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Abstract

The modifications of hadronic properties caused by an arhbigciear medium are investigated
within the scope of QCD sum rules. This is exemplified for thees of thew meson, the nucleon
and theD meson. By virtue of the sum rules, integrated spectral tieasdf these hadrons are
linked to properties of the QCD ground state, quantified indemsates. For the cases of the
w meson and the nucleon it is discussed how the sum rules all@staction of the parameter
range of poorly known four-quark condensates by a compamg@xperimental and theoretical
knowledge. The catalog of independent four-quark condesada covered and relations among
these condensates are revealed. The behavior of four-qoadensates under the chiral symmetry
group and the relation to order parameters of spontanedras shmmetry breaking are outlined.
In this respect, also the QCD condensates appearing imahifes of sum rules of chiral partners
are investigated. Finally, the effects of an ambient nualeedium on theD meson are discussed
and relevant condensates are identified.

Kurzfassung

Die Veranderungen von Hadroneneigenschaften durch egebendes nukleares Medium (Kern-
materie) werden mit der Methode der QCD-Summenregeln suntbt. Dies wird am Beispiel des
w-Mesons, des Nukleons und dBsMesons vorgefiihrt. Durch die Summenregeln werden inte-
grierte Spektraldichten dieser Hadronen in Beziehung gar&chaften des QCD-Grundzustandes,
quantifiziert in Kondensaten, gesetzt. Diskutiert wird agispiel desv-Mesons und des Nuk-
leons, wie diese Summenregeln eine Einschrankung desBaidereiches von wenig bekannten
Vierquark-Kondensaten durch Vergleich von experimeatelind theoretischen Erkenntnissen er-
lauben. Ein Katalog unabhangiger Vierquark-Kondensdtd aufgestellt und Relationen zwi-
schen diesen Kondensaten werden deutlich gemacht. Daal¥erider Vierquark-Kondensate
unter der chiralen Symmetriegruppe und der Zusammenhan@nainungsparametern spontaner
chiraler Symmetriebrechung werden behandelt. In diesasitfit werden auch die in Diffe-
renzen der Summenregeln chiraler Partner eingehenden Kbbensate untersucht. Schlie3lich
werden die Effekte endlicher Kerndichten beiliMeson diskutiert und relevante Kondensate
identifiziert.






Contents

1 Hadronsin Medium . ... ..o e et i i 7
1.1 Probing Strongly Interacting Matter . . . . . ... ... ... ........ 7
1.2 Experimental Status and Perspectives . . . . .. .. ... ... ...... 9

2 QCD SumRUIES IN MeIUM ... e et e 13
2.1 Motivation: The VacuumCase . . . . . . . . . . . . vt timu 13
2.2 GeneralizationtoMedium . . . . .. ... . L e 17

2.21 DispersionRelations . . . . .. .. .. ... .. . e 17
2.2.2 \Weighted Spectral Moments . . . . . . .. .. ... .. .. ... 20
2.2.3 Operator Product Expansion . . . . . ... .. ... ... ...... 22
23 QCDCondensates . . . . . . . . i i e 24
231 Symmetriesof QCD . . . . . . . .. . ... e 24
2.3.2 CatalogofQCDCondensates . . . .. ... .. ... ... ...... 30
2.4 Four-QuarkCondensates . . . . .. ... .. .. .. 34
2.4.1 Projection and Classification . . . .. .. .. ... ... ... ... 35
2.4.2 Factorization and Parametrization of Four-Quarkdéosates . . . . . . 37

2.4.3 Four-Quark Condensates as Chiral Order Parameters..... . . . .. 42

3 Analysisof QCD SUM RUIES ... ..o e e 51
3.1 LightVector Mesonsuv Meson . . . . . . . . . . ... 51
3.1.1 HadronicModels . . . . . ... ... 51
3.1.2 QCDSumRUle . . ... ... .. . e 53
3.1.3 Constraints on Four-Quark Condensates . . . .. .......... b5b5
3.2 Light-Quark Baryons: Nucleon . . . . . .. ... .. .. ... ... ..... 61
3.21 QCDSumRule Equations . .. .. ... ... ... .. .. .. ..... 62
3.2.2 Impact of Four-Quark Condensates . . ............ ... 66
3.3 Pseudoscalar Heavy-Light Quark MesobsMeson . . . . . . ... ... ... 77
3.3.1 Operator Product Expansion for Heavy-Light Quark&ys . . . . . . . 77
3.3.2 QCDSumRulesforthBMeson . . ... ................ 79
3.3.3 MasssplittingoDtandD~ . . . ... ... ... 80
A SUMIMABIY . .ottt et e et e et e et e e e e e e e e e 83
Y 0] 1= o | 85
A Borel Transforms ... ..o 85

B Operator Product Expansion Techniques ............coot it 87



Contents

6
C Addendum: Four-Quark Condensates..........ccoviiiin ottt 91
C.1 Alternative Derivation of Pure-Flavor Four-Quark Cendate Interrelations . . . 91
C.2 Four-Quark Expectation Values in the Nucleon 92
C.3 Basis Transformations . . . . . . . . . . . . . . . .. e e 92
D LISt Of ACTONY IS .. oottt e et e e 95
99

Bibliography ...



1 Hadrons in Medium

1.1 Probing Strongly Interacting Matter

Hadrons are the observed physical degrees of freedom dftmgsnteraction at low temperatures
and densities or in vacuum [1]. However, it is necessary lateethe measured properties of
hadrons to the fundamental theory of the strong interactiQnantum Chromodynamics (QCD).
The degrees of freedom in this local gauge theory are thekgaend, as gauge bosons, the gluons.
These fields are said to be confined in hadrons, since quadkglaons have not been observed
as asymptotically isolated particles (confinement hypo#f)eNevertheless, the mass of a hadron,
formed out of quarks and gluons, should be explained by QGBrpeters. Since the sum of the
current quark masses is orders of magnitude below the hawlasses, the latter must be generated
from the interaction energy in the theory of QCD. The hadraasses are thus related to the
properties of the QCD ground state, which has a highly nietatrstructure. A relation between
QCD parameters and the hadronic spectrum is impeded by tieriggroblems of low-energy
QCD. In the high energy limit, many observables can be caled| within perturbation theory
where the running coupling is small enough to allow for a ymbdtive expansion of scattering
probabilities due to asymptotic freedom. While going sapsatly to lower energy scales, the
running couplinga; increases and the expansion in powers of the coupling strdsgcomes
invalid.

Suitable tools to explore the structure of low-energy QCIelation to properties of hadrons
are among others "lattice QCD”, chiral effective field thgaoinstanton models and QCD sum
rules. The former is based on a computational treatmenteafidory on a discretized space-time
lattice with sophisticated algorithms. With improving comtational resources it approaches a
realistic prediction of QCD observables. Unfortunatety humerical results obtained therefrom
often have to be extrapolated to physical values of the goegses. The second approach con-
tains effective fields for the hadrons and suitable intégmadierms from which self-energies and
scattering processes etc. can be evaluated once a uniqdieufikmown constants is at our dis-
posal. Instanton models describe special features of tHe @6Gund state by the density and size
of instanton configurations, which are classical solutiohthe equations of motion.

In this work, the approach of QCD sum rules (QSR) is focusedtawvas originally formulated
by Shifman, Vainshtein and Zakharov [2, 3] to describe famegle masses of light vector mesons
in vacuum [4]. The method since then gained attention in maageapplications, e.g. to calculate
masses and couplings of low-lying hadrons, magnetic masnext. (cf. [5—7]). Its particular
meaning is that numerous hadronic observables are didatklyd to a set of fundamental QCD
quantities, the condensates.

Condensates are ground state expectation values of QCDpahdysquantify the complexity
of the QCD ground state. In QCD sum rules, the condensatestecsur as power corrections of
a perturbative expansion and dominate the low-energy lehafr QCD. One expects then that
condensates should determine the properties of hadronglasAithough the method does not
claim to be a precision tool it is quite meaningful since ih d@ applied to numerous hadronic
observables using a unique set of condensates. Furthesmoieof these condensates are directly
linked to symmetries of QCD and can measure symmetry voiati
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Especially useful becomes this approach when one is itket@schanges of hadron properties.
Such modifications can arise in a medium of non-vanishingpegature or density. The investi-
gation of these modifications sheds light on the complex mpicstate of QCD. Changes in this
ground state are expected to be reflected in its excitatientspm, analogous to the changes of
atomic excitation spectra embedded in external electroetagfields (Stark and Zeeman effects).
The excitations of the QCD ground state are the hadrons,henddrresponding external field is
represented by the surrounding nuclear matter. Hadrorfseimwclear medium therefore probe
this ground state by the modifications they perceive (seelFlg.

.

Bt

S

medium

vacuimn

Figurel.1: lllustration of the modification of hadronic properties imadium:
The hadron, in this case a proton (left panel), charact@bygehe nucleon mass
My = 938 MeV in vacuum, is injected into nuclear matter of neutrons and
protons (right panel). There it probes the finite densityestand, vice versa,

is modified in the vicinity of surrounding nucleons. One plolgsconsequence

is that the probe changes its self-energies (mass) whendsfaten such a
medium.

The method of QCD sum rules was therefore extended to noshiag temperatures [8] and
densities for vector mesons [9] and nucleons [10]. With tlegping of hadronic properties onto
expectation values of the QCD ground state via QCD sum rtilescomes possible to study the
change of the condensates itself and especially of ordanpseters of characteristic symmetries.
The non-zero chiral (two-quark) condensate, for examplaipéts the spontaneously broken chiral
symmetry of the QCD Lagrangian. The decrease of this cordenas expected while approach-
ing the quark-gluon plasma region in the QCD phase diagraarge densities or temperatures,
respectively, would indicate the partial restoration of@hsymmetry. Therewith related, a hy-
pothesis of Brown and Rho [11] received much attention. Adicgly, the masses of vector
mesonsn"” change like the chiral condensdtgy) asm" /m{ « [(qq) / (3q),]*. The qualitative
expectation is, that at larger densities or temperaturesiéicrease of light vector meson masses
signals the partial restoration of chiral symmetry. (Thessuipt '0” denotes the vacuum values,
the parametet has to be determined from theory or experiment [12].) Therassl symmetry
restoration is extensively studied because of its role fiase transitions between phases of QCD,



1.2 Experimental Status and Perspectives 9

especially the phases of hadronic matter versus deconfiati@mof quarks and gluons. The chi-
ral condensatégq) represents here an important order parameter. Furtheriinereited scaling
hypothesis as well as the simplified formula of loffe [13] fbe nucleon mass\/y  (Gq), indi-
cate that the creation of hadron masses originates from ensymy breaking principle as familiar
from the Higgs mechanism in the electroweak sector of thadsétal Model. The pseudoscalar
Goldstone bosons induced by the spontaneous breakingraf shimmetry are identified with the
isotriplet of pions (forn; = 2 flavor degrees of freedom). Although the symmetry is stilidva
for a massless Lagrangian density, the specification of angkatate restrains the symmetry in
the observed hadronic spectrum where, for example, partiepposite parity exhibit significant
mass splittings, e.gn, — m,, ~ 450 MeV. Therefore, spontaneously broken symmetries are
also termed hidden symmetries.

The investigation of hadrons with QCD sum rules howeveraks/that the relation of masses
to QCD condensates is more elaborate than e.g. suggestedwnRho scaling. Especially, the
impact of various combined condensates hinders simplengcaiguments. This work discusses
such applications for (a) light vector mesons, preferdiptihe w meson, (b) the nucleon, i.e.
proton and neutron, and (c) tli2 meson. The chosen examples constitute also three conuaiptio
interesting cases for QCD sum rules. Whereasttand w mesons (a) have been the initial
examples at the event of QCD sum rules [4], baryon sum rulesatenew aspects due to the
fermionic character of the considered hadrons. This exéiegpthe differences between QCD sum
rules for two- and three quark systems. The case ofitlmeson, on the contrary, is distinguished
by the large charm quark mass entering the QSR equationseadd to qualitative new aspects
when setting up QCD sum rules. Our investigations will mafokcus on effects in a region of the
QCD phase diagram close to the vacuum case, especially Hidansities and zero temperatures.

1.2 Experimental Status and Perspectives

The theoretical expectations about modifications of haslatrfinite densities and temperatures
have triggered several experiments to explore such effdntparticular the above Brown-Rho
relation suggested that measuring a mass shift of a hadremsmguantifying a change of the
chiral condensate. Generally one can distinguish betwgparienents where the hadrons in a
medium are produced at high energies or at relatively lowges

In the first case, in high energy collisions of ions, i.e. Busknucleus collisions, the concise
identification of medium modifications depends on the coteplederstanding of the reaction pro-
cesses. Measured spectra are then integrated over thpda#-4ime evolution of the reaction, par-
tially far from equilibrium, and other effects contribugirsimilar as the impact of medium effects
have to be rather well understood and under control. Edpgciat only the nucleus-nucleus col-
lisions have to be investigated, but also the correspongliotpn-proton as well as proton-nucleus
collisions, which, mainly free from medium effects relatedcompressed nuclear matter, define
as normalization what is meant with medium modifications @at-manishing nuclear densities.
Possible changes of vector mesons, e.g., can be measurkditbgitect electromagnetic decays
into di-leptons. These probes have been favored since thigyirderact electromagnetically and
can thus leave the hot and dense interaction zone nearlgturiaitd by secondary reactions.

First experimental results for an affecteaneson mass came from CERES at the CERN SPS
where an unexplained excess in low invariant mass di-eledpectra was observed [14]. Im-
provement of statistical accuracy and mass resolutiomaltiica more sensitive investigation of the
intermediate medium-modifiedmeson. Therewith the measurements of muon pairs at the CERN
SPS by the NAGO experiment also revealed an excess at lowdnvanasses [15, 16]. The recon-
structed spectral function of themeson showed a strong broadening, but a significant mass shif
could not be discovered. This seems to be incompatible witple "moving mass scenarios” as
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e.g. predicted by the above Brown-Rho scaling of the vecsan mass [11, 12]. Contrary, the
E325 experiment at KEK, which also aims on modifications efittmediump- andw-spectrum
claimed a decrease of the meson mass from measured dectgreleairs [17]. The High Ac-
ceptance Di-Electron Spectrometer (HADES) at GSl is design measure the electromagnetic
decays of light vector mesons with high resolution in pradod heavy ion collisions [18]. It pro-
vides a dedicated test of assumptions about medium modisabf spectral functions from the
ratios of nucleus-nucleus, proton-nucleus and prototsproollisions.

Alternatively, one can provide vector mesons by photo-teduproduction on various targets.
In this scenario the experimental situation can be muctebetiepared and characterized. An
observation of additional spectral strength of theneson at lower invariant masses in photopro-
duction experiments was reported by CB-TAPS, identifiedth@decay channel — 7y [19].
The excess of decay strength appeared there when niobigeadhsf liquid hydrogen was used
as target, allowing a comparison between non-vanishinggeaudensities and the vacuum limit.
Also CLAS at JLAB studied the photoproduction of vector nreson various nuclei by the mea-
surement of the di-lepton decay products [20]. Therefdifergint averaged nuclear densities were
provided with the target nuclei carbon, iron, and titaniumd aompared to spectra obtained with a
liquid deuterium target, which represents the nearly wtddfd vacuum reference probe. Prelimi-
narily, no indications for a modification of themeson mass have been found there. Instead, both
experiments see a significant broadening of vector mesoasriadium, for thev [21] as well as
for the p meson [22, 23].

Nevertheless a dedicated analysis of these data is reqnitamth scenarios, hadrons at high
or low energies, to disentangle the effects of creation away of the investigated hadron and es-
pecially the final state interactions of the decay prodigitge the spectral function is not directly
observable. An analysis of the CB-TAPS data suggests somneziftg of thew meson mass when
embedded in medium [24]. This is accompanied by collisidtmahdening, the impact of hadron
scatterings on the measured decay spectra. Based on thanexqial finding, that they meson
mass is not increasing, constraints for condensates inumecibuld already be derived [25], and
this derivation will be covered in this thesis.

Also for the formation of nuclei does the in-medium behawbhadrons play a significant
role. A stable description of nuclear matter requires campting effects of vector and scalar
nucleon self-energies. The spectral function of the nutleoits in-medium self-energies can-
not be measured directly, however, they have been detednoinghe basis of realistic nucleon-
nucleon potentials in the framework of chiral effective di¢heory [26]. The provided density
dependent self-energies can be compared to QSR predieti@hthereby deliver restrictions on
the in-medium behavior of specific condensate combinafi@rik as will be demonstrated in the
course of this work.

The upcoming experimental possibilities of FAIR at GSI ext¢he studies of medium mod-
ifications from the light-quark sector to hadrons containtieavy quarks as well. Especially, the
modifications of theD) meson spectra are intended to be investigated. Theref@&€BM exper-
iment uses the high beam intensities of accelerated heagy[&8]. The PANDA experiment is
designed to use the provided antiprotons for collisiong.[2Z®ese explorations and further data
from HADES, JLAB, KEK and CERN bear encouraging prospectsafounderstanding of QCD
matter and hadrons at various densities and temperatures.
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Structure of the Thesis

The thesis is organized as follows. Hereafter this intréohycChapter 1, we introduce in Chapter 2
the ingredients of QCD sum rules, starting from dispers@ations connecting the hadronic spec-
tral representation of a hadronic correlator with the esgians obtained from an operator product
expansion. Here also the QCD condensates and related syiesnat QCD are explained. A
separate section is devoted to the discussion of four-quamklensates, which is one result of the
present thesis. Chapter 3 contains the analytical and ncahegsults obtained for the meson,
with additional remarks on the meson. Also the nucleon and tliemeson cases are considered
there. Conclusions and summary can be found in Chapter Aelagpendices, technical details
required for the presented calculations are supplemented.

It should be mentioned that parts of the material of thisithias been published in [25, 27,
30-33]. Yet unpublished material can be found in Chapter I#&re details of the construction
of in-medium sum rules are given and the role of four-quankdemsates in the context of chiral
symmetry breaking is pursued. Furthermore, in Chapter &iaddl details on the evaluation of
the sum rule results are collected. Technical details lysnat published are also compiled in the
appendix to complete the thesis.






2 QCD Sum Rules in Medium

The expected modifications of hadron properties insideganchatter are caused by the strong
interaction and therefore have to be described within thméwork of Quantum Chromodynam-
ics (QCD), if one tries to establish an approach on a fundémhéevel. A possibility to cir-
cumvent the complications with this non-abelian theoryhveikact local gauge invariance in the
non-perturbative sector is provided with QCD Sum Rules (SRese have originally been in-
troduced for the description of vacuum masses of vector nel) 4]. Subsequently, numerous
applications of these ideas widened the scope of this meg#ggdto baryon masses [13]. Further
generalizations of this approach addressed propertieadastiic coupling constants [34] or form
factors [35] etc. More recent developments are applicati@nQCD sum rules to conjectured
penta-quarks [36] or tetra-quark states [37]. In our cdntédse extension of QCD sum rules to
properties of individual hadrons embedded into a stronglgracting medium at non-vanishing
temperatures and densities [8] is particularly importdiie application of the method in the case
of finite nuclear density and zero temperature will be codénehis thesis.

2.1 Motivation: The Vacuum Case

For didactic simplicity we follow the historical line anddia with the vacuum case to supply the
general ideas and terminology. It is intended as genenaldattion to the method, and a lot of
aspects will be deepened within the course of the genetializtp the medium case further below.

QCD sum rules link hadronic observables and parameterseaiiriderlying theory of strong
interaction - QCD. This correspondence is achieved by aedsspn relation which connects ranges
of distinct hadron momenta. The mass, and this will be ther@sting quantity throughout the the-
sis, is encoded in the hadronic correlation function, t.determines how the hadron propagates.
Strictly speaking one shall only refer to the spectral dgres introduced later. (For other appli-
cations suitable correlation functions can be adoptedn&tance three-point functions for hadron
couplings [5].)

The correlation function or current-current correlatothe hadron fieldh is the Fourier trans-
form of the time-ordered expectation value in the physic@Dyround stat¢¥)

" (q) = z'/d%c " (U |T [h(z)R(0)]| T) , (2.1)

if we consider the hadrons as fundamental degrees of freeli@an be expressed in terms of the
partonic decomposition of the specific hadron, that meamgibyks and gluons. Any interpolating
field or currentn, built as product of quark and gluon fields, which carriesghantum numbers
of the investigated hadron, can lead to a non-vanishingixnaement between vacuum and the
hadron state

(¥[n(0)|h(p, s)) = \ntp(p,s) s An#0. (2.2)

The statglh(p, s)) is a single hadron state with momentynand spins. The hadrom. is con-
sidered here a spi@—particle with Dirac spinor)(p, s). In principle, the field operators, n and
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the correlation functiodI” can have a complex Lorenz structure. This is neglected iprsent
example but can be found e.g. in Section 3.1 aboutuithmeson example. (The translation to
mesons requires the replacement.diy ! in Eq. (2.1); appropriate wave functions in Eq. (2.2)
are then Klein-Gordon fields.)

Practical applications are mostly restricted to simplenf®of hadron interpolating fields,
which do not contain derivatives of field operators. The&ator then becomes

mm:i/meNwmmummmww (2.3)

This is the central quantity to be considered. In contragirto(2.1) the functiodl solely contains
the quark and gluon degrees of freedom. The coupling fagidretween the interpolating fielg
and the physical hadron staliehas to be respected when comparing to hadronic modeB/for
Eg. (2.3) is the standard form given in the literature adist@point for the QSR derivation.

This ansatz already contains a further severe restrictidhd interpretation of QSR results.
It includes besides the hadragnalso any other hadron configurations with the same quantum
numbers, like excitations df or even multi-particle states. This becomes obvious frognntro-
duction of the spectral function into Eq. (2.3)

M(q) = — / dqé[ p(q) n p(q) ’ (2.4)

qo — g +i€  qo — qp — e

the Kallen-Lehmann representation, which follows diyegthen writing out the time ordering

with the integral representation of the Heaviside stegtion 0(t) = 5 [ da e’ /(a — ic)
and implies the definition of the spectral densities
1 .
pla) = o= [ dtac (@ n()n0)] V) 25)
~ 1 1qx = T
)= 5= [ 'z (v i O @) 0)" 26)

In this example for fermions, the transposed Dirac strest@nsure the correct matrix formjn
In general, the spectral functions for particleand anti-particleg are independent. However, for
the vacuum case these functions are related@ap = —5(—w) due to the symmetries of the QCD
ground state. The correlation function has thus in vacuueidhm

I(q) = l/OOO ds L) (2.7)

0 s—q%

The dependence d@f on ¢? is justified by the Lorentz invariance of the QCD vacuum. Blydn
ducing a complete set of hadronic eigenstates into the defini

p(a) = (2m)* Y 6W(q = Py — Pu)(W|n(0)|n) (n|7(0)|¥) (2.8)

n

contains all configurations which couple with the right quam numbers\,, # 0 as claimed.

In vacuum one can choose a suitable frame, where the fouremimm of the ground state
Py is zero. Since the QSR will determine basically the coroglahat means only the integrated
spectral strength, the determination of individual hadrgmoperties also relies on the assumption
that the lowest lying hadron dominates the spectral integira this simplified case all higher
states are negelected in the sum avemd summarized into a (yet to be determined) continuum
contributionp<°™. This leads with Eqg. (2.2) to

p(q) = (21)* Y 6N (q = p) ¢ (p, )P (p, 5) + O(¢° — 50)p™"(q) - (2.9)
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It is common praxis to approximate the continuum p#ft* by the so called semi-local quark-
hadron duality hypothesis: The hadronic continuum is switetl by the contribution of quark
and gluon degrees of freedom to the correlator at asymptiytiarge momenta (local hypothesis).
Actually, this local demand can be weakened, since onlyntegrated form is required (semi-local
hypothesis). This allows for local oscillations around ésgmptotic limit of perturbative QCD.

Im ¢* ‘

]

OPE < Re q2

Figure2.1: In the vacuum case the shown (blue) contour in the complerepla
of ¢% is used to derive dispersion relations which relate the atpeproduct
expansion (red dot with label OPE) to the hadronic represgiemtof the corre-
lation function on the real axis witRe ¢ > 0.

The correlation function Eg. (2.3), so far expressed intiidrdegrees of freedom for physical
momentay? (the positive real axis in Fig. 2.1) can on the other hand h&ueted at large Euclidean
momenta (the negative real axis in Fig. 2.1). Assuming dititly of the correlation function, its
values on the positive and negative real axis can be relateddispersion relation. Therefore,
consider the Cauchy integral representation of an analyfimction

I(¢*) = L[ g 1) ;
21 Jo o s —¢?
whereby the integral contodtis shown in Fig. 2.1. The poles of the integrand on the pesital
axis are thereby excluded. A decomposition of the contbur the limits of infinite radiusk of
the circle and infinitesimal exclusion of the positive redbaields

1 il 1 [ Al
H(e?) = 5— as 15 4 1 / ds20E) (2.12)
R—oo 5S4 T Jo $—4q

(2.10)

The discontinuity along the positive real axis
1
All(w) = % lin% [II(s + ie) — II(s — ie€)] (2.12)
can by the Schwartz reflection principl&(s*) = II*(s) be transformed, and is related to the
spectral density

ATI(s) = ImII(s) = p(s) . (2.13)
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If the integral along the infinite circle vanishes, the dispgen relation

I(¢*) = %/OOO dsﬁlj—(q‘? : (2.14)

is the starting point for the celebrated QCD sum rule. It nasito calculate the correlator, here on
the L.h.s., in terms of quarks and gluons. kér< 0 this can be performed via Wilson’s operator
product expansion (OPE) [38]. It is an expansion of nonlpcatucts of operatord and B

A(z)B(y) = Z Ci(z — y)O; (2.15)

into local operator®); accompanied by Wilson coefficient§ which are singular as — y. The
operatorsQ; are sorted such that the degree of singularity increasdsimdex i, and also the
operator dimension due to the constant overall mass dimemsithis expansion. In momentum
space it becomes

[ d'a e a@)BG) = Y G0 (2.16)

with C; x ¢~ ("t"), wheren is a fixed number depending on the mass dimension of the produc
A(z)B(y). For time-ordered products, as the correlation functiorf2ii4), this expansion is
equally possible and since ground state expectation valgesonsidered one is naturally lead to
asum

I(q%) = Z Ci(q®) (05) . (2.17)

The local expectation value®);) = (¥ |O;| V) are termed QCD condensates. Condensates
quantify the complex behavior of the QCD ground state. Agensal numbers they occur in many
QCD sum rules and are not restricted to a QSR for a specifiohadfioreover, also qualitative
information about symmetry properties of QCD are partialtigoded into QCD condensates. The
leading term, the coefficient of the identity operator, esgnts, besides possible renormalization
corrections, the perturbative QCD result. The QCD sum r2ig4) thus has the form

[T atE - Y aw o (2.18)

5 — q2

The hadronic part in integrated form (left hand side) is aeteed by a set of power corrections in
inverse momenta which are weighted by QCD condensated fragid side). In this argument we
have neglected the first integral contribution in Eq. (24499uming sufficient convergence of the
integrand ag? — oo. Otherwise the circular integral does not vanish but cayeinto a finite
polynomial [39]. Reversing this, the subtraction of a fipptdynomial of suitable degree resolves
the problem. Note, that this is equivalently obtained whanting with a dispersion relation for
the derivative oflI(¢?). There remains the subtlety that the degree of this polyabenid the
coefficients had to be found. This can be dealt with using theeBransformation under which
any polynomial vanishes. Such technical aspects are puetipim the more detailed section on
in-medium QCD sum rules and to the appendix.

