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Abstract

The modifications of hadronic properties caused by an ambient nuclear medium are investigated
within the scope of QCD sum rules. This is exemplified for the cases of theω meson, the nucleon
and theD meson. By virtue of the sum rules, integrated spectral densities of these hadrons are
linked to properties of the QCD ground state, quantified in condensates. For the cases of the
ω meson and the nucleon it is discussed how the sum rules allow arestriction of the parameter
range of poorly known four-quark condensates by a comparison of experimental and theoretical
knowledge. The catalog of independent four-quark condensates is covered and relations among
these condensates are revealed. The behavior of four-quarkcondensates under the chiral symmetry
group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined.
In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners
are investigated. Finally, the effects of an ambient nuclear medium on theD meson are discussed
and relevant condensates are identified.

Kurzfassung

Die Veränderungen von Hadroneneigenschaften durch ein umgebendes nukleares Medium (Kern-
materie) werden mit der Methode der QCD-Summenregeln untersucht. Dies wird am Beispiel des
ω-Mesons, des Nukleons und desD-Mesons vorgeführt. Durch die Summenregeln werden inte-
grierte Spektraldichten dieser Hadronen in Beziehung zu Eigenschaften des QCD-Grundzustandes,
quantifiziert in Kondensaten, gesetzt. Diskutiert wird am Beispiel desω-Mesons und des Nuk-
leons, wie diese Summenregeln eine Einschränkung des Parameterbereiches von wenig bekannten
Vierquark-Kondensaten durch Vergleich von experimentellen und theoretischen Erkenntnissen er-
lauben. Ein Katalog unabhängiger Vierquark-Kondensate wird aufgestellt und Relationen zwi-
schen diesen Kondensaten werden deutlich gemacht. Das Verhalten der Vierquark-Kondensate
unter der chiralen Symmetriegruppe und der Zusammenhang mit Ordnungsparametern spontaner
chiraler Symmetriebrechung werden behandelt. In dieser Hinsicht werden auch die in Diffe-
renzen der Summenregeln chiraler Partner eingehenden QCD-Kondensate untersucht. Schließlich
werden die Effekte endlicher Kerndichten beimD-Meson diskutiert und relevante Kondensate
identifiziert.
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1 Hadrons in Medium

1.1 Probing Strongly Interacting Matter

Hadrons are the observed physical degrees of freedom of the strong interaction at low temperatures
and densities or in vacuum [1]. However, it is necessary to relate the measured properties of
hadrons to the fundamental theory of the strong interaction- Quantum Chromodynamics (QCD).
The degrees of freedom in this local gauge theory are the quarks and, as gauge bosons, the gluons.
These fields are said to be confined in hadrons, since quarks and gluons have not been observed
as asymptotically isolated particles (confinement hypothesis). Nevertheless, the mass of a hadron,
formed out of quarks and gluons, should be explained by QCD parameters. Since the sum of the
current quark masses is orders of magnitude below the hadronmasses, the latter must be generated
from the interaction energy in the theory of QCD. The hadron masses are thus related to the
properties of the QCD ground state, which has a highly non-trivial structure. A relation between
QCD parameters and the hadronic spectrum is impeded by the generic problems of low-energy
QCD. In the high energy limit, many observables can be calculated within perturbation theory
where the running coupling is small enough to allow for a perturbative expansion of scattering
probabilities due to asymptotic freedom. While going subsequently to lower energy scales, the
running couplingαs increases and the expansion in powers of the coupling strength becomes
invalid.

Suitable tools to explore the structure of low-energy QCD inrelation to properties of hadrons
are among others ”lattice QCD”, chiral effective field theory, instanton models and QCD sum
rules. The former is based on a computational treatment of the theory on a discretized space-time
lattice with sophisticated algorithms. With improving computational resources it approaches a
realistic prediction of QCD observables. Unfortunately, the numerical results obtained therefrom
often have to be extrapolated to physical values of the quarkmasses. The second approach con-
tains effective fields for the hadrons and suitable interaction terms from which self-energies and
scattering processes etc. can be evaluated once a unique fit of unknown constants is at our dis-
posal. Instanton models describe special features of the QCD ground state by the density and size
of instanton configurations, which are classical solutionsof the equations of motion.

In this work, the approach of QCD sum rules (QSR) is focused on. It was originally formulated
by Shifman, Vainshtein and Zakharov [2, 3] to describe for example masses of light vector mesons
in vacuum [4]. The method since then gained attention in numerous applications, e.g. to calculate
masses and couplings of low-lying hadrons, magnetic moments, etc. (cf. [5–7]). Its particular
meaning is that numerous hadronic observables are directlylinked to a set of fundamental QCD
quantities, the condensates.

Condensates are ground state expectation values of QCD and so they quantify the complexity
of the QCD ground state. In QCD sum rules, the condensate terms occur as power corrections of
a perturbative expansion and dominate the low-energy behavior of QCD. One expects then that
condensates should determine the properties of hadrons as well. Although the method does not
claim to be a precision tool it is quite meaningful since it can be applied to numerous hadronic
observables using a unique set of condensates. Furthermoresome of these condensates are directly
linked to symmetries of QCD and can measure symmetry violations.
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Especially useful becomes this approach when one is interested in changes of hadron properties.
Such modifications can arise in a medium of non-vanishing temperature or density. The investi-
gation of these modifications sheds light on the complex ground state of QCD. Changes in this
ground state are expected to be reflected in its excitation spectrum, analogous to the changes of
atomic excitation spectra embedded in external electromagnetic fields (Stark and Zeeman effects).
The excitations of the QCD ground state are the hadrons, and the corresponding external field is
represented by the surrounding nuclear matter. Hadrons in the nuclear medium therefore probe
this ground state by the modifications they perceive (see Fig. 1.1).

Figure 1.1: Illustration of the modification of hadronic properties in amedium:
The hadron, in this case a proton (left panel), characterized by the nucleon mass
MN = 938 MeV in vacuum, is injected into nuclear matter of neutrons and
protons (right panel). There it probes the finite density state and, vice versa,
is modified in the vicinity of surrounding nucleons. One possible consequence
is that the probe changes its self-energies (mass) when embedded in such a
medium.

The method of QCD sum rules was therefore extended to non-vanishing temperatures [8] and
densities for vector mesons [9] and nucleons [10]. With the mapping of hadronic properties onto
expectation values of the QCD ground state via QCD sum rules it becomes possible to study the
change of the condensates itself and especially of order parameters of characteristic symmetries.
The non-zero chiral (two-quark) condensate, for example, exhibits the spontaneously broken chiral
symmetry of the QCD Lagrangian. The decrease of this condensate, as expected while approach-
ing the quark-gluon plasma region in the QCD phase diagram atlarge densities or temperatures,
respectively, would indicate the partial restoration of chiral symmetry. Therewith related, a hy-
pothesis of Brown and Rho [11] received much attention. Accordingly, the masses of vector
mesonsmV change like the chiral condensate〈q̄q〉 asmV /mV

0 ∝ [〈q̄q〉 / 〈q̄q〉0]a. The qualitative
expectation is, that at larger densities or temperatures the decrease of light vector meson masses
signals the partial restoration of chiral symmetry. (The subscript ”0” denotes the vacuum values,
the parametera has to be determined from theory or experiment [12].) The assumed symmetry
restoration is extensively studied because of its role for phase transitions between phases of QCD,
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especially the phases of hadronic matter versus deconfined matter of quarks and gluons. The chi-
ral condensate〈q̄q〉 represents here an important order parameter. Furthermore, the cited scaling
hypothesis as well as the simplified formula of Ioffe [13] forthe nucleon mass,MN ∝ 〈q̄q〉, indi-
cate that the creation of hadron masses originates from a symmetry breaking principle as familiar
from the Higgs mechanism in the electroweak sector of the Standard Model. The pseudoscalar
Goldstone bosons induced by the spontaneous breaking of chiral symmetry are identified with the
isotriplet of pions (fornf = 2 flavor degrees of freedom). Although the symmetry is still valid
for a massless Lagrangian density, the specification of a ground state restrains the symmetry in
the observed hadronic spectrum where, for example, partners of opposite parity exhibit significant
mass splittings, e.g.mρ − ma1 ∼ 450 MeV. Therefore, spontaneously broken symmetries are
also termed hidden symmetries.

The investigation of hadrons with QCD sum rules however reveals that the relation of masses
to QCD condensates is more elaborate than e.g. suggested by Brown-Rho scaling. Especially, the
impact of various combined condensates hinders simple scaling arguments. This work discusses
such applications for (a) light vector mesons, preferentially the ω meson, (b) the nucleon, i.e.
proton and neutron, and (c) theD meson. The chosen examples constitute also three conceptional
interesting cases for QCD sum rules. Whereas theρ and ω mesons (a) have been the initial
examples at the event of QCD sum rules [4], baryon sum rules reveal new aspects due to the
fermionic character of the considered hadrons. This exemplifies the differences between QCD sum
rules for two- and three quark systems. The case of theD meson, on the contrary, is distinguished
by the large charm quark mass entering the QSR equations and leads to qualitative new aspects
when setting up QCD sum rules. Our investigations will mainly focus on effects in a region of the
QCD phase diagram close to the vacuum case, especially at small densities and zero temperatures.

1.2 Experimental Status and Perspectives

The theoretical expectations about modifications of hadrons at finite densities and temperatures
have triggered several experiments to explore such effects. In particular the above Brown-Rho
relation suggested that measuring a mass shift of a hadron means quantifying a change of the
chiral condensate. Generally one can distinguish between experiments where the hadrons in a
medium are produced at high energies or at relatively low energies.

In the first case, in high energy collisions of ions, i.e. nucleus-nucleus collisions, the concise
identification of medium modifications depends on the complete understanding of the reaction pro-
cesses. Measured spectra are then integrated over the full space-time evolution of the reaction, par-
tially far from equilibrium, and other effects contributing similar as the impact of medium effects
have to be rather well understood and under control. Especially, not only the nucleus-nucleus col-
lisions have to be investigated, but also the correspondingproton-proton as well as proton-nucleus
collisions, which, mainly free from medium effects relatedto compressed nuclear matter, define
as normalization what is meant with medium modifications at non-vanishing nuclear densities.
Possible changes of vector mesons, e.g., can be measured by their direct electromagnetic decays
into di-leptons. These probes have been favored since they only interact electromagnetically and
can thus leave the hot and dense interaction zone nearly undisturbed by secondary reactions.

First experimental results for an affectedρ meson mass came from CERES at the CERN SPS
where an unexplained excess in low invariant mass di-electron spectra was observed [14]. Im-
provement of statistical accuracy and mass resolution allowed a more sensitive investigation of the
intermediate medium-modifiedρmeson. Therewith the measurements of muon pairs at the CERN
SPS by the NA60 experiment also revealed an excess at low invariant masses [15, 16]. The recon-
structed spectral function of theρ meson showed a strong broadening, but a significant mass shift
could not be discovered. This seems to be incompatible with simple ”moving mass scenarios” as
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e.g. predicted by the above Brown-Rho scaling of the vector meson mass [11, 12]. Contrary, the
E325 experiment at KEK, which also aims on modifications of the in-mediumρ- andω-spectrum
claimed a decrease of the meson mass from measured decay electron pairs [17]. The High Ac-
ceptance Di-Electron Spectrometer (HADES) at GSI is designed to measure the electromagnetic
decays of light vector mesons with high resolution in protonand heavy ion collisions [18]. It pro-
vides a dedicated test of assumptions about medium modifications of spectral functions from the
ratios of nucleus-nucleus, proton-nucleus and proton-proton collisions.

Alternatively, one can provide vector mesons by photo-induced production on various targets.
In this scenario the experimental situation can be much better prepared and characterized. An
observation of additional spectral strength of theω meson at lower invariant masses in photopro-
duction experiments was reported by CB-TAPS, identified viathe decay channelω → πγ [19].
The excess of decay strength appeared there when niobium instead of liquid hydrogen was used
as target, allowing a comparison between non-vanishing nuclear densities and the vacuum limit.
Also CLAS at JLAB studied the photoproduction of vector mesons on various nuclei by the mea-
surement of the di-lepton decay products [20]. Therefore different averaged nuclear densities were
provided with the target nuclei carbon, iron, and titanium and compared to spectra obtained with a
liquid deuterium target, which represents the nearly unaffected vacuum reference probe. Prelimi-
narily, no indications for a modification of theρ meson mass have been found there. Instead, both
experiments see a significant broadening of vector mesons ina medium, for theω [21] as well as
for theρ meson [22, 23].

Nevertheless a dedicated analysis of these data is requiredin both scenarios, hadrons at high
or low energies, to disentangle the effects of creation and decay of the investigated hadron and es-
pecially the final state interactions of the decay products,since the spectral function is not directly
observable. An analysis of the CB-TAPS data suggests some lowering of theω meson mass when
embedded in medium [24]. This is accompanied by collisionalbroadening, the impact of hadron
scatterings on the measured decay spectra. Based on the experimental finding, that theω meson
mass is not increasing, constraints for condensates in medium could already be derived [25], and
this derivation will be covered in this thesis.

Also for the formation of nuclei does the in-medium behaviorof hadrons play a significant
role. A stable description of nuclear matter requires compensating effects of vector and scalar
nucleon self-energies. The spectral function of the nucleon or its in-medium self-energies can-
not be measured directly, however, they have been determined on the basis of realistic nucleon-
nucleon potentials in the framework of chiral effective field theory [26]. The provided density
dependent self-energies can be compared to QSR predictionsand thereby deliver restrictions on
the in-medium behavior of specific condensate combinations[27], as will be demonstrated in the
course of this work.

The upcoming experimental possibilities of FAIR at GSI extend the studies of medium mod-
ifications from the light-quark sector to hadrons containing heavy quarks as well. Especially, the
modifications of theD meson spectra are intended to be investigated. Therefore, the CBM exper-
iment uses the high beam intensities of accelerated heavy ions [28]. The PANDA experiment is
designed to use the provided antiprotons for collisions [29]. These explorations and further data
from HADES, JLAB, KEK and CERN bear encouraging prospects for an understanding of QCD
matter and hadrons at various densities and temperatures.
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Structure of the Thesis

The thesis is organized as follows. Hereafter this introductory Chapter 1, we introduce in Chapter 2
the ingredients of QCD sum rules, starting from dispersion relations connecting the hadronic spec-
tral representation of a hadronic correlator with the expressions obtained from an operator product
expansion. Here also the QCD condensates and related symmetries of QCD are explained. A
separate section is devoted to the discussion of four-quarkcondensates, which is one result of the
present thesis. Chapter 3 contains the analytical and numerical results obtained for theω meson,
with additional remarks on theρ meson. Also the nucleon and theD meson cases are considered
there. Conclusions and summary can be found in Chapter 4. In the appendices, technical details
required for the presented calculations are supplemented.

