈αs

π
G2〉vac −

8M0
N

9
n , (3.4.2b)

〈d̄gσG d〉 = λ2〈d̄d〉 , (3.4.2c)

〈d†d〉 =
3
2
n , (3.4.2d)

〈αs
π

(
(vG)2

v2
− G2

4

)
〉 = −3

4
MNαs(µ2)Ag2(µ2)n , (3.4.2e)

〈d†iD0d〉 =
3
8
MNA

q
2(µ2)n , (3.4.2f)[

〈d̄D2
0d〉 −

1
8
〈d̄gσG d〉

]
=
λ2σN
2mq

n , (3.4.2g)

〈d†gσG d〉 = (−0.33GeV2)n , (3.4.2h)

〈d†D2
0d〉 = −1

4
M2
NA

q
3(µ2)n+

1
12
〈d†gσG d〉 . (3.4.2i)

We further use the nucleon sigma term σN = 0.045 GeV, the average light quark mass
mq = 0.007 GeV, the nucleon mass MN = 0.939 GeV, M0

N = 0.77 GeV, λ2 = 0.8 GeV2,
αs(1 GeV2) = 0.5, Ag2(1 GeV2) = 0.5, Aq2(1 GeV2) = 0.5 and Aq3(1 GeV2) = 0.14. Also,
we use the standard value for the chiral vacuum condensate 〈d̄d〉vac = (−0.245 GeV)3, the
gluon condensate 〈αsπ G2〉vac = (0.33 GeV)4 and a charm quark mass of mc = 1.45 GeV.
We work at a renormalization point µ = 1 GeV and the medium density at nuclear matter
saturation density is taken to be n = 0.17 fm−3.

3.4.2 Area of Validity of the Sum Rules

The validity of (3.3.20) and (3.3.21) in the Borel plane is limited. Partly following [Le97,
Ha04], we derive conditions which quantity the area of validity of the sum rules. On the one
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hand side, we have to ensure that the ”pole + continuum”ansatz sufficiently reproduces the
features of the hadronic spectrum. This means, the approximation of higher excitations
by a continuum, calculated from the perturbative contribution, to the current-current
correlator, should not have too much influence to the result. Therefore, the weighting
function in the spectral integral plays in our hand because it allows for an exponential
suppression of higher excitations and errors caused by the continuum approximation. The
maximum Borel mass is determined so that the continuum contribution to the spectral
integral is smaller than the pole contribution to the spectral integral. This gives us the
following condition for the maximum Borel mass Mmax

1 ≥
1
π

∫∞
s0
dsImΠper(s)e−s/M

2
max

m+F+e
−m2

+/M
2
max +m−F−e−m

2
−/M

2
max

. (3.4.3)

Using (3.3.20) this can be written as

1 ≥
1
π

∫∞
s0
dsImΠper(s)e−s/M

2
max

f(Mmax, s0,mc, µ)
. (3.4.4)

On the other side, we know from section 2.3 that the operator product expansion of
the non-local operator product A(x)B(y) approximates the divergent operator product
for y → x best, if the series is truncated at a certain N . The value of N depends on the
distance x−y. As we have calculated the OPE up to a certain mass dimension, i.e. N = 5,
we now seek the appropriate distance at which the OPE is a good approximation to the
operator product. This translates into a restriction to the validity of (3.3.20) and (3.3.21)
within the Borel plane. We demand, that the terms with the highest mass dimension,
i.e. mass dimension 5, do not contribute more than 10% to the OPE. This gives us the
following two inequalities for the lower bound Mmin of the Borel window

0.1 ≥
e−m

2
c/M

2
min

(
m3
c

4M4
min
〈d̄gσG d〉+ 2 m3

c

M4
min

[
〈d̄D2

0d〉 − 1
8〈d̄gσG d〉

])
1
π

∫∞
s0
dsImΠper(s)e−s/M

2
min + f(Mmin, s0,mc, µ)

, (3.4.5a)

0.1 ≥
e−m

2
c/M

2
min2 m2

c

M4
min
〈d+D2

0d〉
g(Mmin,mc)

. (3.4.5b)

The integral term in the denominator of the first equation has been added in order to
cancel the continuum contribution in f(M, s0,mc, µ), because it is not part of the OPE.
Hence, Mmin does not depend on the threshold s0.

3.4.3 Vacuum Borel Curves

We plot different curves for the D meson mass as a function of the Borel mass M and
vary the threshold (fig. 3.4.1), the charm quark mass (fig. 3.4.2) and the chiral vacuum
condensate (fig. 3.4.3) for the purpose of examining their importance and influence on
the Borel curves. In each diagram of this and the next section we also indicate the Borel
windows by vertical lines.
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Figure 3.4.1: Pole masses mD for different thresholds s0 at mc = 1.45 GeV and 〈q̄q〉vac =
(−0.245 GeV )3.
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Figure 3.4.2: Pole masses mD at different charm masses mc for s0 = 5.5 GeV 2 and 〈q̄q〉vac =
(−0.245 GeV )3.
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From the graphs in fig. 3.4.1 and 3.4.2 we see the mass parameter mD grows with grow-
ing thresholds and charm quark masses. The Borel maximum increases with increasing
threshold but decreases with increasing charm quark mass. While the Borel minimum does
not depend on the threshold, as expected from the equations in section 3.4.2, it increases
with increasing charm quark mass. Hence, the validity of (3.3.20) and (3.3.21) is rapidly
getting lost with growing charm quark mass. Furthermore, there are plateaus within the
Borel windows for smaller thresholds and the minima of the Borel curves are shifted out of
the Borel windows for growing thresholds. On the other side, we learn from fig. 3.4.2 that
the Borel curves are getting flatter within the Borel window when going to higher charm
quark masses. We also expect that the minima of the Borel curves can not be shifted into
the Borel windows by varying the charm quark mass.

From fig. 3.4.3 we learn that the mass parameter mD grows with decreasing absolute
value of the chiral vacuum condensate. Furthermore, a change of the chiral vacuum con-
densate has only little influence on the width of the Borel window, but results in a shift
to higher values for higher absolute values of the vacuum condensate. The minima of
the Borel curves are slightly shifted to higher Borel masses and lower pole masses. If we
compare with the shift of the Borel window, we see that, varying the chiral condensate,
can not shift the minima to Borel masses within the Borel window.

In fig. 3.4.4 we display the D meson mass for different Wilson coefficients switched off
in order to determine the importance of the corresponding condensates for the sum rules.

We observe that switching off the chiral condensate has almost no influence to the
vacuum pole mass as a function of the Borel mass, but significantly changes the Borel
window. The Borel minimum is higher and the Borel maximum much smaller. The
branch of reliability is, hence, strongly determined by the chiral condensate while the
function itself remains numerically unchanged.11

Switching off the gluon condensate, has almost no influence on the Borel window.
Within the Borel window mD changes less and the curve lies slightly below the curve for
the complete sum rule. For Borel masses larger than the above defined Borel maximum
the curves are almost equal, and the curve for switched off gluon condensate lies slightly
above the curve for the complete sum rule. On the other hand, for Borel masses below
the Borel minimum, the curve for switched off gluon condensate has a complete different
behavior. It is strictly monotonic increasing, while the curve for the complete sum rule
has a minimum at these Borel masses.

Finally, switching off the mixed quark-gluon condensate slightly reduces the Borel
window, by increasing the Borel minimum and decreasing the Borel maximum. The curve
generally lies far above the curve for the complete sum rule, but, in principle, has the
same behavior. Within the Borel window, the curve for switched off mixed quark-gluon
condensate is almost flat compared to the curve for the complete sum rule. The latter one
increases nearly linearly over the whole Borel window, while the first one even decreases
at the lower bound of the Borel window.

11This is not in contrast to the conclusions we draw from fig. 3.4.3. The chiral condensate enters via its
Wilson coefficient and via the parametrization of the mixed quark-gluon condensate (3.4.2c). Varying the
chiral condensate, also changes the mixed quark-gluon condensate. If the Wilson coefficient is switched
off, the influence of the chiral condensate can be tested independent of the parametrization.
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Figure 3.4.3: Pole masses mD for different chiral vacuum condensates 〈q̄q〉vac at s0 = 5.5 GeV 2

and mc = 1.45 GeV.
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Figure 3.4.4: Pole masses mD for different Wilson coefficients switched off at s0 = 5.5 GeV 2,
mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3.
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For the formation of a minimum of the Borel curve the gluon condensate seems to be
most important, while the mixed quark-gluon condensate is of minor importance, and the
influence of the chiral condensate to the formation of a minimum is negligible.

We conclude that the chiral vacuum condensate has the biggest influence on the validity
of the vacuum sum rule which expresses its role as the next-to-leading order term in the
OPE, but is of minor importance for the Borel curve itself, i.e. the mass parameter mD as
a function of the Borel mass. In contrast, the gluon condensate and the mixed quark-gluon
condensate have only little influence on the validity of the sum rule. The gluon condensate
is of severe importance for the shape of the Borel curve for small Borel masses, but the
mixed quark-gluon condensate has an essential influence on the vertical position of the
Borel curve and its shape and numerical values within the Borel window. Hence, it is the
most important term for the determination of the vacuum D meson mass, apart from the
perturbative one.

From fig. 3.4.1 and 3.4.2 we infer that the D meson mass strongly depends on the choice
of the parameters s0 and mc. The dependence on the latter one is not a surprise, but the
dependence on the threshold s0 reveals the dependence of the result, which is obtained
for the D meson mass, on the method or arguments which are employed to determine the
threshold. This has also been observed in [Mo01].

Let us compare our result to the vacuum sum rule given in [Ha04]. In fig. 3.4.5 we
plot a comparison between the results of [Ha04] and calculations we performed using the
sum rule in [Ha04] and their parameters. We observe only a small deviation. Because
the difference is rather small (increases with decreasing Borel mass) and seems to have
a systematic origin, we believe there is a tiny difference in some constant that enters
four-quark terms. Switching off the four-quark condensate gives a good agreement.

In fig. 3.4.6 we exhibit the Borel curves obtained from the sum rule given in [Ha04] using
the parameters (3.4.2) and (3.3.32) at s0 = 6.0 GeV2. We observe a not surprising devia-
tion, due to the different Wilson coefficients for the gluon condensate (see section 3.3.2).
But we see, this difference is of minor importance and does not cause large numerical
deviations.

3.4.4 In-Medium Borel Curves

The Borel curves for the average D meson mass m at finite density n = 0.17 fm−3 for
different thresholds, the charm quark mass being mc = 1.45 GeV and the chiral vacuum
condensate being 〈q̄q〉 = (−0.245 GeV )−3 are plotted in fig. 3.4.7. Their principle shape is
identical to the zero density limit, but we observe there is no plateau or minimum within
the Borel window for the plotted thresholds anymore. For s0 further decreasing the Borel
window closes, pointing to some deficit in the definition used.

In order to simplify the comparison between the Borel curves for different densities,
we plot the mass centroid parameter m for mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV )3

in fig. 3.4.9 at threshold s0 = 5.5 GeV2 and at s0 = 4.0 GeV2 in fig. 3.4.8. Note that m
actually is the centroid of the D iso-doublet.

For s = 5.5 GeV2 we see the Borel minimum is nearly unaffected by a density change,
but the Borel maximum slightly decreases with increasing density. Furthermore, we ob-
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Figure 3.4.5: Borel curve obtained from the vacuum sum rule given in [Ha04] (plain line), the
same sum rule but with switched-off four-quark condensate (dashed line) and the data which has
been taken from diagrams in there (squares) at s0 = 5.76 GeV 2.
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Figure 3.4.6: Borel curves obtained from the vacuum sum rule up to mass dimension 5 in [Ha04]
and determined from (3.3.32) at s0 = 6.0 GeV 2.
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Figure 3.4.7: Average in-medium D meson mass m for different thresholds at n = 0.17 fm−3,
mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3.

serve a shift to higher values within and beyond the Borel window, equality for all densities
at about M = 1 GeV and a lowering and left-shift of the minima with increasing density.
At the intersection point no medium modifications of the mass centroid m are existent,
signaling uncertainties for its determination. The minimum of the Borel curve is shifted
to lower Borel masses and pole masses.