In summary, this motivation shows how spectral propertidsadrons, entering the hadronic
integral, are related to characteristics of QCD collectethé condensates. These two sides of the
dispersion relation Eq. (2.18) build the QCD sum rule and grinciple also holds for any other
applications of the method.
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2.2 Generalization to Medium

The introduction to QCD sum rules will now be extended to a immadwhich in the thermo-
dynamic limit is characterized by the baryon densitynd the temperatur@. In this section
especially new aspects in the medium case shall be descrithgthermore, important technical
details are given to strengthen the conceptional ideagpred in the previous motivation.

2.2.1 Dispersion Relations

In a thermodynamic system the propagation of a hadron pgabie medium characterized by the
four-velocity v, is described by the Gibbs averaged correlation functioe€¢@s function)

T(g,v) = i / a9 (T [n(2)(0)))) (2.19)

We concentrate on the fermion example, in the bosonic casddhvation of the dispersion rela-
tions proceeds in the same way.
The Gibbs averaged expectation value of an opei@tsrdefined as

. _Tr(@e—ﬁ(fi—um)
((0)) = Te(e FA-RR)) (2.20)

with the Hamilton operatof{, particle number operata¥, chemical potential and 3 = -1~
(T is the temperature anfds the Boltzmann constant). The trace represents the sunmater
the complete sets of states to any particle numBérsThe Gibbs averaged correlation function
possesses poles above and below the real energy axis. Thenmgeheralization of QCD sum

rules in [8] resorted to the retarded (advanced) correidtinctions
(g0 = i [ o c™ ((n(o)n(0)) Ol 2.21)
T (q,0) = =i [ dtoc (7 O (@) (-a0). (2.22)

which are analytic in the upper (lower) half energy planeim B.2. However, if one evaluates the
correlation functions far off the real axikn qp # 0, the distinction between the causal, retarded
and advanced correlators has no importance [40]. The cantourig. 2.2 avoid the branch cuts
close to the real axis, and we choose for the derivation giedgon relations the case of the time-
ordered correlation function. Note that the following argant can be repeated separately for the
retarded and advanced correlators.

Since the operator product expansion is valid for large eljacEuclidean momentaQ? =
¢®> < 0, as applied in Fig. 2.1, one has to analytically continuedbeelation functionlI(qg)
to imaginary values ofj, (Wick rotation). Thus ifgy = ig{, with ¢, € R and sufficiently large
qh > |¢| for fixed g, the conditiong® < 0 is always fulfilled, and there the OPE representation can
be used. Assuming the analyticity of the correlation fumtin the whole complex energy plane
except the previously discussed region close to the (palygieal axis one can apply Cauchy’s
integral formula to relate the operator product expansiaé upper or lower complex plane

. I1(a) I1(a)
H(qo)—% </01 daa—qo —I—/C2daa_q0> (2.23)

to the hadronic representation on the real energy axis, ige@ B. One of the integrals vanishes
depending on the sign of the imaginary partgef The integration over the contou€s can be
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Im qq i
C1
< < Rezlo
Ca
OPE
[ )

Figure2.2: The contour€’; andC; in the complex energy plang applied to
derive dispersion relations which relate the operator pcodxpansion (OPE)
to the hadronic representation of the correlation funcéilmmg the real energy
axis.

decomposed into an integration along the real axis shiffetlds (¢ > 0) and one along the sector
of a circle of radiusRk

1 /+R+“ i, 1(a) 1 (a)

IT = — —_—+ —
() 270 J_Reyie R "3t Jja-r “a = qo0
Ima>e
1 TR I 1 I
+ - daﬂ + — dCL (a) .
27 J L R—_ie a—qo 2w Jla=R  a—qq
Ima<e

In order to get rid of the contribution from the circular amse considers the limik — oo.
However the ultraviolet behavior of the correlation funatis not generally given to converge in
a way that the specified integral vanishes. For the time bigiisgoroblem can be circumvented
by subtracting out the ultraviolet divergent partldfqo) in the form of a polynomial of degree

(n—=1)

(2.24)

~ n H(l—l)(o) (1-1)

IT =11 — —_— 2.25
defined such that is the number of subtractions or more precisely the numbesubtracted
terms. The(l — 1)th derivativeII¢~1) is with respect tayy; usingIl(gy) equivalently means to
consider thexth derivative ofII(go) of the operator product representatfoombination of the
subtractions with Eq. (2.23) or the direct use of Cauchyfenfda for the derivative expression

yield

Hope(q) = ;—Ei </61 da% + /C2 da%) . (2.26)

For such subtractionB(qo) must be analytic aroungy = 0 and the contour in Fig. 2.2 could be connected.
Rigorous statements about the integral contribution atitgfare given in [39].
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Now if a finite n exists which satisfies

/ da—1@) _ Rooo (2.27)
la=r  @"(a — qo)

the contour integration along in the limit R — oo leads to

1 1I n +o00+ie€ I n +o0 I ;
LY s (C) R / do @) _ dap / da Hatid . (2.28)
210 Jo, a—qo  2mi J_oorie a"(a—qo) 2mi J_o (a+i€)"(a+ i€ — qo)

and similarly for the contoufs

1 11 n —00—1€ 1I n —00 11
R e (O q—o_/ do M@ _ ‘J_O,/ da @i (229
J’_

210 Jo, a—qo 270 Jis—ie a"(a—qo) 2mi )i (a—i€)"(a—ie—qo)

where in the last steps the integration variables have b@fieds This leads to the-times sub-
tracted dispersion relation or QCD sum rule, respectively,

+oo ) _
_/ Yy = a0). (2.30)

with the discontinuity defined as

All(w) = % lim [[1(w + i) — TT{w ). (2.31)

If we neglect subtractions, that meams= 0 and soll(qq) = II(qo), then the operator product
expansion afy = iq(, is related to the physical correlation function by

-/ T a R gy (2.32)

T J - W —4qo

which is the celebrated form employed in QCD sum rules. The.lcontains the hadronic spectral
function, while the r.h.s. is evaluated, for large Euclidemergiesy, and fixed momentg, by
means of the OPE.

In the vacuum case the dispersion relation Eq. (2.18) depenly on the Lorentz scalaf,
such that the correlation function is Lorentz invariant. eTgresence of a medium frame with
definite momentum interferes with this Lorentz invariantam situation. In fact, transformation
in another frame of reference affects the characteristremz vectors describing the medium as
well. Thus a Lorentz invariant decomposition of the cotiefafunction has to incorporate the
transformation properties of the medium itself. The medimay therefore be described by its
four-velocity v,,, which in the medium rest frame, we will work in later, sinfi@ tov, = (1,0).
Any Lorentz invariant structures built from the hadron maroeen ¢,,, the given velocityy,,, and
the metric tensoy,,, = diag(1, -1, —1,—1) and the pseudo-tensey,,..» become arguments of
the invariant functions, which the correlafd(q, v) is decomposed into. Note that in addition the
Dirac structure of the correlator increases the numberdi swariants: The decomposition into
invariant functions combined with dispersion relationade in general to a number of coupled
QCD sum rule equations as elaborated for the nucleon inde8tR.

2Concerning conventions on metric, Dirac and Gell-Mann ives; etc. we follow [41].
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2.2.2 Weighted Spectral Moments

The QCD sum rules, e.g. Eq. (2.30) and (2.32), reveal a gehenitation of this approach. The
spectral densit\Il enters the integral on the hadronic side. Thus the operaboiupt expansion
only restricts the spectral integral on the left hand sidernmt the integrand itself. This can be
used to constrain unknown parameters of a given hadroniehoodb test given spectral functions
(see also Subsection 3.1.1).

To identify the vacuum limit in Eq. (2.30) the medium specparts can be singled out. Es-
pecially, new terms which are of odd powergn appear in medium. (Remember that Lorentz
invariance prohibits such terms in the vacuum case.) Defiaeten ("e”) and odd ("0") contri-
butions

1
11(q5) = 5 (M(go) + T1(~q0)) , (2.333)
1
°(q5) = 5q; (@) ~(=a)) - (2.33b)
This leads to
. I ATl(w wqy  ifniseven,
°(q5) = —/ dwﬁ()?- 0 (2.34a)
TJooo M@= q5) | g+l f s odd,
o 1 [Toe All(w qr if n is even,
1°(q5) = —/ dwﬁ()?- 0 (2.34b)
TJooo W= q0) | wgr! if nis odd.

In order to eliminate the specified subtractions a Borelsfiam is applied to Egs. (2.34). The
Borel transform with respect to the energy;,

B ) (QQ)n-i—l d n
Q) — Faey = m I (8 e, 2.35)
Q*/n=M?

introduces instead as new energy scale the Borel tvig42]. The separation of even and odd
parts and therewith the dependence on the squared eneayg dfie contact to the standard Borel
transform which was introduced w.r¢? in vacuum [3]. Some details of this specific inverse
Laplace transform and a collection of Borel transforms amgpemented in Appendix A. This
leads to the Borel transformed sum rules with the hadroréctspl density on the I.h.s. and the
operator product expansion entering the r.h.s.,

L[+ —w?/M? e 2

- dww All(w) e =II°(M*), (2.36a)
L [tee —w?/M? o 2
p dw All(w) e = II°(M*), (2.36b)

independent of the number of subtractiongsee Appendix A). Therefore the polynomial sub-
tractions above are not relevant for Borel sum rules as threlB@nsform delivers the required
convergence. Nevertheless can subtractions at anothargga¥ 0 be used to separate scattering
contributions from the spectral density [40].

Here and elsewhere the different arguments denote a diffamaction in spite of the same letter used.
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In the sum rules (2.36a) and (2.36b) one is interested ontlgariowest hadronic excitation
which is isolated by splitting the spectral integral

“+oo
/ dwF (w / dwF (w / dwF(w dw]-"(w)+/ dwF(w) (2.37)
— W4
—————
"anti-continuum” "anti-particle” "particle” "continuum”

into a particle and an anti-particle contribution, and tedlacontinuum contributions as indicated.
The final sum rules have than the form

0 W4
1 / dw w ATI(w) e /M 1 / dw w ATI(w) e IM? (2.38a)
s _ m™Jo
e 2 L[+ —w? /M? I —w?/M? _
= II°(M*) — = dww All(w) e - = dww All(w) e = R.,
T J—-co T Jwy
1 /0 —w? /M2 1 [9+ —w? /M2
- dw All(w) e + = dw All(w) e (2.38b)
w— 0
) 2 L[ —w? /M2 I —w?/M? _
=II°(M*) — — dw All(w) e - = dw ATl(w) e =R,
T J—c0 T Jws

where the continua are again estimated within the semi-tpeark-hadron duality hypothesis by
the operator product expansion (right hand sides), extexddevn to the respective continuum
thresholdsvy. The hadronic information is contained in the spectralgrdés (left hand sides).
The vacuum limit is encoded in the first sum rule. In a paraMiparticle symmetric situation, for
vacuum or neutral mesons in nuclear matter, with an antirsgtric spectral functionAII(w) =
—AIl(—w) one obtains withv_ = —w.

w2

Re = % T d(w?) All(w) e M (2.39a)
0

Ry =0, (2.39b)

in accordance with (2.14), if there the continuum part isasated, variables? — s = ¢ are
changed and the Borel transform is performed.
Forw andp® meson e.g. one can define a normalized moment for the Bonaftran

Jo " ds All(s,n) e=s/M?
o ds All(s,n) s~le—s/M*”

m2(n, M?,s;) = (2.40)

which is determined by the ratio dk, and its logarithmic derivative w.r.t. the squared Borel
massM?. This quantity is model independent (but suffers from théadlintroduced continuum
thresholds, ). Its meaning becomes obvious for a pole ansatz with polesmasAll(s) =
F§(m? — s), wherem(n, M2, s,) = m follows.

The introduction of such moments, which can be calculatednbgns of a QCD sum rule

without relying on a specific hadronic model, can partiallydxtended to arbitrary particle and
anti-particle spectral functions. Defining further the nears

= fu? dw ATl (w)we™" /M O dw AT (w)we /M
E == and E = 2% —,
[, dwATl(w)e«?*/M? o " dwATI(w)e=w*/M

(2.41)

the even and odd sum rules can be rephrased to formulatenslathich rather depend on ratios
than purely on absolute spectral integrals. These integuad the first moments of the Borel
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weighted spectral density for the negative and positiveggnexcitations. In a combined sum rule
ansatz, suitable for the nucleon case (Section 3.2),

1 /+OO — —w? /M? e 2 70 2
— dw(w — E)AIl(w)e = [I°(M?*) — ETI°(M?), (2.42)

7T—C)O

the integral over the negative energy contribution seemsetteliminated”. (This contribution,
however, is still included in the rati@.) This delivers the Borel transformed sum rule

_ W+ [eS)
E—-FE)— wAII(w)e™ =1II - — wwll?  (w)e™
1 dw w?/M? e M2 1 d gcr w?/M?
™ 0 m w4
2.43
I 0 2 1 [ 0 —w?/M? 1 T 0 —w?/ M? ( )
—ESII°(M?) — = dwIlp o (w)e + = dwATl(w)[w — Ele .
T Jwy T Jw_

The continuum contributions are rearranged@s (w) = All(w) F AIl(—w). Based on semi-
local quark-hadron duality these integrals are extendedrids the respective continuum thresh-
oldsw.y. Typically only the logarithmic terms il provide discontinuities which enter the con-
tinuum integrals. To summarize, Eq. (2.43) exhibits thedgpstructure of QCD sum rules: the
hadronic properties on the |.h.s., i.e. the low-lying hadrcspectral function, are thought to be
given by the operator product representationlloincluding condensates on the r.h.s. The last
term on the r.h.s. accounts for asymmetric continuum tloldshi.e.w_ # —w., and could be
estimated by semi-local quark-hadron duality.

In the generic case, however, the excitation spectrum titjes and anti-particles in a medium
is asymmetric, and the dispersion relations (2.38a) ar8B@.alone seem not to allow separate
model-independent statements about the low-lying exaitadt positive energy. This appears as a
severe limitation of this form of the QCD sum rule approach.

2.2.3 Operator Product Expansion

The dispersion relations in vacuum Eq. (2.14) and in medigs) .30) and (2.32) relate integrals
of the weighted spectral density of a hadron entering thiehkefid side of a QCD sum rule to a
momentum region on the right hand side, where a treatmeriteo€orrelator in terms of QCD
parameters is possible. Such parameters are the massesugtidg constants which appear in
the classical chromodynamic Lagrangian density

f
£() = 32 dala) (iD= mo)y(a) — 1GACH (2.44)
q=1

being the foundation of quantum chromodynamics. The cambderivativeD,, = 0, +igTa A,
the gluon field strength tens@¥, = 9,4;' — 8,A — gfAPCAB AT, and the abbreviations
D = Dyy*, G = TaG4, are used in this work. The indexenumerates the flavor degrees
of freedom;T’4 are color generators,, Dirac matricesy, v are Lorentz indices, B, C color
indices; summation which underlies the matrix structufd3iac and color objects is implied.
For a complete QCD sum rule the correlator has to be calculayemeans of QCD in the
validity range of large Euclidean space-like momefifa= —¢?> > 0 (compare Fig. 2.1). This
condition is consistently met in the medium case for largagimary energies with fixed three
momentumy. In this so called deep Euclidean space-like region theetaor can be expressed
using the operator product expansion (OPE). It allows t@egm non-local product of composite
operators in a series of local operators with increasinglgrdent coefficient functions faiz —
y) — 0 (compare Section 2.1). The expectation values of the logafators lead to the QCD
condensates.
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Conceptionally, the OPE is organized to separate periuebtom non-perturbative effects,
which requires the separation scalalefining the two regimes. This has to be respected when
perturbative loop integrals cover also small momdpta< p. Mass logarithms appearing then
contribute to the non-perturbative parts and can be abddrpehe renormalization of conden-
sates. Exemplary, for the D meson the redefinition of suchieosates becomes important, see
Section 3.3.1.

Qualitatively, the correlators take then, after Fouriansformation, the form

(g,v) = Cn(On) . (2.45)

The weights of the condensates, the Wilson coeffici€htscan be calculated perturbatively. The
OPE can further be improved by the renormalization grouation. Here, the condensates will
be fixed by their values at a renormalization pointot= 1 GeV; (...) = (...),_; gey Will

be understood throughout the thesis. A special role is pldyethe leading tern€; 1, which
contains the perturbative result. Based on the order ofgiarees the next terms are suppressed
by higher powers of)? and are therefore named non-perturbative power correctiof2]. The
non-perturbative character is encoded in the fact that@osmtes arise from a Wick expansion in
normal ordered products. These vanish in perturbationryh&fa the non-vanishing condensates
the non-perturbative effects are thus added to perturb#tieory. The Wilson coefficients them-
selves are calculable by perturbative techniques as felldvihe standard perturbative expansion
of a correlation function is given by

(@) =1 / d*z & (W|T |77 (x)mp (0)e' d%“(“")] ¥), (2.46)
where
Li(x) = — gibg(x)Ta AL (2)7"bg(x) + g APC (0, A7 (2)) Al () AL ()
2
— T pABC fAPE A () AS (@) Al (2) Al () (2.47)

is the interaction part of the Lagrangian density (derivedtEq. (2.44) withC; = £ — Lg; Lo =
L(g = 0) is the free Lagrangian density). The superscrigenotes the restriction to connected
graphs,[u] stands for a set of Lorentz indices for example. The exparisiderived by means of
Wick’s theorem on the operator basis applied to any exparsots.

A remark on the generalization to non-vanishing tempeestand/or densities is in order: The
expectation value to be calculated becomes the Gibbs adcagrelation function (see Eq. (2.19)).
Using a generalized form of Wick’s theorem valid for expé&otavalues, the expansion could be
derived with the rules of Thermal Field Theory. However,tértemperature$’ or chemical po-
tentials i« represent additional new scales in the expansion. In QCDrsiles for a medium it
is assumed that for sméll and ; (compared to\gcp ~ 1 GeV) the Wilson coefficients re-
main the same, and the orilyand . dependence enters the condensates [43]. Therefore we can
proceed the OPE calculation in the same way as in vacuum wihmportant generalizations:
(a) The vacuum expectation valu@8) are to be replaced by the Gibbs averag<e3.>>T7H; (b)
The projection onto Lorentz scalar condensates involvekdustructures in medium, because the
occurrence of matter is characterized by a medium specifieritp vector, e.g., the velocity of the
matter rest frame,,.

The interpolating fieldg in Eq. (2.46) consist of quark and gluon operators. Perfogntie
Wick expansion for a specific compositiongfeaves uncontracted products of quark and gluon
operators taken in the QCD ground state. Upon projection batentz scalars they assemble the
QCD condensates. The remaining contracted parts aredragsia perturbation theory using well
known propagators. In this way, any operator product expan&.45) is technically obtained.
Details for OPE calculations required for clarity and coetghess are postponed to Appendix B.
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2.3 QCD Condensates

The in the operator product expansion formally introduc€&eDondensates measure as correc-
tions to perturbation theory the non-perturbative stmectof the QCD ground state. The con-
densates are ground state expectation values of normaledrgeoducts of quark and gluons,
projected onto Lorentz scalars for a Lorentz invariant pestaization. These expectation values
are further supposed to be color singlets, gauge invariaahtiravariant with respect to time and
parity reversal if we consider cold nuclear matter.

The strength of a power correction temn )~ in the operator product expansion (2.45) is
given by the Wilson coefficient. The overall constant massedision is set by the interpolating
fields. Hence the dimension of the Wilson coefficient is congpéed by the mass dimension of
the accompanying condensate. Higher power correctionssmmond therefore to condensates of
higher mass dimension. It is thus reasonable to perform Q&Riaions up to a given mass
dimension of condensates. In this section condensatesedrtdy increasing mass dimension up
to dimensiorg are discussed.

Similar condensates appear in OPE’s of various problemscandhus be understood like
universal parameters of the QCD ground state. They abssdnmtally much of the complexity
of the theory of QCD. Partially, such expectation values @an be related to symmetries of the
theory as follows.

2.3.1 Symmetries of QCD

The classical chromodynamic Lagrangian density) given in Eq. (2.44), which QCD is based
on, exhibits in the limit of vanishing quark masseg = 0 a set of symmetries, summarized in the
chiral symmetry grouf/(ns)r x U(ns)r (€.9. [44, 45]). The independence of the symmetries
U(ng)r andU(ny)r expresses the decoupling of left and right helicity statesthe assumed
chiral limit m, = 0, where chirality and helicity coincide, this corresponddite decoupling of
the left and right handed quark fields

1

Yr= 51+, vn =50 =) (249)

The spinors) without flavor indexg, compare Eq. (2.44), are;-dimensional flavor vectors. As
any unitary group can be decomposed ibt() = U(1) x SU(n), the chiral symmetry group
can be writterl/ (1), x SU(ny)r, x U(1)r x SU(ns)r with the transformations

U(l)L . ¢L — eXp(iHL)¢L N SU(?’Lf)L . 1/JL — eXp(iH%Ta)lbL s (249)

U1)r: tr — exp(ir)Yr , SU(ng)r: Yr — exp(i0iT,)Yr . (2.50)
The transformations given in the fundamental (quark) regmeation are characterized by arbitrary
anglesty, g or, respectively, sets of anglég , (a=1... (nfc —1)).

The (N? — 1) traceless generatof, = %)\a in the standard representation of any special
unitary groupSU (N) are normalized]'r(T,T,) = 3445, and obey

(To, Ty] = ToTy — Ty Ty = ifapeTe s (2.51)
1 .
{Ta, Tb} =T, 1, +1TyT, = Néabll + idgpe T (2.52)
with the totally anti-symmetric structure constalfits. and the symmetric structure constais..

Simultaneous transformations in the left and right handsmlos can be combined into the
equivalent formU(1)y x SU(ng)y x U(1)a x SU(ny)a, which leads to the common vector
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(V: ol = 16" +6\%))) and axial-vectof 4 : 3 = 16" — ¢{))) transformations

ULy : ¢ — exp(io)y = Ju(t) <Pyt (2.53)
U)a: ¢ — exp(ifys)v = Ju(x) oy (2.54)
SU(ng)v = 1 — exp(iagT)y = ji(z) <y, T, (2.55)
SU(Mmpa: 1 — exp(ifaT®)0 = () Uy (2.56)

The realized symmetries in the massless case imply the glassically conserved Noether cur-
rentsaiji(“) (r) = 0.

TheU(1)y symmetry, which yields the conservation of the vector auread thus of the total
baryon number, is even satisfied in the case of arbitrarfierdint flavor quark masses, and is
always fulfilled. The classical/(1)4 symmetry, only satisfied in they, = 0 limit, is special,
because the axial vector current is not conserved in thetigedntheory due to the QCD axial
anomaly. Within the discussion of condensates and symasetre will especially be concerned
with the behavior unde$U (n )y andSU (n¢) 4 transformations.

In the presence of equal, finite current quark masses foraadbifldegrees of freedom, the
flavor-vector symmetrnysU (ns)y, often abbreviated flavor symmetry, remains valid meartieg t
conservation of the flavor-vector current, the isospin entrifor ny; = 2. The symmetry with
respect toSU (n ) 4 is immediately violated by finite quark masses, as can befsegna typical
diagonal mass term in the Lagrangian density, which transfdike

SU(ng)v = mapp — mapep (2.57)
SU(ng)a: mypyp — mapyg exp(—ifB*Tyvs)v0 exp(i6°Tays) v
~map(1 = 2(8°T0)*)Y + 2imBYysTap + O(B?) (2.58)

(the kinetic and gluonic terms are invariant in any caseyelHan expansion to second order in the
anglesg® is performed;m is the scalar mass parameter common for all flavors (a genexss
matrix in flavor space cannot be commutated with$&n ;) generators).

Isospin symmetry is considered as approximate symmetiyein } = 2 sector, e.g. the cur-
rent quark masses, = (3 +£ 1) MeV andmy = (7 £+ 3) MeV (at a renormalization scale
i =1 GeV [1]), as well as their difference, are small compared todgphadronic scales of
1 GeV. The isospin symmetry is realized in the hadron spectrunrevite example the mass dif-
ference of the isospin partners proton and neutron amooiotgy aboutl MeV. IfalsoSU (ny) 4
was realized in the physical hadron spectrum the energgsstditparity partners, particles of op-
posite parity, would be degenerate. An excellent exampehare the mesons (770) anda,
(1260). Since the small quark masses are not expected toagenga explicitSU (ny) 4 sym-
metry breaking such strong splitting effects, another raaidm is considered responsible: The
SU(ny)a symmetry is said to be spontaneously broken, meaning tham@mll degenerated vac-
uum configurations, one ground state is realized. This leathe existence ofn@ — 1) massless
Goldstone bosons. (The explicit breaking by non-zero guaakses assigns a finite mass to the
associated Goldstone bosons, which are then called pggoldistone bosons. In the; = 2 case,
these bosons are identified with the pion triptéthaving still masses significantly belowGeV'.)
The chiral symmetry groupU (ns)y x SU(ny) is thus broken down t6U (ns)v .