It should be mentioned that parts of the material of this thesis has been published in [25, 27,
30–33]. Yet unpublished material can be found in Chapter 2, where details of the construction
of in-medium sum rules are given and the role of four-quark condensates in the context of chiral
symmetry breaking is pursued. Furthermore, in Chapter 3 additional details on the evaluation of
the sum rule results are collected. Technical details usually not published are also compiled in the
appendix to complete the thesis.





2 QCD Sum Rules in Medium

The expected modifications of hadron properties inside nuclear matter are caused by the strong
interaction and therefore have to be described within the framework of Quantum Chromodynam-
ics (QCD), if one tries to establish an approach on a fundamental level. A possibility to cir-
cumvent the complications with this non-abelian theory with exact local gauge invariance in the
non-perturbative sector is provided with QCD Sum Rules (QSR). These have originally been in-
troduced for the description of vacuum masses of vector mesons [3, 4]. Subsequently, numerous
applications of these ideas widened the scope of this method, e.g. to baryon masses [13]. Further
generalizations of this approach addressed properties as hadronic coupling constants [34] or form
factors [35] etc. More recent developments are applications of QCD sum rules to conjectured
penta-quarks [36] or tetra-quark states [37]. In our context, the extension of QCD sum rules to
properties of individual hadrons embedded into a strongly interacting medium at non-vanishing
temperatures and densities [8] is particularly important.The application of the method in the case
of finite nuclear density and zero temperature will be covered in this thesis.

2.1 Motivation: The Vacuum Case

For didactic simplicity we follow the historical line and begin with the vacuum case to supply the
general ideas and terminology. It is intended as general introduction to the method, and a lot of
aspects will be deepened within the course of the generalization to the medium case further below.

QCD sum rules link hadronic observables and parameters of the underlying theory of strong
interaction - QCD. This correspondence is achieved by a dispersion relation which connects ranges
of distinct hadron momenta. The mass, and this will be the interesting quantity throughout the the-
sis, is encoded in the hadronic correlation function, i.e. it determines how the hadron propagates.
Strictly speaking one shall only refer to the spectral density as introduced later. (For other appli-
cations suitable correlation functions can be adopted, forinstance three-point functions for hadron
couplings [5].)

The correlation function or current-current correlator ofthe hadron fieldh is the Fourier trans-
form of the time-ordered expectation value in the physical QCD ground state|Ψ〉

Πh(q) = i

∫

d4x eiqx
〈
Ψ
∣
∣T
[
h(x)h̄(0)

]∣
∣Ψ
〉
, (2.1)

if we consider the hadrons as fundamental degrees of freedom. It can be expressed in terms of the
partonic decomposition of the specific hadron, that means byquarks and gluons. Any interpolating
field or currentη, built as product of quark and gluon fields, which carries thequantum numbers
of the investigated hadron, can lead to a non-vanishing matrix element between vacuum and the
hadron state

〈Ψ|η(0)|h(p, s)〉 = λhψ(p, s) , λh 6= 0 . (2.2)

The state|h(p, s)〉 is a single hadron state with momentump and spins. The hadronh is con-
sidered here a spin-1

2 particle with Dirac spinorψ(p, s). In principle, the field operatorsh, η and
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the correlation functionΠh can have a complex Lorenz structure. This is neglected in thepresent
example but can be found e.g. in Section 3.1 about theω meson example. (The translation to
mesons requires the replacement ofh̄ by h† in Eq. (2.1); appropriate wave functions in Eq. (2.2)
are then Klein-Gordon fields.)

Practical applications are mostly restricted to simple forms of hadron interpolating fieldsη,
which do not contain derivatives of field operators. The correlator then becomes

Π(q) = i

∫

d4x eiqx 〈Ψ |T [η(x)η̄(0)]|Ψ〉 . (2.3)

This is the central quantity to be considered. In contrast toEq. (2.1) the functionΠ solely contains
the quark and gluon degrees of freedom. The coupling factorλh between the interpolating fieldη
and the physical hadron stateh has to be respected when comparing to hadronic models forΠh.
Eq. (2.3) is the standard form given in the literature as starting point for the QSR derivation.

This ansatz already contains a further severe restriction to the interpretation of QSR results.
It includes besides the hadronh also any other hadron configurations with the same quantum
numbers, like excitations ofh or even multi-particle states. This becomes obvious from the intro-
duction of the spectral function into Eq. (2.3)

Π(q) = −
∫

dq′0

[
ρ(q′)

q0 − q′0 + iǫ
+

ρ̃(q′)

q0 − q′0 − iǫ

]

, (2.4)

the Källen-Lehmann representation, which follows directly when writing out the time ordering
with the integral representation of the Heaviside step-function θ(t) = 1

2πi

∫ +∞
−∞ da eiat/(a − iǫ)

and implies the definition of the spectral densities

ρ(q) =
1

2π

∫

d4xeiqx 〈Ψ |η(x)η̄(0)|Ψ〉 , (2.5)

ρ̃(q) =
1

2π

∫

d4xeiqx
〈
Ψ
∣
∣η̄T (0)ηT (x)

∣
∣Ψ
〉T

. (2.6)

In this example for fermions, the transposed Dirac structures ensure the correct matrix form iñρ.
In general, the spectral functions for particlesρ and anti-particles̃ρ are independent. However, for
the vacuum case these functions are related asρ(ω) = −ρ̃(−ω) due to the symmetries of the QCD
ground state. The correlation function has thus in vacuum the form

Π(q) =
1

π

∫ ∞

0
ds

ρ(s)

s− q2 . (2.7)

The dependence ofΠ on q2 is justified by the Lorentz invariance of the QCD vacuum. By intro-
ducing a complete set of hadronic eigenstates into the definition,

ρ(q) = (2π)3
∑

n

δ(4)(q − PΨ − Pn)〈Ψ|η(0)|n〉〈n|η̄(0)|Ψ〉 (2.8)

contains all configurations which couple with the right quantum numbersλn 6= 0 as claimed.
In vacuum one can choose a suitable frame, where the four-momentum of the ground state

PΨ is zero. Since the QSR will determine basically the correlator, that means only the integrated
spectral strength, the determination of individual hadronic properties also relies on the assumption
that the lowest lying hadron dominates the spectral integral. In this simplified case all higher
states are negelected in the sum overn and summarized into a (yet to be determined) continuum
contributionρcon. This leads with Eq. (2.2) to

ρ(q) = (2π)3
∑

s

δ(4)(q − p)|λh|2ψ(p, s)ψ̄(p, s) + Θ(q2 − s0)ρcon(q) . (2.9)
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It is common praxis to approximate the continuum partρcon by the so called semi-local quark-
hadron duality hypothesis: The hadronic continuum is substituted by the contribution of quark
and gluon degrees of freedom to the correlator at asymptotically large momenta (local hypothesis).
Actually, this local demand can be weakened, since only the integrated form is required (semi-local
hypothesis). This allows for local oscillations around theasymptotic limit of perturbative QCD.

Re q2

Im q2

C

OPE

Figure 2.1: In the vacuum case the shown (blue) contour in the complex plane
of q2 is used to derive dispersion relations which relate the operator product
expansion (red dot with label OPE) to the hadronic representation of the corre-
lation function on the real axis withRe q2 > 0.

The correlation function Eq. (2.3), so far expressed in hadronic degrees of freedom for physical
momentaq2 (the positive real axis in Fig. 2.1) can on the other hand be evaluated at large Euclidean
momenta (the negative real axis in Fig. 2.1). Assuming analyticity of the correlation function, its
values on the positive and negative real axis can be related by a dispersion relation. Therefore,
consider the Cauchy integral representation of an analytical function

Π(q2) =
1

2πi

∫

C
ds

Π(s)

s− q2 , (2.10)

whereby the integral contourC is shown in Fig. 2.1. The poles of the integrand on the positive real
axis are thereby excluded. A decomposition of the contourC in the limits of infinite radiusR of
the circle and infinitesimal exclusion of the positive real axis yields

Π(q2) =
1

2πi

∫

R→∞
ds

Π(s)

s− q2 +
1

π

∫ ∞

0
ds

∆Π(s)

s− q2 . (2.11)

The discontinuity along the positive real axis

∆Π(ω) =
1

2i
lim
ǫ→0

[Π(s + iǫ)−Π(s − iǫ)] (2.12)

can by the Schwartz reflection principleΠ(s∗) = Π∗(s) be transformed, and is related to the
spectral density

∆Π(s) = ImΠ(s) ≡ ρ(s) . (2.13)
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If the integral along the infinite circle vanishes, the dispersion relation

Π(q2) =
1

π

∫ ∞

0
ds

∆Π(s)

s− q2 , (2.14)

is the starting point for the celebrated QCD sum rule. It remains to calculate the correlator, here on
the l.h.s., in terms of quarks and gluons. Forq2 < 0 this can be performed via Wilson’s operator
product expansion (OPE) [38]. It is an expansion of nonlocalproducts of operatorsA andB

A(x)B(y) =
∑

i

C̃i(x− y)Oi (2.15)

into local operatorsOi accompanied by Wilson coefficients̃Ci which are singular asx→ y. The
operatorsOi are sorted such that the degree of singularity increases with index i, and also the
operator dimension due to the constant overall mass dimension in this expansion. In momentum
space it becomes

∫

d4q eiq(x−y)A(x)B(y) =
∑

i

Ci(q)Oi , (2.16)

with Ci ∝ q−(i+n), wheren is a fixed number depending on the mass dimension of the product
A(x)B(y). For time-ordered products, as the correlation function in(2.14), this expansion is
equally possible and since ground state expectation valuesare considered one is naturally lead to
a sum

Π(q2) =
∑

i

Ci(q
2) 〈Oi〉 . (2.17)

The local expectation values〈Oi〉 = 〈Ψ |Oi|Ψ〉 are termed QCD condensates. Condensates
quantify the complex behavior of the QCD ground state. As universal numbers they occur in many
QCD sum rules and are not restricted to a QSR for a specific hadron. Moreover, also qualitative
information about symmetry properties of QCD are partiallyencoded into QCD condensates. The
leading term, the coefficient of the identity operator, represents, besides possible renormalization
corrections, the perturbative QCD result. The QCD sum rule (2.14) thus has the form

1

π

∫ ∞

0
ds

∆Π(s)

s− q2 =
∑

i

Ci(q
2) 〈Oi〉 . (2.18)

The hadronic part in integrated form (left hand side) is determined by a set of power corrections in
inverse momenta which are weighted by QCD condensates (right hand side). In this argument we
have neglected the first integral contribution in Eq. (2.11)assuming sufficient convergence of the
integrand asq2 → ∞. Otherwise the circular integral does not vanish but converges into a finite
polynomial [39]. Reversing this, the subtraction of a finitepolynomial of suitable degree resolves
the problem. Note, that this is equivalently obtained when starting with a dispersion relation for
the derivative ofΠ(q2). There remains the subtlety that the degree of this polynomial and the
coefficients had to be found. This can be dealt with using the Borel transformation under which
any polynomial vanishes. Such technical aspects are postponed to the more detailed section on
in-medium QCD sum rules and to the appendix.

In summary, this motivation shows how spectral properties of hadrons, entering the hadronic
integral, are related to characteristics of QCD collected in the condensates. These two sides of the
dispersion relation Eq. (2.18) build the QCD sum rule and this principle also holds for any other
applications of the method.
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2.2 Generalization to Medium

The introduction to QCD sum rules will now be extended to a medium which in the thermo-
dynamic limit is characterized by the baryon densityn and the temperatureT . In this section
especially new aspects in the medium case shall be described. Furthermore, important technical
details are given to strengthen the conceptional ideas presented in the previous motivation.

2.2.1 Dispersion Relations

In a thermodynamic system the propagation of a hadron probing the medium characterized by the
four-velocityvµ is described by the Gibbs averaged correlation function (Green’s function)

Π(q, v) = i

∫

d4x eiqx〈〈T [η(x)η̄(0)]〉〉 . (2.19)

We concentrate on the fermion example, in the bosonic case the derivation of the dispersion rela-
tions proceeds in the same way.

The Gibbs averaged expectation value of an operatorÔ is defined as

〈〈Ô〉〉 =
Tr(Ôe−β(Ĥ−µN̂))

Tr(e−β(Ĥ−µN̂))
, (2.20)

with the Hamilton operator̂H, particle number operator̂N , chemical potentialµ andβ = 1
kBT

(T is the temperature andkB the Boltzmann constant). The trace represents the summation over
the complete sets of states to any particle numbersN . The Gibbs averaged correlation function
possesses poles above and below the real energy axis. The medium generalization of QCD sum
rules in [8] resorted to the retarded (advanced) correlation functions

ΠR(q, v) = i

∫

d4x eiqx 〈〈η(x)η̄(0)〉〉Θ(x0) , (2.21)

ΠA(q, v) = −i
∫

d4x eiqx 〈〈η̄T (0)ηT (x)〉〉T Θ(−x0) , (2.22)

which are analytic in the upper (lower) half energy plane in Fig. 2.2. However, if one evaluates the
correlation functions far off the real axis,Im q0 6= 0, the distinction between the causal, retarded
and advanced correlators has no importance [40]. The contours in Fig. 2.2 avoid the branch cuts
close to the real axis, and we choose for the derivation of dispersion relations the case of the time-
ordered correlation function. Note that the following argument can be repeated separately for the
retarded and advanced correlators.