For the threshold being s = 4.0 GeV2 we observe a similar situation, but with the point
of intersection lying within the Borel window. It has been shifted to higher values of the
Borel mass while the Borel minimum remains the same, as can be seen from fig. 3.4.7.
In contrast to the s0 = 5.5 GeV2 case, the minimum is indeed still shifted to lower Borel
masses, hence, crossing the Borel window and leaving it for higher densities. But despite
of this shift, it is numerically almost unaffected by a density change. For completeness we
also exhibit the corresponding diagram for s0 = 7.0 GeV2 in fig. 3.4.10. Qualitatively, the
situation is equal to that of fig. 3.4.9.

For even lower values of the threshold than s0 = 4.0 GeV2, we expect complementary
results. Namely, the interception point lying to the right of the Borel window and, hence,
the pole masses being continuously lower for higher densities within the Borel window.
But the minima will be shifted to higher pole masses for higher densities.

Different criteria are common to determine the mass centroid m. We will discuss
three of them. The first one is to look for the mass centroid m within the above defined
Borel window. This would mean, the shift of the mass centroid increases with increasing
threshold and is almost zero for the threshold being s0 = 4.0 GeV2. Going to lower
thresholds even gives a negative mass shift.
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Figure 3.4.8: Average in-medium D meson mass m for different densities at s0 = 4.0 GeV 2,
mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3.
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Figure 3.4.9: Average in-medium D meson mass m for different densities at s0 = 5.5 GeV 2,
mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3.
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Figure 3.4.10: Average in-medium D meson mass m for different densities at s0 = 7.0 GeV 2,
mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3.

The second criterion is to fix the mass centroid at the minimum of the Borel curve or
from a branch around it. In contrast to the first criterion this leads to a decreasing mass
centroid for increasing density at larger thresholds, e.g. s0 = 5.5 GeV2 or s0 = 7.0 GeV2.
For the threshold being s0 = 4.0 GeV2, no mass shift would be observed, although the
minimum is shifted to lower Borel masses with increasing density.

The third criterion uses a different Borel window. It is also possible to define the Borel
window to cover the plateau of a Borel curve, if there is one. In this case, the Borel window
would be shifted to lower Borel masses and becomes smaller with increasing thresholds, as
can be seen from fig. 3.4.9. Both, Borel minimum and Borel maximum, then depend on the
threshold and decrease with increasing threshold, whereas the Borel maximum decreases
much faster than the Borel minimum. This behavior is contrary to the behavior of the
Borel window defined in section 3.4.2 and the threshold is automatically limited to lower
values. From fig. 3.4.8 a lowering of the threshold for increasing density can be read off.
Therefore, a lowering of the mass centroid is predicted in the scope of this criterion, as
can be seen from fig. 3.4.7.

Hence, we are forced to conclude that a determination of the average in-medium mass
shift can not be performed independent of the method or the arguments we use to deter-
mine the threshold s0 and the stability region of the sum rule. This is clear, insofar as
we met the same problems already for the determination of the D meson vacuum mass in
section 3.4.3.

In figs. 3.4.11, 3.4.12 and 3.4.13 we display the mass splitting ∆m = (m+−m−)/2 as a
function of the Borel mass for different densities at s0 = 4.0 , 5.5 , 7.0 GeV2, mc = 1.45 GeV
and 〈q̄q〉vac = (−0.245 GeV )3.
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Figure 3.4.11: Mass splitting ∆m for different densities at s0 = 4.0 GeV 2, mc = 1.45 GeV and
〈q̄q〉vac = (−0.245 GeV ) 3.
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Figure 3.4.12: Mass splitting ∆m for different densities at s0 = 5.5 GeV 2, mc = 1.45 GeV and
〈q̄q〉vac = (−0.245 GeV ) 3.
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Figure 3.4.13: Mass splitting ∆m for different densities at s0 = 7.0 GeV 2, mc = 1.45 GeV and
〈q̄q〉vac = (−0.245 GeV ) 3.

From these diagrams we read off that the mass splitting is rather independent of the
threshold compared to the shift of the mass centroid. Regardless of which threshold we
choose, we observe a mass splitting of ∆m ≈ −10 MeV at n = 0.06 fm−3, ∆m ≈ −20 MeV
at n = 0.11 fm−3 and ∆m ≈ −30 MeV at n = 0.17 fm−3 within the Borel window defined
in section 3.4.2. For all thresholds we observe no minimum within the plotted values. This
is not expected to change for higher or lower thresholds.

If we determine the mass splitting according to the second criterion, i.e. we determine
the mass splitting at the minima of the Borel curves for the mass centroid parameter m, we
immediately read off much larger mass splittings for the considered thresholds. Because
the minima are located at Borel masses lower than the Borel minimum and, therefore, in
a region where the mass splitting is rather steep, small deviations in the Borel mass cause
large changes of the mass splitting, as can be seen in figs. 3.4.11, 3.4.12 and 3.4.13. A
determination of the mass splitting is not reliable within this criterion.

On the other side, the mass centroid parameter is not more preferable than the mass
splitting. Both are merely sums or differences of the mass parameters m+ and m−. There-
fore, it is just as well to fix the mass splitting at its minimum within the Borel plane and
determine the mass centroid from the corresponding Borel mass. These minima are located
at very large Borel masses, providing much lower mass splittings. The values vary from
10 MeV to 20 MeV at nuclear saturation density according to which threshold is taken.
Whereas the average pole mass strongly depends on the threshold, although the curves
are rather flat for large Borel masses.

Alternatively, the minima of the Borel curves for the mass parameters m+ and m−
could be considered (see figs. 3.4.14, 3.4.15, 3.4.16). The problem of deciding which param-
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Figure 3.4.14: Mass parameters m+ and m− for different densities at s0 = 4.0 GeV 2, mc =
1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3. The upper line of two equal line styles corresponds to the
m− mass, the lower one to the m+ mass.

eter, m or ∆m, is preferable to fix the minima, could be circumvented. Both quantities,
m+ and m−, are physically preferable to sums or differences of them. Different Borel
masses would then be derived for the minima. The mass splitting as well as the mass
centroid could be obtained directly from m+ and m−.

From these figures we also observe different interception points for the mass param-
eters. The Borel curve for m+ is changing its principal shape for increasing density. A
local maximum for m+ has been formed at a Borel mass of about M = 0.7 GeV. It is
shifted downwards for increasing density and the minimum of the Borel curve turns into
a saddle point. Together with the observations we made in section 3.4.3,12 this indicates
a suppression of the influence of the gluon condensate at higher densities.

In fig. 3.4.17, 3.4.18 and 3.4.19 (Line style coding as in fig. 3.4.14.) we displayed an
enlargement of the Borel windows from the above given figures. These diagrams affirm
the conclusion we already drew from the previous diagrams. The mass shift is nearly
unaffected by a variation of the threshold. In contrast to the shift of the mass centroid
parameter, which is almost zero in fig. 3.4.17, but reveals a shift to higher masses in fig.
3.4.18 and 3.4.19.

In fig. 3.4.20 we show the mass splitting ∆m = (m+ − m−)/2 for different Wilson
coefficients switched off at s0 = 5.5 GeV2, mc = 1.45 GeV and 〈q̄q〉vac = (−0.245 GeV )3

for the purpose of investigating its dependence on the various condensates. We observe that
switching off the Wilson coefficient of the chiral condensate not only significantly changes

12The gluon condensate is crucial for the formation of a minimum of the mass parameter in the vacuum
case.
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Figure 3.4.15: Mass parameters m+ and m− for different densities at s0 = 5.5 GeV 2, mc =
1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3. Line style coding as in fig. 3.4.14.
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Figure 3.4.16: Mass parameters m+ and m− for different densities at s0 = 7.0 GeV 2, mc =
1.45 GeV and 〈q̄q〉vac = (−0.245 GeV ) 3. Line style coding as in fig. 3.4.14.
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Figure 3.4.17: Enlargement of the Borel windows in fig. 3.4.14. (s0 = 4.0 GeV 2, mc = 1.45 GeV
and 〈q̄q〉vac = (−0.245 GeV ) 3)
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Figure 3.4.18: Enlargement of the Borel windows in fig. 3.4.15. (s0 = 5.5 GeV 2, mc = 1.45 GeV
and 〈q̄q〉vac = (−0.245 GeV ) 3)
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Figure 3.4.19: Enlargement of the Borel windows in fig. 3.4.16. (s0 = 7.0 GeV 2, mc = 1.45 GeV
and 〈q̄q〉vac = (−0.245 GeV ) 3)

the Borel window, but also results in a much larger mass splitting. Instead, switching off
the mixed quark-gluon condensate, changes the Borel curve at Borel masses lower than
the Borel minimum; lower absolute mass splittings are found and a minimum outside the
Borel window has been formed. No significant change is found for Borel masses larger
than the Borel minimum. The gluon condensate is less important for the mass splitting.
This is in contrast to the observations we made at the end of the previous section. Indeed,
we discovered a strong dependence of the Borel window on the chiral vacuum condensate,
but a rather weak dependence of the pole mass on it. Hence, we conclude that the mass
splitting strongly depends on the in-medium behavior of the chiral condensate in the
whole Borel plane. Contrary to the vacuum case we observe that the mixed quark-gluon
condensate now seems responsible for the fact that there is no minimum for the mass
splitting.13

Regardless which criterion is chosen to determine the mass splitting, the chiral con-
densate has the biggest influence. The mixed quark-gluon condensate has some influence,
if a method is chosen that emphasizes lower Borel masses. Again, the gluon condensate is
of minor importance, regardless which criterion is chosen.

Unfortunately, a direct comparison to the in-medium sum rule given in [Ha00] is not
possible, because an odd part is not given there.14

13For the vacuum mass parameter the gluon condensate is responsible for the formation of a minimum,
while the mixed quark-gluon condensate is less important in this case.

14See section 3.3.2.
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Figure 3.4.20: Mass splitting ∆m for different Wilson coefficients switched off at s0 = 5.5 GeV 2,
mc = 1.45 GeV, 〈q̄q〉vac = (−0.245 GeV ) 3 and n = 0.17 fm−3.

3.4.5 Analyzing the Sum Rules

In [Mo01] the authors determined the region of stability as the region where the ratio of
power corrections (OPE without the perturbative term) to the perturbative contribution
of the OPE and the ratio of the continuum contribution to the perturbative contribution
are less then 0.5.15 The Borel windows obtained in this way are comparable to ours. The
pole mass is assumed to vary within the corresponding interval. The threshold parameter
is fixed such that the vacuum sum rule reproduces the vacuum pole mass. They obtain a
threshold of s0 = 6.76 GeV2.

In [Ha00] a threshold of s0 = 6 GeV2 has been used. It was fixed in [Al83] in order
to give a rather broad plateau in the Borel curve for the leptonic decay constant of the
D meson. The Borel window for the in-medium sum rule in [Ha00] was determined as
the interval where the deviation of the mass centroids shift from its minimum is less than
10%.16 Hence, the threshold is chosen to maximize the Borel window defined as the
plateau region of the Borel curve.17 Whereas the mass centroids shift is determined by
the minimum of the Borel curve.18

Against the hitherto appearance, we are not free in our choice of the threshold. Apart
from physical arguments that can be employed to fix the threshold, our choice is defined by
the derivation of (3.3.32) and (3.3.31). We assumed, that the pole masses do not depend on
the Borel mass and therefore its derivative with respect to M (and thus its derivative with

15This criterion is similar to the one defined in section 3.4.2.
16They obtain a negative shift of the mass centroid.
17See p. 82.
18This can be understood as a combination of the second and the third criterion. See p. 80.
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Figure 3.4.21: Mass shift as a function of the medium density n.

respect to 1/M2) must vanish. Together with the above defined restrictions (3.4.4) and
(3.4.5) to the validity of (3.3.20) and (3.3.21) this gives us a recipe for the determination
of the threshold.

We demand that the pole masses must be as flat as possible within the Borel window.
Thereby, we assure the best agreement to the requirement for a vanishing derivative of
the pole masses within the stability region of the sum rules. Hence, the optimal threshold
minimizes the deviations of the pole masses from their average value.