Nambu-Goldstone Theorem

The violation of a symmetry by the ground state can be medsnnground state expectation val-
ues of quark and gluon operators, which were already intredias QCD condensates. However,
not every condensate provides information about brokenrsstmes. Obviously, purely gluonic
expectation values have, for example, no direct relatiaghéachiral symmetries considered here.
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Suitable quantities to measure the degree of spontanemusetyy breaking in the physically
realized ground state are called order parameters, e.fj. Biich parameters shall be formally
introduced using the Goldstone theorem. Starting pointbhésMoether theorem which provides
a conserved current with each global, continuous symméttiyeoactionS = [ d*z L(z). The
symmetries (2.53)-(2.56) of the Lagrangian itself aregbgrincluded. These symmetries have to
be extended to the quantized theory. The classically ceedeguantities, the integrals over the
time component of the respective Noether currents

QW — / B i\ (z), (2.59)

are thus substituted by operata@$®. These are the generators of the transformation group,
meaning that their commutators with the field recover thanit&@simal field transformatiofy) =

Y — ) by
i[Q 4] = =5 (2.60)

From here on we abandon the operator hat symbols for siryplitfi the charge operatof)(®
represents a conserved quantity, it commutes with the Hamaln /7, which implies

QW Hl=0 = H(QWs)) = QWH|s) = E,(Q"s)), (2.61)

if |s) is an eigenstate dff to energyE;: H|s) = Ej|s).
If the ground staté¥) is symmetric w.r.t. the transformation generated Py then especially

€i5(a)Q(a)‘\Ij> _ ’\I’> o Q(a)’\l’> =0. (2.62)

This realization of the symmetry is known as Wigner-Weyl siha

Elsewise, if the ground state is not invariant under thestiaamation, one can formally assume
Q@ |W) +# 0.* A more rigorous definition of the violation of the symmetry tye ground state is
given by the expectation value of the commutator betw@&n and a local operatob(z)

(P][Q), ®(2)]|¥) #£0. (2.63)

Using the conservation of the underlying currg’fﬁ) (z), and upon insertion of a complete set
of states in the commutator, properties of these statesettecdd. This leads to the Nambu-
Goldstone theorem, which says that these states are nssglEtations with quantum numbers
of j{* (x), the Goldstone bosofisThe excitations couple besidg&” also to the fieldb. This
necessarily resides on the non-zero value in Eq. (2.63)er@ike one falls back to the Wigner-
Weyl realization of the symmetry. The quantity in (2.63)gHhlistinguishes between the Nambu-
Goldstone and the Wigner-Weyl mode and qualifies as possildier parameter. Related to the
generating property of the charge Eq. (2.60), this ordeairpater can be written as

(T[Q, @(2)]|¥) = i(V |60 |W). (2.64)

Now, the field® can itself consist of field operatots and the abstract commutator can be eval-
uated using standard commutators and anti-/commutates.rulhis eventually leads to QCD
condensates identified as potential order parameters dotapeous symmetry breaking.

“This statement is not rigorous, since the existence of thegehintegral implies symmetry as in the Wigner-Weyl
phase. In the broken phase, the integral is divergent, wikiclicumvented introducing the commutator of the charge
operator and a local operat®(x) [47]. This ensures convergence of the commutator.

SVariations of this proof can be found in e.g. [47, 48], for dection of alternative proofs of Goldstone’s theorem
cf. [49].
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As preliminary summary, the Goldstone theorem shows thaduhycal breaking of a symme-
try is qualitatively parametrized by order parameters,clwlbehave differently in the symmetric
and asymmetric phase under the considered symmetry traregion: In the unbroken phase they
vanish, in the broken (or hidden) symmetry case they acquirezero values. This distinction
is caused only by the ground state itself; the Lagrangiarsssirmed to possess the considered
symmetry in any case.

An Example: The Chiral Condensate

The statements about order parameters have so far not stgateel to specific symmetries. As
example the chiral condensate shall be identified as ordanyer of spontaneouslU (ny) 4
symmetry breaking in the given framework.

Using the canonical equal time anti-commutators (loweiciesla, b denote flavorx, 3 are
Dirac indices;A, B stand for color)

{Yaar (@), Ul (1)} = 0abdapdand® (@ — y), (2.65)
{T;Z)aaA(x)v wbﬁB (y)} = {TZJZQA(@’ 7/’2@3 (y)} =0 ) (266)

one deduces withtAB, C] = A{B,C} — {A, C} B the field variations from Eq. (2.60) as

Q" ¢(2)] = —T"Y(x), (2.67)
Q% ¢ ()] = T (2)y5T°, (2.68)

with the SU(ny) 4 chargeQ® = [ d*z ¢ (z)y5T%)(z). These can also be obtained from the
infinitesimal transformation Eq. (2.56).
To identify the chiral condensate we specify now the comiout@.64) with®® = 1y DT

[Q*, DT )] = 50, (2.69)

whereD is an arbitrary Dirac matrix. WithA, BC| = [A, B]|C + B[A, C] the commutator can
be traced back to (2.67) and (2.68), and yields

160 = (75 DTT® + DysTPT ) . (2.70)

ForD =5 andn; = 2,i.e.7* = %7“ (7 are Pauli matrices) one recovers in

(U[[Q°, BT )W) = 2 (Wl lw) @71)

the chiral condensat@l|y)|¥) as order parameter in the sense of definition (2.64). Fikiaga,
@’ directly induces the chiral condensate as order parametéhé spontaneous breaking of the
symmetry related to the chargg'.

In the chiral limit of vanishing quark masses a non-zero &aitithe chiral condensate is di-
rectly linked to the spontaneous break down of chiral symyndtiowever, in the real physical
world the small values of the current quark masses congibwtecisive explicit symmetry break-
ing effect, generating a finite pion mass. This is still snmalhadronic scales. Thus caused by
the mass terms in the Lagrangian density the correspondimgnt is only partially conserved.
The partial conservation of the axial vector current (PC&G)tilized to determine the numerical
value of the chiral condensate in Section 2.3.2.
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Additional Chiral Order Parameters

Identification of further potential order parameters is pmasible on the basis of Eq. (2.64) calcu-
lating commutators between the charge oper&® and appropriate products of field operators
®. If gluon operators are included in an ansatz fowhich already induces a condensate then
the expectation value with the gluon field added qualifies aks potential order parameter. The
induced possible order parameters may however be excludether symmetry demands.

We focus on the spontaneous breaking6f(n ) 4 from here on. To find further candidates
for order parameters with two quark operators we considenaigl commutator

(P[[Q", v XY |T) = —(T[P[ysT"X + XysT ]|, (2.72)

whereX is an arbitrary product of Dirac, flavor and color matricdsvé assume flavor symmetry
for the condensates then the flavor parXohas to be chosen to elimindt# in order to introduce
a unit matrix in flavor space. For parity reversal invarign€emust include a pseudo-tensor (i.e.
a-ys or 757, structure). Finally, an identity matrix in color space emsucolor neutrality of the
object. WithX® = v5DT%1. (D = 1,7u,0um = %[y, 7)) One obtains for any number of
flavorsn

(U|[Q%, VX ] |W) = —(W|pD{T*, T }| ), (2.73)
- —%’Www il (V|G DT 0] ). (2.74)

The latter term again vanishes due to flavor symmetry. Poe 1, Eq. (2.71) is recovered.
The structure forD = o, contracted with the gluon field strength tenget” introduces the
mixed quark-gluon condensate as order parameter candigataseD = v,, no Lorentz scalar
condensate can be built in vacuum but in medium, see Sect®A. 2By studying expectation
values of commutators of the form

(P[[Q", @)|¥) = (¥|[Q, p Xyh YV ¢]|T) (2.75)

the list of potential order parameters can be increased hwyriar of four-quark condensates, as
accomplished in Section 2.4.3.

The non-zero order parameters cause the existence of Guédbbsons and measure a sym-
metry violation due to the ground state. If these particolamndensates vanish, this reflects the
symmetry restoration of the ground state, the Wigner-Weglization. The vanishing of these
condensates in the latter symmetric phase is deeply cathéztthe influence of other (i.e. not
spontaneously broken) symmetries. Such ones can be flamoneiry or discrete symmetries
like parity reversal invariance. We have already appliebéhto rule out some order parameters
initially suggested by the commutator definition.

To point out the contact to other symmetries supposeStien ;) 4 axial symmetry were also
realized in the Wigner-Weyl form. Then the axial chai@e exists. With the invariance of the
ground state, the expectation values of operatdese then equal undeiU (ns) 4

(T|O|W) = (V)|O|W') = (¥]e " ROQ|T) = (U]|0'|D). (2.76)

If (¥|O|¥) lies in a multiplet together with other expectation valugsich individually vanish
due to ulterior symmetries, e.g. flavor symmetry, then threleasate ¥|O| ) itself must vanish.
Consider for example the infinitesimal transformation & tilinears

SU(ng)a: Dy —ygexp(—if*Tays)v0D exp(if*Tyys )
~ QZJD(I - (ﬁaTa)2)w - &(ﬁaTa)zlﬁD'yﬁ/J
+ iB"YTu[ysD + Dyslyp + O(8%) (2.77)
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up to quadratic order in the paramet#r (compare Eqg. (2.58)), which are no invariants for=
1,0.u,75. The term linear in3* then does not vanish but becomes only zero by the demanded
flavor symmetry as the contributions from the projectior{@f7},)? proportional taI’® do. Then

the condensate is und8t/ (ns) 4 reproduced:

(T DY[T) = +(¥[Y DY), (2.78)

besides the factoy # 1, due to the projection of3°T,)? onto the identity matrix. The equality
in this multiplet can than only be satisfied b¥ | Dy|¥) = 0. This is again consistent with the
vanishing of an order parameter in the Wigner-Weyl phasebhioears with Dirac basis elements
D~s = —~5D, which is the case fob = v, (the kinetic term) and) = v5,, invariance can be
shown beyond this infinitesimal treatment.

Therefore singlets, being also symmetric w.r.t. all othanmetries, have the advantage that
their value is not constrained by other symmetry demandscandbe a pure measure for the
SU(ny)a symmetry. Generally, also multiplets could fulfill thesgqu&ements, whereby the con-
densates would then be degenerate. Note, in theicase2, closed expressions can be given for
finite transformations, which evidence these statemehtSéction 2.4.3).

Finally we comment on the correspondence of chiral symnm@egking terms and the mixing
of left and right helicity contributions. To do so, we retuathe decomposition into left and right
handed spinors in the Dirac representation (2.48). Théhnetvie decomposition of bilinears can
be carried out to form two classes, namely,

(i) non-invariant forms U = YR + VRYL , (2.79)
@Uuuw = @LUW/‘/}R + TZJRO';LVT/}L > (2.80)

VY5t = Yrystr + YrYSYL (2.81)

(ii) invariant forms VY = Yryubr + YrYuYR (2.82)
VY50 = VL5 7L + YRV VR - (2.83)

The first two non-invariants correspond to the chiral andtiteed quark-gluon condensates. The
prescription left and right is convention, and neither andistinguished. They should then be of
equal size. If the order parameters are non-zero, each ddidfeuld be non-zero, too. This is

physically interpreted as the mixing of left and right hijicstates by the spontaneous symmetry
breaking. Originally, this argument is already presenhwulie mass term of the Lagrangian.

The invariant forms contain pairs of merely left or right {gamixed terms vanish as conse-
quence ofD~s = —v5D, which also leads directly to the invariance under the dr@isformation
SU(nys)a in (2.77). An interpretation as intermixing of the left am tright handed parts of the
theory is then not apparent, similarly for four-quark camskges, where even both invariant and
non-invariant forms admix.

In conclusion, the transition between phases of brokengiomred symmetries is signalled by
order parameters. Relying on the chiral condensate mighobgufficient if other mechanisms let
this condensate vanish or the symmetry is only broken dovenldéaver symmetry. This suggests,
that chiral symmetry restoration should not be linked oplyhe value of the chiral condensate,
but to a set of qualified order parameters. In Section 2.43dke of four-quark structures as
possible order parameters is further pursued.
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2.3.2 Catalog of QCD Condensates

The QCD condensates enter QCD sum rules as universal pa@araat determine hadronic prop-
erties. Effects at finite baryon densityor temperaturd” are described by the change of conden-
sates and the advent of new structures which are absentiahivendensity or temperature. In
the QSR approach these changes reflect in modifications odfm@mbedded in a strongly in-
teracting medium. Although, in principle, one might detarenthe changes of a few condensates
from measured modifications of hadrons, the multitude oflensate values has to be evaluated
elsewise. Only then the remaining unknowns can be fixed fogper@ment unambiguously.

QSR in a medium are conceptionally bound to small deviatfoors the vacuum case, since
the operator expansion relies on a power counting of mometales of the order of these mo-
menta, high temperatures and large chemical potentialsldiemand for a complete rearrange-
ment of the expansion. With the restriction to low tempee@nd density it suffices to expand
the condensate changes to lowest order in these paramEterapolations of condensate modi-
fications and QSR results, e.g. to the phase transition lzoynd the QCD phase diagram, must
therefore be taken with care.

Commonly, medium QCD condensates are evaluated in the xdppton of a thermodyna-
mically equilibrated, dilute gas. Cold nuclear matter etime focus of this work is approximated
as a non-interacting Fermi gas of nucleons [50]. The denlgpendence of condensates is gov-
erned by spin-averaged and isospin-averaged nucleonxnetgrnents taken for nucleons at rest,
and has yet to be found for particular operators. In the zamperature limit” = 0, the Fermi-
Dirac distribution reduces to the step function and the mmadmodified condensates are given

by

Bk . .
©)u= (Ol + [ s VBIOIN (NS - E). (284)

with the nucleon states normalized @6 (k)| N (k') = 2B, (27)?5(k — k'), By = \/ M% + k2,
and i is the chemical potential. If the nucleon matrix elementndeijpendent of the nucleon
momentum the remaining integral equals the number densityicdeons, the baryon density,.
Then the condensates

(O), = (O) + %(N|O|N> . (2.85)

change linearly as functions of the baryon density.

On the contrary, matter at zero net baryon density but nofiskiang temperatur@’ is approx-
imated as a Bose gas of the lowest lying hadronic excitatithes pions [51]. In the simplest
approach again interactions are excluded. The mediumatmms to the vacuum condensate
values are then

3 3
(O)r = (0)o + 2/%(7&@)\0\”&@»%- (2.86)

The pion states with isospin indexand energyF,, = \/p? + m2 are covariantly normalized as
(m(P) |7 (5")) = 2B (2m)3596G) (5—p"). If the pion matrix element is independent of the pion
momentum and diagonal in isospifx® (7)|O|7° (7)) = §%°(x|O|r), the integral further reduces
to

T2
8

The integralB: (z) = % [ dy+/y? — 2> converges td for m, < T. Especially, in the
chiral limit m, = 0 the condensates then change proportional to the tempesjuared.

(O)r =(0)y + = Bi(ms/T)(n|O|r) . (2.87)
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Combining both approximations, the effects at low tempeest and small densities are sum-

marized in
n T2
O)pr = <O>O+W<N|O|N)+§<7r|(9|7r>+... . (2.88)
N

in the chiral limit. The effect of non-vanishing temperatim the nucleon gas and of a finite pion
mass is respected in Figs. 2.3 and 2.4, where the chiral anglilbn condensate are numerically
evaluated within the outlined approximations. The inauasof further massive excitations, like
K andn mesons, becomes relevant only 8r> 100 MeV [51]. Inclusion of nucleon-nucleon
interactions as done in [44] does not significantly alter. Ri@ in the low density region. In the
following part the unknown matrix elements are discussedhi® most important condensates, the
chiral condensate and the gluon condensate. Besides ¢hisutherical values of some conden-
sates relevant for our subsequent evaluation of QCD surs anéecollected.

Chiral Condensate

The chiral condensate was in the previous section motivaseorder parameter of spontaneous
chiral symmetry breaking. The existence of pions as Gotustoosons in the hadron spectrum
means that the chiral condensate as order parameter sluguloleaa non-zero value. Beyond the
chiral limit its value is also affected by explicit symmetmgeaking in terms of the (light) current
quark masses entering the QCD Lagrangian Eq. (2.44). Tlaé\sedtor currenyj; = zﬁfyufyg)T“zp

is then not conserved but, by the equations of motion, sadisfi

aﬂjz = ZTZZVS{Ma Ta}w ) (289)

with the diagonal mass matrix

. 1 1
M = diag(m,, mg) = i(mu +mg)l + i(mu —mg)Ts (2.90)

in flavor space for two flavor degrees of freedem= 2. One can us@“jfj(x) # 0 as field®(z)
in the commutator of Eq. (2.64)

(][Q%, 8" 5] 1%) = (W|[Q%, iys {M, T }o]| ). (2.91)
With Egs. (2.72) and (2.90) this commutator gives

. { - i _
(U[[Q, 9"jp] W) = — 5 (mu +ma)dap (VY9 |¥) — 5 (my —ma)ds(Y]Pry|T), (2.92)
where the second term on the r.h.s. drops out due to the addiawer symmetry. The Goldstone
theorem states that the Goldstone bosons, interprete@s, giouple to the current of the charge

Q°,
(U35 () |7 (q)) = iqud™ fx(q®)e ™" . (2.93)

Here, the pion momentum), is the only possible Lorentz vector to parametrize the Larstruc-
ture of the matrix element; the exponential is due to trdiwsianvariance and the functiofy (¢?)
is for a pion at rest defined as the pion decay consfant f,(m2). It can be determined from
the weak decay constant of charged piefis— p v (e.g. [52]). Defining the pion field similarly

(W|¢"(z)|m(q)) = """, (2.94)
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<497,/ <40,

Figure 2.3: The relative changes of the chiral condensate as a functidemns
sity and temperature. Due to finite pion masses the temperefiect is neg-
ligible for small temperaturef. The slope in direction of the baryon density
n is governed by the nucleon sigma tesr. The effects of non-vanishing
andn are covered in leading order, i.e. small value§'aindn; the displayed
range is extended strongly beyond the range of validity fmose the trends
when extrapolating towards the confinement-deconfinentexggtransition.

one may identify, taking the derivative in Eq. (2.93),
oMb () = m2 fre"(x) (2.95)

what is often considered as partial conservation of thel axient (PCAC). For massless pions
the axial current is exactly conserved.

Also the charge&)® can be related to Eq. (2.93) by integration. Insertion of mgete set of
covariantly normalized pion states

S [ oy ) o) (2.96)

into the commutator, |.h.s. of Eq. (2.91), yields for piohsestp = 0 at timet = 0 the expression

(PI[Q, 0", | W) = i frm3 . (2.97)
This leads to the Gell-Mann—Oakes—Renner relation (GOH®) [5
fim2 = T Gy, (2.98

besides higher corrections in quark masses. We use as atione¥or the ground state expectation
value (I : o) : |U) = (¢op); |U) is the physical QCD ground state, the normal ordering

. : of operators is understood from the proper definition of radrordered currents etc. and
not explicitly written out. Further, it is common to denot the single flavor condensates due to
flavor symmetry(gq) = (uu) = (dd); thus{¢v) = 2 (gq).

The GOR relation withf,, = 92.4 MeV, m,; = 139.6 MeV, m, = 4 MeV, mg =7 MeV [1]
yields the vacuum value of the chiral condensgig¢) = —(247 MeV)3. In what follows, the
standard value used for all presented QSR results wiljhe= — (245 MeV)3.
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The change of the chiral condensate in cold nuclear matt&qin(2.85) is dictated by the
nucleon matrix elementV|gq|N), which defines the nucleon sigma tesm\We use

(Gq) = —(0.245 GeV)3 + n% , (2.99)
q

with oy = 45 MeV andm, = 5.5 MeV.

Gluon Condensate

The gluon condensate is related to the energy density byabe of the energy-momentum tensor.
For zero or infinite quark masses QCD exhibits a classicd¢ sozariance, i.e. dilatation symme-
try. On the quantum level this symmetry is broken by the ragedtion scale. Quark masses break
scale invariance explicitly. The divergence of the dilatatcurrent is then determined by the trace
of the energy-momentum tensor, the so-called QCD trace alyom

1 2 Qg _
Ol = —5(11 - §nf)?c;2 +Y mydq. (2.100)
q

Therefrom the required nucleon matrix element is obtairnled,vacuum part is constrained by
charmonium QCD sum rules. For the gluon condensate,

<%G2> =9 <%(E2 - 1§2)> = —2[—0.5(0.33 GeV)* + 0.325 GeVn] (2.101)

™

is used here, where the relation to the chromoelectric armhubmagnetic field€ and 5 is also
displayed; the contractio” = G}, G'y" is understood.

<G$ ot | <G% 00

Figure 2.4: The gluon condensate as function of density and temperature
malized to its vacuum value. The impact of density and teaipee is sig-
nificantly weaker than for the chiral condensate, compage £B. The same
caution as in Fig. 2.3 applies.
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Further Condensates

We compile in increasing mass dimension some further cagates entering the later on presented
sum rules. The medium specific condensates are given in tttermest frame. The vector two-
quark condensate (mass dimension 3) is

(@¥q) = (qv0q) = <q*q> = gn (2.102)

counting simply the number of quarks in symmetric nucleattena
At mass dimension 4 additionally the medium gluon condensat

(2 [06)? + (062 ) = = (22 (B2 + B2) ) = —0.1 Gevn (2.103)

s e

and a condensate containing a deriva{y&Dyg) = 0.18 GeVn arise. Note the abbreviations
G = Gf}l,TA andoG = 0, G*.

Mixed quark-gluon condensates of mass dimension 5 arelyqualametrized by mass di-
mension 3 condensates as

(9sGoGq) = 2% (Gq) + 3.0 GeV?n  with 22 = 0.8 GeV?2. (2.104)

Necessary are also the mass dimension 5 combinations

(qiDyiDoq) + (gsGoGq) /8 = 0.3 GeV?n,, (2.105)
<qu‘Doz‘D0q> + <gqu an> /12 = (0.176 GeV)?n, (2.106)
<gqu0Gq> = —0.33 GeV?n. (2.107)

From the discussion in Section 2.3.1, especially Eq. (2.%4) see that besides the purely
gluonic terms all condensates above might be related to pateameters. The density dependent
parts of the condensates can be expressed through momeaisarf distribution functions. If not
otherwise stated the numerical values used in this worknereetemployed and discussed in [54].
At mass dimension 6 triple-gluon condensates and fourkge@mndensates appear. The latter type
is the main focus of this thesis.

2.4 Four-Quark Condensates

Formally, four-quark condensates are QCD ground statecéefien values of Hermitian products
of four quark operators which are to be Dirac and Lorentzagsalcolor singlets and are to be
invariant under time and parity reversal. Thereby we retstiirselves to equilibrated cold nuclear
matteP but do not impose isospin symmetry from the very beginningiéw of further applica-
tions, such as the proton-neutron mass difference in asyneneeld nuclear matter (e.g. [55]).
With the following discussion of independent four-quarkndensates for arbitrary numbers of
flavors we allow for the inclusion of strange quark contritws as well.

Physically, the four-quark condensates quantify the ¢aied production of two quark-anti-
quark pairs in the physical vacuum. In contrast to the sqagtiee two-quark condensate, which
accounts for uncorrelated production of two of these p#uesfour-quark condensates are a mea-
sure of the correlation and thus evidence the complexitthef@CD ground state. Especially,
deviations from factorization, the approximation of unlumofour-quark condensates in terms of

5The catalog can be extended to non-equilibrated systetirsglithe demand for time reversal symmetry or to
systems at finite temperature and vanishing chemical patevttere charge conjugation provides a good symmetry.
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the squared chiral condensate justified in the laxgdimit (cf. also [56]), represent effects of
these more involved correlations.

In this section the classification of four-quark condersaie the light quark sector, is per-
formed in some detail. We do not cover other condensates e$ mi@nension 6 like the triple-
gluon condensate or condensates containing higher deesat

2.4.1 Projection and Classification

The projections onto Dirac, Lorentz and color structures i® all possible in-medium four-quark
condensates just as for the example of the non-local twokagerpectation value in Appendix B.

However, the situation is even simpler since we are only@sted in the mass dimension 6 four-
quark condensates, so derivatives are not required ancathtors in four-quark expectation
values are to be taken at= 0.