Since the operator product expansion is valid for large spacelike Euclidean momenta−Q2 ≡
q2 < 0, as applied in Fig. 2.1, one has to analytically continue thecorrelation functionΠ(q0)
to imaginary values ofq0 (Wick rotation). Thus ifq0 = iq′0 with q′0 ∈ R and sufficiently large
q′0 > |~q | for fixed~q, the conditionq2 < 0 is always fulfilled, and there the OPE representation can
be used. Assuming the analyticity of the correlation function in the whole complex energy plane
except the previously discussed region close to the (physical) real axis one can apply Cauchy’s
integral formula to relate the operator product expansion in the upper or lower complex plane

Π(q0) =
1

2πi

(∫

C1

da
Π(a)

a− q0
+

∫

C2

da
Π(a)

a− q0

)

(2.23)

to the hadronic representation on the real energy axis, see Fig. 2.2. One of the integrals vanishes
depending on the sign of the imaginary part ofq0. The integration over the contoursCi can be
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Re q0

Im q0

OPE

C1

OPE

C2

Figure 2.2: The contoursC1 andC2 in the complex energy planeq0 applied to
derive dispersion relations which relate the operator product expansion (OPE)
to the hadronic representation of the correlation functionalong the real energy
axis.

decomposed into an integration along the real axis shifted by ±iǫ (ǫ > 0) and one along the sector
of a circle of radiusR

Π(q0) =
1

2πi

∫ +R+iǫ

−R+iǫ
da

Π(a)

a− q0
+

1

2πi

∫

|a|=R
Im a>ǫ

da
Π(a)

a− q0

+
1

2πi

∫ −R−iǫ

+R−iǫ
da

Π(a)

a− q0
+

1

2πi

∫

|a|=R
Im a<ǫ

da
Π(a)

a− q0
. (2.24)

In order to get rid of the contribution from the circular arcsone considers the limitR → ∞.
However the ultraviolet behavior of the correlation function is not generally given to converge in
a way that the specified integral vanishes. For the time beingthis problem can be circumvented
by subtracting out the ultraviolet divergent part ofΠ(q0) in the form of a polynomial of degree
(n− 1)

Π̄(q0) = Π(q0)−
n∑

l=1

Π(l−1)(0)

(l − 1)!
q
(l−1)
0 , (2.25)

defined such thatn is the number of subtractions or more precisely the number ofsubtracted
terms. The(l − 1)th derivativeΠ(l−1) is with respect toq0; usingΠ̄(q0) equivalently means to
consider thenth derivative ofΠ(q0) of the operator product representation.1 Combination of the
subtractions with Eq. (2.23) or the direct use of Cauchy’s formula for the derivative expression
yield

Π̄OPE(q0) =
qn
0

2πi

(∫

C1

da
Π(a)

an(a− q0)
+

∫

C2

da
Π(a)

an(a− q0)

)

. (2.26)

1For such subtractionsΠ(q0) must be analytic aroundq0 = 0 and the contour in Fig. 2.2 could be connected.
Rigorous statements about the integral contribution at infinity are given in [39].
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Now if a finiten exists which satisfies

∫

|a|=R
da

Π(a)

an(a− q0)
R→∞−−−−→ 0 , (2.27)

the contour integration alongC1 in the limitR→∞ leads to

1

2πi

∫

C1

da
Π̄(a)

a− q0
=

qn
0

2πi

∫ +∞+iǫ

−∞+iǫ
da

Π(a)

an(a− q0)
=

qn
0

2πi

∫ +∞

−∞
da

Π(a+ iǫ)

(a+ iǫ)n(a+ iǫ− q0)
, (2.28)

and similarly for the contourC2

1

2πi

∫

C2

da
Π̄(a)

a− q0
=

qn
0

2πi

∫ −∞−iǫ

+∞−iǫ
da

Π(a)

an(a− q0)
=

qn
0

2πi

∫ −∞

+∞
da

Π(a− iǫ)
(a− iǫ)n(a− iǫ− q0)

, (2.29)

where in the last steps the integration variables have been shifted. This leads to then-times sub-
tracted dispersion relation or QCD sum rule, respectively,

qn
0

π

∫ +∞

−∞
dω

∆Π(ω)

ωn(ω − q0)
= Π̄(q0) , (2.30)

with the discontinuity defined as

∆Π(ω) =
1

2i
lim
ǫ→0

[Π(ω + iǫ)−Π(ω − iǫ)] . (2.31)

If we neglect subtractions, that meansn = 0 and soΠ̄(q0) = Π(q0), then the operator product
expansion atq0 = iq′0 is related to the physical correlation function by

1

π

∫ +∞

−∞
dω

∆Π(ω)

ω − q0
= Π(q0), (2.32)

which is the celebrated form employed in QCD sum rules. The l.h.s. contains the hadronic spectral
function, while the r.h.s. is evaluated, for large Euclidean energiesq0 and fixed momenta~q, by
means of the OPE.

In the vacuum case the dispersion relation Eq. (2.18) depends only on the Lorentz scalarq2,
such that the correlation function is Lorentz invariant. The presence of a medium frame with
definite momentum interferes with this Lorentz invariant vacuum situation. In fact, transformation
in another frame of reference affects the characteristic Lorentz vectors describing the medium as
well. Thus a Lorentz invariant decomposition of the correlation function has to incorporate the
transformation properties of the medium itself. The mediummay therefore be described by its
four-velocityvµ, which in the medium rest frame, we will work in later, simplifies tovµ = (1,~0 ).
Any Lorentz invariant structures built from the hadron momentumqµ, the given velocityvµ, and
the metric tensorgµν = diag(1,−1,−1,−1) and the pseudo-tensorǫµνκλ become arguments of
the invariant functions, which the correlatorΠ(q, v) is decomposed into. Note that in addition the
Dirac structure of the correlator increases the number of such invariants.2 The decomposition into
invariant functions combined with dispersion relations leads in general to a number of coupled
QCD sum rule equations as elaborated for the nucleon in Section 3.2.

2Concerning conventions on metric, Dirac and Gell-Mann matrices, etc. we follow [41].
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2.2.2 Weighted Spectral Moments

The QCD sum rules, e.g. Eq. (2.30) and (2.32), reveal a generic limitation of this approach. The
spectral density∆Π enters the integral on the hadronic side. Thus the operator product expansion
only restricts the spectral integral on the left hand side but not the integrand itself. This can be
used to constrain unknown parameters of a given hadronic model or to test given spectral functions
(see also Subsection 3.1.1).

To identify the vacuum limit in Eq. (2.30) the medium specificparts can be singled out. Es-
pecially, new terms which are of odd power inq0 appear in medium. (Remember that Lorentz
invariance prohibits such terms in the vacuum case.) Define the even (”e”) and odd (”o”) contri-
butions

Πe(q20) ≡
1

2
(Π(q0) + Π(−q0)) , (2.33a)

Πo(q20) ≡
1

2q0
(Π(q0)−Π(−q0)) . (2.33b)

This leads to

Πe(q20) =
1

π

∫ +∞

−∞
dω

∆Π(ω)

ωn(ω2 − q20)
·







ωqn
0 if n is even,

qn+1
0 if n is odd,

(2.34a)

Πo(q20) =
1

π

∫ +∞

−∞
dω

∆Π(ω)

ωn(ω2 − q20)
·







qn
0 if n is even,

ωqn−1
0 if n is odd.

(2.34b)

In order to eliminate the specified subtractions a Borel transform is applied to Eqs. (2.34). The
Borel transform3 with respect to the energyq0,

F(Q2) −→ F(M2) ≡ lim
Q2,n→∞

Q2/n=M2

(Q2)n+1

n!

(

− d

dQ2

)n

F(Q2) , (2.35)

introduces instead as new energy scale the Borel massM [42]. The separation of even and odd
parts and therewith the dependence on the squared energy allows the contact to the standard Borel
transform which was introduced w.r.t.q2 in vacuum [3]. Some details of this specific inverse
Laplace transform and a collection of Borel transforms are supplemented in Appendix A. This
leads to the Borel transformed sum rules with the hadronic spectral density on the l.h.s. and the
operator product expansion entering the r.h.s.,

1

π

∫ +∞

−∞
dω ω∆Π(ω) e−ω2/M2

= Πe(M2) , (2.36a)

1

π

∫ +∞

−∞
dω∆Π(ω) e−ω2/M2

= Πo(M2) , (2.36b)

independent of the number of subtractionsn (see Appendix A). Therefore the polynomial sub-
tractions above are not relevant for Borel sum rules as the Borel transform delivers the required
convergence. Nevertheless can subtractions at another point q0 6= 0 be used to separate scattering
contributions from the spectral density [40].

3Here and elsewhere the different arguments denote a different function in spite of the same letter used.
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In the sum rules (2.36a) and (2.36b) one is interested only inthe lowest hadronic excitation
which is isolated by splitting the spectral integral

∫ +∞

−∞
dωF(ω) =

∫ ω−

−∞
dωF(ω)

︸ ︷︷ ︸

”anti-continuum”

+

∫ 0

ω−

dωF(ω)

︸ ︷︷ ︸

”anti-particle”

+

∫ ω+

0
dωF(ω)

︸ ︷︷ ︸

”particle”

+

∫ +∞

ω+

dωF(ω)

︸ ︷︷ ︸

”continuum”

(2.37)

into a particle and an anti-particle contribution, and related continuum contributions as indicated.
The final sum rules have than the form

1

π

∫ 0

ω−

dω ω∆Π(ω) e−ω2/M2
+

1

π

∫ ω+

0
dω ω∆Π(ω) e−ω2/M2

(2.38a)

= Πe(M2)− 1

π

∫ ω−

−∞
dω ω∆Π(ω) e−ω2/M2 − 1

π

∫ +∞

ω+

dω ω∆Π(ω) e−ω2/M2 ≡ Re ,

1

π

∫ 0

ω−

dω∆Π(ω) e−ω2/M2
+

1

π

∫ ω+

0
dω∆Π(ω) e−ω2/M2

(2.38b)

= Πo(M2)− 1

π

∫ ω−

−∞
dω∆Π(ω) e−ω2/M2 − 1

π

∫ +∞

ω+

dω∆Π(ω) e−ω2/M2 ≡ Ro ,

where the continua are again estimated within the semi-local quark-hadron duality hypothesis by
the operator product expansion (right hand sides), extended down to the respective continuum
thresholdsω±. The hadronic information is contained in the spectral integrals (left hand sides).
The vacuum limit is encoded in the first sum rule. In a particle-antiparticle symmetric situation, for
vacuum or neutral mesons in nuclear matter, with an anti-symmetric spectral function,∆Π(ω) =
−∆Π(−ω) one obtains withω− = −ω+

Re =
1

π

∫ ω2
+

0
d(ω2)∆Π(ω) e−ω2/M2

, (2.39a)

Ro = 0 , (2.39b)

in accordance with (2.14), if there the continuum part is separated, variablesω2 ↔ s = q2 are
changed and the Borel transform is performed.

Forω andρ0 meson e.g. one can define a normalized moment for the Borel transform

m2(n,M2, s+) ≡
∫ s+

0 ds ∆Π(s, n) e−s/M2

∫ s+

0 ds ∆Π(s, n) s−1e−s/M2 , (2.40)

which is determined by the ratio ofRe and its logarithmic derivative w.r.t. the squared Borel
massM2. This quantity is model independent (but suffers from the adhoc introduced continuum
thresholds+). Its meaning becomes obvious for a pole ansatz with pole mass m, ∆Π(s) =
Fδ(m2 − s), wherem̄(n,M2, s+) = m follows.

The introduction of such moments, which can be calculated bymeans of a QCD sum rule
without relying on a specific hadronic model, can partially be extended to arbitrary particle and
anti-particle spectral functions. Defining further the moments

Ē =

∫ 0
ω−
dω∆Π(ω)ωe−ω2/M2

∫ 0
ω−
dω∆Π(ω)e−ω2/M2

and E =

∫ ω+

0 dω∆Π(ω)ωe−ω2/M2

∫ ω+

0 dω∆Π(ω)e−ω2/M2 , (2.41)

the even and odd sum rules can be rephrased to formulate relations which rather depend on ratios
than purely on absolute spectral integrals. These integrals are the first moments of the Borel
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weighted spectral density for the negative and positive energy excitations. In a combined sum rule
ansatz, suitable for the nucleon case (Section 3.2),

1

π

∫ +∞

−∞
dω(ω − Ē)∆Π(ω)e−ω2/M2

= Πe(M2)− ĒΠo(M2) , (2.42)

the integral over the negative energy contribution seems tobe ”eliminated”. (This contribution,
however, is still included in the ratiōE.) This delivers the Borel transformed sum rule

(E − Ē)
1

π

∫ ω+

0
dω∆Π(ω)e−ω2/M2

= Πe(M2)− 1

π

∫ ∞

ω+

dωωΠe
per(ω)e−ω2/M2

−Ē
{

Πo(M2)− 1

π

∫ ∞

ω+

dωΠo
per(ω)e−ω2/M2

}

+
1

π

∫ −ω+

ω−

dω∆Π(ω)[ω − Ē]e−ω2/M2
.

(2.43)

The continuum contributions are rearranged asΠe,o
per(ω) ≡ ∆Π(ω) ∓ ∆Π(−ω). Based on semi-

local quark-hadron duality these integrals are extended towards the respective continuum thresh-
oldsω±. Typically only the logarithmic terms inΠ provide discontinuities which enter the con-
tinuum integrals. To summarize, Eq. (2.43) exhibits the typical structure of QCD sum rules: the
hadronic properties on the l.h.s., i.e. the low-lying hadronic spectral function, are thought to be
given by the operator product representation ofΠ including condensates on the r.h.s. The last
term on the r.h.s. accounts for asymmetric continuum thresholds, i.e.ω− 6= −ω+, and could be
estimated by semi-local quark-hadron duality.

In the generic case, however, the excitation spectrum of particles and anti-particles in a medium
is asymmetric, and the dispersion relations (2.38a) and (2.38b) alone seem not to allow separate
model-independent statements about the low-lying excitation at positive energy. This appears as a
severe limitation of this form of the QCD sum rule approach.

2.2.3 Operator Product Expansion

The dispersion relations in vacuum Eq. (2.14) and in medium Eqs. (2.30) and (2.32) relate integrals
of the weighted spectral density of a hadron entering the left hand side of a QCD sum rule to a
momentum region on the right hand side, where a treatment of the correlator in terms of QCD
parameters is possible. Such parameters are the masses and coupling constants which appear in
the classical chromodynamic Lagrangian density

L(x) =

f
∑

q=1

ψ̄q(x)(iD/ −mq)ψq(x)−
1

4
GA

µνG
µν
A , (2.44)

being the foundation of quantum chromodynamics. The covariant derivativeDµ = ∂µ + igTAA
A
µ ,

the gluon field strength tensorGA
µν = ∂µA

A
ν − ∂νA

A
µ − gfABCAB

µA
C
ν , and the abbreviations

D/ = Dµγ
µ, Gµν = TAG

A
µν are used in this work. The indexq enumerates the flavor degrees

of freedom;TA are color generators,γµ Dirac matrices;µ, ν are Lorentz indices;A, B, C color
indices; summation which underlies the matrix structures of Dirac and color objects is implied.