As a result the threshold varies with the density and the pole mass, averaged within the
Borel window, is a good approximation for the values that it can adopt; cf. fig. 3.4.21. We
determine a mass splitting of about 32 MeV at nuclear saturation density n = 0.17 fm−3.

Another method not to violate the assumptions we made in order to derive (3.3.32) and
(3.3.31) is to look for the minimum of a Borel curve, where the derivative with respect to
M naturally vanishes. On the other side, we still can take into account the limited validity
of our sum rule. This results in a restriction to lower thresholds, where the minima of
the Borel curves lie within the Borel windows. Fixing the Borel window in a way that
it covers the plateau region of a Borel curve is also merely a realization of a Borel mass
independent pole mass. Of course, we understand that the conditions we have chosen in
order to find comprehensible conditions for the validity of the sum rule in section 3.4.2
are somewhat arbitrary in the parameters on the l.h.s. of (3.4.4) and (3.4.5) as well as
in the general appearance of these inequalities. Different authors have chosen different
conditions in order to find stability regions for their sum rule. The analysis of the sum
rule therefore appears somewhat arbitrary and one has to look carefully for results that
do not depend too strong on that choice.

Furthermore, we expect larger pole masses if mass dimension 6 condensates are in-
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cluded. Their numerical importance is rather small, that is why the Borel curves will
not change significantly. But, because of this, they will cause lower Borel minima. By
means of section 3.4.2 and the Borel window defined there, they are expected to modify
the validity of the sum rule and will give larger pole masses when the mass parameters
are averaged within the Borel window.19

However, we could abandon the assumption of a Borel mass independent pole mass.
In such a case we would get different expressions for the masses m± and F± as functions
of the Borel mass and additional expressions for their derivatives. On the other side we
would vary the threshold s0 to fit the pole masses to linear functions with non-vanishing
slope within the Borel window, in contrast to fit them to linear functions with vanishing
slope, i.e. a constant, as we did in the above case. An abrasive look at the Borel curves
tells us that this leads to larger pole masses as well because the curves are rising almost
linearly within the Borel window for slightly larger thresholds. It is not clear up to this
point if the analysis of the sum rule is improved by such a method.

We note that the problems arising on the choice of the threshold parameter make it
difficult to find a unique and successful way of analyzing the sum rule. Thus, it would
be natural not to employ a ”pole + continuum” ansatz. Alternatively, we could directly
investigate the moments of the spectral integral without making too limiting assumptions
for the spectral density or employ a finite width ansatz instead of a pole.

19The employed method to determine the threshold results in values s < 5 GeV. A look in fig. 3.4.1 tells
us that the pole mass is increasing with decreasing Borel mass.





4 Summary and Outlook

In this thesis the operator product expansion for D mesons has been performed in
vacuum and in medium up to mass dimension 5 and up to first order in the strong coupling
αs. In doing so, we assured a neat separation of scales by introducing physical condensates
in vacuum as well as at finite density. As a result, the equations, which are necessary
to cancel the mass logarithms, have been reproduced and, hence, an operator product
expansion which is free from infrared divergences has been given. Thereby, we gave an
exact relation which provides the possibility to perform the replacement of normal ordered
condensates by physical ones up to all orders in αs generically. Moreover, it provides
a consistent extension to finite densities. It has also been shown, introducing physical
condensates in a finite density operator product expansion, requires additional equations.
Along the way it has been shown, that the heavy-quark mass expansion relies upon the
same physical backgrounds and is met within the renormalization of condensates.

A comparison of the operator product expansion with the literature shows unsatisfac-
tory differences [Ha00,Mo01]. In both cases, as far as a comparison was possible, the origin
of these differences is unclear. Also, in [Ha00, Mo01] it is not clear whether a consistent
separation of scales has been performed in vacuum and in medium or not. The obvious
differences of the QCD sum rules reputed in the literature caused the present investiga-
tion. Therefore, our focus was on the operator product expansion; a detailed derivation is
presented. This is the main result of this thesis.

Our numerical evaluation follows the standard procedure: ”pole + continuum” ansatz
for the phenomenological hadron spectral function. The numerical analysis of the vacuum
sum rules has shown a strong dependence on the method used to determine the threshold.
While the influence of the chiral condensate on the Borel curves is rather weak, it is of
high importance for the validity of the sum rules in the sense of a reasonable definition
of the Borel window. Instead, the mixed quark gluon condensate is important for the
Borel curves and, hence, for the numerical value of the D meson masses. Its influence
on the validity of the sum rules is negligible. Switching off the gluon condensate, seems
to have minor influence on the Borel window and on the Borel curves. The shape of the
Borel curve is slightly changed near its lower Borel mass, but the vertical position stays
unaffected. It causes a rapid change of the Borel curve for masses lower than the Borel
minimum.

The analysis of the in-medium sum rules has shown the same dependences of the
Borel curves and the Borel window on the threshold and the condensates. Hence, a firm
determination of the shift of the mass centroid is hardly possible within the presented
calculations. On the other side, it turned out that the mass splitting is comparatively
robust with respect to the choice of the threshold. We determined a mass splitting of
about 32 MeV at nuclear saturation density. This is the second result of this thesis.
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We found that the mass splitting crucially depends on the in-medium chiral condensate,
while it is almost unaffected by the mixed quark-gluon and the gluon condensate. Hence,
medium modifications of D mesons seem to be good sensors for the in-medium behavior
of the chiral condensate. Of course, all the results obtained in this work hold true for B
mesons as well, i.e. mesons consisting of a bottom quark.

Future investigations have to include an estimate of the influence of higher dimensional
condensates, e.g. four-quark condensates. Thereby, care has to taken about possible
new in-medium condensates. Also it is conceivable to introduce asymmetric continuum
thresholds s±0 for particle and anti-particle. In addition, testing methods which include
Borel mass dependent pole masses should also be subject to future investigations.

The relevance of the ”pole + continuum” ansatz and whether a finite-width spectral
function provides an improvement of the accuracy have to be clarified. Also, the role of a
possible Landau damping term should be investigated. Finally, the problems concerning
the threshold parameter introduced by the ”pole + continuum”ansatz can be circumvented
by investigating moments of the spectral integral. In this way, a possibility to investigate
higher excitations is also given.



Appendix A Brief Survey on Quantum
Chromodynamics

We will briefly review the basics of QCD. We will focus on the essential equations and
relations which are needed in this work. For a detailed essay on QCD we recommend
[Pa84,Mu87]. The Lagrange density of classical chromodynamics reads

L = Ψ̄
(
iD̂ −M

)
Ψ− 1

4
GAµνG

µν
A , (A.1)

where we have introduced the following notation

Dab
µ (x) = ∂µ1

ab − igA ab
µ (x) : covariant derivative, (A.2)

A µ
ab = AAµtAab : Gluon fields, (A.3)

Gµν = GAµνt
A =

i

g
[Dµ, Dν ] : Gluon field strength tensor, (A.4)

Ψa
i : quark field operators, (A.5)

tAab =
1
2
λA : generators of SU(Nc), (A.6)

λA : Gell-Mann matrices. (A.7)

Dirac indices are denoted by latin letters i, j, k, · · · , Lorentz indices by greek letters
µ, ν, κ, · · · and color indices by latin letters a, b, c, · · · . The generators tA satisfy

[
tA, tB

]
= ifABCtC , tr

(
tA
)

= 0 , tr
(
tAtB

)
=
δAB

2
, (A.8)

where fABC are the structure constants of the SU(Nc) algebra. From (A.4) one can show
that

GAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν , (A.9)

and

GAµν = −GAνµ . (A.10)

Nc denotes the number of colors, and the index A refers to the generators of SU(Nc). The
quark fields are column vectors where each of the six entries corresponds to one flavor,
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Ψ = (u, d, s, c, b, t)T . The mass matrix M is diagonal with the following entries [Ya06]

mu = 1.5 to 3.0 MeV , (A.11)
md = 3 to 7 MeV , (A.12)
ms = 95± 25 MeV , (A.13)
mc = 1.25± 0.09 GeV , (A.14)

mb = 4.20± 0.07 GeV (MS mass) , (A.15)
or 4.70± 0.07 GeV (1S mass) , (A.16)
mt = 174.2± 3.3 GeV (direct observation of top events) , (A.17)

or 172.3+
−

10.2
7.6 GeV (Standard Model electroweak fit) . (A.18)

Because quarks are confined within hadrons and can not be observed as isolated free
particles, the determination of their masses depends on the theoretical framework used for
calculations. Therefore, different values for the bottom and top masses are quoted. The
difference is of no importance for our calculations as the top quark is not considered here;
for the bottom quarks the difference is of minor importance.

The coupling strength of strong interaction, denoted by g, is defined as

g =
√

4παs , (A.19)

αs(q2) =
4π

(33− 2Nf ) ln
(
−q2

Λ2
QCD

) , (A.20)

with Nf being the number of active quark flavors and Λ2
QCD the renormalization scale

parameter of QCD, usually determined to reproduce αs(MZ) ≈ 0.19 with MZ = 91.1876±
0.0021GeV being the Z boson mass.

The Lagrange density (A.1) emerges from the requirement of invariance under the local
gauge color transformation

Ψa
i (x)→ Ψ′ai (x) =

[
e−igt

AΘA(x)
]ab

Ψb
i(x) . (A.21)

By this one obtains the following transformation laws for color transformations

DµΨi(x)→ D′µΨ′i(x) = e−igt
AΘA(x)DµΨi(x) , (A.22)

Dµ → D′µ = e−igt
AΘA(x)Dµe

igtAΘA(x) , (A.23)

Aµ → A ′µ = e−igt
AΘAAµe

igtAΘA(x) +
[
∂µe
−igtAΘA(x)

]
eigt

AΘA(x) , (A.24)

Gµν(x)→ G ′µν = e−igt
AΘAGµν(x)eigt

AΘA(x) . (A.25)

The equations of motion for the quark and gluon fields follow from (A.1) as

D̂q = −imqq , (A.26)

q̄
←−̂
D = imq q̄ , (A.27)

[Dµ,Gµν ] (x) = −gtA
∑

n=u,d,s,c

n̄(x)tAγνn(x) , (A.28)
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where summation over A is understood and we have defined

γµDµ = D̂ , (A.29)
σµνGµν = σG (A.30)

with spin matrices

σµν =
1
2

[γµ, γν ] = i (γµγν − gµν) . (A.31)

Exploiting these relations, one can show that the gluon field strength tensor fulfills the
following useful relations

D2 = D̂D̂ +
1
2
gσG , (A.32a)

D2Ψ =
(

1
2
gσG −m2

)
Ψ , (A.32b)

where we have defined

D2 = gµνDµDν . (A.33)

Splitting up the Lagrange density into a free part L0 and a part containing the interaction,
we define the interaction Lagrange density as

Lint = L −L0 . (A.34)

The free Lagrange density reads

L0 = Ψ̄
(
i∂̂ −M

)
Ψ− 1

4
GAµνG

µν
A . (A.35)





Appendix B Bethe-Salpeter Approach

In the preceding sections we have used the method of QCD sum rules to determine
the mass of a bound state consisting of two quarks. The method introduces universal
phenomenological parameters which enable an understanding of non-perturbative hadronic
properties in intimate contact to QCD.

Alternatively, for a system consisting of two quarks, another method is given by the
Bethe-Salpeter equation (BSE). It is an integral equation for the relativistic two-particle
problem and can be applied to both, bound states and scattering problems.

The Bethe-Salpeter equation is the only exact integral equation for the relativistic two-
particle problem in a quantum field theory. Unfortunately, there are no exact solutions
for realistic interaction kernels and, due to the high dimensionality, it can not directly be
solved numerically. Hence, one has to apply approximations to the exact Bethe-Salpeter
equation. Often the so called ladder approximation is employed. This means, only a
certain kind of interaction procedures, which can be characterized by their diagrammatic
representation, are taken into account. But even for the ladder approximation there is
only one model that can be solved exactly, the so called Cutkosky model [Cu54]. It is
often referred to as a toy model, because it entails unphysical states and gives the wrong
limit for the ratio of the masses tending to infinity, i.e. one mass being much heavier than
the other.