Using the Clifford base®);, € {1,7,, 0u<v, 157,75} andO™ € {1, 4, o"<Y iysyH, 5},
which fulfill Tr (O,O™) = 46", one can project out the Dirac indices of products of fouiteaty
quark operators

16

! / 1 ! /

<Q1a 42" Q4b> = — Z ((j‘f qugqg Olqﬁ) ok 0. (2.108)
e f g h 16 k=1 f.e h,g

Note, here Dirac indices, if explicitly shown, are attachsdow the concerned objects. From
Eqg. (2.108) there are 25 combinatorial Lorentz structureshvhave to be projected on conden-
sates to obey Lorentz invariance (using the four-velogjty time/parity reversal and hermiticity.
For each of the remaining 5 (10) Lorentz scalars in vacuundine) two possible color sin-
glet combinations can be formed using contractions withuthidy element and the generators
M =274 of SU(N, = 3). Thus one obtains the projection formula

’ / 1 _ _ 1 _ _

@ 653 4 = 9 (192G394) Laa Loy + 12 (@M 2337 ) N NG, (2.109)
Especially, in the calculation of an operator product espamfor baryons the color condensate
structures naturally arise from the produgi.c, iy 0 = €apcartyc = Oaa/Opy — Oat gy AUE

to the color structure of the baryon interpolating fields.nekethere the four-quark condensates
generally appear in linear combinations of color structurethe form

R 2( _ _ 3, _
CabcCartre @ 4505 45 = 3 {(Q1Q2Q3Q4) 1 (Q1/\AQ2Q3>\AQ4)} : (2.110)

This would imply two condensate structures for each Lorsotdar term. However, for ex-
pectation values with just one flavor (pure flavor four-quemkidensates) these structures are not
independent. Combining Fierz rearrangement of the Diradractions of pure four-quark op-
erators with the rearrangement of the color structures,pesenAppendix C.3, one derives the
transformation equation

(ﬂOk)\AuﬁOl)\Au> - —§ (aOkuaOlu) - %Tr (Okonolom) (G0muaO™y) , (2.111)

which relates the two different color combinations. Thasformation can be brought in matrix
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form i = AZ with

(@ qarq) (qqdq)
(1N qq7* A q) (TV9T7"q)
(@Xqqgrtq) [v? (@Yaqyq) /v°
(qoapAtqqoPAq) (qo0pqdo™Pq)

j— (GoapA?qqor Xq) govPus/v? Ee (Goapado™ q) govPus/v? (2.112)
(157N qqys7" A q) (757090757 q)
(Tysy¥ A qaysy A1) [ (@vs¥aqrsyq) /v
(g5  qqvsA4q) (@v593759)

(@M qq q) (@¥adq)
(@57 A qqoP TN q) ieqpysv® /2 (@y57°qq0™7 q) i€apy50° /2
~7/6 -1/2 0 -1/4 0 1/2 0 -1/2 0 0
—2  1/3 0 0 0 1 0 2 0 0
~1/2 1/2 -5/3 -1/4 1 1/2 -1 1/2 0 0
6 0 0 1/3 0 0 O -6 0 0

Ao |32 22 4 2312 2 32 00 0| p g
P 1 0 0 o 13 0 -2 0 0
/2 12 -1 1/4 -1 1/2 -5/3 -1/2 0 0
~1/2 1/2 0 -1/4 0 -—1/2 0 -7/6 0 0
0 0 0 0 0 0 0 0 —5/3 —i

0 0 0 0 0 0 0 0 3 1/3

We emphasize that the inverse transformatibn' exists. However, structures for baryon sum
rules typically are combinations of two color contractipdgctated by Eq. (2.110), which form
components of the vector

z:3<f—§g> :Bf:3<21—1—§1> j, B=2(1-

. : . : A). (2.114)

(SN

The matrixB has the fivefold eigenvalues 0 and 2, and the correspondienspaces both have
dimension 5, especially the kernel Bfspanned by the eigenvectors to eigenvalue 0. The fact that
the kernel contains more than the null vector implies fhdtas no inverse. The transformation of
this equation into the basis of eigenvectors yields a newovet¢ where 5 elements are to be zero.
Written in components of these relations are

zo+ 26 =0, (2.115a)

dz1 — 2290 — 24 =0, (2.115b)
221 — 24+ 228 =0, (2.115c)
21 —23— 25+ 27 =0, (2.115d)
zg —iz10=0. (2.115e)

The first three conditions occur already in the vacuum setlatter two constraints are additional
in the medium case. Of course, the conditions can be wriitéarehtly, e.g., the second and third
line may be conveniently combined 19— zo — zg = 0 for applications. An alternative derivation
of these relations is presented in Appendix C.1.
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The relations (2.115) have two important consequenceslyfiteey allow to simplify pure
flavor four-quark condensates in baryon sum rules; secpsidige Eq. (2.114) can not be inverted,
they forbid a direct translation from pure flavor four-quadndensates in baryon sum rules at the
ordera! to those which occur e.g. in sum rules for light vector mesorise ordera.

2.4.2 Factorization and Parametrization of Four-Quark Con  densates

Up to now we have introduced all possible four-quark condtassin the light quark sector. These
structures will appear in the QCD sum rules for éheeson and the nucleon. To evaluate the sum
rule equations with the focus on particular combinationsoaf-quark condensates one is faced
with the common problem of the poor knowledge of four-quaskdensates. Usually assuming
the vacuum saturation hypothesis or resorting to the Iafgdimit the four-quark condensates
are factorized into products of condensates with two quaecators. The factorization of four-
quark condensates allows to set the proper units, howéseeliability is a matter of debate. For
instance, [57] state that the four-quark condensates imtigéeon sum rule are the expectation
value of a chirally invariant operator, whilgg)? is not invariant and thus a substitution by the
factorized form would be inconsistent with the chiral pdpation theory expression for the nu-
cleon self-energy. The four-quark condensates breakimgldymmetry might have a meaningful
connection to the chiral condensate but for the chirallaiiant structures such a closer relation
to (gq) is not clear [58].

Moreover, for nucleon sum rules at finite temperatiiréand vanishing chemical potential)
it was argued in [59] that the four-quark condensatesiamedependent quite different from the
behavior of(gg)? which is why a naive factorization would lead to artificiaitperature effects in
the nucleon mass.

For numerical purposes it is convenient to correct the watleduced from factorization by
factors, denoted as, and examine the effect of these correction factors on giieds from QCD
sum rules. In this section, the four-quark condensatesified so far in general are spelled out
and the parametrization with a set of quantities defined. In doing so one includes a density
dependent factat(n) in the factorized result

(@1 T1C1q51q72T2Coqp2) = K(n) (G T1C1g51G 122 Cogr2) g, (2.116)

wherex and the following parametrization depend on the specificlensate structure. In linear
density approximation this product ansatz obtains cautiohs both from the expansiot(n) =
kO + kWn with kO = ag_g)) and from the linearized, factorized four-quark condensate
pression(qsi I'1C1qp1Gral2Caqpa)g,, = a + bn. If kK0 = 1, thenk™® = 0 recovers the usual
factorization, which means the four-quark condensate \s=hiike the product of two two-quark
condensates;(!) > 0 represents a stronger density dependence with respec fadtorization
and vice versa. Inserting both expansions one can alsoilbegbe total density dependence of

the condensates by the combinatigifd = x(© + ¢x1),
(@1 T1C1g71G1202Cagypa) = ak® + br™n (2.117)

such that fors™ed = 0 the condensate is (in first order) independent of density.cBodensates
with vanishinga or b in factorization we choose = (7q)>,. andb = (qq).,. on/m, as scales to
study deviations from zero and denote these instancés’byhe classification of possible four-
quark condensates is collected together with the speci@rametrization in Tabs. 2.1 and 2.2.

For consistency with earlier publications we use the lat@lsnd "vac” in parallel to denote the vacuum limit.
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Indices Full condensate Parametrized Factorization
in Linear Density Approximation

Is  (auau) 1 (K12 (39) 20 + RTng
1v (Uryquiy®u) —% Ky (G Q>3ac Ry dng
W (agudg) o & (4120 (qa)2 + RS0
1t <ﬂaa5uﬂao‘5u> - <’f¥?c< q>\2fac med né
W (oaguiio™u) g oius/v? 4 (3#15 (q) e + K5

la  (@ysyautiysy*u) %(HXZ‘W 1) v + #IN €
W (sl /o L (i (a0)2e + wistng
1p (Urysutysu) —% <’f¥?>c< Q>3ac med né
lvs  (wfuuu) "irfécsdnf
lat (U5 Y, ulio A1) €0 Ring
2s <11)\Au11)\‘4u> —% (] q>vac mCd ng
v (T Muay® Mu) — g (K5 (3970 + REVIE
W (N A o 4 (b (02, + g
2t (HoapXtuao® N tu) — 10 (R (20 e + 15*ng
2t (o ap A utic® Mu) g2vPvs /v —3 (i K32 (Gq)2,. + KRsdng
2a (w5 ya XA utiysy* M) i <I€§3C (G9)%,. + Kk3edng
20 (uysy AN uiiysy At o2 5 (i“EiW 14)vac + R0

2p <11’y5)\Auﬂ’y5)\Au> —% <H52C< q>vac mCd ng
2vs  {(ay A\ tuartu) %S“V‘;d 3
2at <ﬂ757,£/\Auﬂa>m/\Au> e”)‘”fvg ’%Izgetdnf

Table 2.1: Two complete sets (indices 1 and 2) of independent non-
flavor-mixing four-quark condensates differing in colorusture and their
parametrization withx in strict linear density approximation¢ =
(79)vac On/mg). The sets are related by a Fierz transformation. A similar
table for flavord insteadu appears for an exhaustive list of four-quark conden-
sates for the two-flavor casg = 2.
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Indices

Full condensate

Parametrized Factorization
in Linear Density Approximation

3s

3v

3v/
3t

3t/
3a
3a/
3p
3vs
3at

4s

4v

4v'
4t

4t/
4a
4a/
4p
4vs
4at

5vs
Sat

6vs
6at

aaﬁucia'y5d> 932)52}5/1)2
s Yaudysy*d)
uysyudysyd) [v*
urysudysd)

/\/\/\/\/\/\/\/\/\/\
I

EHAWS'US

Uya N udy® )\Ad>
a AN udyA\Ad) v
ﬁaag)\AuJUO‘B/\A@

ﬁaag)\AuJUV‘S)\A@ gﬁvﬁv(g/v2

sy A udysyAtd) o2
ays A\ udys )\Ad>

(
(
(
(
(
(@570 X udysy* A d)
(
(
(
(

W5y A udo yy /\Ad> e”)‘”fvg

(@fdau)
<J757Rdﬂa Mu> erATE Vg

(dy A\ durtu)
<JV57HAAdaa A )\Au> hATE Vg

K2

~VaC <

VaC

r.vac
Iigp

(q
(g
(g
"‘VaC <
(g
(

qq)?
H3vs

K3at

R G

R (@

LR (g

R
VaC <
el
NRC
R
Kavs

Kyat

K5vs

Ksat

Kevs

Kéat

19)>
1q)>
19)>
79)%
79)>
79)>
19)>

aq):
~med <qq>vac 3n/2

med <
med <

~med <

med <

VaC + K'géed é
o+ Redng
o+ Emedng
vae + R5ing
rac + R ng
va + iing
ac 5w NE

~med
vac + '%3p né

5o (79) v 312/2
50 (09) v 312/2

yac + Ricdng
yae + Rl dng
vac T RRInE
ac +RRNE
vac T RRAnE
vac + Ridng
vac + /@rf;?dnf

~med
vac + ’%4p Tlf

med <qq>vac 3n/2

3n/2
3n/2

>VaC

>VaC

3n/2
3n/2

>vac

>vac

Table 2.2: A complete set of independent flavor-mixing four-quark cemd
sates and their parametrization byarameters in strict linear density approx-
imation. Additional parameters (indicésand6) are required for structures
which cannot be exchanged.
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Non-Flavor Mixing Case

The condensates which contain only one flavor are listedim 4. From the demand for parity
and time reversal invariance orily(10) Dirac and Lorentz scalar four quark operators remained in
vacuum (medium). Further, these structures carry colaoc@stand must be projected on colorless
objects for which there are two ways. However, since the stiamers occur, both color com-
binations can be alternatively rearranged via Fierz t@nsétion. Hence, there are ony(10)
independents parameter sets in the Tab. 2.1, although both color alteesatre listed. The
parameter sets with indicds2 are related by the transformation (2.113).

Flavor Mixing Case

Here the condensates containing two quark operator paidistinguished by flavor. The number-
ing is as for the pure flavor structures. However, the comersf the two color contractions is not
possible due to different flavors. Compared to the non-flaniing case the missing exchange
symmetry ofgg contractions due to different flavors allows additionakcplaents of Dirac matri-
ces and thus leads to 4 additional condensate structuresdium (see Tab. 2.2). Therefore, 10
(24) flavor-mixed four quark condensates and thy&rameter pairs appear in vacuum (medium).

To sum up, there exist in mediufvacuuny for n; flavors without flavor symmetry taken into
account2n s (6ny — 1) {Em}} independent four-quark condensates being Lorentz inviagpec-
tation values of Hermitian products of four quark operatmsstrained by time and parity reversal
invariance. Symmetry under flavor rotation reduces thesebeus to20 {10}, respectively. Fi-
nally note that these are also the numbers of necesg#ty parameters. Since the four-quark
condensates in operator product expansions obtained fiermedium projections in the limit
of vanishing baryon density should coincide with the vacuum result, this leads by catitva
of vacuum and medium projections of four-quark condendaidise reIation%X?ﬁz,’a, = %n&}fa,
which have already been included in Tabs. 2.1 and 2.2. Rultleentz projections which exist
only in medium imply no news¥2¢ parameters and so the numberx8fd in medium reduces

consistently to the number @f2® and four-quark condensates in vacuum.

Density dependence of four-quark condensates from models

It is instructive to derive values for the effective denslgpendence parameterged. Expectation
values of four-quark operators in the nucleon were preWocalculated in a perturbative chiral
quark model [60] and taken into account in sum rule evaluaatior the in-medium nucleon [61].
(Corrections to the factorization of four-quark condeasah nucleon sum rules have also been
considered in the framework of the Nambu-Jona-Lasinio isdf52].) Lattice evaluations of
four-quark operators in the nucleon are yet restricted tolpations which avoid the mixing
with lower dimensional operators on the lattice [63], andvte not yet enough information to
constrain the four-quark condensate combinations eigtepecific QCD sum rules.

The results in [60] can be translated to auparameters. However, only such color combina-
tions being significant in baryon sum rules are considered left column in Tab. 2.3. We note
that the values given in [60] have to be corrected slightlpnder to reach full consistency with
the Fierz relations (2.115), which are an operator ideratitg thus must be fulfilled also for ex-
pectation values in the nucleon. An optimized minimallyreoted set is found by the following
procedure: minimize the relative deviation of all separatieies compared to values delivered in
the parametrization of [60] (this is in the order of 10 %, heerewith different possible adjust-
ments); from these configurations choose the set with sstalen of separate deviations (this
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Mean Nucleon Matrix Element | PCQM model(gq),,.]
(to be color contracted with,p.€,7p/ /)

<u RIrid ub>N 3.993
<u ’yau“ub ’yo‘ub>N 1.977
<aa Jut @ fud > Jv? 0.432
<u Oapul b ey b >N 12.024
<u aaguaub O'O“;ub>NU6’U5/U2 3.045
<ﬂa 757au“ﬁ 7570‘ub>N —1.980
<ﬂ“,751/u“ﬂb/757/ub>N Jv? —0.519
<ﬂ“,75u“ﬂb/75ub>N 2.016
<aa’¢u(zab’ub>N _
<ﬂ“/ 75’}/,{111&17/&/ amub>N e“)‘“5v§ —
(awrd'd) 3.19
<aa’fy wed adb> —2.05
<ﬂ“'1/u“Jb 7/db> Jo? ~0.73
(0 ooputd’ o aﬁdb>N 3.36
<ﬂ“laa5u“cﬂ’/a°‘5db>N vBus v 1.11
<ﬂa/757au“czb,757°‘db>]v 1.66
<ﬂ“,757/ua(fb/757/db>N Jv? 0.37
<11“”y5u“d7’/’y5db>N —0.185
<ua’¢uad7>’db>N —0.245

<,aa/ 75’Ynua(jbl O’)\ﬂ-db>N 6.‘£>\7‘(’§,U§ _

Table2.3: The combinations arranged as in the veetof four-quark expecta-
tion values obtained from the (partially modified) set takem a perturbative
chiral quark model calculation (PCQM) in [60]. Therefronetbharacteristic
density dependence of four-quark condensates, the valu&<f is derived.

Isospin symmetryV = %(p—i—n) of the nuclear matter ground state is assumed.

The values in the pure flavor sector (upper part) are tunethéy &ierz rela-
tions (2.115) on the accuracy level0.01 (gq),, . For three combinations no
results are provided in [60] as indicated by™
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deviation sum estimates to 40 % and different configuratamesclose to this value). The re-
sults from which the relevant density dependence for oudensate classification is obtained are
collected in Tab. 2.3; our slight modifications of valuestie riginal parametrization [60] are
documented in Tabs. C.1 and C.2 in Appendix C.2.

The connection to out parameters is derived as follows: Generally, in linear dg@pprox-
imation condensates behave likg |O| V) = (¥ |O| ¥), + n (N |O| N). The normalization of
the nucleon state differs from that of Eq. (2.85) in orderéacbmparable to [60, 61]. If one com-
pares our parametrized density dependent part of eachlyt@rk condensate with the evaluation
of nucleon matrix elements of four-quark operators in thelgimations in Tab. 2.3 one obtains
values for linear combinations af parameters. The linear combinations refer to the two distin
color alternatives representing, as mentioned aboveyfheal color combination in baryon sum
rules. For further attempts to gain estimates of four-quamkdensates we refer the interested
reader to [64].

2.4.3 Four-Quark Condensates as Chiral Order Parameters

In Section 2.3.1 the meaning of condensates as order paantgtspontaneously broken sym-
metries was covered. Chiral symmetry restoration is lintedhe limit of a vanishing chiral
condensatégq). The previously collected four-quark condensates sha¥l Ine discussed in this
respect.

For this discussion we assume exact isospin symmetry ang fotthe two-flavor case. Then
the condensates tabulated in Tabs. 2.1 and 2.2 can be pobuio flavor singlet structures, that
means the one-dimensional invariant subspacetii s = 2)y

<71Z_)arl¢b7/_}cr2¢d> = i <7;EF17/”Z)F27;Z)> Tpalge + i <lZ_JTaF1ZZ)ZETaF2¢> Tlg)aTcll)c : (2118)

The arbitrary index arrangement of the basis matrices isatdo simplify the structure of the
coefficients. Basis systems of flavor symmetric four-quarkdensates, as specificationlafs,
can for example b, or Oy as given in Tab. 2.4. Therg denotes a flavor vector(= (u,d)”
for ny = 2) and the first as well as third (second and fourth) blocksleeacuum (the in medium
additionally appearing) four-quark condensates. Thisnplifies the previously claimed numbers
of 10 (20) vacuum (medium) four-quark condensates in th@iflaymmetric case. The flavor or
color matrices containing parts in the lower half of Tab. @4 be (Fierz) reordered to transform
the basis systems into each other, see Appendix C.3.

To classify a four-quark condensate as potential ordempeter along definition (2.64) the
considered four-quark operator has to be identified as cdatonofQ® with a generating field
being itself a four-quark structure

[Q%, @] = [Q, v XypY 9] = [Q* P XYY Y + pXY[Q, PY ] (2.119)
The termsX, Y cover Dirac, flavor and color structures. Adopting Eq. (2{h% reads
QP XYY Y] = (35T X + X5 T )Y ) — X (3 TY + Y1)y, (2.120)

a relation symmetric under exchangeXof— Y. This reduces the number of possible configura-
tions in the following discussion. The transformationSdf (n ;) 4 does not act in color space, and
therefore would not change the initially given color condtians inX andY. It suffices to study
the flavor matricesi(; = 122, 7*) and Dirac structure®),, ,.

ForX = D,1fandY = D,1; ityields

1- _ 1- _
[Qa> (I)] = _57[){’757 Dx}TawwDy¢ - ii/)Dﬂ/ﬂ/){%, Dy}T%ﬂ , (2.121)
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BasisO, BasisO¢
() (i) (2.135)
(D) (VYay™ )
(YoagipoPy) (hoagibo ) (2.140)
(PV5Ya b5 Y1) (Y5 Ya WYY )
(P55t (pysypys) (2.134)
(yppy) fv? (ypipy) fv?
(Voaprpo ) gSvPus 02 (Voagirpo™) g¢vlus /o2 (2.140)
(pysyysyy) [v? (Dysy o5y v
(YY) (V) (2.136)
(D57 Amth) € v (D5 horeth) €2 ve  (2.139)
(A Pp A ) (YTaPpTat)) (2.134)
(Vyarppy@ AA) (PYaTaW Py *Tath) (2.127)
(Yo PP AAY) ($0apTatpDa™Pra) (2.140)
(D15 Ya X P57 A (V5 YaTath V5 Tath) (2.127)
(s A Ppys AAy) (PV5Tay5Tath) (2.135)
(PPN PY AP Jo? (DY rabbfat)) J0? (2.127)
(YoapAtpbo® XY gvPus /v? | (Yo apTatppo ™ Tah) gdvPus /v? (2.140)
(s A poysy At Jo? (P Y TatppysYTat)) S0 (2.127)
(PYA P ALY (VYT hpTat)) (2.128), (2.137)

<7;Z_)’757n/\A¢QZJ)\7r >\A7;Z)> EHAW&U&

(VY57 TaW V0 ArTa W) ) €™ v

(2.129), (2.138)

Table 2.4: Two complete basis sets of four-quark condensates when #&ac
vor symmetry is assumed. The second and fourth blocks ayepsesent in
medium. The bases differ in the lower half, where either calatrices\*
(O.) or flavor matrices, (Oy) are used. The last column states in which order
parameter combination a condensate in the @giappears.
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only containing flavor triplets and thus not suitable to beniified with a four-quark condensate
in Tab. 2.4 regardless of the Dirac structureirandY’.
Then assume&l = D, 7’ andY = D, 7°

Q7 @%] = — 2015 Ds77" + Dsrir YD, 7u
— %@Dbei/nﬁ(%DyT“Tc + DyysmT)Y (2.122)
With 7,7, = i€geTe + dqp 1 ONE Obtains
Q,9%) = — Liicanar 15, Dal + 8u1 35, DaY 00D, °0
— SODaT G ieaear 15, Dy + S5, Dy 1Y (2123)

where the only remaining relevant terms are the contribgtio flavor singlets
a C i n n c
(W][Q", | W) = — Seara(¥Y7" (5, Dl Dyr°y) | W)

— etV D7 s, D). (2.124)

Upon flavor singlet projection with Eq. (2.118) this leads to

([[Q°, @] W) = = Zewe (V17" 15, DD, 7 Y| W)
(WP DL s, Dy Y| D)) (2.125)
or using as ansatz fap the contraction with ..
(U[[Q7 eabe®”)|W) = — 3i (W[ 7°[15, Datr Dy | )
(U Dy Y75, Dy [P 1)) (2.126)

Specifications of the Dirac structures determine fourkjuamdensates as potential order pa-
rameters. Non-zero commutators arise for= ,,v57y,. Therewith the following four-quark
structures lead, performing Lorentz projection and symynadnsideration along the line of Sec-
tion 2.4.1, to order parameters in the sense of definitiody{2.

Dy = V5T Dy =T - <\I’|7/_)7u7_e¢7/_)’7u7'e¢|\1’>

— (VY57 Tep Y5 Y b | ) (2.127)
Dz =757 Dy =1 s (| ), (2.128)
D = Dy = 04 — (V5T hoaTe| ) . (2.129)

It is crucial to recognize that the order parameter candidtai(2.127) is a combination of two
condensates, both terms individually cannot be generated & commutator. The other two
potential order parameters (2.128) and (2.129) correspmiedndensates that are specific to the
medium scenario but vanish in vacuum.

The third possibility to specify the ansatz ®fis realized byX = D, 7’ andY = Dyl

1- - 1- -
[Q%, @) = =S¥ (15 Da" T+ Days7 TV Dyth— b Dar P (45 Dy 7+ Dyy57)9, (2.130)
which yields

[Q*, @%] = —%?ﬂ(ieabcﬂd V5, D]+ 6ab {75, Da }) 1) Dytp — %@Dﬂbﬂ)ﬂ_}{%, D, }m%p. (2.131)
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Flavor symmetry demands

(W1[Q", @1W) =~ Lo (P15, D} Dy |0)
+ (V[ Dyrethth {75, Dy } 70| W) (2.132)
such that four-quark condensates are derived from theawiin
(P[Q, ]| W) = — ((U]{5, Da }eyp Dytp| V) + (C|Y Dyretpip {5, Dy} 7et)|¥)) . (2.133)

Analog to the previous case one finds order parameters from

D, =1, Dy =5 — (U y59ys0| W) + (P|PTepdprey| W), (2.134)
Dy =1s, Dy =1 — (U|Ppip| ) + (V[pysTetppysTetp|¥),  (2.135)
Dy =15, Dy = — (U], | 0) (2.136)
Dy =y, Dy =5 — (U reppTetp| W) (2.137)
Dy =%, Dy=ou  — (U uredysont|P), (2.138)
Dy = ox, Dy =757 — (U|y500y57, 4] ) (2.139)
D, =0, Dy, = o, — (U |Py50 hho | T)

+ <‘I’|150W76¢15750m73¢|\1’> . (2.140)

Again one obtains linear combinations, this time mixing the different flavor contractions,
Egs. (2.134), (2.135) and (2.140). By contraction with thsilen pseudo-tensor the latter can be
traced back the tensor structures listed in Tab. 2.4. THe &bo allocates in the last column the
identified order parameter candidates. The pairs Egs. §%.13.137) and Egs. (2.138), (2.139)
differ by the flavor structure and are absent in vacuum.

These possible order parameters could also determine ¢timéasi@ous symmetry breaking of
the axial vector symmetry. Note that it remains an open iksmethe Goldstone bosons, coupling
to the fields® used in the ansatz Eq. (2.119), are to be identified in a unigyawith the hadronic
spectrum.

The four-quark condensates qualified as possible ordemmdeas in the two flavor case can
similarly be found for scenarios with arbitrary numbers afvirs generalizing the products of
Pauli matrices with Egs. (2.51) and (2.52) f6¢/ (V') groups. For the color contractions, which
have not been specified in the ansatz, both color singlettstes, for example in Eq. (2.127) (the
color unit matrix1. explicitly shown)

<\II‘1E]IC’YM7'61/HZ}]IC’YV78¢’\I’> - <\II‘1;10757;1761/}1/;1075’YV7'@1/}‘\I/> ) (2.141)
(UpA Y Tep ANy 7t [T) — (TN 5y, mep P A 5 7, Teth |0 (2.142)

are allowed. The transformation of combination (2.142)h basis set®). andO; is given in
Appendix C.3.

As discussed in Section 2.3.1 in the Wigner-Weyl phase tihésking of some order parame-
ters is strongly correlated to symmetries distinct fré@i(n¢) 4. In the two flavor case this can
be verified beyond infinitesimal transformations in closedr. For this we concentrate on the
elements of); in Tab. 2.4 in the Wigner-Wey!| scenario.