For a complete QCD sum rule the correlator has to be calculated by means of QCD in the
validity range of large Euclidean space-like momentaQ2 = −q2 > 0 (compare Fig. 2.1). This
condition is consistently met in the medium case for large imaginary energies with fixed three
momentum~q. In this so called deep Euclidean space-like region the correlator can be expressed
using the operator product expansion (OPE). It allows to expand a non-local product of composite
operators in a series of local operators with increasingly divergent coefficient functions for(x −
y) → 0 (compare Section 2.1). The expectation values of the local operators lead to the QCD
condensates.



2.2 Generalization to Medium 23

Conceptionally, the OPE is organized to separate perturbative from non-perturbative effects,
which requires the separation scaleµ defining the two regimes. This has to be respected when
perturbative loop integrals cover also small momenta|p| < µ. Mass logarithms appearing then
contribute to the non-perturbative parts and can be absorbed by the renormalization of conden-
sates. Exemplary, for the D meson the redefinition of such condensates becomes important, see
Section 3.3.1.

Qualitatively, the correlators take then, after Fourier transformation, the form

Π(q, v) =
∑

n

Cn 〈On〉 . (2.45)

The weights of the condensates, the Wilson coefficientsCn, can be calculated perturbatively. The
OPE can further be improved by the renormalization group equation. Here, the condensates will
be fixed by their values at a renormalization point ofµ = 1 GeV; 〈. . .〉 = 〈. . .〉µ=1 GeV will
be understood throughout the thesis. A special role is played by the leading termC11, which
contains the perturbative result. Based on the order of divergences the next terms are suppressed
by higher powers ofQ2 and are therefore named non-perturbative power corrections in [2]. The
non-perturbative character is encoded in the fact that condensates arise from a Wick expansion in
normal ordered products. These vanish in perturbation theory. Via the non-vanishing condensates
the non-perturbative effects are thus added to perturbation theory. The Wilson coefficients them-
selves are calculable by perturbative techniques as follows. The standard perturbative expansion
of a correlation function is given by

Πc
[µ][ν](q) = i

∫

d4x eiqx〈Ψ|T
[

η̄[µ](x)η[ν](0)e
i

R

d4xLI(x)
]

|Ψ〉 , (2.46)

where

LI(x) =− gψ̄q(x)TAA
A
µ (x)γµψq(x) + gfABC(∂µA

A
ν (x))Aµ

B(x)Aν
C(x)

− g2

4
fABCfADEAB

µ (x)AC
ν (x)Aµ

D(x)Aν
E(x) (2.47)

is the interaction part of the Lagrangian density (derived from Eq. (2.44) withLI = L−L0;L0 =
L(g = 0) is the free Lagrangian density). The superscriptc denotes the restriction to connected
graphs,[µ] stands for a set of Lorentz indices for example. The expansion is derived by means of
Wick’s theorem on the operator basis applied to any expansion parts.

A remark on the generalization to non-vanishing temperatures and/or densities is in order: The
expectation value to be calculated becomes the Gibbs averaged correlation function (see Eq. (2.19)).
Using a generalized form of Wick’s theorem valid for expectation values, the expansion could be
derived with the rules of Thermal Field Theory. However, finite temperaturesT or chemical po-
tentialsµ represent additional new scales in the expansion. In QCD sumrules for a medium it
is assumed that for smallT andµ (compared toλQCD ≈ 1 GeV) the Wilson coefficients re-
main the same, and the onlyT andµ dependence enters the condensates [43]. Therefore we can
proceed the OPE calculation in the same way as in vacuum with two important generalizations:
(a) The vacuum expectation values〈O〉 are to be replaced by the Gibbs averages〈〈. . .〉〉T,µ; (b)
The projection onto Lorentz scalar condensates involves further structures in medium, because the
occurrence of matter is characterized by a medium specific Lorentz vector, e.g., the velocity of the
matter rest framevµ.

The interpolating fieldsη in Eq. (2.46) consist of quark and gluon operators. Performing the
Wick expansion for a specific composition ofη leaves uncontracted products of quark and gluon
operators taken in the QCD ground state. Upon projection onto Lorentz scalars they assemble the
QCD condensates. The remaining contracted parts are treated as in perturbation theory using well
known propagators. In this way, any operator product expansion (2.45) is technically obtained.
Details for OPE calculations required for clarity and completeness are postponed to Appendix B.
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2.3 QCD Condensates

The in the operator product expansion formally introduced QCD condensates measure as correc-
tions to perturbation theory the non-perturbative structure of the QCD ground state. The con-
densates are ground state expectation values of normal ordered products of quark and gluons,
projected onto Lorentz scalars for a Lorentz invariant parametrization. These expectation values
are further supposed to be color singlets, gauge invariant and invariant with respect to time and
parity reversal if we consider cold nuclear matter.

The strength of a power correction term∝ Q−n in the operator product expansion (2.45) is
given by the Wilson coefficient. The overall constant mass dimension is set by the interpolating
fields. Hence the dimension of the Wilson coefficient is compensated by the mass dimension of
the accompanying condensate. Higher power corrections correspond therefore to condensates of
higher mass dimension. It is thus reasonable to perform QSR evaluations up to a given mass
dimension of condensates. In this section condensates ordered by increasing mass dimension up
to dimension6 are discussed.

Similar condensates appear in OPE’s of various problems andcan thus be understood like
universal parameters of the QCD ground state. They absorb essentially much of the complexity
of the theory of QCD. Partially, such expectation values canalso be related to symmetries of the
theory as follows.

2.3.1 Symmetries of QCD

The classical chromodynamic Lagrangian densityL(x) given in Eq. (2.44), which QCD is based
on, exhibits in the limit of vanishing quark massesmq = 0 a set of symmetries, summarized in the
chiral symmetry groupU(nf )L × U(nf )R (e.g. [44, 45]). The independence of the symmetries
U(nf )L andU(nf )R expresses the decoupling of left and right helicity states.In the assumed
chiral limit mq = 0, where chirality and helicity coincide, this corresponds to the decoupling of
the left and right handed quark fields

ψL =
1

2
(1 + γ5)ψ , ψR =

1

2
(1− γ5)ψ . (2.48)

The spinorsψ without flavor indexq, compare Eq. (2.44), arenf -dimensional flavor vectors. As
any unitary group can be decomposed intoU(n) = U(1) × SU(n), the chiral symmetry group
can be writtenU(1)L × SU(nf )L × U(1)R × SU(nf )R with the transformations

U(1)L : ψL → exp(iθL)ψL , SU(nf )L : ψL → exp(iθa
LTa)ψL , (2.49)

U(1)R : ψR → exp(iθR)ψR , SU(nf )R : ψR → exp(iθa
RTa)ψR . (2.50)

The transformations given in the fundamental (quark) representation are characterized by arbitrary
anglesθL,R or, respectively, sets of anglesθa

L,R (a = 1 . . . (n2
f − 1)).

The (N2 − 1) traceless generatorsTa = 1
2λa in the standard representation of any special

unitary groupSU(N) are normalized,Tr(TaTb) = 1
2δab, and obey

[Ta, Tb] ≡ TaTb − TbTa = ifabcTc , (2.51)

{Ta, Tb} ≡ TaTb + TbTa =
1

N
δab1+ idabcTc , (2.52)

with the totally anti-symmetric structure constantsfabc and the symmetric structure constantsdabc.
Simultaneous transformations in the left and right handed sector can be combined into the

equivalent formU(1)V × SU(nf )V × U(1)A × SU(nf )A, which leads to the common vector
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(V : α(a) = 1
2(θ

(a)
L + θ

(a)
R )) and axial-vector(A : β(a) = 1

2(θ
(a)
L − θ

(a)
R )) transformations

U(1)V : ψ → exp(iα)ψ ⇒ jµ(x) ∝ ψ̄γµψ , (2.53)

U(1)A : ψ → exp(iβγ5)ψ ⇒ jµ(x) ∝ ψ̄γµγ5ψ , (2.54)

SU(nf )V : ψ → exp(iαaT
a)ψ ⇒ jaµ(x) ∝ ψ̄γµT

aψ , (2.55)

SU(nf )A : ψ → exp(iβaT
aγ5)ψ ⇒ jaµ(x) ∝ ψ̄γµγ5T

aψ . (2.56)

The realized symmetries in the massless case imply the givenclassically conserved Noether cur-
rents∂ij

(a)
i (x) = 0.

TheU(1)V symmetry, which yields the conservation of the vector current and thus of the total
baryon number, is even satisfied in the case of arbitrarily different flavor quark masses, and is
always fulfilled. The classicalU(1)A symmetry, only satisfied in themq = 0 limit, is special,
because the axial vector current is not conserved in the quantized theory due to the QCD axial
anomaly. Within the discussion of condensates and symmetries we will especially be concerned
with the behavior underSU(nf )V andSU(nf )A transformations.

In the presence of equal, finite current quark masses for all flavor degrees of freedom, the
flavor-vector symmetrySU(nf )V , often abbreviated flavor symmetry, remains valid meaning the
conservation of the flavor-vector current, the isospin current for nf = 2. The symmetry with
respect toSU(nf )A is immediately violated by finite quark masses, as can be seenfrom a typical
diagonal mass term in the Lagrangian density, which transforms like

SU(nf )V : mψ̄ψ → mψ̄ψ , (2.57)

SU(nf )A : mψ̄ψ → mψ̄γ0 exp(−iβaTaγ5)γ0 exp(iβaTaγ5)ψ

≈ mψ̄(1− 2(βaTa)
2)ψ + 2imβaψ̄γ5Taψ + O(β3) (2.58)

(the kinetic and gluonic terms are invariant in any case). Here, an expansion to second order in the
anglesβa is performed;m is the scalar mass parameter common for all flavors (a generalmass
matrix in flavor space cannot be commutated with theSU(nf ) generators).

Isospin symmetry is considered as approximate symmetry in thenf = 2 sector, e.g. the cur-
rent quark massesmu = (3 ± 1) MeV andmd = (7 ± 3) MeV (at a renormalization scale
µ = 1 GeV [1]), as well as their difference, are small compared to typical hadronic scales of
1 GeV. The isospin symmetry is realized in the hadron spectrum where for example the mass dif-
ference of the isospin partners proton and neutron amounts to only about1 MeV. If alsoSU(nf )A
was realized in the physical hadron spectrum the energy states of parity partners, particles of op-
posite parity, would be degenerate. An excellent example are here the mesonsρ (770) anda1

(1260). Since the small quark masses are not expected to generate via explicitSU(nf )A sym-
metry breaking such strong splitting effects, another mechanism is considered responsible: The
SU(nf )A symmetry is said to be spontaneously broken, meaning that among all degenerated vac-
uum configurations, one ground state is realized. This leadsto the existence of (n2

f − 1) massless
Goldstone bosons. (The explicit breaking by non-zero quarkmasses assigns a finite mass to the
associated Goldstone bosons, which are then called pseudo-Goldstone bosons. In thenf = 2 case,
these bosons are identified with the pion tripletπa having still masses significantly below1 GeV.)
The chiral symmetry groupSU(nf )V × SU(nf )A is thus broken down toSU(nf )V .

Nambu-Goldstone Theorem

The violation of a symmetry by the ground state can be measured in ground state expectation val-
ues of quark and gluon operators, which were already introduced as QCD condensates. However,
not every condensate provides information about broken symmetries. Obviously, purely gluonic
expectation values have, for example, no direct relation tothe chiral symmetries considered here.
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Suitable quantities to measure the degree of spontaneous symmetry breaking in the physically
realized ground state are called order parameters, e.g. [46]. Such parameters shall be formally
introduced using the Goldstone theorem. Starting point is the Noether theorem which provides
a conserved current with each global, continuous symmetry of the actionS =

∫
d4x L(x). The

symmetries (2.53)-(2.56) of the Lagrangian itself are thereby included. These symmetries have to
be extended to the quantized theory. The classically conserved quantities, the integrals over the
time component of the respective Noether currents

Q(a) =

∫

d3x j
(a)
0 (x) , (2.59)

are thus substituted by operatorŝQ(a). These are the generators of the transformation group,
meaning that their commutators with the field recover the infinitesimal field transformationδψ =
ψ′ − ψ by

i[Q̂(a), ψ̂] = −δψ̂(a) . (2.60)

From here on we abandon the operator hat symbols for simplicity. If the charge operatorQ(a)

represents a conserved quantity, it commutes with the HamiltonianH, which implies

[Q(a),H] = 0 ⇒ H(Q(a)|s〉) = Q(a)H|s〉 = Es(Q
(a)|s〉) , (2.61)

if |s〉 is an eigenstate ofH to energyEs: H|s〉 = Es|s〉.
If the ground state|Ψ〉 is symmetric w.r.t. the transformation generated byQ(a) then especially

eiβ
(a)Q(a)|Ψ〉 = |Ψ〉 ⇔ Q(a)|Ψ〉 = 0 . (2.62)

This realization of the symmetry is known as Wigner-Weyl phase.
Elsewise, if the ground state is not invariant under the transformation, one can formally assume

Q(a)|Ψ〉 6= 0.4 A more rigorous definition of the violation of the symmetry bythe ground state is
given by the expectation value of the commutator betweenQ(a) and a local operatorΦ(x)

〈Ψ|[Q(a),Φ(x)]|Ψ〉 6= 0 . (2.63)

Using the conservation of the underlying currentj
(a)
i (x), and upon insertion of a complete set

of states in the commutator, properties of these states are deduced. This leads to the Nambu-
Goldstone theorem, which says that these states are massless excitations with quantum numbers
of j(a)

0 (x), the Goldstone bosons.5 The excitations couple besidesj(a)
µ also to the fieldΦ. This

necessarily resides on the non-zero value in Eq. (2.63). Otherwise one falls back to the Wigner-
Weyl realization of the symmetry. The quantity in (2.63) thus distinguishes between the Nambu-
Goldstone and the Wigner-Weyl mode and qualifies as possibleorder parameter. Related to the
generating property of the charge Eq. (2.60), this order parameter can be written as

〈Ψ|[Q(a),Φ(x)]|Ψ〉 = i〈Ψ|δΦ(a)|Ψ〉 . (2.64)

Now, the fieldΦ can itself consist of field operatorsψ and the abstract commutator can be eval-
uated using standard commutators and anti-/commutator rules. This eventually leads to QCD
condensates identified as potential order parameters for spontaneous symmetry breaking.