Apart from the problems that can not be solved by it, the ladder approximation enables
one to solve the Bethe-Salpeter equation numerically. Usually, one has to make additional
assumptions and approximations. Recently, in [Do07] the authors have given a closed nu-
merical solution to the Bethe-Salpeter equation in ladder approximation for the deuteron,
without employing additional approximations or assumptions and, hence, providing the
possibility to give suitable numerical solutions to the Bethe-Salpeter equation within the
ladder approximation.

In the next sections we will give a brief introduction to the Bethe-Salpeter equation
and describe the method developed in [Do07] for the deuteron.

B.1 Introduction

The Bethe-Salpeter equation is a 16-dimensional integral equation for the Bethe-Salpeter
amplitude. Its derivation can be found in many textbooks about quantum field theory,
e.g. [Lu68, Ro69, Gr84]. It starts with an analysis of the two-particle propagator defined
as the four-point function

Kαβµν(x1, x2; y1, y2) := −〈Ω|T
[
ψAα (x1)ψBβ (x2)ψAµ (y1)ψBν (y2)

]
|Ω〉 , (B.1.1)
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where the sign is just convention. Different particles are denoted by A and B respectively
and greek letters denote the spinor indices. Close to the QSR part of this thesis we are
working with Heisenberg field operators. Following [Ge51] one can give a perturbative
expansion for the two-particle propagator similar to (2.1.4). The diagrammatic represen-
tation is given in fig. B.1.1.

�K =� +�G

Figure B.1.1: The exact four-point function is split into a part without interaction and a part
which contains interaction between the two particles. All lines represent exact propagators.

The diagram, which is labeled by G contains all diagrams where an interaction between
the particles took place. Some examples of this infinite sum are depicted in fig. B.1.2. We
also noted one diagram which describes a rather complicated process and includes self-
interactions.

�K =� +� + . . .

+� + . . . + � + . . .

Figure B.1.2: Perturbative expansion of the two-particle propagator (B.1.1). All the lines stand
for free propagators.

The corresponding equation reads

Kαβµν(x1, x2; y1, y2) = iSAαµ(x1, y1)iSBβν(x2, y2)

+
∫
d4y3 d

4y4 d
4y5 d

4y6 iS
A
αα′(x1, y3)iSBββ′(x2, y4)

×Gα′β′µ′ν′(y3, y4; y5, y6)iSAµ′ν′(y5, y6)iSBµν(y1, y2) . (B.1.2)

The important observation now is, that the diagrams occurring at the r.h.s. of the equation
given in fig. B.1.2, i.e. in G, can be categorized according to whether they are reducible or
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not. A reducible diagram is defined as a graph, that can be separated into two diagrams
by cutting two internal fermion lines, where each diagram has got two incoming and two
outgoing fermion lines (see fig. B.1.3).

	

Figure B.1.3: Left panel: reducible diagram. Right panel: irreducible diagram.

Hence, each reducible diagram can be expressed by a combination of appropriate irre-
ducible ones. If we define the sum of all irreducible diagrams as G, we are able to express
the exact four-point function K by the infinite sum of all irreducible diagrams only. One
obtains the equation of diagrams depicted in fig. B.1.4.

�K =� +
GK

Figure B.1.4: The exact four-point function K in terms of irreducible interactions encoded in
the infinite sum G. All lines stand for the exact propagators.

The integral equation which corresponds to fig. B.1.4 reads

Kαβµν(x1, x2; y1, y2) = −SAαµ(x1, y1)SBβν(x2, y2)

−
∫
d4y3 d

4y4 d
4y5 d

4y6 S
A
αα′(x1, y3)SBββ′(x2, y4)

×Gα′β′µ′ν′(y3, y4; y5, y6)Kµ′ν′µν(y5, y6; y1, y2) . (B.1.3)

In coordinate space, it is an inhomogeneous 16-dimensional integral equation. In order
to verify that this equation indeed reproduces the equation depicted in fig. B.1.1 and
fig. B.1.2 one has to investigate the iterated solution of (B.1.3) or fig. B.1.4, which is
depicted in fig. B.1.5. Clearly, every irreducible interaction is included in G, while every
reducible interaction is reproduced by an appropriate combination of irreducible diagrams
appearing somewhere in the second line of fig. B.1.5. The integration kernel G can be
calculated in perturbation theory.
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�K =� +�G

+�GG + . . .

Figure B.1.5: Iterated solution of (B.1.3) and fig. B.1.4.

Apart from this rather artificial looking diagrammatic construction, the integral equa-
tion (B.1.3) can also be derived from a generalized form of the Dyson-Schwinger equation
for four-point functions.

The Bethe-Salpeter amplitude (BSA) and the adjoint Bethe-Salpeter amplitude are
defined as

χK,αβ(x1, x2) := 〈Ω|T
[
ψAα (x1)ψBβ (x2)

]
|K〉 (B.1.4a)

χK,µν(y1, y2) := 〈K|T
[
ψ
A
µ (y1)ψBν (y2)

]
|Ω〉 , (B.1.4b)

where |K〉 is an arbitrary physical eigenstate of the momentum operator, carrying the
momentum K. It can be a scattering state as well as a bound state. Both quantities
have 16 components. Often they are defined as matrices by transposing the second spinor,
but as long as one is using indices there is no need to care about this. Unfortunately, the
connection between them is not as simple as one might think at the first sight. By adjoining
the BSA one gets the anti time-ordered product of the adjoint spinors. Accordingly, the
connection is not simply given by adjoining and multiplying (B.1.4) by γ0 from both sides.
An analytic relation between both quantities is given in [Ma55].

With these definitions one can introduce a complete set of physical eigenstates of the
momentum operator in (B.1.1) and derive the homogeneous BSE for the BSA and the
adjoint BSA from (B.1.3) as

χK,αβ(x1, x2) = −
∫
d4y1 d

4y2 d
4y3 d

4y4 S
A
αα′(x1, y1)SBββ′(x2, y2)

×Gα′β′µ′ν′(y1, y2; y3, y4)χK,µ′ν′(y3, y4) . (B.1.5)

We note here, that the inhomogeneity in (B.1.3) corresponds to interactions where the two
particles stop interacting at some time and the particles become free, i.e. to scattering
states. To restrict ourselves to bound states only, we had to neglect the first term in
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(B.1.3). This restriction to the propagator function represents the claim that two particles
which are bounded never stop interacting. By this we also see, that a finite number of
diagrams in fig. B.1.2 and, hence, in (B.1.2) would never be sufficient to describe bound
states. Although the expansion of the four-point function (B.1.1) by means of perturbation
theory and the integral equation (B.1.3) are equivalent, the latter one is more powerful,
providing a broader range of physical applications.1

B.2 Ladder Approximation

Sometimes it is sufficient to include only a certain kind of interactions between the two
particles. The so-called ladder approximation only takes the lowest-order perturbative
contributions to the fermion propagators SA,B, i.e. one uses the free propagators, and the
lowest-order term of the interaction kernel G. The latter one means that there is only one
interaction at a time between the two particles. The result is that the included interactions
have a characteristic look. In fig. B.2.1 some examples for interactions included in ladder
approximation are given. From fig. B.2.1 it should become clear why this approximation
is called ladder approximation. Strictly speaking, when one considers the homogeneous
BSE, i.e. bound states, in each of these diagrams an infinite number of interactions take
place and the ”ladder” is endless.

���
Figure B.2.1: Typical contributions to the homogeneous BSE in ladder approximation. All lines
stand for free propagators.

In fig. B.2.2 we give an example for a diagram that is not included by the ladder approxi-
mation. It has, however, to be taken into account, e.g. for positronium bound states.

�
Figure B.2.2: A diagram beyond the ladder approximation.

The free fermion propagators are given in (2.4.15) and for a scalar interaction the
lowest-order contribution to the irreducible interaction kernel in momentum space reads

G
(0)(p, p′,K)αβα′β′ = (2π)4g2Γ1

αα′Γ
2
ββ′∆(p− p′) , (B.2.1)

1In fact, comparing the power expansion of the four-point function (B.1.1) and its integral equation
(B.1.3), the differences according to divergence or convergence of the one or the other are even more
fundamental [Ge51].
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where the propagator for a scalar particle is defined as

∆(p) =
1

p2 − µ2
. (B.2.2)

The mass of the interaction particle is denoted by µ while Γ ∈ {1, γµ, σµ<ν , iγ5γµ, γ5}
represents the coupling of the interaction particles to the fermions. In fig. B.2.3 we give
the diagrammatic representation of the integral equation for the four-point function in
ladder approximation.

The homogeneous BSE for the BSA in ladder approximation and momentum space
reads [

SA
(
K

2
+ p

)]−1

αα′

[
SB
(
K

2
− p
)]−1

ββ′
χK,α′β′(p)

= −
∫

d4p′

(2π)4
g2∆(p− p′)Γ1

αα′Γ
2
ββ′χK,α′β′(p

′) . (B.2.3)

It is is a four dimensional integral equation for the 16 components of the BSA. Whether a
solution exists or not depends, beside other requirements, on the four-momentum K of the
bound state. Considered as an eigenvalue problem, (B.2.3) has solutions only for discrete
values of the bound state four-momentum. Unfortunately, the BSA does not have direct
physical meaning and calculating observables from it requires knowledge of the adjoint
BSA. Hence, in general, if no further restrictions to the time ordering are made and a
simple algebraic relation between the BSA and its adjoint counterpart is provided, one
also has to solve the BSE for the adjoint BSA. Nevertheless, solving the BSE for the BSA
alone is a problem of finding eigenvalues K and eigenstates χK to the operator defined
in (B.2.3). Thus, a solution at least provides us the determination of the bound state
mass K0, if we work in the bound states rest frame. Because the BSE is Lorentz invariant
and the BSA transforms covariantly, one is free to choose any frame that is convenient
to simplify calculations. Choosing the center of mass system does not mean any loss of
generality, but enables a direct determination of the bound state mass by solving the
eigenvalue problem defined in (B.2.3).

If one desires to calculate observables, e.g. the electromagnetic form factor, both are
essential, the BSA in the rest frame of the bound state and in other frames. The latter
one can be obtained as Lorentz transform of the first one.

�K = �K
Γ

Γ
Figure B.2.3: Diagrammatic representation of (B.1.3) and fig. B.1.4 in ladder approximation.
All lines depict free propagators.
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B.3 Solving the Bethe-Salpeter Equation in Ladder
Approximation

In order to simplify notations, in what follows, we will use the matrix notation and intro-
duce a redefined BSA as

ΨK(p) := −χK(p)C , (B.3.1)

with C = iγ0γ2 being the charge conjugation matrix. Furthermore, we introduce the
Bethe-Salpeter vertex function gK(p) as

ΨK(p) = S

(
K

2
+ p

)
gK(p)S̃

(
K

2
− p
)
, (B.3.2)

where we have implicitly introduced

S̃(p) = CSTC =
p̂−m
p2 −m2

(B.3.3)

and assumed equal masses mA = mB = m, omitting the superscripts A,B for the propa-
gators. For the BSA these definitions translate to

χK(p) = S

(
K

2
+ p

)
g̃K(p)ST

(
K

2
− p
)

(B.3.4)

and

gK(p) := g̃K(p)C . (B.3.5)

Transforming into the bound states rest frame, the BSE for the vertex-function of a bound-
state in ladder approximation then reads

gK(p) = i

∫
d4p′

(2π)4
V (p− p′)Γ1S

(
K

2
+ p′

)
gK(p′)S̃

(
K

2
− p′

)
Γ̃2

= i

∫
d4p′

(2π)4
V (p− p′)s(p′)Γ1

(
K̂

2
+ p̂′ +m

)
gK(p′)

(
K̂

2
− p̂′ −m

)
Γ̃2 , (B.3.6)

with Γ̃ = CΓTC and

V (p− p′) =
g2

(p− p′)2 − µ2
, (B.3.7a)

s(p′) =
1

(p′2 − κ2)2 − p′20 M2
, κ2 = m2 − M2

4
. (B.3.7b)

M denotes the mass of the bound state in its rest frame K = (M,~0). In the following
sections the amplitudes and vertex functions will be expanded in suitable bases to reduce
the high dimensionality of the BSE. Therefore, symmetry properties of the bound state
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imposed in the expansions play an important role. We will demonstrate all calculations
for the example of the 1S0 channel, where we employ the spectroscopic notation α = α0M.
M is the projection of the total angular momentum L and α0 = 2S+1Lρ1ρ2

J , S being the
total spin of the two nucleons, J the total angular momentum J = L + S and ρ1,2 denoting
particle and anti-particle.