The vector and axial vector structurég,y¢ysy) and (Yy57.¥¢y575¢) are invariant
under the transformation — exp (i3,7475)1 in Section 2.3.1. Th&U (ny) 4 transformation in
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infinitesimal form

DXYPY Y —

U0 exp(—iB8*Tuys)v0X exp(iB*Tyys)vyo exp(—iB*Tays)v0Y exp(iB*Tyys) v

~ PXYPY ) + iB (P[5 X + Xs|TatdY ¥ + DX [sY + Y5 Tut))

+ (i T) 15X + X 5| (iB°Ta) [ysY + Yys)yp

+ Y (iB°To) 2 XYY Y + (i T, ) 295 X ysh Y o)

+ X (i T,) Y + p X (iB*Ta) Y v51p + O(8%) (2.143)

reveals that only ifX, Y are~, and/or~sv, the four-quark structure is invariant, the remaining
structures are n&U(ns)4 invariants. It remains questionable whether further blatdinear
combinations possess t5&/(n ¢) 4 symmetry, which would describe another singlet. In the two-
flavor scenario th&U (2) 4 transformations

) — exp (iﬁa7a75)¢ (2.144)

of the given elements @, are now calculated in non-infinitesimal form. Using the @ndigs of
the Pauli-Matrices,, andyg = 1, the exponential is evaluated and the transformation didver
vectors becomes

P — <]l cos 3 + i75%sin ﬂ) (I (2.145)
Y — P <]l cos 3 + i75%sin ﬂ) , (2.146)

with g = ]ﬁ]. As verification and prerequisite for the discussion of fquark condensates con-
sider the bilinear terms with an arbitrary Dirac structiire

YD) if Dys = —vD

i G (2.147)
YD1 cos(23) + iy Dvs ﬁw sin(28) if Dys =D

DY —

The last term vanishes if flavor symmetry is demanded. Eafigcihe chiral condensate trans-
forms as(yy) — cos(23) (¢¥v), which demonstrates the fate of an order parameter in the
Wigner-Weyl phase. Only a vanishir(g[?z/z> ensures symmetry with respect $@/(2)4. Note

that the exact transformation reveals that the infinitesaparoximation in first order qﬁ would

lead to an invariant term (compare Eq. (2.58)). Similarlg éinds for

—

0Dzt cos(26) ~ Pecui Drysisind) + 260 i 5

@DTA/J - if Dys =—75D ,
: iBe - . 2. - BF . .
YD1 + ?wD’Yg,"(b sin(23) — 3 wDﬁw sin’ 3 if Dvs = 5D

(2.148)

With this compilation of formulas the elements Ofs with any Dirac structures can be trans-
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formed. Hence, the four-quark condensates behave Widéz) 4 like

(PXYPPY ) —
($XPYy) if X5 = 95X , Y5 = 7Y
cos(20) (Y XYY ) + fac. if X5 = 95X , Y5 = 4957
cos(20) (VX9 Y¥) + fac. if X9 =+7X, Yy = —5Y,

cos?(23) <1/;X1/11/;Y1/1> — sin?(20) <1/;X75F1/11/;Y’y57_"1/1> + fac.
if Xv5 = +7X , Y5 = +5Y,

(2.149)
and
(XTYPY Tap) —
(OXTYYY 7y) + fac. if Xv5 = —5X , Yv5 = =Y,
cos(23) (Y XFpPY 7)) + fac. if X5 = —5X , Y5 = +75Y
cos(20) (DX FYipY 7)) + fac. if X5 = 495X , Y5 = —y5Y
cos?(283) (VXTYPY 7o) — sin?(28) (Y X590 Y v5¢) + fac.
\ if X95 = 47X, Y5 = +5Y .
(2.150)

We have not written out the flavor asymmetric contributiofec.”, which are absent under the
applied flavor symmetry. Note that, for example, condessaith X = Y = 1 mix with those
containingX =Y = ~s. Itis possible to derive a linear combination of these cosdées which
transforms into itself. However, such a behavior is acdiefor specific values oﬁ und does
not imply an invariant subspace 8%/ (2) 4, since therefore invariance must be realized for any
arbitrary value of the continuous parametérs

In conclusion, there exist no additional pusé/(ns) 4 singlets and thus the vanishing of all
four-quark condensates in the given basis derived as pessitber parameters of chiral symme-
try breaking is related to flavor symmetry. Only the vectod axial vector structures without
Pauli matrices are invariant, but these have not been eebdiz commutator and are in this sense
no potential order parameters. The other condensates rapgeilly only in order parameter
combinations. In any QSR applications it is required to tesether the occurring four-quark
condensates can be candidates for order parameters. Hnistdze deduced from a calculation
in the factorization approach, where the chiral condensaters in any way. One observes, e.g.
in Tab. 2.1, that even th8U (2) 4 invariant condensates are expressed by the chiral cortdetisa
should be emphasized that a statement on chiral symmetoragen from such terms would be
misleading.

QCD Sum Rules for Parity Partners

The previous discussion of order parameters was based dmatieformation behavior of the
condensates. A much stronger connection to spontaneors shinmetry breaking would start
on the observable hadronic side of a QCD sum rule. Indeeditenmative to the study of chiral
symmetry restoration in the QCD phase diagram via modifioatof individual hadron properties
is to consider parity partners in the hadronic spectrum.
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In this context the difference between vector and axiaterecorrelators has been investi-
gated [65]. If both vector and axial-vector symmetty/ (nr)v, 4 are realized in the ground state,
this is equivalent to independent symmetries in the left tiedright handed sector. Therefrom
the equality of the expectation vaIué@\Vj(z)Vf@)\%_: (\Il]A,‘j(m)A;‘,(y)]\m of the vector
currentV, = 1y, T} and the axial-vector current;, = 157,71 follows [66].

Especially, the thereby described parity partners/” = 17) anda; (J© = 1) would
become degenerate when chiral symmetry was realized in ipee®Weyl phase. Their currents

v 1 _

Iy = 5 (@yu — dyud), (2.151)
a4 1 :

g = (s — dysd) (2.152)

mix underSU (n ) 4 transformations. The study of the difference of their sptinctions (com-

monly abbreviated ag — A difference) has the advantage that many chirality indepentbrms

vanish. This concerns especially the operator productresipa in a QCD sum rule formulation.
The perturbative contributions are the same forithand A correlator in the chiral limit of van-
ishing quark masses; also gluon condensate contributiamnsetin thel’ — A difference. This

results in the sum rules

| S v = patn = 2 (2159
| dslovis) = pal = 0. (2154)
/000 dsslpy(s) — pa(s)] = —2mas <(9ﬁ> ) (2.155)

wherepy (pa) denote the spectral densities in the vector (axial veatbannel. The first two
eqguations are the famous Weinberg sum rules [65]. The thimdrsile was added in [67]. There,
also a generalization to medium is given, where the trassvand longitudinal contributions to
the spectral densitigs;’s have to be distinguished. The third sum rule (2.155) becdives

/ dww? 2807w, |7]) + ApE(w, [7])] = —2mas[(OF + 20, (2.156)
0
with ApT L = p€’L — pﬁ’L. The decisive condensates contributing to the QCD sum oul& + A
spectral functions are the four-quark condensates [67]

(0 = {(agy"Mur, — dpy* M) (apy Mug — dpy* Mdg)) | (2.157)

following from the difference of the operator product exgians of the currents (2.151) and (2.152).
In vacuum the important condensates have the form

(Ov_a) = (O = ((WyysAu — dy, A1 d)?) — (@A tu — dy A Hd)?) , (2.158)
which becomes, with flavor symmetry imposed,
(Ov_a) = <7Z_)’7u7—a/\A¢7Z)’7uTa>\Aw> - <7;’7u’757a>\Aw7;7M’757—a>\Aw> . (2.159)

It is remarkable that the combination enterif @, _ 4) can be identified with the order parameter
derived in Eq. (2.142). The concept of order parametergiontaneous chiral symmetry breaking
built in an abstract way for the condensates in Section &B3elated by the QSR to the meaning of
chiral symmetry in the hadronic spectrum. The importandd@four-quark condensaté®y _ 4)
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is thus made obvious. The contributio®’), being the rest frame limit af©**) v,v,,, obviously
plays an analog role in medium. In [58] these four-quark emsates are used to estimate the
transition line of chiral symmetry restoration in tiiei-plane. The degeneracy panda' meson
admittedly not yet restricts the fate of the spectral fuordi since only their difference would
decrease approaching the chirally restored phase. Evematbee ofp as quark-antiquark state
and thea; as meson-molecule may be different [68].

So farV — A data have been provided only for vacuum by ALEPH [69] and OPAI, where
the semi-hadronie decays intarm andw7w are analyzed. It has been attempted to constrain not
only the running couplingy; from the individual vector and axial-vector spectral fuocs [71]
but also the condensates of dimension 6, 8, and even dinmeb8iand 12 [72—74]. Such analyses
rely on the choice of suitable moments or otherwise improvedyhting of the sum rules. The
vacuum determination of the four-quark condensates in E@58) lead to values, which agree
with the factorization hypothesis (vacuum saturation)].[7/Severtheless, this statements holds
only for the combinatioOy _ 4) in vacuum. It cannot be excluded that cancellation effectsio
and the factorization of individual four-quark condensatals. From the conceptional point of
view, also ambiguities in the factorization prescriptierg. for terms of ordet /N2 in dimension
8 condensates [72], question the validity of factorizafimn/N, = 3 colors.

In this chapter all prerequisites for building QCD sum rubes’e been provided. These sum
rules basically relate, via dispersion relations, an irgtegver a hadronic spectral function to
QCD condensates which enter through an operator produeinsign. The condensates are ex-
pectation values which are only partially known. Espegjatie four-quark condensates are not
well determined. The condensates are abstract numberarsaivo all QSR applications. They
might also measure symmetry effects in QCD. We elaboratédespontaneous chiral symmetry
breaking and showed how order parameters could be definedla$happlication to parity part-
ners joined all the covered aspects: How does symmetryzesalithe hadron spectrum, how is
this related to quantities of QCD, the condensates, and vglgrch a condensate a qualified order
parameter?






3  Analysis of QCD Sum Rules

QCD sum rules are now specified for the exampleseson, nucleon anf® meson. We utilize
Borel transformed sum rules in this chapter. Their quaintéaevaluation is discussed. The focus
is here on the effects at non-vanishing nuclear densitibe.vBcuum limits are reproduced along
the way. Numerical evaluations reveal for the light quarkt@esignificant correlations between
the density dependence of four-quark condensates andehahgpectral functions quantified in
moments thereof, e.g. in hadron masses. The case @f theson is distinct from that. The mass
of heavy quarks cannot be neglected in the OPE calculatinew scale influences the relative
weights of condensates in the sum rule and thus reshuffl@sirtifgact on moments of spectral
functions.

3.1 Light Vector Mesons: w Meson

The neutral vector mesons, the iso-scalaneson and the iso-vectpf meson, have been inves-
tigated within the approach of QCD sum rules already in tlomeéring works [4], including the
mixing of these mesons [76]. They are described by the ctgren

. 1 -
j}ﬁ =3 (u*yuu + d’yud) , (3.1)

where the upper (lower) sign denotes fie= w (p) vector meson. QCD sum rules for vector
mesons in medium are well documented, cf. [77] for our notaind references therein. The
vector meson is considered at régt = —¢*> = —¢? in the nuclear matter frame of reference.
Then, instead of studying the transverse and longitudioaponents of the correlator

Wa(q.0) =i [ (T [} ()3} 0)]). (32)
if suffices to deal with the contracted pat= I1}; /(—343).

3.1.1 Hadronic Models
The guantity which will be determined by the QCD sum rule isttétio of moments, Eq. (2.40),

o ds All(s, n) e s/M?

—2 2
7M Y = S .
i (n 5+) I ds All(s,n) s—le—s/M?

(3.3)

In the pole + continuum ansatz this turned out to be just thrsgl pole mass. In medium the
sum rule relates changes of this quantity to changes of osaties. Whereas on the OPE side the
uncertainties lie in the values of condensates, the hacld@scription of changes iy should be
taken with care. Based on the conceptional restrictiondhbt integrals of spectral densities can
be determined, it was early recognized that numerous clkangee form of a spectral function
can for example cause a droppingmf,. Such reasons can be width effects or multiple peak
shapes, cf. [78-82] for discussions w.r.t. theneson or [82—84] for the meson.
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The interpretation of QSR results allows to restrict hadromodels. In case of the pole ansatz,
the pole mass can be exactly determined. For any model carganore parameters the sum rule
correlates these parameter. To elucidate this aspectdesras model for the spectral function a
Breit-Wigner distribution

1 sI'(s
All(s) = 7 (s — m\g;2 :-)sfz(s) ’ (3.4)

wheremy is the center of the Breit-Wigner curvE(s) the (energy dependent) width. In the limit
['(s) = Ty — 0 the ansatz reduces to the pole limitl(s) — §(s — m3). For thew meson the
correlation between central masg and a constant widthy is exhibited in Fig. 3.1. The regions
shaded in specific colors correspond to constant monmptsvhile the band denotes the impact
of different threshold parametess in the definition ofizy,. This figure reveals that passing to a
numerically reduced momenmty, is possible by either dropping the mass centgror increasing
the widthT'y, or a combination of both effects, due to the asymmetry facté/” in Eqg. (3.3).
The axisI'y = 0 recovers the pole ansatz. Note, since mass and width effantsompensate

0.12 T T T T T

I 1.00 x ﬁ%/(vac)
0.10F 0.95 x m3 (vac)
I 0.90 x m@(vac)

0.08} sy =1.1...1.7 GeV?

%
g‘ F(S) = FO
©  0.06}
0.04
0.02
0.00 L L
0.74 0.75 0.76 0.77 0.78 0.79 0.80

mp [GeV]

Figure 3.1: Correlation of fixed widtHy and pole mass parameteg under

the assumption of constant moments (3.3) ford¢hmeson. Three different
values formy = m,, are compared (red, green, blue) and the possible expla-
nations for a decrease @f,, can be read of (see text). The error bands are
due to different values of the threshaigl (short-dashed linesy = 1.7 GeV?,
continuous lineisy = 1.4 GeV?, long-dashed linesy = 1.1 GeV?).

each other, even an increaserof with significant broadening would explain a changenof.
The situation of decreasing width but smaller pole mass semnrealistic, especially for a narrow
resonance like the meson. Modelling the width as in [79],

1—-m2/s

O(s —m2), (3.5)
1— m%/m%

F(S) = PO
with the pion massn,, does not alter these qualitative statements. Howevan, ttiee slopes in
Fig. 3.1 increase. These results are obtained for a fixed BaassM? = 1 GeV2. As test for
the impact of this parameter, the moments, averaged oveatige of applied Borel masses, have
been adjusted to be constant. This treatment further isesetine error bands and even leads in
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combination with the energy dependent width (3.5) to oymilag bands. This exemplifies the
restrictions laid upon the interpretation of the ratio {3c®dmpare also [84].

Experimentally, significant broadening effects have begorted for thev meson by the CB-
TAPS/ELSA collaboration [21]. For the meson the CLAS collaboration reported no significant
mass shift but some broadening [22, 23]. In the following widwell on the consequences for
the condensates under the hypothesis that the ratio E§jd@e8 not increase in a nuclear medium.
This adds some details to the main results already sumndanZ@5]. There a major motivation
was the observed lowering of thedecay strength inside a nuclear medium [19]. Although these
experimental results are still under debate (for instaheeatithors of [85] argue that they are not
conclusive due to a particular choice of background seipm)atour hypothesis would be equally
well supported by considerable broadening effects. FigsBowed that also an increase of width
alone drives the general moment, to smaller values. The expectation that this ratio is not in-
creasing in a medium is therefore a reasonable assumptiimh @lone leads to the consequences
for condensates as published in [25] and complemented fkereblote that the vector meson is
considered at rest which stands against a quantitative aosom with experimental results where
the mesons have non-zero three-momentum. Quantitatitenstats about the moment require
the treatment of final state interaction etc. We restrictelwes to the qualitative hypothesis, that
T, Not increases with increasing baryon density.

3.1.2 QCD Sum Rule

For completeness the essential steps towards the anayzainl rule equation are collected. The
dispersion relation is improved by two subtractions

@ n)  1YV0,n) @y o Q@ ATIV) (s, n)
Q2 - Q? + 1177 (0) + /0 ds m (3.6)

Any polynomials vanish under Borel transformation (seetiBe@.2.2), however, dividing bg)?
the subtraction effect is retained also in the Borel sum rule

V) (2 oo V)
3W<H @’m>=mwum—l/ i, 37)
0

s

The I.h.s. is given by the operator product expansion orgahin terms of mass dimensidrand
twist 7 [77]
nV(Q%n) =nl) +n, o +nl) L nl (3.8)

scalar

which contains the Wilson coefficients and QCD condensates i

vy _ 1 3o 2 Q? _ 3 2 2
Hscalar T ]2 <1 + Ar OF> Q" In ,U'z ]2 (mu + md)
1 s 11 )
+5 (1 + ECF> g (Vlmain + madd®) + 5 o5 (\I']—G )

T 1 a a
— %01 (U] (@y s A\ vy ys A u + dyys A ddy s Ad) | 0)
1 _
¥ 7TOZSQ—<‘I’| (@A udy 52 d) W)
- g Q — (W] (@ Ay A+ dy A ddyPA) [B)
2w

— ? O (\I'] (u’yu)\aud’y“)\“ ) | W)
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11 ;
+ 9575 g5 (Mul¥muio, G ul) +mi(¥mado, G dT)) . (3.92)
as 1 a
W, =2y “ny gt ¢ (U|8T (G, Gar) |¥)
(2 202% 0 ik gt (WIST (wyuDyu + dyyuDyd) |T) (3.9b)
3 18 7)) 'git1 TuyU+ Yy ’ '
dla, 1

Vv v o QT
5 s = = s gt 0a” (VST (G, DuDAGpr) 10)

8  67as 1 A
°© C v o
+<3+307T F> —5a"q"q"q" x

Q
(\IJ|S‘T (fqu,,DADUu + dv,DyD\Dyd) | V), (3.90)
1 a, 7, a
M s =F 558 Q6 Ha¥ (W|g2ST (wy,ys A udy, 15 A7) [ 0)
11 _ _
— 5o (WIgST (@s A utinsX e + dynsX*ddy,5A*d) V)
11 . -
— ﬂ@q“q’j(\mg?ST (ﬂfyu)\“u (ﬂ’y,,)\“u + d’y,,)\“d)) | W)
11 = _
— ﬁ@q“q”(\m 928T (dyu\d (T A\ u + dy, \°d) ) | D)
- ELq q <\Il|g2ST U |:D éua] 7a/75u + d_ [D éua] ’7a/75d |\Ij>
12 Q6 o + H +
1 . _
— gﬁq“q”(\lﬂggST (myuDyDyu + mgdD,D,d) |¥). (3.9d)

The operatorss, T’ project on symmetric and traceless terms w.r.t. Lorenticesd For the Borel
transformed OPE side on the left of Eq. (3.7) one finds then

H(V) (Qzan) 2 > C;

co = # <1 n %CF> , (3.11a)
¢ = —S—;(mz +m3), (3.11b)
co = % <1 + %C’F) (mu (@uy,. +mq <cZal>VaC + aNn) + i [<%G2>Vac — g ]O\,n]

n G - i;r Cp> ASHD Ay — %nf—SAg’MNn, (3.11c)
c3 = —18%710[8 [FLZ;&C <QQ>\2,ac + ﬁglediaN iz?vac n} — <152 + (13;(213 CF) Aiu+d)Mz%rn

20504
864

1 1 7
np A M3n + M <3K2 + 3K1 1 ko > : —onMZn,  (3.11d)

8 16 44

where we adopted the notation and values given for the caaties from [77]. Especially, some
further moments of parton distribution functions are useddtermine the density dependence of
condensates. The used values in this notatio®are- %, ny = 3,0 = 0.38,m, = 0.004 GeV,

mg = 0.007 GeV, m, = 0.0055 GeV, MY = 0.77 GeV, AL = 1.02, A = 0.83, My =
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0.939 GeV, Qo = 0.15 GeV, f, = 0.093 GeV, A" = 0.12, A = 0.04, K2 = 0.11
K!=-0.112, K = —0.3, and the saturation density, = 0.15 fm 3.
The evaluation is based on the final Borel sum rule

00 V)
H(V)(O’n) _ l/ dSMe_S/J\/I2 o M2 +Z (312)
0

T s IM2(2 1) °

The termII(V)(0,n) accounts for the Landau damping effect and represents teermraicleon
forward scattering amplitude beifg /4My (n/4My) for thew (p) meson. Combining this sum
rule with its derivative one obtains the expression for @iterof generalized moments

oM (L= (14 ) e ) - T~ T~ s (3.13)

L 3 4 ") o,n)
)R v R vr R yv LRy v iy v

In this form the QCD sum rule equation will be evaluated below

mi(n,Mz, sy) =
+

3.1.3 Constraints on Four-Quark Condensates

In the following we concentrate on the four-quark condezsantering Eq. (3.9a) for themeson.
The combined four-quark condensates there

1,- - -
{(aysyu N uarysy M) + 5 (dysyu A\t ddysy" X)) + (avsy ) udysy AAd)

+
Ol NN =

(ay A udy A1) + % (T A uay M) + % (dy A ddyH A4 d)

—ar (i a0+ 5 ) ) (314
are already present in vacuum. Note that in this case thdi@uali medium specific, four-quark
condensates in Eq. (3.9d) are directly linked to the pamanagion K.*? of twist-4 matrix elements
in the nucleon [77, 86], and are not modified here. This doésuftice to determine all four-quark
condensates in the sum rule. Using for the investigated four-quark conderssiid&q. (3.14) the
individual parametrizations from Tabs. 2.1 and 2.2 with shightly different definition ofi4, .,
from [25], the relations

2 Q% 9 _ 1

R = e g+ (g ) &)
2 Q (9. 1.

chd — _?ﬁgi,()d + 2 = r2r5110d + 2;2 <28 Zr;cd _ 7 Z&Od> (316)

elucidate the important point that only statements aboddicelinear combinations of four-quark
condensates can be derived when comparing to hadronic saddes accounts especially for the
strength of the density dependence of the examined foukquendensates.

The dependence of the finite density behavior of the mormiepton the value ofx™°! is
understood qualitatively as follows. Expand all functigiis) according to

fn) = fO 1+ O with O = £0) and f<1>:n063f(0), (3.17)
no n

2 (n, M2, sv) = R+ A, (3.18)
0



56 3 Analysis of QCD Sum Rules

¢ =c 4D (3.19)
no
50 =50 4+ sH 1 (3.20)
no
which gives
(0) (0) (0) (0)
I ONPE So ) sOymz| G G G
R = N (Co M= |1 1—1—/\/12 e MZ O ME e ) (3.21)
_ 1 IR ©0) O /M2 (1), (0) (1) R
A_NMz{[4MNnO+C e o (s R) — ¢ 1—1-/\42
B Ty O B Sy I
M? 2M?2 2 M4 3M?2 ’
(0) (0) (0) (0)
R (ON PR Ve B B M Cy
N=c[1-¢ |+ &+t (3.23)
From the above set of parameters one finds the valueg)cﬂndcgl), where especially
W_, [l % _ Lo
“ _"0{2 (1+ 47TCF> N~ g7 My
(Lo bes o ) qerdy, 3 O ey (3.24)
4 487 F) 2 AT A T '
W _, [ U2 neaON (@@vac (D, 6Ty (u+d) 5 /3
cy —no{ g1 Tk - 12 + 1927TCF A My
W00 a3 B 1N T
S64n an4MN+4MN <8Ku+2Ku+ 16Ku 144UNMN . (325)

The sign ofA dictates whether the measufe, decreases or increases in medium. Since the
values of N are positive for relevant parameters, the qualitative ehas given by the sign of
the expression in brackets in Eq. (3.22). Assumiffg = 1.4 GeV?, s = —0.15 GeV?, the
vacuum reference valug = 0.612 GeV? andc, = 0, the sign change is driven by"° as

M? =04 GeV?: A o (1.86 — k1) | (3.26)
M2 =1.0GeV?: A x (3.96 — k1) | (3.27)
M2 =20GeV?: A x (5.32 — g1ed) (3.28)

In [25] the caseM? = 1 GeV? was representative for the numerical evaluation of the sule r
explained below. The other cases also denote that theatsiiciation, an approximately constant
moment,, is related tas™°? > 1, i.e. the four-quark condensates change stronger thamctexpe
in the factorization picture.

Beyond this estimate the sum rule equation (3.13) is evadiday numerical means. Therefore
the dependence afi,, on the Borel mass\i? has to be reduced. Technically, the threshold pa-
rameters,, is optimized to produce a curve of maximum flatness withinréage range of Borel
masses. This range, the so-called Borel window, has to icoplgysically reasonable values of
the Borel mass. Its borders are here determined by standiéedac the upper limit is set to
restrict the continuum contribution to the initial hadroside to at most 50 %; the lower Borel
limit is determined such that the highest dimensional cosdtes contribute less than 10 % to the
operator product expansion. These criteria are well éstedd for the vector meson sum rules,
however, they cannot be taken as general rules. Since thepgstyc behavior of the OPE in the



3.1 Light Vector Mesonsu Meson 57

non-perturbative sector is not understood, higher corateascould still spoil the sum rule. Also
extending local quark-hadron duality down to the threshglanight not describe the continuum
appropriately. For compatibility we follow in the analygisese techniques well proven in the
literature. The QSR considered here is fairly robust wdifferent evaluation approaches. We
have checked that the method applied to the nucleon, conjmatéon 3.2, successfully recovers
similar results.

In the vacuum limit the working Borel window 81 = 0.8...2.7 GeV, changing slightly
in medium. The undetermined four-quark condensates aradaum adjusted to reproduce the
vacuumw mass withx2¢ = 2.94. The density dependence of the four-quark condensatesris th
adjusted to remain at the same mom@mnt at a baryon density, > 0. This depends of course
on the density where the moment is calculated for comparitwe critical values ofs™¢ for
a constant moment are 4.25rat= 0.01ng, 4.06 atn = 0.1ng, 3.79 atn = 0.6ng, and 3.57 at
n = nyg. Fig. 3.2 shows the squared mometj for this particular adjustments af*¢?, it exhibits
also the general impact of variations Afj°!: 77, increases when the density dependence of the
combination of four-quark condensates (3.14) is reducedilllof the following discussions the
choice of a reference density of 10 percent saturation tjeissinade.