4This statement is not rigorous, since the existence of the charge integral implies symmetry as in the Wigner-Weyl
phase. In the broken phase, the integral is divergent, whichis circumvented introducing the commutator of the charge
operator and a local operatorΦ(x) [47]. This ensures convergence of the commutator.

5Variations of this proof can be found in e.g. [47, 48], for a collection of alternative proofs of Goldstone’s theorem
cf. [49].
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As preliminary summary, the Goldstone theorem shows that dynamical breaking of a symme-
try is qualitatively parametrized by order parameters, which behave differently in the symmetric
and asymmetric phase under the considered symmetry transformation: In the unbroken phase they
vanish, in the broken (or hidden) symmetry case they acquirenon-zero values. This distinction
is caused only by the ground state itself; the Lagrangian is assumed to possess the considered
symmetry in any case.

An Example: The Chiral Condensate

The statements about order parameters have so far not been restricted to specific symmetries. As
example the chiral condensate shall be identified as order parameter of spontaneousSU(nf )A
symmetry breaking in the given framework.

Using the canonical equal time anti-commutators (lower indicesa, b denote flavor;α, β are
Dirac indices;A,B stand for color)

{ψaαA(x), ψ†
bβB(y)} = δabδαβδABδ

(3)(x− y) , (2.65)

{ψaαA(x), ψbβB(y)} = {ψ†
aαA(x), ψ†

bβB(y)} = 0 , (2.66)

one deduces with[AB,C] = A{B,C} − {A,C}B the field variations from Eq. (2.60) as

[Qa, ψ(x)] = −γ5T
aψ(x) , (2.67)

[Qa, ψ†(x)] = ψ†(x)γ5T
a , (2.68)

with the SU(nf )A chargeQa =
∫
d3xψ†(x)γ5T

aψ(x). These can also be obtained from the
infinitesimal transformation Eq. (2.56).

To identify the chiral condensate we specify now the commutator (2.64) withΦb ≡ ψDT bψ

[Qa, ψDT bψ] = iδΦab , (2.69)

whereD is an arbitrary Dirac matrix. With[A,BC] = [A,B]C + B[A,C] the commutator can
be traced back to (2.67) and (2.68), and yields

iδΦab = −ψ̄(γ5DT
aT b +Dγ5T

bT a)ψ . (2.70)

ForD = γ5 andnf = 2, i.e.T a = 1
2τ

a (τa are Pauli matrices) one recovers in

〈Ψ|[Qa, ψ̄DT bψ]|Ψ〉 = −δab

2
〈Ψ|ψ̄ψ|Ψ〉 (2.71)

the chiral condensate〈Ψ|ψ̄ψ|Ψ〉 as order parameter in the sense of definition (2.64). Fixingb = a,
Φb directly induces the chiral condensate as order parameter for the spontaneous breaking of the
symmetry related to the chargeQa.

In the chiral limit of vanishing quark masses a non-zero value of the chiral condensate is di-
rectly linked to the spontaneous break down of chiral symmetry. However, in the real physical
world the small values of the current quark masses contribute a decisive explicit symmetry break-
ing effect, generating a finite pion mass. This is still smallin hadronic scales. Thus caused by
the mass terms in the Lagrangian density the corresponding current is only partially conserved.
The partial conservation of the axial vector current (PCAC)is utilized to determine the numerical
value of the chiral condensate in Section 2.3.2.
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Additional Chiral Order Parameters

Identification of further potential order parameters is nowpossible on the basis of Eq. (2.64) calcu-
lating commutators between the charge operatorQ(a) and appropriate products of field operators
Φ. If gluon operators are included in an ansatz forΦ which already induces a condensate then
the expectation value with the gluon field added qualifies also as potential order parameter. The
induced possible order parameters may however be excluded by other symmetry demands.

We focus on the spontaneous breaking ofSU(nf )A from here on. To find further candidates
for order parameters with two quark operators we consider a general commutator

〈Ψ|[Qa, ψ̄Xψ]|Ψ〉 = −〈Ψ|ψ̄[γ5T
aX +Xγ5T

a]ψ|Ψ〉 , (2.72)

whereX is an arbitrary product of Dirac, flavor and color matrices. If we assume flavor symmetry
for the condensates then the flavor part ofX has to be chosen to eliminateT a in order to introduce
a unit matrix in flavor space. For parity reversal invariance, X must include a pseudo-tensor (i.e.
a γ5 or γ5γµ structure). Finally, an identity matrix in color space ensures color neutrality of the
object. WithXb = γ5DT

b1col (D = 1, γµ, σµν ≡ i
2 [γµ, γν ]) one obtains for any number of

flavorsnf

〈Ψ|[Qa, ψ̄Xbψ]|Ψ〉 = −〈Ψ|ψ̄D{T a, T b}ψ|Ψ〉 , (2.73)

= −δab

nf
〈Ψ|ψ̄Dψ|Ψ〉 − idabc〈Ψ|ψ̄DTcψ|Ψ〉 . (2.74)

The latter term again vanishes due to flavor symmetry. ForD = 1, Eq. (2.71) is recovered.
The structure forD = σµν contracted with the gluon field strength tensorGµν introduces the
mixed quark-gluon condensate as order parameter candidate. In caseD = γµ, no Lorentz scalar
condensate can be built in vacuum but in medium, see Section 2.3.2. By studying expectation
values of commutators of the form

〈Ψ|[Qa,Φ]|Ψ〉 = 〈Ψ|[Qa, ψ̄Xψψ̄Y ψ]|Ψ〉 , (2.75)

the list of potential order parameters can be increased by a number of four-quark condensates, as
accomplished in Section 2.4.3.

The non-zero order parameters cause the existence of Goldstone bosons and measure a sym-
metry violation due to the ground state. If these particularcondensates vanish, this reflects the
symmetry restoration of the ground state, the Wigner-Weyl realization. The vanishing of these
condensates in the latter symmetric phase is deeply connected to the influence of other (i.e. not
spontaneously broken) symmetries. Such ones can be flavor symmetry or discrete symmetries
like parity reversal invariance. We have already applied these to rule out some order parameters
initially suggested by the commutator definition.

To point out the contact to other symmetries suppose theSU(nf )A axial symmetry were also
realized in the Wigner-Weyl form. Then the axial chargeQa exists. With the invariance of the
ground state, the expectation values of operatorsO are then equal underSU(nf )A

〈Ψ|O|Ψ〉 = 〈Ψ′|O|Ψ′〉 = 〈Ψ|e−iQOeiQ|Ψ〉 = 〈Ψ|O′|Ψ〉 . (2.76)

If 〈Ψ|O|Ψ〉 lies in a multiplet together with other expectation values which individually vanish
due to ulterior symmetries, e.g. flavor symmetry, then the condensate〈Ψ|O|Ψ〉 itself must vanish.
Consider for example the infinitesimal transformation of the bilinears

SU(nf )A : ψ̄Dψ →ψ̄γ0 exp(−iβaTaγ5)γ0D exp(iβaTaγ5)ψ

≈ ψ̄D(1− (βaTa)
2)ψ − ψ̄(βaTa)

2γ5Dγ5ψ

+ iβaψ̄Ta[γ5D +Dγ5]ψ + O(β3) (2.77)
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up to quadratic order in the parameterβa (compare Eq. (2.58)), which are no invariants forD =1, σµν , γ5. The term linear inβa then does not vanish but becomes only zero by the demanded
flavor symmetry as the contributions from the projection of(βaTa)

2 proportional toT b do. Then
the condensate is underSU(nf )A reproduced:

〈Ψ|ψ̄Dψ|Ψ〉 = γ〈Ψ|ψ̄Dψ|Ψ〉 , (2.78)

besides the factorγ 6= 1, due to the projection of(βaTa)
2 onto the identity matrix. The equality

in this multiplet can than only be satisfied by〈Ψ|ψ̄Dψ|Ψ〉 = 0. This is again consistent with the
vanishing of an order parameter in the Wigner-Weyl phase. For bilinears with Dirac basis elements
Dγ5 = −γ5D, which is the case forD = γµ (the kinetic term) andD = γ5γµ, invariance can be
shown beyond this infinitesimal treatment.

Therefore singlets, being also symmetric w.r.t. all other symmetries, have the advantage that
their value is not constrained by other symmetry demands andcan be a pure measure for the
SU(nf )A symmetry. Generally, also multiplets could fulfill these requirements, whereby the con-
densates would then be degenerate. Note, in the casenf = 2, closed expressions can be given for
finite transformations, which evidence these statements (cf. Section 2.4.3).

Finally we comment on the correspondence of chiral symmetrybreaking terms and the mixing
of left and right helicity contributions. To do so, we returnto the decomposition into left and right
handed spinors in the Dirac representation (2.48). Therewith, the decomposition of bilinears can
be carried out to form two classes, namely,

(i) non-invariant forms ψ̄ψ = ψ̄LψR + ψ̄RψL , (2.79)

ψ̄σµνψ = ψ̄LσµνψR + ψ̄RσµνψL , (2.80)

ψ̄γ5ψ = ψ̄Lγ5ψR + ψ̄Rγ5ψL , (2.81)

(ii) invariant forms ψ̄γµψ = ψ̄LγµψL + ψ̄RγµψR , (2.82)

ψ̄γ5γµψ = ψ̄Lγ5γµψL + ψ̄Rγ5γµψR . (2.83)

The first two non-invariants correspond to the chiral and themixed quark-gluon condensates. The
prescription left and right is convention, and neither one is distinguished. They should then be of
equal size. If the order parameters are non-zero, each addend should be non-zero, too. This is
physically interpreted as the mixing of left and right helicity states by the spontaneous symmetry
breaking. Originally, this argument is already present with the mass term of the Lagrangian.

The invariant forms contain pairs of merely left or right parts, mixed terms vanish as conse-
quence ofDγ5 = −γ5D, which also leads directly to the invariance under the axialtransformation
SU(nf )A in (2.77). An interpretation as intermixing of the left and the right handed parts of the
theory is then not apparent, similarly for four-quark condensates, where even both invariant and
non-invariant forms admix.

In conclusion, the transition between phases of broken or restored symmetries is signalled by
order parameters. Relying on the chiral condensate might benot sufficient if other mechanisms let
this condensate vanish or the symmetry is only broken down toa lower symmetry. This suggests,
that chiral symmetry restoration should not be linked only to the value of the chiral condensate,
but to a set of qualified order parameters. In Section 2.4.3 the role of four-quark structures as
possible order parameters is further pursued.
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2.3.2 Catalog of QCD Condensates

The QCD condensates enter QCD sum rules as universal parameters and determine hadronic prop-
erties. Effects at finite baryon densityn or temperatureT are described by the change of conden-
sates and the advent of new structures which are absent at vanishing density or temperature. In
the QSR approach these changes reflect in modifications of hadrons embedded in a strongly in-
teracting medium. Although, in principle, one might determine the changes of a few condensates
from measured modifications of hadrons, the multitude of condensate values has to be evaluated
elsewise. Only then the remaining unknowns can be fixed from experiment unambiguously.

QSR in a medium are conceptionally bound to small deviationsfrom the vacuum case, since
the operator expansion relies on a power counting of momenta. Scales of the order of these mo-
menta, high temperatures and large chemical potentials, would demand for a complete rearrange-
ment of the expansion. With the restriction to low temperature and density it suffices to expand
the condensate changes to lowest order in these parameters.Extrapolations of condensate modi-
fications and QSR results, e.g. to the phase transition boundary in the QCD phase diagram, must
therefore be taken with care.

Commonly, medium QCD condensates are evaluated in the approximation of a thermodyna-
mically equilibrated, dilute gas. Cold nuclear matter being the focus of this work is approximated
as a non-interacting Fermi gas of nucleons [50]. The densitydependence of condensates is gov-
erned by spin-averaged and isospin-averaged nucleon matrix elements taken for nucleons at rest,
and has yet to be found for particular operators. In the zero temperature limitT = 0, the Fermi-
Dirac distribution reduces to the step function and the medium modified condensates are given
by

〈O〉n = 〈O〉0 +

∫
d3k

2(2π)3Ek
〈N(~k)|O|N(~k)〉Θ(µ− Ek) , (2.84)

with the nucleon states normalized as〈N(~k)|N(~k′)〉 = 2Ek(2π)3δ(~k − ~k′), Ek =
√

M2
N + ~k2,

andµ is the chemical potential. If the nucleon matrix element is independent of the nucleon
momentum the remaining integral equals the number density of nucleons, the baryon densityn.
Then the condensates

〈O〉n = 〈O〉0 +
n

2m
〈N |O|N〉 . (2.85)

change linearly as functions of the baryon density.
On the contrary, matter at zero net baryon density but non-vanishing temperatureT is approx-

imated as a Bose gas of the lowest lying hadronic excitations, the pions [51]. In the simplest
approach again interactions are excluded. The medium corrections to the vacuum condensate
values are then

〈O〉T = 〈O〉0 +
3∑

a=1

∫
d3p

2(2π)3Eπ
〈πa(~p )|O|πa(~p )〉 1

eEπ/kBT − 1
. (2.86)

The pion states with isospin indexa and energyEπ =
√

~p 2 +m2
π are covariantly normalized as

〈πa(~p )|πb(~p ′)〉 = 2Eπ(2π)3δabδ(3)(~p−~p ′). If the pion matrix element is independent of the pion
momentum and diagonal in isospin,〈πa(~p )|O|πb(~p )〉 = δab〈π|O|π〉, the integral further reduces
to

〈O〉T = 〈O〉0 +
T 2

8
B1(mπ/T )〈π|O|π〉 . (2.87)

The integralB1(z) = 6
π2

∫∞
z dy

√

y2 − z2 1
ey−1 converges to1 for mπ ≪ T . Especially, in the

chiral limit mπ = 0 the condensates then change proportional to the temperature squared.
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Combining both approximations, the effects at low temperatures and small densities are sum-
marized in

〈O〉n,T = 〈O〉0 +
n

2MN
〈N |O|N〉+ T 2

8
〈π |O|π〉+ . . . . (2.88)

in the chiral limit. The effect of non-vanishing temperature in the nucleon gas and of a finite pion
mass is respected in Figs. 2.3 and 2.4, where the chiral and the gluon condensate are numerically
evaluated within the outlined approximations. The inclusion of further massive excitations, like
K andη mesons, becomes relevant only forT > 100 MeV [51]. Inclusion of nucleon-nucleon
interactions as done in [44] does not significantly alter Fig. 2.3 in the low density region. In the
following part the unknown matrix elements are discussed for the most important condensates, the
chiral condensate and the gluon condensate. Besides this the numerical values of some conden-
sates relevant for our subsequent evaluation of QCD sum rules are collected.