The following presentation is for the example of the deuteron, where the treatment
in [Do07] was developed for and accordingly tested. Our presentation here is aimed at
recollecting the technique which is essentially ready for an application to the J/Ψ as
cc̄ bound state. The application to D mesons as uc̄, dc̄, cū and cd̄ bound states requires
further special developments. In the course of this thesis it was decided to employ the QCD
sum rules as main tool for dealing with D mesons. Therefore, this appendix summarizes
preparatory work for future and separate applications.

Restricting to 1S0 states means that only a simplified model of the deuteron is con-
sidered because the deuteron is a superposition of 3S1 and 3D1 states. However, the
presented method for the 1S0 state can also be performed for the 3S1 and 3D1 or other
states. Likewise, we will only consider a scalar coupling of the interaction particle with
the nucleons, i.e. Γ = 1. Other couplings can easily be considered as well. As the exten-
siveness of the required calculations is the smallest for the 1S0 state with scalar coupling,
we restrict ourselves to this case.

B.4 Decomposition into Spin-Angular Matrices

The vertex function will now be expanded in a complete set of 4×4 matrices. As one is
dealing with states of certain symmetry properties choosing a base which reflects these
properties is convenient. For definite spin, angular momentum and total momentum such
a base is given by the spin-angular harmonics and the expansion reads

χK(p) = ΨK(p)C =
∑
α

Φα(p0, |~p |)Γα(~p )C . (B.4.1)

The sum goes over all quantum numbers α. The partial amplitudes Φα(p0, |~p |) do not
depend on Ω~p, where

Ω~p = sin θdφdθ (B.4.2)

denotes the infinitesimal solid angle. The spin angular harmonics Γα are defined as

Γα(~p )C = (−1)ρ1+ρ2iL
∑
µ1µ2
mLmS

〈LmLSmS|JM〉〈1
2
µ1

1
2
µ2|SmS〉

×YLmL(Ω~p)Uρ1
µ1

(~p )Uρ2T
µ2

(−~p ) . (B.4.3)

The spherical harmonics are denoted by YLmL(Ω~p) and the Dirac unity spinors read

U+
µ (~p ) = uµ(~p ) =

m+ p̂1√
2E(E +m)

(
χµ
0

)
=

m+ p̂1γ0√
2E(E +m)

(
χµ
0

)
, (B.4.4a)

U−µ (~p ) = vµ(−~p ) =
m− p̂2√

2E(E +m)

(
0
χµ

)
=

m+ p̂2γ0√
2E(E +m)

(
0
χµ

)
, (B.4.4b)
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where we have used

χ+ 1
2

=
(

1
0

)
, χ− 1

2
=
(

0
1

)
, (B.4.5a)

p1 = (p0, ~p ) , p2 = (p0,−~p ) , γ0p̂1γ0 = p̂2 . (B.4.5b)

In order to ensure the correct symmetry properties for the 1S0 channel, the following
harmonics have to be taken into account

α0 = 1S++
0 , 1S−−0

3P+−
0 , 3P−+

0 (B.4.6)

and the following four 4×4 matrices form a complete set in the subspace of the 1S0 (M = 0)
channel

α0 = 1S++
0 : Γ+ =

1√
8π

m+ p̂1√
2E(E +m)

1 + γ0

2
γ5

m− p̂2√
2E(E +m)

, (B.4.7a)

α0 = 1S−−0 : Γ− =
1√
8π

p̂2 −m√
2E(E +m)

1− γ0

2
γ5

m+ p̂1√
2E(E +m)

, (B.4.7b)

α0 = 3P+−
0 : Γ+− =

1√
8π

m+ p̂1√
2E(E +m)

1 + γ0

2
1
2
p̂1 − p̂2

|~p | γ5
m+ p̂1√

2E(E +m)
, (B.4.7c)

α0 = 3P−+
0 : Γ−+ =

1√
8π

m− p̂2√
2E(E +m)

γ0 − 1
2

1
2
p̂1 − p̂2

|~p | γ5
p̂2 −m√

2E(E +m)
. (B.4.7d)

They fulfill the orthogonality condition∫
dΩ~pTrD

[
Γ†α(~p )Γα′(~p )

]
= 4πδαα′ . (B.4.8)

In the subsequent sections we will expand the partial amplitudes into hyperspherical har-
monics using Gegenbauer polynomials which leads to a further reduction of the dimen-
sionality of the BSE. Unfortunately, this decomposition can not be performed analytically
if spin-angular harmonics are used and further approximations have to be employed in
order to solve the BSE. Therefore, in [Do07] the authors developed a basis that enables
one to perform analytically the decomposition into Gegenbauer polynomials.

The new base for the 1S0 state is given by the following set of four 4×4 matrices

T1(~p ) =
γ5

2
= T †1 (~p ) = −T 1(~p ) = −T̃1(~p ) , (B.4.9a)

T2(~p ) =
γ0γ5

2
= −T †2 (~p ) = T 2(~p ) = −T̃2(~p) , (B.4.9b)

T3(~p ) = − ~p~γ

2 |~p |γ5 = T †3 (~p ) = T 3(~p ) = T̃3(~p ) , (B.4.9c)

T4(~p ) = − ~p~γ

2 |~p |γ0γ5 = T †4 (~p ) = T 4(~p ) = −T̃4(~p ) , (B.4.9d)

with

T = γ0T
†(~p )γ0, T̃ = CT TC . (B.4.10)
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They obey the following orthogonality condition∫
dΩ~p

4π
TrD

(
TiT

†
j

)
= δij (B.4.11)

and are a suitable choice for expanding the vertex function. The connection between the
spin-angular harmonics for the 1S0 state and the base defined in (B.4.9) is given by

T1

T2

T3

T4

 =


1√
8π

− 1√
8π

0 0
1√
8π

m
E

1√
8π

m
E

1
2
√
π
|~p |
E 0

1√
8π

|~p |
E

1√
8π

|~p |
E − 1

2
√
π
m
E 0

0 0 0 1√
4π




Γ+

Γ−
Γo
Γe

 . (B.4.12)

Here, we have defined the even and odd spin-angular harmonics as

Γo =
1√
2

(Γ+− + Γ−+) , Γe =
1√
2

(Γ+− − Γ−+) . (B.4.13)

The vertex-function expanded in terms of the basis above reads

gK(p0, ~p ) =
∑
i

giK(p0, |~p |)Ti(~p ) (B.4.14)

and the coefficients are given by virtue of the orthogonality condition (B.4.11)

giK(p0, |~p |) =
∫
dΩ~p

4π
TrD [gK(p0, ~p )Ti(~p )]

= i

∫
dΩ~p

4π

∫
d4p′

(2π)4
V (p− p′ )s(p′ )

∑
j

gjK(p′0,
∣∣~p ′∣∣)

× TrD

[
Γ1

(
K̂

2
+ p̂′ +m

)
Tj(~p ′)

(
K̂

2
− p̂′ −m

)
Γ̃2T

†
i (~p )

]
. (B.4.15)

In the last step we have used the BSE for the vertex function (B.3.6) and reinserted the
above expansion. For a scalar coupling of the interaction particle to the nucleons one has
Γ1 = I, Γ̃2 = −I and the trace reduces to

giK(p0, |~p |) = −i
∫
dΩ~p

4π

∫
d4p′

(2π)4
V (p− p′ )S(p′ )

×
∑
j

gjK(p′0,
∣∣~p ′∣∣)TrD

[
T †i (~p )

(
K̂

2
+ p̂′ +m

)
Tj(~p ′)

(
K̂

2
− p̂′ −m

)]
.

(B.4.16)

The result is a set of four coupled seven-dimensional integral equations for the vertex
coefficient functions giK :

g1
K(p0, |~p |) = −i

∫
d4p′

(2π)4

∫
dΩ~p

4π
s(p′)V (p− p′)

×
{(
−M

2

4
+ p′2 −m2

)
g1
K −Mmg2

K +M
∣∣~p ′∣∣ g3

K

}
, (B.4.17a)
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g2
K(p0, |~p |) = −i

∫
d4p′

(2π)4

∫
dΩ~p

4π
s(p′)V (p− p′)

{
−Mmg1

K

+
(
−M

2

4
+ p′20 + ~p ′2 −m2

)
g2
K + 2m

∣∣~p ′∣∣ g3
K − 2p′0

∣∣~p ′∣∣ g4
K

}
, (B.4.17b)

g3
K(p0, |~p |) = −i

∫
d4p′

(2π)4

∫
dΩ~p

4π
s(p′)V (p− p′) ~p ′~p

|~p ′| |~p |

{
−M

∣∣~p ′∣∣ g1
K

− 2m
∣∣~p ′∣∣ g2

K +
(
M2

4
− p′2 −m2

)
g3
K + 2mp′0g

4
K

}
, (B.4.17c)

g4
K(p0, |~p |) = −i

∫
d4p′

(2π)4

∫
dΩ~p

4π
s(p′)V (p− p′) ~p ′~p

|~p ′| |~p |

{
2
∣∣~p ′∣∣ p′0g2

K + 2mp′0g
3
K

+
(
M2

4
− p′20 − ~p ′2 −m2

)
g4
K

}
, (B.4.17d)

where the coefficients inside the integral are taken at p′ = (p′0, |~p ′|). Before expanding
these coefficient functions in hyperspherical harmonics, it is necessary to perform a Wick
rotation in order to continue (B.4.16) to Euclidean momenta p → pE = (ip4, ~p ). The
results read

g1
K(ip4, |~p |) =

∫
d4p′E
(2π)4

∫
dΩ~p

4π
s(ip′4, ~p

′)Ṽ (pE − p′E)

×
{(

M2

4
+ p′2E +m2

)
g1
K +Mmg2

K −M
∣∣~p ′∣∣ g3

K

}
, (B.4.18a)

g2
K(ip4, |~p |) =

∫
d4p′E
(2π)4

∫
dΩ~p

4π
s(ip′4, ~p

′)Ṽ (pE − p′E)
{
Mmg1

K

+
(
M2

4
+ p′24 − ~p ′2 +m2

)
g2
K − 2m

∣∣~p ′∣∣ g3
K − 2p′4

∣∣~p ′∣∣ g4
K

}
, (B.4.18b)

g3
K(ip4, |~p |) =

∫
d4p′E
(2π)4

∫
dΩ~p

4π
s(ip′4, ~p

′)Ṽ (pE − p′E)
~p ′~p
|~p ′| |~p |

{
M
∣∣~p ′∣∣ g1

K

+ 2m
∣∣~p ′∣∣ g2

K +
(
−M

2

4
− p′2E +m2

)
g3
K + 2mp′4g

4
K

}
, (B.4.18c)

g4
K(ip4, |~p |) =

∫
d4p′E
(2π)4

∫
dΩ~p

4π
s(ip′4, ~p

′)Ṽ (pE − p′E)
~p ′~p
|~p ′| |~p |

{
−2
∣∣~p ′∣∣ p′4g2

K

− 2mp′4g
3
K +

(
−M

2

4
− p′24 + ~p ′2 +m2

)
g4
K

}
, (B.4.18d)

with

Ṽ (pE − p′E) =
g2

(pE − p′E)2 + µ2
. (B.4.19)
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B.5 Symmetry properties of the partial amplitudes

For bound states with isospin zero the BS amplitude and the redefined BS amplitude
behave under an inversion of all coordinates as follows

χαβ(p) = χβα(−p) , Ψ(p) = CΨT (−p)C . (B.5.1)

This can be verified by introducing the isospin operator into the definition of the BSA
(B.1.4). For the vertex function this relation translates to

g(p) = CgT (−p)C . (B.5.2)

The corresponding transformation properties for the matrix base are given in (B.4.9).
Together with (B.4.14) these relations translate into the following symmetry properties
for the coefficient functions of the vertex function

gik(−p0, |~p |) = gik(p0, |~p |) i = 1, 2, 3 , (B.5.3a)

g4
k(−p0, |~p |) = −g4

k(p0, |~p |) . (B.5.3b)

Of course the same properties are also valid in Euclidean space.