0.65 T T

0.60 ]
— .
>
& 0.55 ]
E —— kmed = 4,06 Y
- kmed =379 “
0.50F rmed — 3,57 N
\
\
\
\
0.45 : :
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Figure 3.2: Adjustment ofx™°¢ with ¢, = 0 to the case of a non-changed
value ofm? with respect to different reference points in density. éasing
density dependence®*? of the combined four-quark condensate suppresses
the momentrn,, at non-vanishing baryon density

We also estimated the impact of mass dimension 8 condersatisngc,. The influence of

cy is correlated tos™ed, Variation Ofcfll) from 0...107° GeV? yields the following condition
whenm? is to give the same value in vacuum and at our selected referéensity or is even
reduced,

rmed 5 405 — 2.80 - 10% GeV3cY (¢ =0). (3.29)
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The influence of different contributions 030) is exemplified in Tab. 3.1. Modifications in the
vacuum sum rule require readjustments to the vacuum mabksxjffit. The critical parameters
xmed are not significantly altered.

cio) kYA gmed(n = (0.1ng)
—-1.0-1073 | 1.14 3.81
—5.0-107* | 2.05 4.36
0.0 2.94 4.06
5.0-10~* | 3.80 3.75
1.0-1073 | 4.64 3.48

Table 3.1: The impact of constant dimension 8 condensates on the adjast

of k2 andx™ed. A non-vanishing term:flo) requires a readjustment of the
vacuum limit. Also the critical density dependencg®? to ensure a constant
moment is modified.

Fig. 3.3 collects the essential results: The momehts calculated as a function of the baryon
densityn adjusted such that it remains approximately constant at Easmall densities. The
critical value therefore is™°d ~ 4 meaning that four-quark condensates change stronger with
density compared to the factorization hypothesis.

Supplementary, we study the influence of a variation of sg@vaput parameters in the QCD
sum rule: For a variation of the vacuum initial moment (vanumass)R by +=10% one obtains in
the linearized sum rule Eq. (3.18) the valuegofiven in Tab. 3.2.

M? (a)R = 0.5508 GeV? (b)R = 0.612 GeV? (c)R = 0.6732 GeV?
0.4 GeV? | (1.76 — k™°4)0.247/ny  (1.86 — k2°1)0.311/ng  (1.95 — £™°9)0.425 /ny
1.0 GeV? | (3.39 — k™)0.027/n9  (3.96 — £2°1)0.028 /0y  (4.50 — £2°1)0.029/ng
2.0 GeV? | (3.63 — k2°1)0.009/n9  (5.32 — k2°)0.009/n9  (6.97 — £k2°)0.009 /1

Table 3.2: The value of the analytical estimatein units of GeV? for 10%
variations of the vacuum limi2 = m,,(n = 0) usings,, = 1.4 GeV? —
0.151n/ng GeV? andcy = 0. In all cases a criticat™d > 1 is found.

If the complete numerical analysis of the QSR equation (3id8arried out with the same
modifications, then the new constraints for a decreasing atsur chosen reference density of
0.1ng are

(@) R = 0.5508 GeV? : 5% = 2.35, xed > 3.37 — 2.99 - 103 GeVSngcl" |
(b) R =0.6120 GeV? : £/ = 2.94, ke > 4,05 — 2.80 - 10 GeV~Sngc! |

(€) R =0.6732 GeV? : 5% = 3.63, k7 > 4.76 — 2.43 - 103 GeVSngcl" .

Againc, = cio) + cfll)n with cio) = 0 has been used.
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Figure 3.3: The mass paramet&i?, in Eq. (3.3), averaged within the Borel
window, as a function of the baryon density fox, = 4 andcy = 0 (solid
curve). Note that the parameter’, coincides only in zero-width approxima-
tion with thew pole mass squared; in general it is a normalized moment of
ATI¥ to be calculated from data or models. The sum rule Eq. (3sl8yal-
uated as described in the text with appropriately adjust@él Inclusion of

cflo) = O(£1073) Ge\® requires a readjustment ef>° in the rangel - - -5

tom\’?. A simultaneous change af2°d in the order of 20 % is needed to

recover the same density dependence as given by the solid ausmall val-
ues ofn. The effect of a{") term is exhibited, toodi"” = +£10=5n; "' GeVs:

dashed curves&l) =15 x 10*%51 Ge\S: dotted curves; the upper (lower)
curves are for negative (positive) signs).

Finally, the uncertainties emerging from other input pagtars are investigated. A conservative
estimate with uncorrelatedt10% deviations ofR, «, mu, Ma, (4q)yeer oN, (22G?) ., MR,
ASFD 490 Qo, AT A9, K2, K1, K, s©, 5O, with 0.4 GeV2 < M2 < 1.6 GeV?,
2.24 < K*¢ < 3.64, yields for thew meson

A=(a— mgﬂod)i GeV?, (3.30)
o

where the uncertainties for the standard values 3.96 andb = 0.0283 are1.24 < a < 9.5,
0.00842 < b < 1.14. This shows how robust the conclusigft® > 1 would be.

For thep meson the numerically large Landau damping term pushesewpéighted strength
[87]. Indeed, the term\ takes for thep meson the values = —1.07 andb = 0.0283, with
uncertainties-6.79 < a < 0.656, 0.00842 < b < 1.14. The negative value af signals that for
any positive/fgIOd the ratiomf, will always be decreasing. Note, that the underlying coratom
of four-quark condensates slightly differs from that in ¢heum rule.

In an analysis of finite energy sum rules for theneson [88], the values of four-quark con-
densates enter a third sum rule, where for consistency measstrong violation of factorization
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of four-quark condensates is supported, although the ethge finite energy sum rules to avoid
the impact of these dimension 6 condensates. In the vacumit) iomparable to the case, the
reported values;*© 2 4.5 supports our findings. In the medium case strong deviatimrs fac-
torization are indicated there for themeson. The evaluation of finite energy sum rules forithe
meson [84] supports our findings.

Certainly, the errors assigned to the critieil*! do not allow to determine the density depen-
dence exactly. Nevertheless, the main insight is, that esisgns of hadronic information with
condensates approve serious doubts about the factorizaftibe four-quark condensates.

Coming back to chiral symmetry, the condensate combinatidaq. (3.14) reads in terms of
(two-component) flavor vectors

1 - _ _
<ﬁ’y5fyu)\Auﬁfy5fy“)\Au> + 5 <d’y5’yu)\Addfy5fy”)\Ad> + <11’y5’yu)\Audfy5fy“)\Ad>

_|_

Ol NN =

(ay A\ udy A1) + % (T A uay M) + % (dy At ddyi A d)
T, - - 1, - -
= 5 (D10 P19 AY) + 5 (Prud My 2ATY) (3.31)

This combination could not be directly constructed by a gativey operatord in Section 2.4.3.
Under the restriction to the applied definition of potentieder parameters, spontaneous breaking
of chiral symmetry can therewith not be related to the spefifir-quark condensate combination
entering the QCD sum rule for themeson. However, the change of these four-quark condensate
combination would still signal the complicated modificatoof strongly interacting matter in the
vicinity of a nuclear medium.
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3.2 Light-Quark Baryons: Nucleon

The nucleon is of fundamental interest as it representsragicaf mass the hard core of visible
matter in the universe and thus an important source for gtésm. Our investigations presented
are to be considered in line with previous QCD sum rule ingatibns [42, 54, 89, 90] for nu-
cleons inside cold nuclear matter, which are also discussé@l] and continuously explored
in [55, 61, 92-97]. For the nucleon an important dependefnselenergies on four-quark con-
densates was found. Comparisons with results of chirattfeefield theory [98], where nucleon
self-energies show strong cancellation effects (i.e. theynge with the same magnitude but have
opposite signs) suggest that the relevant four-quark cwades should be weakly density depen-
dent [42]. The aim is to specify these condensates and timgiadt on nucleon self-energies.
Chiral effective field theory provides self-energies that QSR results will be compared to. Parts
of the presented material can be also found in [27].

Basis of the QSR for the nucleon is again a correlator, thig tlefined as in EqQ. (2.19),

T(g,v) = i / dz 69 (T [n(2)7(0)]) (3.32)

with the nucleon curreny. Following loffe [13] one can write down two independenteirno-
lating fields representing the nucleon with the correspmpdjuantum numbers(J") = %(%Jr),

e [ul Cy,up)ysy*d. and e®ful Coup)ys0d.., when restricting to fields that contain no
derivatives and couple to spi@ only.! Extended forms of the nucleon current include deriva-
tives [99, 100], or make use of tensor interpolating field¥1[1102] (also used to extrapolate the
vacuum nucleon mass via QCD sum rules [103] to (unphysieadjel values obtained on the lat-
tice, comparable to similar efforts within chiral pertutiba theory [104]). The complications in
nucleon sum rules can further be dealt with when taking intss@eration the coupling of positive
and negative parity states to the nucleon interpolating fl05].

In this work, our structures are always written for the pmtby exchanging: andd the
neutron is obtained. Even the neutron-proton mass diféerdras been analyzed in this frame-
work [106]. For the case of exact flavor symmefty/ (3)y, a compilation of baryon interpolating
fields and their chiral representations is given in [107].

As interpolating field for the nucleon a Fierz rearrangedthnd simplified linear combination
is widely used [42]

n(x) = 2¢ {tug ()Crsdy()]uc(x) + [ug (2)Cdy(2)]y5uc(x) } | (3.33)

which in the above basis reads

Mi(z) = %E“bc {(1 =) [uf (2)Crpup(@) 157" de(z) + (1 + 1) [ud () Copup(z)|v50" de() }
(3.34)

Both currents;y and7, are related by Fierz transformations whereby in such agstfarward
calculation the remaining difference vanishes for symynegasons (analog to the exclusion of
Dirac structures in [13] when constructing all possiblelaan fields). The consequence of these
two equivalent representations (3.33) and (3.34) is that dviferent forms of the OPE arise.
On the level of four-quark condensates the identity is naotials, but is understood with the
constraints on pure flavor four-quark condensates, Eqs1%2. derived in Section 2.4.1. Our
subsequent equations will be given for the ansatz (3.33) aibitrary mixing parameter. In

!Note, the second term can be rewritten with the idenfity®® = %e“ﬁ“"aw. The charge conjugation matrix is
defined ag”' = ivo2.
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nucleon sum rule calculations the particular choice of thkl fivitht = —1, the so-called loffe
interpolating field, is preferred for reasons of applicipibf the method and numerical stability
of the evaluation procedure (cf. also [108] for a discussiban optimal nucleon interpolating
field; another choice af would emphasize the negative-parity state in the sum r@gjj1l

3.2.1 QCD Sum Rule Equations

The OPE forII(z) is the important step towards the sum rule formulation. htrénvariance
and the requested symmetry with respect to time/parityrsaveallow the decomposition of the
correlator into invariant functions

I(q) = Is(q%, qv) + 4(q*, qv)d + Iy (¢%, qu)¥ (3.35)

wherewv again is the four-velocity vector of the medium. The threaiiant functions, which
accordingly yield three sum rule equations, can be prajecte by appropriate Dirac traces

II,(¢%, qv) %T‘r(ﬂ(q)) : (3.36a)
1,(4%.00) = oo (02T (0T1(@) — ()T (M(0))} (3.36b)
I,(¢%,90) = oy (0T (1(0) — (00)Te (@)} (3.360)

and are furthermore decomposed into eg@rand odd(o) parts w.r.t.qv
ILi(q%,qv) = TI5(¢%, (gv)°) + (qu)TT} (¢, (qv)°) - (3.37)

For the nucleon interpolating field (3.33), this leads to

(2 (00)%) =+ oo50* In(~0%) (20} + 1525 In(~a) (G950 G)a)
2c3 (qu)* ([, . 1,
t 32 2 <<Q(’U%D)2Q/v2> +3 <qgs(UG)Q>> : (3.383)
(6% (0)%) = = o33 {e1 @0) @)Y (3.:38b)
I (4%, (qv)*) = — 516247T4q4 In(—¢*) — 25%—4772 In(—q*) <%G2>

C v 2
s (51 - 240 ) taywinya

_ 115;;1721)2 <ln(—q2) B 4(qv)2> <%[(UG)Z 4 (06)2]>

+

q?v? T
11 2 €1, 29
G e @)’ + 5 @)} (3.38¢)
o, (qv)?) = + — In(—¢?) (@) + —2— (g
Hq(q 7(qv) ) =+ 247‘1’22}2 ln( q ) <q'¢/q> + 7271‘2’[)2 q2 <qgs'¢/(JG)Q>

C v 2
- s (14 220 (@ inPe/e?) + 35 (a0 Gla) )

q2U2
(3.38d)
I15(q?, (qv)?) =+ T354" In(=0°) (@) — 755 In(—¢*) (79:4(cP)a)

C ( 2
27T§11)4(qq—2) <<<¥?/(viD)2q/v2> + % <<igsw/(aG)q>> : (3.38e)
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10 (2 2y _ C4 2\ /G 2 2
2% (@0)?) = + go sy (=) ( Z[0G) + WG )
dcy 2\ /- . 1 1 Cq ,_ 21Y
Tamet M@ (viD)a) = 3575 {UQ (@) }eﬁ : (3.38f)
where the;(¢)’s, being polynomials of the mixing parameteare
el =Tt2—2t—5, (3.39a)
o =—t2+1, (3.39h)
3 =202 —t—1, (3.39¢)
ca =5t +2t+5, (3.39d)
cs = Tt2 + 10t + 7. (3.3%)

Numerical values for condensates are collected in Sect®h@.2

In Egs. (3.38) the contributions from four-quark condeesare written as the usual factorized
result denoted by. . .};;fq’“; full expressions which replace and overcome this simpliion are
the focus of Section 3.2.2 (see especially Egs. (3.50) helswte that, in contrast to the OPE for
light vector mesons Egs. (3.8) and (3.9), four-quark cosdtss enter already without a factay
(the strong coupling), and the chiral condenggtg does not appear in a renormalization invariant
combination with the quark mass.

We utilize the weighted sum rule in the form of Eq. (2.43) pd here as basis for our
investigations
1 [+

(E— B)=

™ Jo

deH(w)e_‘”Q/M2 = I°(M?) — %/ dwwlII? (w)e‘“’Q/M2

per
- . i (3.40)
-E {HO(Mz) - l/ dwIT? (w)e_“’Q/M2} + l/ " dwATI(w)[w — E]e_“’2/M2 )
per

n w4 T Jw_
In general, the Dirac structure AflT would require definitiongZ;, £; to account for the distinct in-
variant functiongi = s, ¢, v) of the decomposition (3.35). In the case considered heressienze
that these weighted moments coincide with, , = E (analogouslyE). Also for the threshold
parametersv,. we use common values for theq, v parts. For shortness, in the shown Borel
transformed equations the decomposed terms are symibolieatranged to full Dirac structures.

It should be emphasized that the applied sum rule Eq. (3s40) & certain, weighted moment
of a part of the nucleon spectral function. Without furthesamptions, local properties AfI(w)
cannot be deduced. Note also that in this form the anti-oackaters inevitably the sum rule. The
reasoning behind the choice of the combined sum rule, E42)2with the momentdZ and E,
Egs. (2.41), is that in mean field approximation, where spfrgy contributions in the propagator
are real and energy-momentum independent (cf. also [4#})pble contribution of the nucleon
propagatoiG(q) = (¢ — My — X)~! can be written as

1 d+My—y%,
T 1-%.(q0— Ey)(qo— E-)’

Pauli corrections to positive-energy baryons and propagatf holes in the Fermi sea give rise
to an additional piec&n(q) < O(|¢7| — |¢|) [110] vanishing for nucleon momentaabove
the Fermi surfacé;z-| considered here. The self-enefgyis decomposed into invariant structures
¥ = ¥+ %,¢ +3,¢ [111] (for mean fieldS, = 0), where one introduces scaliy = M}, — My
and vector self-energies,,, which are related to the decomposition as [42]

G(q) (3.41)

_MN—I—ES iv

My = = . 3.42
N I—Z‘q 9 1_2(] ( )
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In the rest frame of nuclear matter the energy of the nucledtyi, correspondinglyF_ that of
the antinucleon excitation, where

Ey=3%,+/72+ M2, (3.43)

Since the sum rule explicitly depends on the nucleon mommenkwwever, the self-energy as
well as invariant structures; and derived quantities acquire now a momentum dependerntte an
become functions of the Lorentz invarianty, quv andv?, extending mean field theory towards
the relativistic Hartree-Fock approximation [110]. EQq.4@ is giving rise to a discontinuity
AG(qo) = % lime_o(G(qo + i€) — G(qo — i) with a simple pole structure

T g+ My — Y5,

AG(q) = 7= S, By —F (0(q0 — E-) = 6(q0 — E4)) , (3.44)

where the general expression, Eq. (2.41), identifies the envd with the anti-nucleon pole
energyFE_ for all 3 Dirac structures (analogousl¥, is identified withE ). Then the I.h.s. of the
sum rule (3.40) reads

A

(f + M — Y5, )e  PHM (3.45)
1- %,

_ 1 [w+
(E — E)— / dwATI(w)e "M = _
™ Jo
Here, Ay enters through the transition from the correlator in terfrguarks (3.32) to the nucleon
propagator (3.41), compare Eq. (2.1)-(2.3), and can be twdlinto an effective coupling}? =
2

%. More general one can interpret Eq. (3.45) as parametizati the |.h.s. of (3.40), where

integrated information ofAIl is mapped onto the quantitie¥/y;, ,, A% and E, which are
subject of our further analysis, by virtue of Egs. (3.36)

_ 1w+
N2M e FUM — (B - B)— / dw AT, (w)e <" /M (3.46a)
™ Jo
_ 1 [w+
N2 ELME (B - B)= / dwATT,(w)e™ /M (3.46b)
m™Jo
_ 1 e+
N2y, e FHM — (B — E)= / dwATL, (w)e /M | (3.46¢)
™ Jo

Due to the supposed pole structure in (3.41) the self-enssgyponents are related 1o, (or
more general t&& and £) and the relations from distinct Dirac structures are cedmquations.
The given general spectral integrals however not yet rétateunknown quantities, so that our
numerical results presented here are not completely imdigpe of the given nucleon propagator
ansatz. These relations highlight also the dependenceeduitel mass\t which determines how
the spectral density is weighted in the general spectragrats on the right hand sides.

2

In [112], it has been pointed out, thk also contains chiral logarithms, e.gi. log 77y,
which, however, do not appear in the chiral perturbatiorothexpression folM . It was ar-
gued [113, 114] that low-lying continuum likeN excitations around/, cancel such unwanted
pieces. In this respect, the paramet&fg, 3,, >, in Egs. (3.46) are hardly to be identified with
pure nucleon pole characteristics, but should be congidesemeasure of integrated strength of
nucleon like excitations in a given interval. Moreover, maadronic models point to a quite dis-
tributed strength or even multi-peak structures (e.g. 1 T8e importance of an explicit inclusion
of scattering contributions in the interv@l . . w, has been demonstrated in [59, 116, 117] for fi-
nite temperature effects on the in-medium nucleon. In vac@QCD sum rules for baryons, e.g.
the nucleon, improvement of the continuum treatment iseagll by the inclusion of negative-
parity states, which are equally described by a given catical function as the corresponding
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positive-parity states [105, 109, 118-120]. Resortingntedgrated strength distributions avoids
these problems, but loses the tight relation to simple patarpeters.

Eq. (3.40) is the sum rule we are going to evaluate with regpdbe above motivated identi-

fications.

Inserting the decomposition (3.35) with Eqs363-(3.38) we arrive at the three coupled

sum rule equations

N2 e~ (EL-T2)/M* AMY + AM? + Ay, (3.47a)
A2~ (BL =G/ M? _ B Af6 + ByM? + Bs + B4/ M?, (3.47b)
Ni25, e~ (BE-0%)/ M2 — LM+ Oy M2 + O, (3.47¢)

with coefficients

A

Az

Az = —

By =

By

Bs

By =

C) =

Co =

C3 =

Ey
Eq

c _
= —W;El (qq) (3.48a)
3c _
= g2 Fo (9:40Ca) . (3.48D)
2c3 . 1, _ 1 o
— a0 (@DoiDu) + § (010G0) ) = 3E- {er (a0) @pa)lly . (@480
C4
sre 2 (3.48d)
_ C4E() + B 5C4E() T s C4E() % 2
= a2 - <q q> 7272 <q ZDoq> T 2562 < - >
C4E0 Qg =~
— (WG + (v6)) (3.48)
-2 -2
_ &4 to g % 2 ~\9 C5E T
c L 1 _ g
i () (o)) e+ S Y,
(3.48f)
22 tipoi L ot
6 5q <<q zDozDoq> +t 15 <gsq 0Gq>> ; (3.489)
- 2 <q q> (3.48h)
564 . C4E0 Qg 2 N2 C5E0
SE0E_ (q'iDoq) — E_ (= — sq!
18720 <q ! °q> 28872 < o [(WG)+ (vG) ]> 482 <g ? UG(q> ’ |
3.48i
€1 o i 1 4,9V .
524 <<q zDozDoq> + 3 <gsq 0Gq>> 3E- {1)2 (@/q) }eff ; (3.48))
and factorsty; emerging from continuum contributions, with the definitign= wi — 72,
_q_emso/ME (3.49a)
=11+ %) e (3.49b)

Es

2
—1- ( M2 2M4> e s0/M? (3.49c)

and the asymmetric continuum threshold integral in Eq.QBreglected. The list (3.48) is ex-
haustive for all condensates up to mass dimension 5 in thedinganishing quark masses.
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Note that nucleon QCD sum rules in the vacuum case are irdtiudwereby only Egs. (3.47a)
and (3.47b) remain, the condensates entering the r.h.sgq.0f3&7c) vanish at zero density as
well as the vector-self energy, on the left hand side. Also the pole energies are simplified to
E, = —F_. Care should be taken with condensate projections. Thaygehqualitatively when
the impact of the medium, accounted for by projection antis absent.

3.2.2 Impact of Four-Quark Condensates

We are especially concerned with the impact of four-quarkdemsates on the nucleon self-
energies. The full expressions for the four-quark condessm the order!, abbreviated in
Egs. (3.38) and (3.48) so far symbolically, are

{1 (a0) (@) Y = Seaneare (~200 (8 yuta? o) + e (a' yus @)
— 3ca <a“/u“cib/¢db> +c7 <ﬂ“/’y5’y,.€u 4 oy dbeTE 5>> , (3.50a)

{01 (Gq)” + —A; (@) }Zﬂ = €abeCa'lc (269 <ﬂ“,%uaﬂb/77ub> — 2cg <ﬂ“'z/u“ﬂb'q/ub/v2>
+ 4t <ﬂa/75%uaﬂbl%77ub> — 4t <ﬂa,757/uaﬂb,757/ub/v2>
— 9¢y <ﬂaluacl7’ldb> + 202 <ﬂ“/aﬂ>\u“cib/a“)‘db>
— 9¢y <ﬂal’y5u“d7’l’y5db>
+ c10 <ﬁa/%uaa?/b/77db> — 2¢9 <ﬂa/7/ua(fb/7/db/v2>

+eg <ﬂ“/75%uac?"'75’fdb> — 4t <ﬂ“/'Y5¢u“67b/751/db/v2>> :

(3.50b)
C_4 _ 21V o (— —a’ a=-b' 7. b —a' i a=b 4 by 2
{2}2 <Q'¢Q> }eff = €abc€a't/c ( C9 <U Yruu Yy U > + 4cg <u g/u U 1/u /’U >
— 2t <ﬂ“'75%uaﬂb"vsfy7ub> + 8t <a“'75¢uaﬂb'751/ub/ ’02>
— ¢ <ﬁa/%uaa?/b/77db> + 4cg <ﬂa/7/ua(fb/7/db/v2>
—2t <ﬂal75%u“(f’/7577db> + 8t <ﬂ“/757/ua(f)l757/db/v2>> . (3.50c¢)
Here, additional polynomials which express the mixing ¢éipolating fields are
o =1>—2t+1, (3.51a)
cr =2 —t, (3.51b)
cg = 9t2 + 10t + 9, (3.51c)
cg =12 41, (3.51d)
10 = 11t + 6t + 11. (3.51e)

These expressions extend the non-factorized four-quanlarsates for the nucleon in vacuum
listed in [33, 59].
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Parametrization

Similar to the case of the meson the individual four-quark condensates can be parizeubt

according to Tabs. 2.1 and 2.2. However, numerically onlyatement about the obtained lin-

ear combinations of four-quark condensates can be maderefdhe we work with effective

parametrizations for the combinations (3.50). The cotita®f tensors in color space,y.c. e

also exhibits the linear combination of two independenbratructures of four-quark conden-

sates, compare Eq. (2.110). In the sum rule analysis th@lected in the parameterg™*d, mOd,
#med describing the density dependence as

{er (00) @} e = 1 (K20 (00) e 31 (3.52a)

{01 (qa)” + % <civ/q>2}qﬁ = <1~ch“ (@9)%0c + 75 (00) e U—Nn> : (3.52b)
€ mq

(S @), = (0 @) ) (3520

and have to be specified for a mixing parameteHere, we restrict the discussion to the limit
of the loffe interpolating field = —1. Note again, the;™*? values are effective combinations

representing the density dependence of the respectiveensate lists (3.50) and thus e.g. neg-
ative k™4, a four-quark condensate behavior contrary to the facttiom assumption, comprise

cancellation effects within these condensate combingtidhe sum rule is only sensitive to these
effective combinations and can thus only reveal infornratin the behavior of these specific linear
combinations of four-quark condensates.

The density dependence of four-quark condensates spezifttist sum rule was calculated
within a perturbative chiral quark model (PCQM) [60] andthar analyzed in [61]. With our
translation in Tab. 2.3 these values can be used to calcilateespective effective parameters

x™ed (apart from the termx <ﬂ“'fy5fy,iu“cib'amdb>N " ™€, not considered in [60], which we
had to neglect in the determination rgf*°?)
koed = 025, kM4 =010, &md=_0.03. (3.53)

S q

Interestingly, individualk™d parameters are not small compared to these effective nsniber
dicating significant cancellation effects in the densitpetedent parts of combined four-quark
condensates. Moreover, for pure flavor four-quark condeagaie ambiguity due to Fierz rela-
tions between condensates does not allow to prefer a spimificuark condensate in the sum
rule. This equivalence of certain four-quark condensatalinations has to be respected, espe-
cially when such matrix elements are derived independeasijor example in [60]. Finally, notice
some difference to the OPE part stated in equations (879)eB®1] for the whole combination

of the density dependent four-quark condensate contoibutiOur equivalent OPE calculation
utilizing the same nucleon four-quark expectation valeeeg¢ded img‘gd, rmed as above) yields

I, = (o 49( )]1 +0.52¢ + 0. 575\42) g/) %n (3.54)

as defined in [61] WIth) = Myw.