Chiral Condensate

The chiral condensate was in the previous section motivatedas order parameter of spontaneous
chiral symmetry breaking. The existence of pions as Goldstone bosons in the hadron spectrum
means that the chiral condensate as order parameter should acquire a non-zero value. Beyond the
chiral limit its value is also affected by explicit symmetrybreaking in terms of the (light) current
quark masses entering the QCD Lagrangian Eq. (2.44). The axial vector currentjaµ = ψ̄γµγ5T

aψ
is then not conserved but, by the equations of motion, satisfies

∂µjaµ = iψ̄γ5{M,T a}ψ , (2.89)

with the diagonal mass matrix

M = diag(mu,md) =
1

2
(mu +md)1+

1

2
(mu −md)τ3 (2.90)

in flavor space for two flavor degrees of freedomnf = 2. One can use∂µjbµ(x) 6= 0 as fieldΦ(x)
in the commutator of Eq. (2.64)

〈Ψ|[Qa, ∂µjbµ]|Ψ〉 = 〈Ψ|[Qa, iψ̄γ5{M,T b}ψ]|Ψ〉 . (2.91)

With Eqs. (2.72) and (2.90) this commutator gives

〈Ψ|[Qa, ∂µjbµ]|Ψ〉 = − i
2
(mu +md)δab〈Ψ|ψ̄ψ|Ψ〉 −

i

2
(mu −md)δ3b〈Ψ|ψ̄τaψ|Ψ〉 , (2.92)

where the second term on the r.h.s. drops out due to the assumed flavor symmetry. The Goldstone
theorem states that the Goldstone bosons, interpreted as pions, couple to the current of the charge
Qa,

〈Ψ|jbµ(x)|πc(q)〉 = iqµδ
bcfπ(q2)e−iqx . (2.93)

Here, the pion momentumqµ is the only possible Lorentz vector to parametrize the Lorentz struc-
ture of the matrix element; the exponential is due to translation invariance and the functionfπ(q2)
is for a pion at rest defined as the pion decay constantfπ = fπ(m2

π). It can be determined from
the weak decay constant of charged pionsπ+ → µ+ν (e.g. [52]). Defining the pion field similarly

〈Ψ|φb(x)|πc(q)〉 = δbce−iqx , (2.94)
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Figure 2.3: The relative changes of the chiral condensate as a function of den-
sity and temperature. Due to finite pion masses the temperature effect is neg-
ligible for small temperaturesT . The slope in direction of the baryon density
n is governed by the nucleon sigma termσN . The effects of non-vanishingT
andn are covered in leading order, i.e. small values ofT andn; the displayed
range is extended strongly beyond the range of validity to expose the trends
when extrapolating towards the confinement-deconfinement phase transition.

one may identify, taking the derivative in Eq. (2.93),

∂µjbµ(x) = m2
πfπφ

b(x) , (2.95)

what is often considered as partial conservation of the axial current (PCAC). For massless pions
the axial current is exactly conserved.

Also the chargeQa can be related to Eq. (2.93) by integration. Insertion of a complete set of
covariantly normalized pion states

∑

c

∫

d3p
1

2(2π)3Ep
|πc(p)〉〈πc(p)| (2.96)

into the commutator, l.h.s. of Eq. (2.91), yields for pions at rest~p = 0 at timet = 0 the expression

〈Ψ|[Qa, ∂µjbµ|Ψ〉 = iδabf2
πm

2
π . (2.97)

This leads to the Gell-Mann–Oakes–Renner relation (GOR) [53]

f2
πm

2
π = −mu +md

2
〈ψ̄ψ〉 , (2.98)

besides higher corrections in quark masses. We use as abbreviation for the ground state expectation
value 〈Ψ| : ψ̄ψ : |Ψ〉 ≡ 〈ψ̄ψ〉; |Ψ〉 is the physical QCD ground state, the normal ordering
: . . . : of operators is understood from the proper definition of normal ordered currents etc. and
not explicitly written out. Further, it is common to denote for the single flavor condensates due to
flavor symmetry〈q̄q〉 = 〈ūu〉 =

〈
d̄d
〉
; thus

〈
ψ̄ψ
〉

= 2 〈q̄q〉.
The GOR relation withfπ = 92.4 MeV,mπ = 139.6 MeV,mu = 4 MeV,md = 7 MeV [1]

yields the vacuum value of the chiral condensate〈q̄q〉 = −(247 MeV)3. In what follows, the
standard value used for all presented QSR results will be〈q̄q〉 = −(245 MeV)3.
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The change of the chiral condensate in cold nuclear matter inEq. (2.85) is dictated by the
nucleon matrix element〈N |q̄q|N〉, which defines the nucleon sigma termσ. We use

〈q̄q〉 = −(0.245 GeV)3 + n
σN

2mq
, (2.99)

with σN = 45 MeV andmq = 5.5 MeV.

Gluon Condensate

The gluon condensate is related to the energy density by the trace of the energy-momentum tensor.
For zero or infinite quark masses QCD exhibits a classical scale invariance, i.e. dilatation symme-
try. On the quantum level this symmetry is broken by the regularization scale. Quark masses break
scale invariance explicitly. The divergence of the dilatation current is then determined by the trace
of the energy-momentum tensor, the so-called QCD trace anomaly

Θµ
µ = −1

8
(11− 2

3
nf )

αs

π
G2 +

∑

q

mq q̄q . (2.100)

Therefrom the required nucleon matrix element is obtained,the vacuum part is constrained by
charmonium QCD sum rules. For the gluon condensate,

〈αs

π
G2
〉

= −2
〈αs

π
(~E2 − ~B2)

〉

= −2[−0.5(0.33 GeV)4 + 0.325 GeVn] (2.101)

is used here, where the relation to the chromoelectric and chromomagnetic fields~E and ~B is also
displayed; the contractionG2 = GA

µνG
µν
A is understood.
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Figure 2.4: The gluon condensate as function of density and temperaturenor-
malized to its vacuum value. The impact of density and temperature is sig-
nificantly weaker than for the chiral condensate, compare Fig. 2.3. The same
caution as in Fig. 2.3 applies.
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Further Condensates

We compile in increasing mass dimension some further condensates entering the later on presented
sum rules. The medium specific condensates are given in the matter rest frame. The vector two-
quark condensate (mass dimension 3) is

〈q̄v/q〉 = 〈q̄γ0q〉 =
〈

q†q
〉

=
3

2
n , (2.102)

counting simply the number of quarks in symmetric nuclear matter.
At mass dimension 4 additionally the medium gluon condensate
〈αs

π

[

(vG)2 + (vG̃)2
]〉

= −
〈αs

π

(

~E2 + ~B2
)〉

= −0.1 GeVn (2.103)

and a condensate containing a derivative
〈
q†iD0q

〉
= 0.18 GeVn arise. Note the abbreviations

Gµν = GA
µνTA andσG = σµνG

µν .
Mixed quark-gluon condensates of mass dimension 5 are usually parametrized by mass di-

mension 3 condensates as

〈gsq̄σGq〉 = x2 〈q̄q〉+ 3.0 GeV2n with x2 = 0.8 GeV2 . (2.104)

Necessary are also the mass dimension 5 combinations

〈q̄iD0iD0q〉+ 〈gsq̄σGq〉 /8 = 0.3 GeV2n , (2.105)
〈

q†iD0iD0q
〉

+
〈

gsq
†σGq

〉

/12 = (0.176 GeV)2n , (2.106)
〈

gsq
†σGq

〉

= −0.33 GeV2n . (2.107)

From the discussion in Section 2.3.1, especially Eq. (2.74), we see that besides the purely
gluonic terms all condensates above might be related to order parameters. The density dependent
parts of the condensates can be expressed through moments ofparton distribution functions. If not
otherwise stated the numerical values used in this work are those employed and discussed in [54].
At mass dimension 6 triple-gluon condensates and four-quark condensates appear. The latter type
is the main focus of this thesis.

2.4 Four-Quark Condensates

Formally, four-quark condensates are QCD ground state expectation values of Hermitian products
of four quark operators which are to be Dirac and Lorentz scalars, color singlets and are to be
invariant under time and parity reversal. Thereby we restrict ourselves to equilibrated cold nuclear
matter6 but do not impose isospin symmetry from the very beginning inview of further applica-
tions, such as the proton-neutron mass difference in asymmetric cold nuclear matter (e.g. [55]).
With the following discussion of independent four-quark condensates for arbitrary numbers of
flavors we allow for the inclusion of strange quark contributions as well.

Physically, the four-quark condensates quantify the correlated production of two quark-anti-
quark pairs in the physical vacuum. In contrast to the squareof the two-quark condensate, which
accounts for uncorrelated production of two of these pairs,the four-quark condensates are a mea-
sure of the correlation and thus evidence the complexity of the QCD ground state. Especially,
deviations from factorization, the approximation of unknown four-quark condensates in terms of

6The catalog can be extended to non-equilibrated systems lifting the demand for time reversal symmetry or to
systems at finite temperature and vanishing chemical potential where charge conjugation provides a good symmetry.
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the squared chiral condensate justified in the largeNc limit (cf. also [56]), represent effects of
these more involved correlations.

In this section the classification of four-quark condensates, in the light quark sector, is per-
formed in some detail. We do not cover other condensates of mass dimension 6 like the triple-
gluon condensate or condensates containing higher derivatives.

2.4.1 Projection and Classification

The projections onto Dirac, Lorentz and color structures lead to all possible in-medium four-quark
condensates just as for the example of the non-local two-quark expectation value in Appendix B.
However, the situation is even simpler since we are only interested in the mass dimension 6 four-
quark condensates, so derivatives are not required and all operators in four-quark expectation
values are to be taken atx = 0.

Using the Clifford basesOk ∈ {1, γµ, σµ<ν , iγ5γµ, γ5} andOm ∈ {1, γµ, σµ<ν , iγ5γ
µ, γ5},

which fulfill Tr (OkO
m) = 4δm

k , one can project out the Dirac indices of products of four arbitrary
quark operators

(

q̄1
e

a′

q2
f

aq̄3
g

b′q4
h

b

)

=
1

16

16∑

k,l=1

(

q̄a′

1 Okq
a
2 q̄

b′
3 O

lqb
4

)

O
f,e

k Ol
h,g
. (2.108)

Note, here Dirac indices, if explicitly shown, are attachedbelow the concerned objects. From
Eq. (2.108) there are 25 combinatorial Lorentz structures which have to be projected on conden-
sates to obey Lorentz invariance (using the four-velocityvµ), time/parity reversal and hermiticity.
For each of the remaining 5 (10) Lorentz scalars in vacuum (medium) two possible color sin-
glet combinations can be formed using contractions with theunity element and the generators
λA = 2TA of SU(Nc = 3). Thus one obtains the projection formula

q̄a′

1 q
a
2 q̄

b′
3 q

b
4 =

1

9
(q̄1q2q̄3q4)1aa′1bb′ +

1

12

(
q̄1λ

Aq2q̄3λ
Aq4
)
λB

aa′λB
bb′ . (2.109)

Especially, in the calculation of an operator product expansion for baryons the color condensate
structures naturally arise from the productǫabcǫa′b′c′ δ

cc′ = ǫabcǫa′b′c = δaa′δbb′ − δab′δa′b due
to the color structure of the baryon interpolating fields. Hence there the four-quark condensates
generally appear in linear combinations of color structures in the form

ǫabcǫa′b′c q̄
a′

1 q
a
2 q̄

b′

3 q
b
4 =

2

3

{

(q̄1q2q̄3q4)−
3

4

(
q̄1λ

Aq2q̄3λ
Aq4
)
}

. (2.110)

This would imply two condensate structures for each Lorentzscalar term. However, for ex-
pectation values with just one flavor (pure flavor four-quarkcondensates) these structures are not
independent. Combining Fierz rearrangement of the Dirac contractions of pure four-quark op-
erators with the rearrangement of the color structures, compare Appendix C.3, one derives the
transformation equation

(

ūOkλ
AuūOlλAu

)

= −2

3

(

ūOkuūO
lu
)

− 1

8
Tr
(

OkOnO
lOm

)

(ūOmuūO
nu) , (2.111)

which relates the two different color combinations. This transformation can be brought in matrix
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form ~y = Â~x with

~y =
























〈
q̄λAqq̄λAq

〉

〈
q̄γαλ

Aqq̄γαλAq
〉

〈
q̄v/λAqq̄v/λAq

〉
/v2

〈
q̄σαβλ

Aqq̄σαβλAq
〉

〈
q̄σαβλ

Aqq̄σγδλAq
〉
gα
γ v

βvδ/v
2

〈
q̄γ5γαλ

Aqq̄γ5γ
αλAq

〉

〈
q̄γ5v/λ

Aqq̄γ5v/λ
Aq
〉
/v2

〈
q̄γ5λ

Aqq̄γ5λ
Aq
〉

〈
q̄v/λAqq̄λAq

〉

〈
q̄γ5γ

αλAqq̄σβγλAq
〉
iǫαβγδv

δ/2
























, ~x =
























〈q̄qq̄q〉
〈q̄γαqq̄γ

αq〉
〈q̄v/qq̄v/q〉 /v2

〈
q̄σαβqq̄σ

αβq
〉

〈
q̄σαβqq̄σ

γδq
〉
gα
γ v

βvδ/v
2

〈q̄γ5γαqq̄γ5γ
αq〉

〈q̄γ5v/qq̄γ5v/q〉 /v2

〈q̄γ5qq̄γ5q〉
〈q̄v/qq̄q〉

〈
q̄γ5γ

αqq̄σβγq
〉
iǫαβγδv

δ/2
























, (2.112)