B.6 Decomposition into Hyperspherical Harmonics

The next step in this calculation consists of the expansion of the 4 partial amplitudes
giK(ip4, |~p |) into hyperspherical harmonics. Thus, a change of variables into spherical
coordinates is necessarily accomplished by

p1 =p sinχ sin θ sinφ , (B.6.1a)
p2 =p sinχ sin θ cosφ , (B.6.1b)
p3 =p sinχ cos θ , (B.6.1c)
p4 =p cosχ , (B.6.1d)

p =
√
p2

4 + ~p 2 =
√
p2
E (B.6.1e)

denoting the Euclidean norm from now on. The 4-dimensional infinitesimal volume reads

d4p′E = dp′4
∣∣~p ′∣∣2 d ∣∣~p ′∣∣ dΩ~p ′ (B.6.2)

where dΩ~p ′ is defined in (B.4.2). Furthermore, the hyperspherical harmonics in four-
dimensional Euclidean space read

Zklm(χ, θ, φ) = Xkl(χ)Ylm(θ, φ) , (B.6.3)

Xkl(χ) = 2ll!

√
2
π

√
(k + 1)(k − l)!

(k + l + 1)!
sinl χC l+1

k−l(cosχ) , (B.6.4)
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with Cnm being the Gegenbauer polynomials and Ylm being the ordinary spherical har-
monics. The Gegenbauer polynomials are a solution to the Gegenbauer differential equa-
tion [Er55a]. Because the Gegenbauer polynomials Cnm(x) contain either even or odd
powers of x, i.e. they are an even polynomial for m being even and odd for m being odd,
they obey definite parity; namely even parity for m being even and odd parity for m being
odd. Hence, considering the transformation χ → χ′ with cosχ = − cosχ′, the functions
Xkl(χ) behave as

Xkl(χ′) =
{
Xkl(χ)
−Xkl(χ)

:
:
k − l even
k − l odd

, (B.6.5)

where we used that sinl χ = (1− cos2 χ)l remains unaffected by the transformation given
above. For l = 0, 1, 2 the Xkl are given by

Xk0 =

√
2
π
C1
k(cosχ) , (B.6.6)

Xk1 =2

√
2
π

1√
k(k + 2)

sinχC2
k−1(cosχ) , (B.6.7)

Xk2 =8

√
2
π

1√
(k − 1)k(k + 2)(k + 3)

sin2 χC3
k−2(cosχ) . (B.6.8)

It is important to notice that appropriate indices must fulfill k ≥ l ≥ m ≥ 0, other-
wise the above equations are not well defined. The hyperspherical harmonics satisfy the
orthonormality condition∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ π

0
dχ sin2 χZklm(χ, θ, φ)Z∗k′l′m′(χ, θ, φ) = δkk′δll′δmm′ (B.6.9)

and by using the corresponding condition for the spherical harmonics, namely∫
dΩY ∗lm(Ω)Yl′m′(Ω) =

∫ π

0

∫ 2π

0
sin θdφdθY ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ , (B.6.10)

one derives the orthonormality condition for the Xkl(χ)∫ π

0
sin2 χXkl(χ)X∗k′l(χ) = δkk′ . (B.6.11)

This condition only holds for the second index being equal. Writing the Xkl in terms of
the Gegenbauer polynomials (B.6.4), one obtains the following useful relation∫ 1

−1
(1− x2)α−

1
2Cαn (x)Cαm(x) = δmn

π

22α−1

Γ(n+ 2α)
Γ(n+ 1)(n+ α)Γ2(α)

. (B.6.12)

Further relations, which become evident later on, are given by one of the numerous gen-
erating functions of the Gegenbauer polynomials [Er55a]

1
(1− 2xz + z2)α

=
∞∑
n=0

znCαn (x) |z| < 1, α 6= 0 (B.6.13)
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and

C1
n(cos(1, 2)) =

2π2

n+ 1

∑
lm

Znlm(χ1, θ1, φ1)Z∗nlm(χ2, θ2, φ2) , (B.6.14)

where cos(1, 2) denotes the angle between the two Euclidean four-vectors.
We now proceed with the expansion of (B.4.18) into the hyperspherical harmonics

introduced above. We remark that the only terms which depend on the spatial angle ~pE
in (B.4.18) are contained in Ṽ (pE − p′E) for the first two partial vertex functions and an
additional dependence of the form ~p ′~p/|~p ′| |~p | for the last two partial vertex functions.
This is the result of the special choice for the matrix base.

Furthermore, the function s(ip ′4, ~p
′) does not depend on spatial angles (p, p′ are Eu-

clidean vectors now)

s(ip′4, ~p
′) =

1
(−p′2 − κ2)2 + p′24 M

2
=

1
(p′2 + κ2)2 + p′24 M

2

=
1

(p′2 + κ2)2 +M2p′2 cos2 χ
= s(p′2, χ) . (B.6.15)

The expansion of the meson propagator in terms of hyperspherical harmonics is then given
by

G2
0

(p− q)2 + µ2
= 2π2

∑
klm

1
k + 1

Vk(|p|, |q|)Zklm(χ, θ, φ)Z∗klm(χ, θ, φ) , (B.6.16)

where we have defined

Vk(a, b) =
4G2

0

(Λ+ + Λ−)2

(
Λ+ − Λ−
Λ+ + Λ−

)k
, (B.6.17)

Λ± =
√

(a± b)2 + µ2 . (B.6.18)

This result can be derived by rewriting the meson propagator and assuming the following
expansion

1
(p− q)2 + µ2

=
1

2pq
1

z − t
!=
∑
n

Vn(p, q)C1
n(t) , (B.6.19)

with

z =
p2 + q2 + µ2

2pq
, t = cos(p, q) (B.6.20)

where cos(p, q) denotes the cosine of the angle between the four-vectors p and q. These
definitions obey the following properties

z + 1 =
(p+ q)2 + µ2

2pq
, z − 1 =

(p− q)2 + µ2

2pq
. (B.6.21)
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Applying the orthogonality condition (B.6.12) for the Gegenbauer polynomials to (B.6.19)
and making use of∫ 1

−1

√
1− t2C

1
n(t)
z − t dt = π(z −

√
z2 − 1)n+1 , (B.6.22)

one obtains

Vn(p, q) =
1
pq

(z −
√
z2 − 1)n+1 . (B.6.23)

From the definitions of Λ± in (B.6.18) we deduce

Λ2
+ + Λ2

− = 2(p2 + q2 + µ2) , Λ2
+ − Λ2

− = 4pq , (B.6.24)

as well as

z =
1

2pq
Λ2

+ + Λ2
−

2
,
√

(z + 1)(z − 1) =
Λ+Λ−

2pq
. (B.6.25)

Thus, inserting these relations into (B.6.23), one finally arrives at

Vn(p, q) =
4(

Λ2
+ + Λ2

−
)2 (Λ+ − Λ−

Λ+ + Λ−

)n
, (B.6.26)

verifying (B.6.18).
Alternatively and more directly, one can rewrite the meson propagator in terms of Λ±

defined in (B.6.18) giving

1
(p− q)2 + µ2

=
2(

Λ2
+ + Λ2

−
)2 2

1 +
(

Λ+−Λ−
Λ++Λ−

)2
− 2

(
Λ+−Λ−
Λ++Λ−

)2
t
, (B.6.27)

where t is defined in (B.6.20). Using (B.6.13) for α = 1 and x = t, we recover the desired
expansion (B.6.16).

Furthermore, the scalar product of three-vectors in terms of four-dimensional polar
coordinates is given by

~p ~q =
4π
3
|p| |q| sinχp sinχq

∑
m=0,±1

Y ∗1m(θp, φp)Y1m(θq, φq) , (B.6.28)

which can be verified from the corresponding expression for the spherical harmonics Ylm.
We now insert these expansions into the 4 coupled integral equations (B.4.18) and

perform the integration over space angles, giving

g1
K(ip4, |~p |) = 2π2

∑
k=0

∫
dq4 |~q |2 d |~q |

(2π)4
s(q2, χ)

Vk(p, q)
k + 1

{(
M2

4
+ q2 +m2

)
g1
k

+Mmg2
k −M |~q | g3

k

}
Xk,0(χp)Xk,0(χq) , (B.6.29a)
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g2
K(ip4, |~p |) = 2π2

∑
k=0

∫
dq4 |~q |2 d |~q |

(2π)4
s(q2, χ)

Vk(p, q)
k + 1

{
Mmg1

k

+
(
M2

4
+ q2

4 − ~q 2 +m2

)
g2
k − 2m |~q | g3

k

− 2q4 |~q | g4
k

}
Xk,0(χp)Xk,0(χq) , (B.6.29b)

g3
K(ip4, |~p |) = 2π2

∑
k=1

∫
dq4 |~q |2 d |~q |

(2π)4
s(q2, χ)

Vk(p, q)
k + 1

{
M |~q | g1

k + 2m |~q | g2
k

+
(
−M

2

4
− q2

4 +m2

)
g3
k + 2mq4g

4
k

}
Xk,1(χp)Xk,1(χq) , (B.6.29c)

g4
K(ip4, |~p |) = 2π2

∑
k=1

∫
dq4 |~q |2 d |~q |

(2π)4
s(q2, χ)

Vk(p, q)
k + 1

{
−2 |~q | q4g

2
k − 2mq4g

3
k

+
(
−M

2

4
− q2

4 + ~q 2 +m2

)
g4
k

}
Xk,1(χp)Xk,1(χq) . (B.6.29d)

Only two integrations remain. From these expressions one observes that the only depen-
dence of the angle χ of the relative momentum p is contained in Xk,0(χp) and Xk,1(χp)
respectively. Therefore, the partial vertex functions giK(ip4, |~p |) can be written as an
infinite sum over Gegenbauer polynomials

gαM (ip4, |~p |) =
∞∑
k=0

gα,kM (p)Xk,0(χ) α = 1, 2 , (B.6.30a)

gαM (ip4, |~p |) =
∞∑
k=1

gα,kM (p)Xk,1(χ) α = 3, 4 . (B.6.30b)

Time inversion p4 → −p4 translated into spherical coordinates corresponds to a trans-
formation χ → χ′ with cosχ′ = − cosχ. In order to ensure the correct behavior of the
gαM (ip4, |~p |) under this transformation it is sufficient that certain Gegenbauer polynomials
do not appear in the sum depending on which partial vertex function is considered. From
the symmetry properties given in (B.6.5) and the symmetry properties of the partial ver-
tex functions given in (B.5.3) we see that the sums in (B.6.30) do only cover even k or
odd k, according to which partial vertex function is considered. One obtains the following
expressions

gαM (ip4, |~p |) =
∞∑
k=0

gα,2kM (p)X2k,0(χ) α = 1, 2 , (B.6.31a)

g3
M (ip4, |~p |) =

∞∑
k=1

gα,2k+1
M (p)X2k+1,1(χ) , (B.6.31b)

g4
M (ip4, |~p |) =

∞∑
k=1

gα,2k+2
M (p)X2k+2,1(χ) . (B.6.31c)
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Inserting these expansions into the 4 coupled integral equations (B.6.29), multiplying
with Xk,0(χp), Xk,1(χp) respectively, integrating both sides of the resulting equation over∫ π

0 dχp sin2 χp and using the orthonormality condition (B.6.11), one obtains the following
infinite system of coupled integral equations for the coefficient functions gα,nM (p):

g1,2n
M (p) =

∫
dq · q3

8π2

V2n(p, q)
2n+ 1

∞∑
l=0

{
A1,1

2n,2l(q)g
1,2l
M (q) +A1,2

2n,2l(q)g
2,2l
M (q)