Approximations

The QCD sum rule evaluation for light vector mesons in Sec8d was carried out on the basis
of an equation for a generalized moment optimized for marinfiatness w.r.t. the Borel win-
dow. This, however, includes derivative sum rules and sesoh$o be appropriate in the case
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of fermions where the condensates are distributed overledwgum rule equations for several
invariant functions due to the Dirac structure. This diaegtement of condensates likewise im-
pedes the application of convergence rules for the opepadaiuct expansion to specify a working
Borel window. Despite of this, equations for the self-emesgan be formed dividing Egs. (3.47a)
and (3.47c¢) by (3.47b) thus arriving at a generalizatiorofels formula [13] for the nucleon vac-
uum mass. Approximated forms incorporating only lowestahsion condensates are sometimes
used as estimates for in-medium nucleon self-energies 1221,

6472
%, = 3M7T2 <qTq> —0.36 Gevnﬁo , (3.55)
8r2 n

at M? = 1 GeV?2. Within chiral effective field theory such a direct depentienf the reduction
of the in-medium nucleon mass on the change of the chiral @wsate, obtained in the same
framework, seems to be ruled out [123].

Although to be confirmed by dedicated sum rule analysis, ihgtructive to understand the
impact of four-quark condensates at finite density from ealecoupled self-energy equations
linearized in density. For fixed Borel masggl? = 1 GeV?, thresholds, = 2.5 GeV? and
condensates listed in Section 2.3.2, the self-energiesnendependent when a constdnt =
—My is assumed; with:*® adjusted to yield the vacuum nucleon mass the self-eneegies
estimated as

2, = (0.16 + 1.227med) GeVni , (3.57)
0
med med n
Ey = (082 + 0.1LAT — 0.3157°Y) GeV—. (3.58)
0

Indeed at small values of the Fermi momentim the impact ofx*d, x4 and #* is as
follows: The vector self-energ{,, only depends o™*d, the scalar self-energ¥; is effected
by x°d and x4, whereby a negativel"* works equivalent to a positive value fef** and
vice versa. Comparable effects3h point out that a characteristic value @fd is three times
the corresponding absolute value /‘cﬂmd. Whereas this qualitative estimate from Egs. (3.57)
and (3.58) is in line with the numerical analysis below fodidensities: < 0.7ny corresponding
to Fermi momentar = (37%n/2)'/% < 1.2 fm~, the limit of constant four-quark condensates
deviates from the widely excepted picture of cancelling@eand scalar self-energies which can
be traced back to competing effects of higher order condesis&ince even in the small density
limit for constant four-quark condensates the estimatéid 28,/ ~ % cannot be confirmed
numerically, these estimates cannot substitute a nunheticarule evaluation.

Numerical Analysis

In order to investigate numerically the importance of thee¢hcombinations of four-quark con-
densates entering the sum rule equations (3.47) at finiteobatensity we perform an evalua-
tion for fixed continuum threshold parametey = 2.5 GeV? in a fixed Borel windowM? =
0.8...1.4 GeVZ. Since we are especially interested in medium modificatiemsise all sum rule
equations although chiral-odd sum rule equations have ideetified more reliable in the vacuum
case [124] (however note that instanton contributions trighnge the relevance of particular sum
rule equations [125, 126]).

Technically we follow the method used in [89, 127]: Egs. {3.dre divided to obtain equal left
hand sides. = Ai2e~ (P31 ~7*)/M*  For an exact solution the four extracted tersnd the right
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hand sidesR; , ,, had to be equal. However, this equality cannot be guardritean extended
range of Borel masses, the Borel window. Therefore one prasc& minimize the difference of
these four different terms in a given Borel window. A loglamitic deviation measure

max(L, Rs, Rq, Ry)
min(L, Rs, Ry, Ry)
averaged over the Borel window, is therefore optimized astfan of M3, X,, and A}, using
established numerical, multi-dimensional optimizatiotmes. Similar results are obtained if
one uses for example as quadratic deviation measure the sum, (L — R:)?/(L + R;)? over

the equations (3.47). Casually, such optimization methoelsl in contrast to mass equations
additional information about the coupling, hexg, between the physical hadron state and its

interpolation field.

(3.59)

A(M3, By, Ny, s0; M?) = In
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Figure3.4: Nucleon vector and scalar self-energies as functions afdlckeon
Fermi momentunkr = (372n/2)'/3. The sum rule result for constant four-
quark condensates (QSR with constant fg¢°! = ke = ged = 0,
solid curve) is compared to an evaluation with density depahfour-quark
condensates as given in Egs. (3.53) (QSR with fqc from PCQitled curves).
The latter choice causes only minor difference&inand X, for the scalar
self-energy also because of competing impact®f! and ngmd. The self-
energies from chiral effective field theory [26] (ChEFT, kded curves) are

shown as well but should be used as comparison only at snredltoes.

The results of these numerical evaluations for a nucleorheriFermi surfacégr| = kr are
summarized in Figs. 3.4-3.9. Fig. 3.4 shows the scalar acibvself-energies of the nucleon as a
function of the Fermi momentum. The situation with four-dqueondensate combinations (3.52a)-
(3.52c) kept constant at their vacuum value (kg = 2 = g4 = 0) is compared to
the QCD sum rule evaluation with parameters from Eqgs. (3.53). The results have the same
qualitative behavior as self-energies determined fromattffective field theory with realistic

NN potentials [26, 98].
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Figure 3.5: The variation of nucleon self-energies (upper panel) aac:ffec-
tive coupling (lower panel) for different assumptions af tlensity dependence
of the four-quark condensates in Eq. (3.47a) parametriged™”; other four-
quark condensate combinations are held constfgi*ﬂd(: gmed = ().
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Figure 3.6; The same as Fig. 3.5 but for a variation of the paramé[;éf‘ for
the four-quark condensates in Eq. (3.47g)°d = zed = 0.



72 3 Analysis of QCD Sum Rules

0.6 —T— ——T
rmed = —0.05
=== ged = —0.03
0.4 | — k™4 = 0 (constant fqc) RO
------- rmed — 0.5
= gmed = 1.0
Q
v 02F
W
0.0 [—+—
—-0.2 |
>
o
= —0.4 -
W
—0.6 1 1 1 1 1 1
]. 2 . 10_3 T T T T T T
— 10-1073 e e .
© et
> .
Q
O
S 80-10% L - -
L e
’< R R R R . = .' ___________ /I’
6.0 - 10—4 1 1 1 1 1 1 .
00 02 04 06 08 10 12 14
kf [fm_l]

Figure3.7: The same as Fig. 3.5 but for a variation of the paranveféf for
the four-quark condensates in Eq. (3.47¢)7¢ = x4 = 0.

Figs. 3.5, 3.6 and 3.7 exhibit the impact of the 3 differenirfquark condensate combinations:
The vector self-energy is, in agreement with Eq. (3.57) nigadetermined by:™*? especially for
small densities (for positive values af*°d even the qualitative form of the vector self-energy
changes)x! has only small impact, anet"*! does not effecE, at all. The scalar self-energy,
in contrast, is influenced by all 3 combinations, wherebydhange of<™! is only visible for
Fermi momentér > 0.8 fm~! as also suggested by Eq. (3.58). Figs. 3.5 and 3.6 also riaeeal
opposed impact of*! versusx<2*d.

A variation of sy is not crucial (see Fig. 3.8). The inclusion of anomalousetision factors in
the sum rule equations as in [89, 90] leads to a reductian,an the order 0220% but causes only
minor changes irt;. Thereby the naive choice of the anomalous dimension frenfdabttorized
form of the four-quark condensates leaves space for imprenesince it is known that four-quark
condensates mix under renormalization [128]. Our analysigentrates on the impact of four-
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Figure 3.8: The impact of different threshold parametegson the nucleon

self-energies for the case of constant four-quark condessee. fors™°d =
I{med — I%med =0
q v '

quark condensates, but also the variation of the densitgrdignce of further condensates can
change the result. For example, a large change of the ddreditgvior of the genuine chiral con-
densate, as determined by the term, by factor 0.5} leads to 8 % decreadd % increasgin

the effective mass paramet&fy; atkr ~ 0.8 fm~", while ¥, is less sensitive. Correspondingly,
the effective coupling\i? is reduced by 10 %enhanced by 5 %

An improved weakly attractive cancellation pattern betw&g (attraction) and:,, (repul-
sion), and thus agreement with chiral effective field thg@6], can be achieved for a parameter
setk™d = 1.2, k1 = —0.4, s = 0.1 (see Fig. 3.9). However, such a fit would allow larger
values ofx™*4 compensated by a larger magnitude of the negative valug“é‘f and vice versa.
Note that in both ways the factorization |inng?§d = 1 is violated by one or the other four-quark
condensate combination. Such optimizepgarameters, adjusted to results of [26], deviate notice-
ably from those in Egs. (3.53) deduced from [60]. To be comiplarto thew case in Fig. 3.3,
the same results are again exhibited in Fig. 3.10, now agifumof the density. Slight deviations
between the QSR results and values from chiral effectivd fledory arise already for densities
n > ’I’Lo/3.

Quantities characterizing the energy of an excitation withleon quantum numbers akéy;
and E, introduced in Eq. (3.41). Since, is negative My, drops continuously with increasing
density achieving a value of abait0 MeV at nuclear saturation density (corresponding to~
1.35 fm~!) if extrapolated from the optimized fit in Fig. 3.9. The eneifg, barely changes as
function of k.

The behavior of the effective coupling parameter as functibthe Fermi momentum is also
investigated in Figs. 3.5-3.7. The maximum impactsgf*! {x2°1} on X% is 6 % {3 %} at
kr ~ 0.8 fm~1. In the extreme cas&™*d = 1 leads to a 40 % increase af?. The variation
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Figure 3.9: QCD sum rule evaluations of nucleon self-energies with the p
rameter set*! = 1.2, k7 = —0.4, &P = 0.1 (dash-dotted curves)
compare to chiral effective field theory [26] with realishidN forces as input.

of this coupling as a function dfz is in the order of 10 % in the optimized scenario of Fig. 3.9.
Generally, specific assumptions on the four-quark condegsan cause a decrease or an increase
as well. This alternation ok}? has already been pointed out in [89], whereby their assomgti
yield even a+20 % change at nuclear density compared to the vacuum limit (s@ F01]).

The vacuum limit of the calculateN*N? agrees with the existing range of values (see [108] for a
compilation of results for the coupling strength of the mael excitation to the interpolating field

in vacuum).

These investigations show that nucleon self-energiesubjes to numerous four-quark con-
densates. Originating from the color structure of barydres four-quark condensates entering
here cannot be translated to those ind¢hsum rule. Although a few constraints on their density
dependence could be derived, their significance for spentanbreak-down of chiral symmetry
remains an open issue. One of the elementary limitationikésfor the w meson, that the four-
quark condensate combinations entering QCD sum rules fpeeifsc hadron cannot be directly
linked to order parameters in the sense of definition (2.64).

For instance, in vacuum nucleon QCD sum rules the four-qoarkiensate combination (the
vacuum limit of Eqg. (3.50b) with isospin symmetry being apg] v is the flavor vector) can be
divided into a part being invariant undst/(n ) 4 in the Wigner-Weyl phase

[2(26% + t + 2) (Pyppy ) + (32 + 4t + 3) (Pys b5y )]

= 2 ROR + 142) Ty NI N + (38 + 4t +3) (TN sy V)]
(3.60)
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Figure 3.10: Nucleon vector and scalar self-energies as a function of the
baryon density. at T = 0 for the special choice of?, k7, £}"°? used

in Fig. 3.9. In this view the deviations from a linear chanfjthe self energies
can be read off. This figure is to be compared to Fig. 3.3 fortheeson.

and a part which breaks this symmetry (pointed out in fazsaoriform already in [109])
3 = 1) ((B0b0) + (Frswiss) - 3 (oo™ s) )|

- 8Tt 1) (NN te) + (X i) — 3 o o ate) )]
(3.61)

In the preferred case= —1 only the first part, the invariant contribution (3.60), sues. Would
this first part be non-zero, then one could try to quantifyshentaneous breaking of ts&/ (n¢) 4
symmetry in the Nambu-Goldstone phase. However, the firstbamation (3.60) contains con-
densates that could not be directly constructed from a ledorelike (2.64), cf. Tab. 2.4. The
four-quark condensates in the nucleon sum rule thus appeaixt with non-order parameters.
These cannot measure pure symmetry effects but are objethéo modifications of the QCD
ground state at non-vanishing nuclear density as well. émilicleon sum rule such conclusions
are impeded by the interplay of the different linear comtiores of four-quark condensates.

A strict statement requires to reorganize the basis of fuark condensates w.r.t. the possible
representations by the commutator in Eq. (2.64) includiagoll symmetry and Fierz relations.
Note that these results would still be confined to the two flaase. The opposed numerical
impact of two combinations here would even not allow a peestsitement from the comparison
to (otherwise provided) self-energies. Finally, there amguments that doubt that condensate
changes in medium are pure symmetry restoration effects.chhnge of the chiral condensate,
for example, might partially originate from virtual low-mm@ntum pions and thus could not clearly
signal partial restoration of chiral symmetry in matter4].1
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Additional insight into the change of four-quark condensatould be acquired from other
hadronic channels, as the generalization of further basyom rules in vacuum [127, 129, 130] to
the medium case, e.g. for the [131, 132]. What their role as order parameters of sponizneo
chiral symmetry breaking is concerned, the study of chieatrers is a promising alternative for
undisturbed statements on measures for chiral symmetakimg: An analogy to the difference
between vector and axial-vector correlators in the bargmtos is challenging.

The impact of four-quark condensates on hadronic quasitities studied for the meson and
the nucleon as function of the nuclear density. The maintesitithese numerical studies are ex-
hibited in Figs. 3.3 and 3.10. In both cases a specific dedsiyendence of (different) four quark
condensate combinations had to be assumed. Whereas foretteample this density dependence
turned out stronger than the factorization hypothesis @eubgest, it is not uniquely determined
for the nucleon case. Here three combinations enter buethdts also disprove the factorization
limit for four-quark condensates.
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3.3 Pseudoscalar Heavy-Light Quark Mesons: D Meson

The description of properties of charmed mesons is inanghsimportant in view of the upcoming
experimental prospects at FAIR with its dedicated pogdséslto study the in-medium effects of,
especially,D mesons. Due to the quantum numbers one could expect in-meadadifications of
excitation strength similar to effects reported for kaat®3, 134], a down shift of¢ — (D*, DY)
and some increase féc+ (D—, D).

The constitution of the pseudoscalar open charm mesgohgdc), D~ (¢d), D° (ic), D° (¢u),
reveals as new physical scale the massof the charm quark. Whereas in our previous examples
the masses of the light quarks, ; were negligible compared thycp, this is no more the case
for m. =~ 1.5 GeV [1]. For example, it was very early noted, that themeson QCD sum rule
is entered by the combination.(Gq) [5], i.e., the charm mass.. acts as magnifier of the chiral
condensate. For light vector mesons its impact was nuntigrgraall due to the small light quark
mass appearing there. This naive argument not yet suggestasurable chiral symmetry order
parameter, since it might be shadowed by the influence didutondensates. Nevertheless it is
a strong motivation to ask for the conceptional new aspextsuch heavy-light quark systems.
Such aspects based on the new mass scale are the topic ainS&&il. In a simple-minded
classical picture with one nearly static quark it would bé surprising that the mass of a heavy
meson, e.gmp+ = 1.87 GeV, is driven by the large current quark mass of its constitu8oine
numerical results of a specific QCD sum rule for fieneson, given in Section 3.3.2, are collected
in Section 3.3.3.

The QCD sum rule method is applied to the Lorentz and Diralascarrelation function

Mig,0) =i [ atec (7 ()5 ©)]). (362)
with the pseudoscalar interpolating fields

jp+ (@) = id(z)ysc(x), (3.63a)

Jjp- (@) = ic(x)ysd(x), (3.63b)

Jpo(w) = ia(z)ysc(x) (3.63c)

Jjpo(x) = ic(z)vsu(x) (3.63d)

QCD sum rules forD mesons in vacuum are documented, e.g. in [135-137], hoywgeer
eralizations to sum rules in a nuclear medium are rarelyighdd [138—140]. A complete re-
evaluation of the in-mediun® meson QCD sum rule, in particular the complete OPE side up to
mass dimension 5 for products of quark masses and condsnsapeesented in [141], which we
will rely on.

3.3.1 Operator Product Expansion for Heavy-Light Quark Sys  tems

The evaluation of the sum rule for tiig"™ mesons involves the renormalization of non-perturbative
condensates as follows. In an OPE for light quark systemsrttadl quark mass contributions can
be included as minor corrections, technically in the quadppgator (B.1). If masses cannot be
neglected one is confronted with an increasing number nfgeil hese are significantly reduced in
the limitm, — 0 for the light quark, here thé quark. Problematically, not all OPE parts converge
in this limit due to terms~ 1/m, or mass logarithms- Inm,. They arise from (perturbative)
loop integrations which cover the full range of loop momentéth the operator product expan-
sion a conceptional separation of scales into non-petivebésmall momenta: condensates) and
perturbative physics (large momenta: Wilson coefficierdg)erformed. However, perturbative
calculation of Wilson coefficients results in another namntprbative contribution. The divergent
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parts form, — 0 in the OPE calculation are of non-perturbative origin angtshould be covered
by the appropriately defined non-perturbative condendatasally called "non-normal ordered”
condensates [6])

@0 0~ igA) @) = (70 @~ igA)a )i [ dp(Tr [0 (<in, - id,) 5 w)]).
(3.64)

which quantify the non-perturbative regime [142]. The gnt¢ denotes the perturbatively calcu-
lated contribution [143]. The operat® is a function of the covariant derivative and contains
general Dirac structures},, is the gluon gauge field in fixed-point gauge ailg its Fourier trans-
form; : --. : denotes again normal ordering, af@°" is the quark propagator in the gluonic
background field. For technical aspects we refer to AppeBdixd [141, 144].

Introducing these renormalized (physical) condensatasats mass logarithms in OPE cal-
culations [145] but also causes a mixing between differgmed of condensates, e.g., the chiral
condensate mixes with the gluon condensate (cf. also [6])

N I Ay L/ %o
(Gg) = (- qq =) + 12" <ln mg + 1> 12m, < - G > + ..., (3.65)
which relates in the heavy quark sector the heavy quark cwade (e.g(cc) for the charm con-
densate) to gluon condensates [143, 146]

1 /a4 1 1

This is also utilized in the QCD sum rule for th&/¢) meson entered by the combination
m.(¢c), which one expects to exhibit the weak density dependendtkeo§luon condensate, as
shown in Fig. 2.4. In fact, the evaluation of the QCD sum rolef/) shows only a tiny change
of the in-medium mass [147].

In finite density QCD sum rules for thB meson, medium-specific condensates appear and
introduce, via their mixing, further gluon condensate® itite OPE. The even and odd parts of
the operator product expansion, compare definition (2d&3he in-mediumD meson in the limit
mg — 0 in the nuclear matter rest frame are [141]

e (2 _ (2 7oy Me 7 1 me Me
e 6) = )+ ) 72 — GG (G + )
2

AR (vG@)?  G? 7 n 11 ©? n 21 m m? N 1
™ v2 4 18 3 m2 3 g2 — m? (@ —m2)? " @ —m?

2
Qs 2> 1 1 <T' > m; 1
—{=G*) — d'iDod ) 2
<7T 12q(2]—m2+ 0 (qg—m2)2+q8—m2

1,- 5 1 ,- m% Mc
. [g (dD3d) — 5 <ngaGd>} 12 ( et ) (6T
bo(ad) = — (dld) 5y — (dlg,0Gd)
b gt — m? (g5 —m2)?
2 1
dtD2d) 4 Me 3.67b
+{d'Dgd) <<q3—mz>3+<q8—mz>2>’ (3.670)

where the condensates are properly renormalized accaaliag. (3.64) in first ordety,; ¢ is the
perturbative term.
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3.3.2 QCD Sum Rules for the D Meson

The operator product expansion Eg. (3.67) is via the digmenelation related to the spectral
integral, cf. Section 2.2. Model independent statemetysire the definition of suitably combined
moments of the hadron spectral density like fordhmeson in Eq. (2.40). The intrinsic description
of both particle and anti-particle by the correlator (3.68mplicates such general formulation.
This was already realized in the nucleon case. To visuafizerhpact of condensates and the
significance of QCD sum rules for thB meson one can still dwell on the pole + continuum
ansatz. Certainly, one cannot claim predictions for thesha the spectral density in a nuclear
medium, as they are provided with many-body approaches[1elg, 149]. Here QCD sum rules
can at best offer a constraint to test such a given hadronitehibthe relevant condensates are
under control.

Nevertheless, in order to investigate the impact of indigiccondensates we apply the follow-
ing pole ansatz foD* (D° and D are equivalently described, we restrict ourselves to tise fir
case). Inserting a complete set of hadronic states, contjupr€?.8), where only thé&* and D~
remain, the spectral density is motivated as

All(g,v) = 7 (F+d(q0 — m4) — F-6(g0 + m-)) , (3.68)

whereF are independent couplings between hadron and interpglfigilis, .. the pole masses
of D*. We have set the hadron momentym= 0 and the momentum of the matter ground
statepy = 0. The effective pole masses, incorporating the ground stagegy of matterFy
like my+ = M4 — Eyg, can be related to medium-dependent self energigsntroduced in the
propagators (e.g. [149])

1
- M2 —-%i"

The even and odd Borel transformed sum rules (2.38) in thata(3.68) with the OPE given in
Egs. (3.67) are

Mp+(g,v) = (3.69)

1

50
myFoe ™M L Femm IME = —/ ds e_S/MQImeeT(s)
T Jim2

m m3
+e 3/M2< < > <2M4 M2> <dgsaGd>+ﬁ< G2>
71 uPm? 27}3 m? 2m? Qs (vG)?  G?
+[<18+ e s ) e ) e v 4
2 ; 3 1, -
2 ( e ><d zD0d>+4<2 e M2> [(dDO ) §<dgsaGd>} ,
F+e—mi/./\/l2 _ F_ﬁ_m%/’/\/@ —

e~/ M (<de> —4 <2”/\f4 AL) (d'D3d) - /\22 <d’fgsaad>> . (3.70b)

The continuum contribution, approximated in the semidlagerk-hadron duality hypothesis, is
brought to the r.h.s. in the even part and elucidates in tipempoundsg of the finite integration
over the perturbative term

_ m2)2 Aoy 2
Imeer(s)ziw ppdos 9 (M) (S Y (8
8 s 3r |4 s m2 s —m?2 (3.71)
5 )

—|—§ln me +In i —|—m—gln 5~ me g Me g (2
2 s — m?2 s — m? s m?2 s — m? m?2 ’

(3.70a)
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with the Spence functiofii, = — [’ dt ¢~ In(1 — ¢); yg is the Euler constant. The relation
(2 |09 -G ]) = 3 (2 [“95 + “G2]) holds; for the renormalization scalea m, is

used. The medium-specific mixed quark-gluon conden@ﬁt@saG@, even its sign, is not well
determined. A value 0f-0.33 GeV?2n is used in this section, cf. [150], in contrast to Eq. (2.107)
The condensatég' D3q) is then derived from Eq. (2.106).

3.3.3 QCD Sum Rules for the D Meson

The sign structure on the |.h.s. of Egs. (3.70) suggeststtodace instead of the masses. the

centroidm = (m, +m_) of this hadron doublet and its splittinym = J(m —m_), i.e.

my =m+ Am, (3.72a)
m_=m—Am. (3.72b)

Indeed if one assumes constdnt= F,. and performs an expansion in first orderffn (with
Am < m andAm < M) one obtains for the hadronic side on the left of the sum r{8e20)

m+F+e_mi/M2 +m_F_emIIM? g 9 pypemm?/M? , (3.73a)

_4FmAme_mz/Mz
M? '

Egs. (3.73) indicate that at sufficiently small densitiesdldd part of the OPE dominates the mass

splitting. Strictly, it is still coupled vian to the even part of the OPE. For a typical Borel mass
M =1 GeV the weight of the condensates in Eq. (3.70Db) is approximyatel

Fye ™M pemmt/M

~

(3.73b)

<d*d> : <d*D§d> : <dTgsaGd> > 4:0.005: —1. (3.74)

The large impact of the exactly given positive value<dfd> explains, due to the negative sign
in Eq. (3.73b), that the splitting takes only negative valJudm < 0. Since quite restrictive,
changes of. andm are neglected in Eq. (3.73Db), this gives only a rough estrfatthe impact
of condensates, to be compared with the numerical resutteedCD sum rule evaluation.

In order to reach numerical results, the even and odd sura (81&€0) are added (subtracted)
with a factorm_ (m_) for the second Eqg. (3.70b). In this new set the couplingsimentangled,
and by dividing each of these combination by its derivativithwespect to the inverse squared
Borel massM?, the termsF.. are eliminated in the end. (This is analog to thease.) One
obtains two final sum rules, one for, and one fom_. However, due to the previous weighting
by m this is still a system of coupled equations. Subsequertéy,Borel curves forn, or m,
Am can be analyzed. A number of possible criteria were usedttmby determine quantitative
values for the pole masses from such Borel curves. In [138¢®@n around a minimum of a Borel
curve is considered, flatness in a Borel window was demandg8ir].

If one looks for the medium changes one can diminish the feahaspects of the evaluation.
For the Borel curve ofn it was observed that these curves intersect for differensities in
the applied Borel window when the threshalgl is varied [141]. This questions the stability
of predictions for the mass centroid, and could explain tifferént findings for the change of
m at nuclear saturation density from almost no change [15Hnt@pproximate down shift of
50 MeV [139].