Â =
























−7/6 −1/2 0 −1/4 0 1/2 0 −1/2 0 0

−2 1/3 0 0 0 1 0 2 0 0

−1/2 1/2 −5/3 −1/4 1 1/2 −1 1/2 0 0

−6 0 0 1/3 0 0 0 −6 0 0

−3/2 −1/2 2 1/4 −2/3 1/2 −2 −3/2 0 0

2 1 0 0 0 1/3 0 −2 0 0

1/2 1/2 −1 1/4 −1 1/2 −5/3 −1/2 0 0

−1/2 1/2 0 −1/4 0 −1/2 0 −7/6 0 0

0 0 0 0 0 0 0 0 −5/3 −i
0 0 0 0 0 0 0 0 3i 1/3
























. (2.113)

We emphasize that the inverse transformationÂ−1 exists. However, structures for baryon sum
rules typically are combinations of two color contractions, dictated by Eq. (2.110), which form
components of the vector

~z =
2

3

(

~x− 3

4
~y

)

= B̂~x =
2

3

(

Â−1 − 3

4
1) ~y , B̂ ≡ 2

3 (1− 3
4Â) . (2.114)

The matrixB̂ has the fivefold eigenvalues 0 and 2, and the corresponding eigenspaces both have
dimension 5, especially the kernel ofB̂ spanned by the eigenvectors to eigenvalue 0. The fact that
the kernel contains more than the null vector implies thatB̂ has no inverse. The transformation of
this equation into the basis of eigenvectors yields a new vector ~z ′ where 5 elements are to be zero.
Written in components of~z these relations are

z2 + z6 = 0 , (2.115a)

4z1 − 2z2 − z4 = 0 , (2.115b)

2z1 − z4 + 2z8 = 0 , (2.115c)

z1 − z3 − z5 + z7 = 0 , (2.115d)

z9 − iz10 = 0 . (2.115e)

The first three conditions occur already in the vacuum set, the latter two constraints are additional
in the medium case. Of course, the conditions can be written differently, e.g., the second and third
line may be conveniently combined toz1− z2− z8 = 0 for applications. An alternative derivation
of these relations is presented in Appendix C.1.
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The relations (2.115) have two important consequences: firstly, they allow to simplify pure
flavor four-quark condensates in baryon sum rules; secondly, since Eq. (2.114) can not be inverted,
they forbid a direct translation from pure flavor four-quarkcondensates in baryon sum rules at the
orderα0

s to those which occur e.g. in sum rules for light vector mesonsin the orderα1
s.

2.4.2 Factorization and Parametrization of Four-Quark Con densates

Up to now we have introduced all possible four-quark condensates in the light quark sector. These
structures will appear in the QCD sum rules for theω meson and the nucleon. To evaluate the sum
rule equations with the focus on particular combinations offour-quark condensates one is faced
with the common problem of the poor knowledge of four-quark condensates. Usually assuming
the vacuum saturation hypothesis or resorting to the largeNc limit the four-quark condensates
are factorized into products of condensates with two quark operators. The factorization of four-
quark condensates allows to set the proper units, however, its reliability is a matter of debate. For
instance, [57] state that the four-quark condensates in thenucleon sum rule are the expectation
value of a chirally invariant operator, while〈q̄q〉2 is not invariant and thus a substitution by the
factorized form would be inconsistent with the chiral perturbation theory expression for the nu-
cleon self-energy. The four-quark condensates breaking chiral symmetry might have a meaningful
connection to the chiral condensate but for the chirally invariant structures such a closer relation
to 〈q̄q〉 is not clear [58].

Moreover, for nucleon sum rules at finite temperatureT (and vanishing chemical potential)
it was argued in [59] that the four-quark condensates areT independent quite different from the
behavior of〈q̄q〉2 which is why a naive factorization would lead to artificial temperature effects in
the nucleon mass.

For numerical purposes it is convenient to correct the values deduced from factorization by
factors, denoted asκ, and examine the effect of these correction factors on predictions from QCD
sum rules. In this section, the four-quark condensates classified so far in general are spelled out
and the parametrization with a set of quantitiesκ is defined. In doing so one includes a density
dependent factorκ(n) in the factorized result

〈q̄f1Γ1C1qf1q̄f2Γ2C2qf2〉 = κ(n) 〈q̄f1Γ1C1qf1q̄f2Γ2C2qf2〉fac , (2.116)

whereκ and the following parametrization depend on the specific condensate structure. In linear
density approximation this product ansatz obtains contributions both from the expansionκ(n) =

κ(0) + κ(1)n with κ(1) = ∂κ(0)
∂n and from the linearized, factorized four-quark condensateex-

pression〈q̄f1Γ1C1qf1q̄f2Γ2C2qf2〉fac = a + bn. If κ(0) = 1, thenκ(1) = 0 recovers the usual
factorization, which means the four-quark condensate behaves like the product of two two-quark
condensates;κ(1) > 0 represents a stronger density dependence with respect to the factorization
and vice versa. Inserting both expansions one can also describe the total density dependence of
the condensates by the combinationκmed = κ(0) + a

bκ
(1),

〈q̄f1Γ1C1qf1q̄f2Γ2C2qf2〉 = aκ(0) + bκmedn (2.117)

such that forκmed = 0 the condensate is (in first order) independent of density. For condensates
with vanishinga or b in factorization we choosea = 〈q̄q〉2vac andb = 〈q̄q〉vac σN/mq as scales to
study deviations from zero and denote these instances byκ̃.7 The classification of possible four-
quark condensates is collected together with the specificκ parametrization in Tabs. 2.1 and 2.2.

7For consistency with earlier publications we use the labels”0” and ”vac” in parallel to denote the vacuum limit.
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Indices Full condensate Parametrized Factorization

in Linear Density Approximation

1s 〈ūuūu〉 11
12

(

κvac
1s 〈q̄q〉2vac + κmed

1s nξ
)

1v 〈ūγαuūγ
αu〉 −1

3

(

κvac
1v 〈q̄q〉2vac + κmed

1v nξ
)

1v′ 〈ūv/uūv/u〉 /v2 − 1
12

(
1
4κ

vac
1v 〈q̄q〉2vac + κmed

1v′ nξ
)

1t
〈
ūσαβuūσ

αβu
〉

−
(

κvac
1t 〈q̄q〉2vac + κmed

1t nξ
)

1t′
〈
ūσαβuūσ

γδu
〉
gα
γ v

βvδ/v
2 −1

4

(
1
4κ

vac
1t 〈q̄q〉2vac + κmed

1t′ nξ
)

1a 〈ūγ5γαuūγ5γ
αu〉 1

3

(

κvac
1a 〈q̄q〉2vac + κmed

1a nξ
)

1a′ 〈ūγ5v/uūγ5v/u〉 /v2 1
12

(
1
4κ

vac
1a 〈q̄q〉2vac + κmed

1a′ nξ
)

1p 〈ūγ5uūγ5u〉 − 1
12

(

κvac
1p 〈q̄q〉2vac + κmed

1p nξ
)

1vs 〈ūv/uūu〉 κ̃med
1vs nξ

1at 〈ūγ5γκuūσλπu〉 ǫκλπξvξ κ̃med
1at nξ

2s
〈
ūλAuūλAu

〉
−4

9

(

κvac
2s 〈q̄q〉2vac + κmed

2s nξ
)

2v
〈
ūγαλ

AuūγαλAu
〉

−16
9

(

κvac
2v 〈q̄q〉2vac + κmed

2v nξ
)

2v′
〈
ūv/λAuūv/λAu

〉
/v2 −4

9

(
1
4κ

vac
2v 〈q̄q〉2vac + κmed

2v′ nξ
)

2t
〈
ūσαβλ

AuūσαβλAu
〉

−16
3

(

κvac
2t 〈q̄q〉2vac + κmed

2t nξ
)

2t′
〈
ūσαβλ

AuūσγδλAu
〉
gα
γ v

βvδ/v
2 −4

3

(
1
4κ

vac
2t 〈q̄q〉2vac + κmed

2t′ nξ
)

2a
〈
ūγ5γαλ

Auūγ5γ
αλAu

〉
16
9

(

κvac
2a 〈q̄q〉2vac + κmed

2a nξ
)

2a′
〈
ūγ5v/λ

Auūγ5v/λ
Au
〉
/v2 4

9

(
1
4κ

vac
2a 〈q̄q〉2vac + κmed

2a′ nξ
)

2p
〈
ūγ5λ

Auūγ5λ
Au
〉

−4
9

(

κvac
2p 〈q̄q〉2vac + κmed

2p nξ
)

2vs
〈
ūv/λAuūλAu

〉
κ̃med

2vs nξ

2at
〈
ūγ5γκλ

Auūσλπλ
Au
〉
ǫκλπξvξ κ̃med

2at nξ

Table 2.1: Two complete sets (indices 1 and 2) of independent non-
flavor-mixing four-quark condensates differing in color structure and their
parametrization withκ in strict linear density approximation(ξ =
〈q̄q〉vac σN/mq). The sets are related by a Fierz transformation. A similar
table for flavord insteadu appears for an exhaustive list of four-quark conden-
sates for the two-flavor casenf = 2.
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Indices Full condensate Parametrized Factorization

in Linear Density Approximation

3s
〈
ūud̄d

〉
κvac

3s 〈q̄q〉2vac + κmed
3s nξ

3v
〈
ūγαud̄γ

αd
〉

κ̃vac
3v 〈q̄q〉2vac + κ̃med

3v nξ

3v′
〈
ūv/ud̄v/d

〉
/v2 1

4 κ̃
vac
3v 〈q̄q〉2vac + κ̃med

3v′ nξ

3t
〈
ūσαβud̄σ

αβd
〉

κ̃vac
3t 〈q̄q〉2vac + κ̃med

3t nξ

3t′
〈
ūσαβud̄σ

γδd
〉
gα
γ v

βvδ/v
2 1

4 κ̃
vac
3t 〈q̄q〉2vac + κ̃med

3t′ nξ

3a
〈
ūγ5γαud̄γ5γ

αd
〉

κ̃vac
3a 〈q̄q〉2vac + κ̃med

3a nξ

3a′
〈
ūγ5v/ud̄γ5v/d

〉
/v2 1

4 κ̃
vac
3a 〈q̄q〉2vac + κ̃med

3a′ nξ

3p
〈
ūγ5ud̄γ5d

〉
κ̃vac

3p 〈q̄q〉2vac + κ̃med
3p nξ

3vs
〈
ūv/ud̄d

〉
κmed

3vs 〈q̄q〉vac 3n/2

3at
〈
ūγ5γκud̄σλπd

〉
ǫκλπξvξ κmed

3at 〈q̄q〉vac 3n/2

4s
〈
ūλAud̄λAd

〉
κ̃vac

4s 〈q̄q〉2vac + κ̃med
4s nξ

4v
〈
ūγαλ

Aud̄γαλAd
〉

κ̃vac
4v 〈q̄q〉2vac + κ̃med

4v nξ

4v′
〈
ūv/λAud̄v/λAd

〉
/v2 1

4 κ̃
vac
4v 〈q̄q〉2vac + κ̃med

4v′ nξ

4t
〈
ūσαβλ

Aud̄σαβλAd
〉

κ̃vac
4t 〈q̄q〉2vac + κ̃med

4t nξ

4t′
〈
ūσαβλ

Aud̄σγδλAd
〉
gα
γ v

βvδ/v
2 1

4 κ̃
vac
4t 〈q̄q〉2vac + κ̃med

4t′ nξ

4a
〈
ūγ5γαλ

Aud̄γ5γ
αλAd

〉
κ̃vac

4a 〈q̄q〉2vac + κ̃med
4a nξ

4a′
〈
ūγ5v/λ

Aud̄γ5v/λ
Ad
〉
/v2 1

4 κ̃
vac
4a 〈q̄q〉2vac + κ̃med

4a′ nξ

4p
〈
ūγ5λ

Aud̄γ5λ
Ad
〉

κ̃vac
4p 〈q̄q〉2vac + κ̃med

4p nξ

4vs
〈
ūv/λAud̄λAd

〉
κ̃med

4vs 〈q̄q〉vac 3n/2

4at
〈
ūγ5γκλ

Aud̄σλπλ
Ad
〉
ǫκλπξvξ κmed

4at 〈q̄q〉vac 3n/2

5vs
〈
d̄v/dūu

〉
κmed

5vs 〈q̄q〉vac 3n/2

5at
〈
d̄γ5γκdūσλπu

〉
ǫκλπξvξ κmed

5at 〈q̄q〉vac 3n/2

6vs
〈
d̄v/λAdūλAu

〉
κ̃med

6vs 〈q̄q〉vac 3n/2

6at
〈
d̄γ5γκλ

Adūσλπλ
Au
〉
ǫκλπξvξ κmed

6at 〈q̄q〉vac 3n/2

Table 2.2: A complete set of independent flavor-mixing four-quark conden-
sates and their parametrization byκ parameters in strict linear density approx-
imation. Additional parameters (indices5 and6) are required for structures
which cannot be exchanged.
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Non-Flavor Mixing Case

The condensates which contain only one flavor are listed in Tab. 2.1. From the demand for parity
and time reversal invariance only5 (10) Dirac and Lorentz scalar four quark operators remained in
vacuum (medium). Further, these structures carry color indices and must be projected on colorless
objects for which there are two ways. However, since the sameflavors occur, both color com-
binations can be alternatively rearranged via Fierz transformation. Hence, there are only5 (10)
independentκ parameter sets in the Tab. 2.1, although both color alternatives are listed. The
parameter sets with indices1, 2 are related by the transformation (2.113).

Flavor Mixing Case

Here the condensates containing two quark operator pairs are distinguished by flavor. The number-
ing is as for the pure flavor structures. However, the conversion of the two color contractions is not
possible due to different flavors. Compared to the non-flavormixing case the missing exchange
symmetry ofq̄q contractions due to different flavors allows additional placements of Dirac matri-
ces and thus leads to 4 additional condensate structures in medium (see Tab. 2.2). Therefore, 10
(24) flavor-mixed four quark condensates and thusκ parameter pairs appear in vacuum (medium).