+A1,3
2n,2l+1(q)g3,2l+1

M (q) +A1,4
2n,2l+2(q)g4,2l+2

M (q)
}
, (B.6.32a)

g2,2n
M (p) =

∫
dq · q3

8π2

V2n(p, q)
2n+ 1

∞∑
l=0

{
A2,1

2n,2l(q)g
1,2l
M (q) +A2,2

2n,2l(q)g
2,2l
M (q)

+A2,3
2n,2l+1(q)g3,2l+1

M (q) +A2,4
2n,2l+2(q)g4,2l+2

M (q)
}
, (B.6.32b)

g3,2n+1
M (p) =

∫
dq · q3

8π2

V2n+1(p, q)
2n+ 2

∞∑
l=0

{
A3,1

2n+1,2l(q)g
1,2l
M (q) +A3,2

2n+1,2l(q)g
2,2l
M (q)

+A3,3
2n+1,2l+1(q)g3,2l+1

M (q) +A3,4
2n+1,2l+2(q)g4,2l+2

M (q)
}
, (B.6.32c)

g4,2n+2
M (p) =

∫
dq · q3

8π2

V2n+2(p, q)
2n+ 3

∞∑
l=0

{
A4,1

2n+2,2l(q)g
1,2l
M (q) +A4,2

2n+2,2l(q)g
2,2l
M (q)

+A4,3
2n+2,2l+1(q)g3,2l+1

M (q) +A4,4
2n+2,2l+2(q)g4,2l+2

M (q)
}
, (B.6.32d)

where n = 0, 1, 2, 3, · · · and the coefficients Aαβnl (q) are given by the following integrals

A1,1
nl (q) =

∫ π

0
dχ sin2 χS(q, χ)Xn0(χ)Xl0(χ)

(
M2

4
+ q2 +m2

)
, (B.6.33a)

A1,2
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl0(χ) (mM) , (B.6.33b)

A1,3
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl1(χ) (−Mq sinχ) , (B.6.33c)

A1,4
nl (q) =0 , (B.6.33d)

A2,1
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl0(χ) (mM) , (B.6.33e)

A2,2
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl0(χ)

(
q2
(
2 cos2 χ− 1

)
+
M2

4
+m2

)
,

(B.6.33f)

A2,3
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl1(χ) (−2mq sinχ) , (B.6.33g)

A2,4
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn0(χ)Xl1(χ)

(
−2q2 sinχ cosχ

)
, (B.6.33h)
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A3,1
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl0(χ) (Mq sinχ) , (B.6.33i)

A3,2
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl0(χ) (2mq sinχ) , (B.6.33j)

A3,3
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl1(χ)

(
m2 − M2

4
− q2

)
, (B.6.33k)

A3,4
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl1(χ) (2mq cosχ) , (B.6.33l)

A4,1
nl (q) =0 (B.6.33m)

A4,2
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl0(χ)

(
−2q2 sinχ cosχ

)
, (B.6.33n)

A4,3
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl1(χ) (−2mq cosχ) , (B.6.33o)

A4,4
nl (q) =

∫ π

0
dχ sin2 χs(q2, χ)Xn1(χ)Xl1(χ)

(
m2 − M2

4
− q2

(
2 cos2 χ− 1

))
.

(B.6.33p)

From these equations one can read off the following relations among the integrals

A1,2
nl (q) = A2,1

nl (q) , A1,3
nl (q) = −A3,1

nl (q) , A1,4
nl (q) = A4,1

nl (q) , (B.6.34a)

A2,3
nl (q) = −A3,2

nl (q) , A2,4
nl (q) = A4,2

nl (q) , A3,4
nl (q) = −A3,4

nl (q) , (B.6.34b)

which means that the integrals Aα,βnl (q) are symmetric in the upper indices if both functions
Xkl, which occur in the integrals, have the same parity, i.e. either both k are only covering
even values or both are only covering odd values, and antisymmetric if they have different
parity.

To calculate these integrals one can use basic recursion formulas for the Gegenbauer
polynomials, i.e.

2α(1− x2)Cα+1
n−1 (x) =(2α+ n− 1)Cαn−1 − nxCαn (x) , (B.6.35)

(n+ 1)Cαn+1(x) =2(n+ α)xCαn − (n+ 2α− 1)Cαn−1(x) . (B.6.36)

For α = 1, 2 (B.6.35) reads

2(1− x2)C2
n−1(x) =(n+ 1)C1

n−1(x)− nxC1
n(x) , (B.6.37)

4(1− x2)C3
n−1(x) =(n+ 3)C2

n−1(x)− nxC2
n(x) (B.6.38)

and (B.6.36) for α = 2 becomes

xC2
n(x) =

n+ 1
2(n+ 2)

C2
n+1(x) +

n+ 3
2(n+ 2)

C2
n−1(x) . (B.6.39)

Combining these equations, gives

(1− x2)C3
n−1(x) =

(n+ 3)(n+ 4)
8(n+ 2)

C2
n−1(x)− n(n+ 1)

8(n+ 2)
C2
n+1(x) . (B.6.40)
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From (B.6.36) one also derives

xC1
n(x) =

1
2

(C1
n+1(x) + C1

n−1(x)) , (B.6.41)

xC2
n(x) =

n+ 1
2(n+ 2)

C2
n+1(x) +

n+ 3
2(n+ 2)

C2
n−1(x) , (B.6.42)

xC3
n(x) =

n+ 1
2(n+ 3)

C3
n+1(x) +

n+ 5
2(n+ 3)

C3
n−1(x) . (B.6.43)

Using these recursion formulas, one can express products of Xkl(χ) and sinχ, or cosχ
respectively, by sums of Xkl(χ). We list the most important expressions:

Xj1(χ) sinχ =
1
2

(√
j + 2
j

Xj−1,0(χ)−
√

j

j + 2
Xj+1,0(χ)

)
, (B.6.44a)

Xj2(χ) sinχ =
1
2

(√
(j + 2)(j + 3)
j(j + 1)

Xj−1,1(χ)−
√

(j − 1)j
(j + 1)(j + 2)

Xj+1,1(χ)

)
,

(B.6.44b)

Xj2(χ) sin2 χ =
1
4

(√
(j + 2)(j + 3)

(j − 1)j
Xj−2,0(χ) +

√
(j − 1)j

(j + 2)(j + 3)
Xj+2,0(χ)

)

− 1
4

√
(j − 1)(j + 3)

j + 1

(√
j + 2
j

+

√
j

j + 2

)
Xj0(χ) , (B.6.44c)

Xj0(χ) cosχ =
1
2

(Xj+1,0(χ) +Xj−1,0(χ)) , (B.6.44d)

Xj1(χ) cosχ =
1
2

(√
j(j + 3)

(j + 1)(j + 2)
Xj+1,1(χ) +

√
(j − 1)(j + 2)
j(j + 1)

Xj−1,1(χ)

)
,

(B.6.44e)

Xj2(χ) cosχ =
1
2

(√
(j − 1)(j + 4)
(j + 1)(j + 2)

Xj+1,2(χ) +

√
(j − 2)(j + 3)
j(j + 1)

Xj−1,2(χ)

)
.

(B.6.44f)

In particular this is useful, because these recursion formulas can be applied to (B.6.33) so
that the second index is equal in all products XniXlj → XniXli and n, l are both even or
both odd.

Basically, one has to solve the following type of integrals

Slk′k(q) =

π∫
0

dχ sin2 χ
Xk′l(χ)Xkl(χ)
A2 +B2 cos2 χ

A = q2 + κ2 , B = Mq . (B.6.45)
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To calculate this integral we make use of the identity [Pr83]

1∫
−1

dx(1− x2)λ−
1
2Cλm(x)Cλn(x)

1
x− iz

= −2
√
π

Γ(λ)

(
1
2

)λ− 1
2

e(
1
2
−λ)iπ(−z2 − 1)

2λ−1
4 Cλmin(iz)Q

λ− 1
2

max+λ− 1
2

(iz) , (B.6.46)

where Qλm(x) are the Legendre functions of the second kind and min = min(m,n), max =
max(m,n). The integral (B.6.45) then becomes

Slk′k(q) = (−1)l
√

2
π
l!

2l+1

AB

√
(k′ + 1)(k′ − l)!

(k′ + l + 1)!
(k + 1)(k − l)!

(k + l + 1)!

C l+1
min−l(iz)(−z2 − 1)

2l+1
4 Q

l+ 1
2

max+ 1
2

(iz) , (B.6.47)

where max (min) denotes the maximal (minimal) index of k, k′ and z = A
B . We give a

short list of the Legendre functions of the second kind that will be needed

Q
1
2

n+ 1
2

(z) =i
√
π

2
(
z2 − 1

)− 1
4

(
z −

√
z2 − 1

)n+1
, (B.6.48a)

Q
3
2

n+ 3
2

(z) =
(

(n+ 1)zQ
1
2

n+ 3
2

(z)− (n+ 2)Q
1
2

n+ 1
2

(z)
)

1√
z2 − 1

, (B.6.48b)

Q
5
2

n+ 5
2

(z) =
(

(n+ 1)zQ
3
2

n+ 5
2

(z)− (n+ 4)Q
3
2

n+ 3
2

(z)
)

1√
z2 − 1

(B.6.48c)

and some useful relations among them

Q
1/2
n+1/2(iz)

(
−z2 − 1

)1/4 =− in
√
π

2
Zn+1 , (B.6.49a)

Q
3/2
n+1/2(iz)

(
−z2 − 1

)3/4 =− in+1

√
π

2
(
nzZn+1 + (n+ 1)Zn

)
, (B.6.49b)

Q
3/2
n−1/2(iz)

(
−z2 − 1

)3/4 =− in
√
π

2
(
(n− 1)zZn + nZn−1

)
, (B.6.49c)

Q
5/2
n+1/2(iz)

(
−z2 − 1

)5/4 =in
√
π

2

(
n(n− 1)z2Zn+1 + (n− 1)(2n+ 3)zZn (B.6.49d)

+n(n+ 2)Zn−1
)
, (B.6.49e)

where we introduced Z =
(
z −
√
z2 + 1

)
= −1/

(
z +
√
z2 + 1

)
. Only a small number of

the integrals defined in (B.6.45) are interesting for our purpose. For S0
k′k(q) and S1

k′k(q)
one obtains

S0
k′k(q) =

2
AB

(−i)maxC1
min(iz)R0

k′k(z) , (B.6.50a)
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R0
k′k(z) =

(
z +

√
z2 + 1

)−max−1
,

S1
k′k(q) =

4
AB

(−1)maximax+1 C2
min−1(iz)R1

k′k√
k(k + 2)k′(k′ + 2)

, (B.6.50b)

R1
k′k(z) =

(
−maxz

(
z +

√
z2 + 1

)−max−1
+ (max+ 1)

(
z +

√
z2 + 1

)−max)
,

S2
k′k(q) =

16
AB

(−i)max C3
min−2(iz)R2

k′k√
(k − 1)k(k + 2)(k + 3)(k′ − 1)k′(k′ + 2)(k′ + 3)

, (B.6.50c)

R2
k′k(z) =

− max(max− 1)z2(
z +
√
z2 + 1

)max+1 +
(max− 1)(2max+ 3)z(

z +
√
z2 + 1

)max (B.6.50d)

− max(max+ 2)(
z +
√
z2 + 1

)max−1

 .

Using the recursion formulas (B.6.44) for the Aαβnl (q) coefficients, one recognizes that they
can be brought into a form where only even or odd indices appear and the results for the
integrals (B.6.50) read:

for even k, k′

S0
k′k(q) =

2
AB

C1
min(iz)(−1)

max
2 R0

k′k , (B.6.51a)

S1
k′k(q) =

−4
AB

(−1)
max

2
(−iC2

min−1(iz))R1
k′k√

k(k + 2)k′ (k′ + 2)
, (B.6.51b)

S2
k′k(q) =

16
AB

(−1)
max

2
C3
min−2(iz)R2

k′k√
(k − 1)k(k + 2)(k + 3)(k′ − 1)k′(k′ + 2)(k′ + 3)

, (B.6.51c)

for odd k, k′

S0
k′k(q) =

2
AB

(
iC1

min(iz)
)

(−1)
max+1

2 R0
k′k , (B.6.52a)

S1
k′k(q) =

−4
AB

(−1)
max+1

2
C2
min−1(iz)R1

k′k√
k(k + 2)k′(k′ + 2)

, (B.6.52b)

S2
k′k(q) =

16
AB

(−1)
max+1

2

(
iC3

min−2(iz)
)
R2
k′k√

(k − 1)k(k + 2)(k + 3)(k′ − 1)k′(k′ + 2)(k′ + 3)
.