The situation is much better for the behavior of the splittilsm at non-vanishing densities.
Its Borel curve is less deformed but clearly shifted [141heTauthors of [138] claimed &+
splitting of abouts0 MeV at nuclear saturation density, a similar value was giverilby]. Latest
investigations suggest that these are rather lower boumdkd absolute value akm, and point
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to a value o2Am ~ —60 MeV [150]. The different QSR evaluations agree on the sighof
meaning theD* is lowered with respect to th®—; mp- > mp+. This is consistent with the
kaon analogy in the introduction to this section.

0.00

—0.02
=
¢ —0.04
£
d .
_0.06F — QSRresult |
---. with 2(d'd)
with 2(dtg,ocGd)
with 2(d' D2d)
—0.08F ——- with2 ((dd) — (dd)o) 1
0.0 0.05 0.10 0.15
n [fm~3]

Figure3.11: The mass splittind\m = %(mD+ —mp-) in a pole mass ansatz
as a function of the baryon densityat zero temperature. The relevant con-
densates in the odd part of the OPE (Eq. (3.67b)) and thetglatespendence
of the chiral condensate are varied by factors 2 to highlighimpact of these
condensates on the mass splitting (data with courtesy ofilgieH obtained
with sophisticated threshold criteria [150]).

The result of a numerical sum rule evaluation, selectingg@arand anti-particle thresholds to
adjust them4 Borel minima at the same Borel mass [150], are shown in Figl.3The splitting
is displayed as a function of the nuclear matter density atafting from degeneracy db*
in vacuum, reaches a value 2Am ~ —60 MeV at saturation density. From the variation of
condensates shown there one deduces the largest impadtdoras approximated in Eq. (3.74),
followed by the condensatgl! g,0Gd). The choice of this medium-specific mixed quark-gluon
condensate as in Eq. (2.107) would amplify the splittingthéligh the directions of changes in
the splitting are in agreement, compare Fig. 3.11 and Ed4)3the relative modifications deviate
from the approximation. The particular choice of the Boratgmeter leads in this evaluation
procedure to this advanced impact of the condensates. Tlatiea of the density dependence
of the chiral condensate also effects the splitting. Witspeet to the slopes in Fig. 3.11, the
modification is relatively pronounced at saturation densihis effect appears in higher order of
the densityn.

One should be aware that these results are bound to the ped¢ézanThe pole parameters
can be generalized to combinations of moments of spectnatifins, such that the results could
be interpreted in view of complicated spectral densitielse fransition taB meson sum rules is
straightforward and leads to somewhat higher amounts ofghiging [150]. ForD, mesons the
intermediate value of the neither light nor heavy strangarkjimpedes a final conclusion. There
the operator product expansions become, as for kaons, mitmealy even more advanced.






4  Summary

QCD sum rules have been applied to the examples ab tmeson, the nucleon, and theme-
son embedded in cold nuclear matter. The method is universa finally only condensates deter-
mine the spectral integral of any considered hadron. Itis tonceptionally close to fundamental
parameters of quantum chromodynamics. This is highlightedhe relation of condensates to
fundamental symmetries of the theory. Especially, chiyaimetry, supposed to be spontaneously
broken in the hadronic phase, represents a fundamentaépbo€ hadron physics. Quantities
which could measure the degree of this symmetry breakirdgrqrarameters, are thus desired.
Most prominently the chiral condensate is considered ak auguantity. The operator product
expansion, however, includes numerous other condensetg$o find a clear correspondence be-
tween spectral integral and just one significant condensaddficult. In analogy to an abstract
introduction of the chiral condensate as candidate for darggarameter we have discussed other
condensates. A number of potential order parameters hare dexduced, in particular specific
combinations of four-quark condensates.

Four-quark condensates have a strong impact on spectral €@Drules for light vector
mesons like thes meson or for the nucleon. Unfortunately, four-quark corsdéss and their den-
sity dependencies are poorly known. One possible solutida consider a large set of hadronic
observables and to try to constrain these parameters ¢thdrawy the QCD vacuum. In order
to accomplish a systematic approach, we derived a compdeddog of independent four-quark
condensates for equilibrated symmetric or asymmetricaanahatter. While the number of such
condensates is fairly large already in the light quark seete point out that only special combi-
nations enter the QCD sum rules. The combinations whichappethew meson and nucleon
sum rule could not be identified as potential order pararmetdore promising for investigations
of chiral symmetry are differences of sum rules for chirattipers. This was exemplified for the
chiral partnersp meson andi; meson. Indeed, the four-quark condensate combinatiomigte
there could also be derived from an abstract definition o$ibes order parameters.

In case of thev meson a ratio of spectral moments was analyzed. In a polézahgamoment
can be identified with the pole mass. In general, changesi®fitbment can be understood by
other deformations of the spectral density, e.g. broaderifects. In this sum rule the chiral
condensate is suppressed by the light quark mass. Corttranynpact of four-quark condensates
is quite important. Motivated by experimental indicatiomse might expect that this moment
does not increase at non-vanishing nuclear densities.efrbar it was deduced that the relevant
combination of four-quark condensates should have a stoemgity dependence, compared to
the factorization hypothesis which approximates fourfgusondensates by the squared chiral
condensate. This finding suggests that the factorizatiganoapmation is questionable at non-
vanishing densities.

For the nucleon QCD sum rule three different combination®of-quark condensates were
identified. The knowledge of these combinations (even thi#&vithual condensates entering) is
not sufficient to convert them into the combination beingc#pefor the spectral QCD sum rule
for light vector mesons. This was traced back to the diffel@tor decompositions of color
neutral interpolating fields for mesons and baryons. Inyeag the set of independent four-quark
condensates we found also identities which must be fulfited consistent treatment. Model
calculations of four-quark condensates seem not to fulfttbenatically these constraints.
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On the level of an exploratory study we showed the impact etlinee combinations of four-
quark condensates on the vector and scalar self-energtbe oiucleon. In cold nuclear matter
at sufficiently low densities the density dependence of amlg effective four-quark condensate
combination is found to be important for the vector selfrggeand the other two combinations
dominate the scalar self-energy. Bearing in mind that tledemn self-energy pieces are not proved
to represent observables, one is tempted to try an adjustofighese parameters to advanced
nuclear matter calculations. While the overall patterreagrfairly well (i.e. large and opposite
scalar and vector self-energies) we can reproduce alsorthaléitails on a quantitative level at
low densities. Keeping the four-quark condensates constavacuum values or giving them a
density dependence as suggested by a perturbative chaed model induces some quantitative
modifications which may be considered as estimator of syaiemncertainties related to the four-
quark sector. Furthermore, the special use of sum rulesigholating current and details of the
numerical evaluation procedure may prevent QCD sum rulethéonucleon as a precision tool.
The knowledge of this situation may be of relevance for apghes to the nuclear many-body
problem which utilize chiral dynamics and condensateteeldeatures of the mean field.

In the example of thed) meson the heavy quark mass as new scale changes the impact of
condensates compared to the situation fordhmeson. Robust statements in a pole ansatz are
only possible for the splitting of th®™ and D~ mesons. Qualitatively the QCD sum rule predicts
the lowering of D™ with respect taD~. Deduced quantitative pole mass differences are mainly
subject to condensates in the odd part of the operator predpansion, especially to a medium-
specific mixed quark-gluon condensate. The chiral condereaters only the even part of the
operator product expansion and affects the splitting forsdies approaching nuclear saturation
density.

These investigations covered a broad range of conceptasmedcts in QCD sum rule evalu-
ations: The nucleon sum rule extends the case of the neutnaéson due to Dirac structures.
Coupled sum rule equations arise from the entanglementro€iesand anti-particle spectral con-
tributions. Otherwise, for th® meson as heavy-light quark system with a new physicallyagie
scale in the operator product expansion, the calculatioonsplicated by the proper treatment of
quark masses and mass divergences.

The dispersion integrals underlying the method do not afimdictions for the spectral shapes.
One depends on the choice of a hadronic ansatz or an otheshim@ed spectral density. Never-
theless, the spectral sum rules represent a fundamentstkaiolh on hadronic models, and conse-
guences for condensates may be derived utilizing predietior the spectral density. In case of
the neutralv meson even a statement about a specific ratio of weighted nisroéthe spectral
density was formulated in a model independent manner. T$teigions on reliable numerical
predictions, due to the choice of suitable Borel masses lamghold assumptions, might be re-
duced when referring to medium changes. Certainly, diffeeesum rules, as for chiral partners,
could again be a very promising alternative. Finally, weirehthat our study is restricted to cold
nuclear matter. The extension towards finite temperatuserdes separate investigations.

In summary, we discussed the QCD sum rules for hadrons in domeainnuclear medium.
The sum rules allowed a direct relation of hadron propettie®CD condensates which change
at non-vanishing nuclear densities. For theneson and the nucleon, four-quark condensates
determine to a large extent the density dependence of tlaglserls composed of light quarks. The
four-quark condensates entering could not explicitly temtidied as possible order parameters for
spontaneous chiral symmetry breaking. In contrast, in ge/¥light quark sector, exemplified
by D mesons, the impact of the chiral condensate is noticeable.

QCD condensates measure the properties of the ground statanges in these universal
parameters at non-vanishing nuclear densities, althoaghlways related to symmetry breaking,
signal the complicated modifications in the physical grostade of the strong interaction.



A Borel Transforms

The Borel transformation is used in QCD sum rules since theradf the method [3]. It can be
defined as in Eq. (2.35)

F(Q*) — FM?*) = lim @) d n]—“(QQ) (A.1)
B Q2,n—>oo TL' sz ’ '
Q2 /n=M?
where@? = —g2 for medium QCD sum rules ap? = —¢? in the vacuum case, respectively.
Alternative definitions, for example in [6] (equivalent teetform in [3]),
> s o (@) da T,
F(Q) — FM) = Q?l,gioo oy T F(Q7), (A.2)
Q?/n=M?

slightly differ in absolute factors or index offsets, and aglated to Eq. (A.1), in this case by
F(M?) = MPF(M?). (A.3)

In any application of a Borel transform to a sum rule equatiaoh overall factors cancel. The
Borel summation is a suitable tool to deal with divergenieserand therefore it is adequate to be
applied to the operator product expansion. Taking devigatof arbitrary order diminishes poly-
nomials of any degree. For the sum rules of thend the nucleon the required Borel transforms
are

F(Q*) = (@) (k=0,1,2,...) — F(M?) =0, (A.4)
1 1 1
F(Q?*) = 5k (k=1,2,3,...) — F(M?) = R (A.5)

FQY) = (@' mQ* (k=0,1,2,...) — F(M?) = (=1)F1E(M> 1. (A6)

The given transforms can directly be obtained taking thevatives in definition (A.1).
Mathematically, the operator of the Borel transform candemfified with the inversion of the
Laplace transform

+o0o
LIF ()] = Flp) = /0 e f(t) dt (A7)

This may be utilized to find Borel transforms of complicateddtions if one can identify the ini-
tially given functionF as Laplace transform gf. Eventually the numerous properties of Laplace
transforms can be applied therefore. As example consigdiutictionf(t) = t*~1/(k — 1)! and
its Laplace transforn#(p) = 1/p*. Upon the substitutions = Q? andt = 1/M? the Borel
transform already given in Eq. (A.5) can be read off.

The rule for Laplace transform@e= f(¢)](p) = L[f(t)](p+ a) delivers the Borel transform
required for the hadronic side of sum rules

1 1 1 ,
F(Q%) = @ +aF (k=1,2,3,...) — F(M?) = . o~/ M
(A.8)



86 A Borel Transforms

By iteration of

Q2m  ame1) QZ(m—l)w2
Q2 +w? @ Q*+w? '’ (A-9)
and with Eqgs. (A.4), (A.8) the Borel transform for Eqgs. (2.34
2\ _ (Q2)l _ . 2y _ 1 (—Wz)l —w?/M?
F(Q°) = @+ (k=1,2,3,...) F(M*) = = 1) (M2 e
(A.10)

is obtained.
In more advanced problems the advantage of this approacttteveéerivative rule (A.1) be-
comes obvious. In QCD sum rules for themeson, for example, also the function

1

FQ) =—7m@Q* (k=1,23,..) (A.11)
(@%)
appears in the operator product expansion. With Q? this is the tabulated Laplace transform of
tk‘—l k-1 1
f(t):m ;E—’YE—IM : (A.12)
and the required Borel transform is readily found as
1 1 =
2\ _ 2 _ l
FM) = =1 oy (ln./\/l VEJF,;”) . (A.13)

The Euler constant is given by = lim,, . (3_7_; 1+ — Inn). For additional Borel transforms,
specific to further QCD sum rules, confer [90, 152].



B  Operator Product Expansion
Techniques

For completeness and to clarify some technical details wellsxt important steps of an OPE
calculation for light quark systems. The expressions can the expanded in powers of the small
quark masses, which simplifies the calculation for, e.ge,rthcleon and thes meson. A con-
venient way to obtain the OPE series is to calculate the Witsmefficients in an external weak
gluon field [144]. In the background field formalism, the &bation function (2.3) is expanded
according to Wick’s theorenl(z) = Il e (x) + Haq(z) + aq(x) + ... , where the full con-
tractions are collected in the perturbative tdim.,. and further termsly 4,... denote the number
of non-contracted quark operators. The latter terms gse 10 non-local condensates contain-
ing the indicated number of quark operators. The use of Wittkéorem naturally introduces the
normal ordering of operator<S\I' ‘: Ay Ay | U = <211 e fln>, which will be assumed in all
expectation values formed out of products of field operators

Under the presence of the gluon background field the quanagetorS? which appears in
the terms inll(x) is modified, following from the solution of the Dirac equatitn an external
field in the Fock-Schwinger gauge for the gluon field. The ections to the free quark operator
appear in an expansion in the coupling= /4ma

) 19s
S1y() = (T laa(@ @O0 0) = 5 T+ TG OTA Sy s+ BY)
with the dual gluon field strength tensok}, = 3€,,,, G and color matriceq’;}, valid for

massless quarks and inclusion of pure gluon condensatesmasis dimension 4.

The Fock-Schwinger gauge is determined(by- ), A*(x) = 0, and usually one chooses
xo = 0. It allows to express partial derivatives of fields easilydoyvariant derivatives which
matters when expanding non-local products of such operatorgeneral, results are gauge in-
variant, however technically fixing this gauge has enornmamli@ntages in calculations of Wilson
coefficients. Let us remark, that although the tdipy initially contains two uncontracted quark
field operators, the expansion of the non-local expectataue into local condensates together
with weak gluon fields resulting from modified quark propagstand the use of the equations of
motion would induce further four-quark condensates at tderay;.

The use of the quark propagator (B.1) leads to gluon ingestin the expectation values in
IT and thus to condensates of higher mass dimension. To ob&icondensates the expectation
values are projected onto all possible Dirac, Lorentz ahol sgalars obeying symmetry w.r.t. time
and parity reversal. This introduces all possible condessap to the considered dimension, and
having inserted the projections for the specific corretafimction offers also the corresponding
Wilson coefficients and therefore the OPE [54].

For example, the non-local diquark expectation value caprbgcted on color and Dirac
structures

5ab

(daa(2)@p(0)) = =75 > er (4(0)Tq(2)) Tag , (B.2)
T
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where elements of the Clifford algebfac {1,v,, 0., 574,75}, are contracted over Lorentz
indices,er = % forI' = 0, ander = 1 otherwise. A Taylor expansion of the quark operator at

x = 0in the Fock-Schwinger gauge
1
q(x) = q(0) + 2" D,q(0) + iw“w”DuDuq(O) +... (B.3)

leads to additional Lorentz structures, such that the legplansion of the non-local diquark
term (B.2) up to mass dimension 5 in the expectation vallentatr = 0 yields

(qaa(®)@pp(0)) = ——= erlop ((qfq> +a# (qI'Dyuq) + %x“w” (qFDuD,,q>> . (B.4)
r

However, matrix element&;(0)I'g(x)) with T € {0, 9757, 75} do not contribute due to the
demand of time and parity reversal invariance and the niighithon with the symmetric Tay-
lor expansion int. Condensates with field derivatives can be transformed etdyea couple of
manipulations using the equations of motion

(i —m)g=0, qip+m) =0, DABGY =g.> @' T"q, (B.5)
f
and the representation of the gluon tenSgy, = TAG;?V
‘ 1 1
G;w = gi[Dua Du]v and thus igsUG‘Flplp = D27 Du = 5 (7#1? + DVM) , (B.6)

are exploited to yield simplifications in condensate pridpes. Terms which contain factors of
the small quark mass are neglected in these considerations.

Similar projections can be performed for structures whietuide gluonic parts from the prop-
agator (B.1) and lead to gluon condensatesljg. () and are also carried out to find the linear
combinations of four-quark condensateslip,. Following this sketched line of manipulations,
one arrives for example at Egs. (3.38) for the nucleon. Th& @P the w meson is deduced
similarly but using also the next ordex in EqQ. (2.46).

To substantiate a complete presentation we list the redjpirgiections of Lorentz structures in
increasing mass-dimension of the implied condensatescdimensates are rewritten in canonical
forms using the equations of motion and identities as welasslational invariance of the nuclear
matter ground state; especially we write out the exact fdionginite quark masses,;, which
usually are neglected. Combinations which are not listedzaro by the assumption of time
and/or parity reversal invariance or vanish due to symmegagons. The projections are those
quoted in [54]. Note that here the quark operator and thekquaissm,, are not restricted to the
light quark sector. If the mass cannot be neglected ther tfsemula highlight that in counting
condensate dimensions the mass factors should be respected

Condensates of mass-dimension 3:

(29) » (B.7)
(@0) = - (@) v ®9
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Condensates of mass-dimension 4:

(D) = 5 ((vD)a) vy = ~ 52 aa) vy ®.9
_ 1, 9 dv,vy 1, VU
(@nDwa) = =3 (@Y (vD)a/v") <9;w - T) + 3 (aDq) (gw - )
=3 (@ 0D)/?) (g0~ 5% ) = 2 a0 (0~ 257
(B.10)

Condensates of mass-dimension 5:

1 4v,v, 1, U, Vy
(¢DuDyg) = =3 (a(vD)*q/v?) (g,w - %) + 5 (aD%) (gw -5 )
1, 4v,v, 1 U, Uy
= =3 (awD)*q/v?) (gw - #) + 5 (@90Ga) (g,w - ’;—2>
m2 VLU
q /= pYv
— 3 (q9) (g,w 3 ) : (B.11)
_ 1 20,0,V 1
<q/7uDuDaQ> = F <q'¢/(vD)2Q> < Hv2 - g[’uugua + Vv Gua + 'Ua.g,uu]>
1 _ 2 Vp Uy Vg,
+ g (@0%) (vugve — 2757
1 VpUyUqy
+ = (@wD) Pg) (vugu0 — 257 )
1 Vp Uy Vg
+ 53 @PD)) (vag — L)
1 20,0,V 1
=7 <Q'¢(UD)2Q> < - 2 - _[ngua + VyGua + erQ;w])
v v 3
1 VU Vg m? _ VU, Vg
— 5.2 {W9oGa) ( T ngl/a) + 3.5 (@) ( T ngl/a)
My 20,V,Vq
+ 372(1 <Q(UD)Q> ( “1)2 — Wwlpa — UaQ;w) > (B.12)

1
(@v57uDvDagq) = T 602 <<?75€”AW£U§MD>\D7rq> E,Wag’uﬁ

— — grzeuant” (5 (0l90Ga) + i q) + im q(eD)) ) . (819
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_ 1/
(qauuDaDﬁQ> = G <q0'n>\DHD)\Q> (guaguﬁ — Gva9us
VyU v,v VU, v,v
oy + gra— > + 9up =g — 9B uza)
'U v
1
- 6? <qUuVUVDM(UD)Q> (g/wcguﬁ — Gva9ups
vuUg Vy Vg VpUa
3g”Of v2 =+ 390 T2 9T T BT >
1
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(B.14)
_ 1 ~ KATE o L o
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C  Addendum: Four-Quark Condensates

Technical details and additional aspects to Section 2.4eromg four-quark condensates are
supplemented here.

C.1 Alternative Derivation of Pure-Flavor Four-Quark
Condensate Interrelations

The constraints between two different color structuresunéglavor four-quark condensates have
been presented in Section 2.4.1 by analyzing the specifir sblucture transformation. For the
typical baryon color combination of four-quark condensatke conversion matri® (2.114) was
derived with the decisive property that it cannot be invértén algebraic terms, the underlying
system of linear equations is linearly dependent. This geesto the Fierz relations (2.115).
If one is only interested in these relations, another divesy of derivation exists. Thereby one
considers the "zero identity”

etbeedt'e gl e b rey (cr) =0 it ()’ =—(C) or (Ch)T =—(CI), (C.1)
e g h eg f,h

-

which can be seen by a rearrangement of the product and negarhindices (this is the analog
discussion as for the choice of possible interpolating $iétd the nucleon). Fierz transformation
of this relations yields the basic formula

Eabcea/b/c/ q_a/quaqb’anb Tr <fOnFCOmTC) — 0’ (CZ)

which gives, with insertion of allowed and T, all possible constraints on the color combina-
tions in the sense of the vectérin (2.114). From the non-vanishing possibilities we listyon
combinations relevant for four-quark condensates andactithem to achieve relations between
components of"

r=1,T=1 0= —2z1 + 229 + 24 + 226 — 223,
0= —2z1 — 229+ 24 — 22 — 223,
{02—221+22—26+228,

0= —221 +229 —4z3 + 24 — 425 — 226 + 427 + 223,

F:757f‘:/75

I =iyy", T =iy

il

T =iy, T =7 0=1iz9 + 210 -

(C.3)

This set of constraints is equivalent to (2.115) in Sectighl2
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C.2 Four-Quark Expectation Values in the Nucleon

Supplementary to Tab. 2.3 we collect in Tabs. C.1 and C.2rkhenlying coefficients to be under-
stood in connection with the work of Drukarev et al. [60].

Expectation| Parameters in [60] Minimal Modification | Mean Value
value N=p N=n | N=p N=n N =Pt
U 394 405 | 3.939 4.047 3.993
ay" 0.52 051 | 0.520 0.510 0.515
by ~0.13  —0.02 | —0.143  —0.023 ~0.083
ay™ 098 102 | 0.968 1.009 0.989
b 0.05 <001 | 0.045 0.007 0.026
" 045  —050 | —0.471  —0.502 —0.487
b —~0.06  —0.01 | —0.054  —0.009 —0.032
Ui 1.91 1.96 | 2.002 2.030 2.016

Table C.1: Coefficients of pure flavor nucleon four-quark expectatiatugs
(in units of (gq),,. = (—0.245 GeV)?) as determined in [60] in the termi-

vac

nology introduced there and modified values from a fine-tyre@dmeter set
which fulfill the constraints (2.115). The parametet¥* andz ¢ are finally
derived from the right column which shows the result for Enssymmetric
baryonic matter.

C.3 Basis Transformations

In this section the transformation laws between the flavormagtric four-quark condensate basis
systemsO, and Oy in Tab. 2.4, derived from multiple application of Fierz tsémrmations, are
given. It allows to proceed the discussion of possible opdeameters in the basis systémand
their interrelations. This substantiates also the refdtietween different color structures of four-
quark condensates, Eq. (2.111), which is based on the sam@dae. But here we generalize it
to two flavor degrees of freedom.

We require the general property of thedimensional fundamental generat@is for the spe-
cial unitary groupSU (N) (normalized adr(7°1%) = $5°)

wa 1 1
TiTh =5 <5i15jk - N‘S"Y";’“> : (C.4)

derived from a completeness relation in matrix space; 1. .. (N? — 1) is summed over and the
lower indices running over ... N express the matrix structure .
In color spaceN = No = 3,74 = % (\* are the Gell-Mann matrices) this reads

1
AN = 2 <5i15jk - géij5k1> : (C.5)

Also the equivalent relation in flavor space is now need€éd= ny = 2, T = % (r* are the
Pauli matrices)

T%T,?l = 2(52‘1(5]']@ — 6ij5kl . (CG)
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Expectation| Parameters in [60] Mean Value
vaue |N=p N=n | N=E"
Uy 319 3.9 3.19
ay"? —0.44  —0.44 —0.44
by 029 —0.29 —0.29

]TV“d 0.19  0.19 0.19
b 0.18  0.18 0.18
agt 043 043 0.43
b —0.06  —0.06 —0.06
Ut —020  —017 | —0.185
Uy | 028  —021 | —0.245

Table C.2: As Tab. C.1 but for coefficients of nucleon four-quark expect
tion values parametrizing mixed flavor structures as ddtexchin [60] and
the mean values used to calculate medium strength param&trin isospin
symmetric matter. The modifications referring to pure-ftafomr-quark con-
densates are not needed here.

Together with the Dirac projection, Eqg. (2.108), all redfess are provided to reorganize the con-
traction of four flavor vectors in the four-quark condensdteierz transformation). Starting from
(p DEC* Fanp DYCY F¥4)), by exchanging the order of the flavor vectarghe given index re-
ordering is subsequently pursued for the Dir&y,(color (C) and flavor structures (say” = ¢,

for example). Choosing fab*¥ the basis elements of the Dirac algebra, see Section 24el, o
obtains

(B0 70ty ) = — (OFpp0'y)
- %Tr(OkOnOlOm) E (O™ ppO"p) + % (PO N YPPO" Ny
(C.7)

The effort to calculatdr(0*0,,0'0,,) can be circumvented when resorting to the vector formu-
lation (2.112) which is only a way to organize all relevantdai structures. Hence, by comparison
with Eq. (2.111), the transformation is traced back to thérimad, Eq. (2.113), symbolically

A-3(- D)

where the formal vectors collect the Dirac structui#s? of the respective condensates in

(F) < (YD*rpp DYTY) (C.9a)

(T) = (D yppDYy), (C.9b)
<)\A> s (PDENAYHDYNAY) (C.9¢)
<TeAA> (DD NP DYTNAY) | (C.9d)

Similarly, relations includingyO*r°A44pO'r°A44)) can be derived. Note, that the transforma-
tions in general will depend om; and ...
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