(B.6.52c)

From these expressions one can see, that all integrals are real. We give a list of all the
integrals that are needed to calculate the coefficient functions defined in (B.6.33)∫

dχ sin2 χ
Xk0(χ)Xj1(χ)
A2 +B2 cos2 χ

sinχ =
1
2

√
j + 2
j

S0
k,j−1 −

1
2

√
j

j + 2
S0
k,j+1 , (B.6.53a)
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∫
dχ sin2 χ

Xk1(χ)Xj2(χ)
A2 +B2 cos2 χ

sinχ =
1
2

√
(j + 2)(j + 3)
j(j + 1)

S1
k,j−1

− 1
2

√
(j − 1)j

(j + 1)(j + 2)
S1
k,j+1 , (B.6.53b)

∫
dχ sin2 χ

Xk0(χ)Xj2(χ)
A2 +B2 cos2 χ

sin2 χ =
1
4

√
(j + 2)(j + 3)

(j − 1)j
S0
k,j−2

− 1
4

√
(j − 1)(j + 3)

(j + 1)

(√
j + 2
j

+

√
j

j + 2

)
S0
k,j +

1
4

√
(j − 1)j

(j + 2)(j + 3)
S0
k,j+2 ,

(B.6.53c)∫
dχ sin2 χ

Xk0(χ)Xj0(χ)
A2 +B2 cos2 χ

cos2 χ =
1
4
(
S0
k−1,j−1 + S0

k−1,j+1 + S0
k+1,j−1

+S0
k+1,j+1

)
, (B.6.53d)∫

dχ sin2 χ
Xk1(χ)Xj1(χ)
A2 +B2 cos2 χ

cos2 χ =
1
4
(
c1(k)c1(j)S1

k+1,j+1

+c1(k)c2(j)S1
k+1,j−1 + c2(k)c1(j)S1

k−1,j+1 + c2(k)c2(j)S1
k−1,j−1

)
, (B.6.53e)

c1(k) =

√
k(k + 3)

(k + 1)(k + 2)
, c2(k) =

√
(k − 1)(k + 2)
k(k + 1)

,∫
dχ sin2 χ

Xk2(χ)Xj2(χ)
A2 +B2 cos2 χ

cos2 χ =
1
4
(
d1(k)d1(j)S2

k+1,j+1

+d1(k)d2(j)S2
k+1,j−1 + d2(k)d1(j)S2

k−1,j+1 + d2(k)d2(j)S2
k−1,j−1

)
, (B.6.53f)

d1(k) =

√
(k − 1)(k + 4)
(k + 1)(k + 2)

, d2(k) =

√
(k − 2)(k + 3)
k(k + 1)

,

∫
dχ sin2 χ

Xk1(χ)Xj0(χ)
A2 +B2 cos2 χ

cosχ sinχ =
1
4

(√
k + 2
k

S0
k−1,j+1

−
√

k

k + 2
S0
k+1,j+1 +

√
k + 2
k

S0
k−1,j−1 −

√
k

k + 2
S0
k+1,j−1

)
, (B.6.53g)∫

dχ sin2 χ
Xk1(χ)Xj2(χ)
A2 +B2 cos2 χ

cosχ sinχ =

1
4
c1(k)

(√
(j + 2)(j + 3)
j(j + 1)

S1
k+1,j−1 −

√
(j − 1)j

(j + 1)(j + 2)
S1
k+1,j+1

)

+
1
4
c2(k)

(√
(j + 2)(j + 3)
j(j + 1)

S1
k−1,j−1 −

√
(j − 1)j

(j + 1)(j + 2)
S1
k−1,j+1

)
, (B.6.53h)∫

dχ sin2 χ
Xk1(χ)Xj1(χ)
A2 +B2 cos2 χ

cosχ =
1
2
(
c1(k)S1

k+1,j + c2(k)S1
k−1,j

)
. (B.6.53i)
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Inserting these relations into (B.6.33), we obtain exact expressions for the coefficient func-
tions Aα,βnl (q) for all n, l. Hence, the infinite system of coupled one-dimensional integral
equations (B.6.32) is completely determined and known and can be solved, in principle,
up to arbitrary order in the expansions (B.6.31).

B.7 Numerical Evaluations

Before solving the infinite system of one-dimensional coupled integral equations (B.6.32),
we substitute

q = c0
1 + x

1− x , dq = c0
2

(1− x)2
dx , (B.7.1)

which results in new integration bounds a = −1 and b = 1. The constant c0 is arbitrary.
We map the variable p in the same way. The reason for this mapping will become evident
later on.

In order to solve (B.6.32) the authors in [Do07] developed a method that enables us
to rewrite the system of integral equations as one matrix multiplication and, hence, to
reduce the problem to an eigenvalue problem of a matrix.

The appropriate tool to perform the first step is to rewrite the integrations using Gauß’
numerical integration method. Following Gauß, a good approximation for the integration
of a function f(x) is given by∫ 1

−1
f(x)dx ≈

n∑
i=1

ωif(xi) , (B.7.2)

where xi are the roots of the nth Legendre polynomial, Pn(xi) = 0 and

ωi =
∫ 1

−1

i−1∏
m=1

(
x− xm
xi − xm

) n∏
j=i+1

(
x− xj
xi − xj

)
dx (B.7.3)

are the corresponding weights. Hence, weights and roots are always symmetric and do
not directly depend on the function f(x). (B.7.2) is a good approximation if the function
f(x) can be approximated well enough by a polynomial of the order 2n− 1. For arbitrary
integration bounds a mapping can be performed. Therefore, the mapping defined in (B.7.1)
is a good choice. Of course, any simpler mapping would be as good, but the constant c0

enables us to concentrate the poles xi, when transformed back to momenta qi, at lower
values and thereby emphasizing the scan of lower momenta. In particular, for functions
that tend to zero very fast, this is necessary to obtain a good approximation by the Gauß
method.

If we denote the integration kernels in (B.6.32) as Fαβkl (p, q;M)→ Fαβkl (y, x;M), choose
a fixed order in the expansion (B.6.31), say N = 4, and an appropriate order for the Gauß
integration, say n = 96, the system of integral equations (B.6.32) reads

gαkM (yi) = Fαβkl (yi, xj ;M)gβlM (xj) , (B.7.4)
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where summation over doubled indices is understood and

Fαβkl (yi, xj ;M) = ωj
c4

0

4π2(1− xj)2

(
1 + xj
1− xj

)3 Vk

(
c0

1+yi
1−yi , c0

1+xj
1−xj

)
k + 1

Aαβkl

(
c0

1 + xj
1− xj

)
.

(B.7.5)

The dependence on M is encoded in the functions Vk and Aαβkl . Rewritten in matrix form

~gM = F (M)~gM , (B.7.6)

where we have defined

~gM =
(
g1,0
M (y1) . . . g1,0

M (yn) . . . g1,6
M (y1) . . . g1,6

M (yn) . . . g4,8
M (yn)

)T
(B.7.7)

and

F =



F 1,1
0,0 (y1,x1)... F 1,1

0,0 (y1,xn)... F 1,1
0,6 (y1,x1)... F 1,1

0,6 (y1,xn)... F 1,4
0,8 (y1,xn)

...
F 1,1

0,0 (yn,x1)... F 1,1
0,0 (yn,xn)... F 1,1

0,6 (yn,x1)... F 1,1
0,6 (yn,xn)... F 1,4

0,8 (yn,xn)

...
F 1,1

6,0 (y1,x1)... F 1,1
6,0 (y1,xn)... F 1,1

6,6 (y1,x1)... F 1,1
6,6 (y1,xn)... F 1,4

6,8 (y1,xn)

...
F 1,1

6,0 (yn,x1)... F 1,1
6,0 (yn,xn)... F 1,1

6,6 (yn,x1)... F 1,1
6,6 (yn,xn)... F 1,4

6,8 (yn,xn)

...
F 4,1

8,0 (yn,x1)... F 4,1
8,0 (yn,xn)... F 4,1

8,6 (yn,x1)... F 4,1
8,6 (yn,xn)... F 4,4

8,6 (yn,xn)


. (B.7.8)

We abstained from indicating the dependence on M here.
If one is just interested in determining the bound state mass M , it is sufficient to solve

the equation

det(F (M)− 1) = 0 . (B.7.9)

For the mass of the interaction particle being µ = 0.15 GeV, a nucleon mass of m = 1 GeV,
a coupling strength of G2

0 = 10 GeV and the constant c0 = 1, we determine the bound state
mass to be M = 1.974 GeV.2 The convergence of the expansion (B.6.31) is very good and
only a few terms have to be taken into account. If only the first two terms are taken into
account, a mass of M = 1.975GeV is derived. This can also be seen from figs. B.7.1, B.7.2,
B.7.3 and B.7.4. The dominant contributions are g1,n

M (p) and g2,n
M (p), whereas g3,n

M (p) and
g4,n
M (p) are comparatively small.

However, the complete eigenvalue problem can easily be solved if the bound state mass
M is determined. In the following figures we display all vertex coefficient functions.

2The Deuteron mass is 1.876 GeV. The difference is no surprise, as we only considered the 1S0 channel
and a scalar coupling.
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Figure B.7.1: Coefficient functions g1,0
M (p), g2,0
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Figure B.7.2: Coefficient functions g1,2
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Figure B.7.3: Coefficient functions g1,4
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Figure B.7.4: Coefficient functions g1,6
M (p), g2,6

M (p), g3,7
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M (p).

As stressed above, this appendix is a recollection of a useful method for treating rela-
tivistic two-body bound states. Following [Do07] the essential formulae are listed, however,
for the special case of the deuteron 1S0 state. Further developments are envisaged to deal
with the J/Ψ or Υ, using this method, and, after extending this approach, with D mesons,
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too. The basic idea is to employ interactions calculated within lattice QCD at finite
temperature, thus having an alternative approach to medium modifications of hadrons
composed of heavy quarks.





Bibliography

[Al83] T. M. Aliev, V. L. Eletsky, Sov. J. Nucl. Phys. 38, 936 (1983).

[Br01] I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Harri Deutsch,
2001).

[Ch82] K. G. Chetyrkin, F. V. Tkachov, S. G. Gorishnii, Phys. Lett. B119, 407 (1982).

[Cu54] R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

[Ra81] E. de Rafael (1981), talk given at NSF-CNRS Joint Seminar on Recent Develop-
ments in Quantum Chromodynamics, June 1981.

[Do07] S. M. Dorkin, M. Beyer, S. S. Semikh, L. P. Kaptari, Two-fermion bound states
within the bethe-salpeter approach. arXiv:0708.2146 [nucl-th] (2007).

[Er55a] A. Erdelyi, Higher Transcendental functions Volume II (McGraw-Hill, 1955).

[Er55b] A. Erdelyi, Higher Transcendental functions Volume III (McGraw-Hill, 1955).

[Fe71] A. L. Fetter, J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-
Hill, 1971).

[Fr95] E. Freitag, R. Busam, Funktionentheorie (Springer, Berlin, 1995).

[Fu92] R. J. Furnstahl, D. K. Griegel, T. D. Cohen, Phys. Rev. C46, 1507 (1992).

[Ge51] M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951).

[Ge83] S. C. Generalis, D. J. Broadhurst, Phys. Lett. B139, 85 (1984).

[Gr84] W. Greiner, J. Reinhardt, Quantelektrodynamik, vol. 7 of Theoretische Physik -
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und facettenreich Thema meiner Diplomarbeit, die fortwährende fachliche Unterstützung
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