To sum up, there exist in medium{vacuum} for nf flavors without flavor symmetry taken into
account2nf (6nf − 1) {5n2

f} independent four-quark condensates being Lorentz invariant expec-
tation values of Hermitian products of four quark operatorsconstrained by time and parity reversal
invariance. Symmetry under flavor rotation reduces these numbers to20 {10}, respectively. Fi-
nally note that these are also the numbers of necessaryκmed parameters. Since the four-quark
condensates in operator product expansions obtained from the medium projections in the limit
of vanishing baryon densityn should coincide with the vacuum result, this leads by contraction
of vacuum and medium projections of four-quark condensatesto the relationsκvac

v′,t′,a′ = 1
4κ

vac
v,t,a,

which have already been included in Tabs. 2.1 and 2.2. Further, Lorentz projections which exist
only in medium imply no newκvac parameters and so the number ofκmed in medium reduces
consistently to the number ofκvac and four-quark condensates in vacuum.

Density dependence of four-quark condensates from models

It is instructive to derive values for the effective densitydependence parametersκmed. Expectation
values of four-quark operators in the nucleon were previously calculated in a perturbative chiral
quark model [60] and taken into account in sum rule evaluations for the in-medium nucleon [61].
(Corrections to the factorization of four-quark condensates in nucleon sum rules have also been
considered in the framework of the Nambu-Jona-Lasinio model in [62].) Lattice evaluations of
four-quark operators in the nucleon are yet restricted to combinations which avoid the mixing
with lower dimensional operators on the lattice [63], and provide not yet enough information to
constrain the four-quark condensate combinations entering specific QCD sum rules.

The results in [60] can be translated to ourκ parameters. However, only such color combina-
tions being significant in baryon sum rules are considered, see left column in Tab. 2.3. We note
that the values given in [60] have to be corrected slightly inorder to reach full consistency with
the Fierz relations (2.115), which are an operator identityand thus must be fulfilled also for ex-
pectation values in the nucleon. An optimized minimally corrected set is found by the following
procedure: minimize the relative deviation of all separatevalues compared to values delivered in
the parametrization of [60] (this is in the order of 10 %, however with different possible adjust-
ments); from these configurations choose the set with smallest sum of separate deviations (this
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Mean Nucleon Matrix Element PCQM model[〈q̄q〉vac]
(to be color contracted withǫabcǫa′b′c′)〈

ūa′

uaūb′ub
〉

N
3.993

〈

ūa′

γαu
aūb′γαub

〉

N
1.977

〈

ūa′

v/uaūb′v/ub
〉

N
/v2 0.432

〈

ūa′

σαβu
aūb′σαβub

〉

N
12.024

〈

ūa′

σαβu
aūb′σαδub

〉

N
vβvδ/v

2 3.045
〈

ūa′

γ5γαu
aūb′γ5γ

αub
〉

N
−1.980

〈

ūa′

γ5v/u
aūb′γ5v/u

b
〉

N
/v2 −0.519

〈

ūa′

γ5u
aūb′γ5u

b
〉

N
2.016

〈

ūa′

v/uaūb′ub
〉

N
−

〈

ūa′

γ5γκu
aūa′

σλπu
b
〉

N
ǫκλπξvξ −

〈

ūa′

uad̄b′db
〉

N
3.19

〈

ūa′

γαu
ad̄b′γαdb

〉

N
−2.05

〈

ūa′

v/uad̄b′v/db
〉

N
/v2 −0.73

〈

ūa′

σαβu
ad̄b′σαβdb

〉

N
3.36

〈

ūa′

σαβu
ad̄b′σαδdb

〉

N
vβvδ/v

2 1.11
〈

ūa′

γ5γαu
ad̄b′γ5γ

αdb
〉

N
1.66

〈

ūa′

γ5v/u
ad̄b′γ5v/d

b
〉

N
/v2 0.37

〈

ūa′

γ5u
ad̄b′γ5d

b
〉

N
−0.185

〈

ūa′

v/uad̄b′db
〉

N
−0.245

〈

ūa′

γ5γκu
ad̄b′σλπd

b
〉

N
ǫκλπξvξ −

Table 2.3: The combinations arranged as in the vector~z of four-quark expecta-
tion values obtained from the (partially modified) set takenfrom a perturbative
chiral quark model calculation (PCQM) in [60]. Therefrom the characteristic
density dependence of four-quark condensates, the value ofκmed, is derived.
Isospin symmetryN = 1

2 (p+n) of the nuclear matter ground state is assumed.
The values in the pure flavor sector (upper part) are tuned to obey Fierz rela-
tions (2.115) on the accuracy level< 0.01 〈q̄q〉vac. For three combinations no
results are provided in [60] as indicated by ”−”.
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deviation sum estimates to 40 % and different configurationsare close to this value). The re-
sults from which the relevant density dependence for our condensate classification is obtained are
collected in Tab. 2.3; our slight modifications of values in the original parametrization [60] are
documented in Tabs. C.1 and C.2 in Appendix C.2.

The connection to ourκ parameters is derived as follows: Generally, in linear density approx-
imation condensates behave like〈Ψ |O|Ψ〉 = 〈Ψ |O|Ψ〉0 + n 〈N |O|N〉. The normalization of
the nucleon state differs from that of Eq. (2.85) in order to be comparable to [60, 61]. If one com-
pares our parametrized density dependent part of each four-quark condensate with the evaluation
of nucleon matrix elements of four-quark operators in the combinations in Tab. 2.3 one obtains
values for linear combinations ofκ parameters. The linear combinations refer to the two distinct
color alternatives representing, as mentioned above, the typical color combination in baryon sum
rules. For further attempts to gain estimates of four-quarkcondensates we refer the interested
reader to [64].

2.4.3 Four-Quark Condensates as Chiral Order Parameters

In Section 2.3.1 the meaning of condensates as order parameters of spontaneously broken sym-
metries was covered. Chiral symmetry restoration is linkedto the limit of a vanishing chiral
condensate〈q̄q〉. The previously collected four-quark condensates shall now be discussed in this
respect.

For this discussion we assume exact isospin symmetry and focus on the two-flavor case. Then
the condensates tabulated in Tabs. 2.1 and 2.2 can be projected onto flavor singlet structures, that
means the one-dimensional invariant subspaces ofSU(nf = 2)V

〈
ψ̄aΓ1ψbψ̄cΓ2ψd

〉
=

1

4

〈
ψ̄Γ1ψψ̄Γ2ψ

〉1ba1dc +
1

4

〈
ψ̄τaΓ1ψψ̄τaΓ2ψ

〉
τ b
baτ

b
dc . (2.118)

The arbitrary index arrangement of the basis matrices is chosen to simplify the structure of the
coefficients. Basis systems of flavor symmetric four-quark condensates, as specification ofΓ1,2,
can for example beOc orOf as given in Tab. 2.4. Thereψ denotes a flavor vector (ψ = (u, d)T

for nf = 2) and the first as well as third (second and fourth) blocks are the vacuum (the in medium
additionally appearing) four-quark condensates. This exemplifies the previously claimed numbers
of 10 (20) vacuum (medium) four-quark condensates in the flavor symmetric case. The flavor or
color matrices containing parts in the lower half of Tab. 2.4can be (Fierz) reordered to transform
the basis systems into each other, see Appendix C.3.

To classify a four-quark condensate as potential order parameter along definition (2.64) the
considered four-quark operator has to be identified as commutator ofQa with a generating fieldΦ
being itself a four-quark structure

[Qa,Φ] = [Qa, ψ̄Xψψ̄Y ψ] = [Qa, ψ̄Xψ]ψ̄Y ψ + ψ̄Xψ[Qa, ψ̄Y ψ] . (2.119)

The termsX, Y cover Dirac, flavor and color structures. Adopting Eq. (2.72) this reads

[Qa, ψ̄Xψψ̄Y ψ] = −ψ̄(γ5T
aX +Xγ5T

a)ψψ̄Y ψ− ψ̄Xψψ̄(γ5T
aY + Y γ5T

a)ψ , (2.120)

a relation symmetric under exchange ofX ↔ Y . This reduces the number of possible configura-
tions in the following discussion. The transformation ofSU(nf )A does not act in color space, and
therefore would not change the initially given color combinations inX andY . It suffices to study
the flavor matrices (1f ≡ 12×2, τa) and Dirac structuresDx,y.

ForX = Dx1f andY = Dy1f it yields

[Qa,Φ] = −1

2
ψ̄{γ5,Dx}τaψψ̄Dyψ −

1

2
ψ̄Dxψψ̄{γ5,Dy}τaψ , (2.121)
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BasisOc BasisOf
〈
ψ̄ψψ̄ψ

〉 〈
ψ̄ψψ̄ψ

〉
(2.135)

〈
ψ̄γαψψ̄γ

αψ
〉 〈

ψ̄γαψψ̄γ
αψ
〉

〈
ψ̄σαβψψ̄σ

αβψ
〉 〈

ψ̄σαβψψ̄σ
αβψ

〉
(2.140)

〈
ψ̄γ5γαψψ̄γ5γ

αψ
〉 〈

ψ̄γ5γαψψ̄γ5γ
αψ
〉

〈
ψ̄γ5ψψ̄γ5ψ

〉 〈
ψ̄γ5ψψ̄γ5ψ

〉
(2.134)

〈
ψ̄v/ψψ̄v/ψ

〉
/v2

〈
ψ̄v/ψψ̄v/ψ

〉
/v2

〈
ψ̄σαβψψ̄σ

γδψ
〉
gα
γ v

βvδ/v
2

〈
ψ̄σαβψψ̄σ

γδψ
〉
gα
γ v

βvδ/v
2 (2.140)

〈
ψ̄γ5v/ψψ̄γ5v/ψ

〉
/v2

〈
ψ̄γ5v/ψψ̄γ5v/ψ

〉
/v2

〈
ψ̄v/ψψ̄ψ

〉 〈
ψ̄v/ψψ̄ψ

〉
(2.136)

〈
ψ̄γ5γκψψ̄σλπψ

〉
ǫκλπξvξ

〈
ψ̄γ5γκψψ̄σλπψ

〉
ǫκλπξvξ (2.139)

〈
ψ̄λAψψ̄λAψ

〉 〈
ψ̄τaψψ̄τaψ

〉
(2.134)

〈
ψ̄γαλ

Aψψ̄γαλAψ
〉 〈

ψ̄γατaψψ̄γ
ατaψ

〉
(2.127)

〈
ψ̄σαβλ

Aψψ̄σαβλAψ
〉 〈

ψ̄σαβτaψψ̄σ
αβτaψ

〉
(2.140)

〈
ψ̄γ5γαλ

Aψψ̄γ5γ
αλAψ

〉 〈
ψ̄γ5γατaψψ̄γ5γ

ατaψ
〉

(2.127)
〈
ψ̄γ5λ

Aψψ̄γ5λ
Aψ
〉 〈

ψ̄γ5τaψψ̄γ5τaψ
〉

(2.135)

〈
ψ̄v/λAψψ̄v/λAψ

〉
/v2

〈
ψ̄v/τaψψ̄v/τaψ

〉
/v2 (2.127)

〈
ψ̄σαβλ

Aψψ̄σγδλAψ
〉
gα
γ v

βvδ/v
2
〈
ψ̄σαβτaψψ̄σ

γδτaψ
〉
gα
γ v

βvδ/v
2 (2.140)

〈
ψ̄γ5v/λ

Aψψ̄γ5v/λ
Aψ
〉
/v2

〈
ψ̄γ5v/τaψψ̄γ5v/τaψ

〉
/v2 (2.127)

〈
ψ̄v/λAψψ̄λAψ

〉 〈
ψ̄v/τaψψ̄τaψ

〉
(2.128), (2.137)

〈
ψ̄γ5γκλ

Aψψ̄σλπλ
Aψ
〉
ǫκλπξvξ

〈
ψ̄γ5γκτaψψ̄σλπτaψ

〉
ǫκλπξvξ (2.129), (2.138)

Table 2.4: Two complete basis sets of four-quark condensates when exact fla-
vor symmetry is assumed. The second and fourth blocks are only present in
medium. The bases differ in the lower half, where either color matricesλA

(Oc) or flavor matricesτa (Of ) are used. The last column states in which order
parameter combination a condensate in the basisOf appears.
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only containing flavor triplets and thus not suitable to be identified with a four-quark condensate
in Tab. 2.4 regardless of the Dirac structures inX andY .

Then assumeX = Dxτ
b andY = Dyτ

c

[Qa,Φbc] =− 1

2
ψ̄(γ5Dxτ

aτ b +Dxγ5τ
bτa)ψψ̄Dyτ

cψ

− 1

2
ψ̄Dxτ

bψψ̄(γ5Dyτ
aτ c +Dyγ5τ

cτa)ψ . (2.122)

With τaτb = iǫabcτc + δab1 one obtains

[Qa,Φbc] =− 1

2
ψ̄(iǫabdτ

d[γ5,Dx] + δab{γ5,Dx})ψψ̄Dyτ
cψ

− 1

2
ψ̄Dxτ

bψψ̄(iǫacdτ
d[γ5,Dy] + δac{γ5,Dy})ψ , (2.123)

where the only remaining relevant terms are the contributions to flavor singlets

〈Ψ|[Qa,Φbc]|Ψ〉 =− i

2
ǫabd〈Ψ|ψ̄τd[γ5,Dx]ψψ̄Dyτ

cψ|Ψ〉

− i

2
ǫacd〈Ψ|ψ̄Dxτ

bψψ̄τd[γ5,Dy]ψ|Ψ〉 . (2.124)

Upon flavor singlet projection with Eq. (2.118) this leads to

〈Ψ|[Qa,Φbc]|Ψ〉 =− i

2
ǫabc

(
〈Ψ|ψ̄τ e[γ5,Dx]ψψ̄Dyτ

eψ|Ψ〉

−〈Ψ|ψ̄Dxτ
eψψ̄τ e[γ5,Dy]ψ|Ψ〉

)
, (2.125)

or using as ansatz forΦ the contraction withǫabc

〈Ψ|[Qa, ǫabcΦ
bc]|Ψ〉 =− 3i

(
〈Ψ|ψ̄τ e[γ5,Dx]ψψ̄Dyτ

eψ|Ψ〉
−〈Ψ|ψ̄Dxτ

eψψ̄τ e[γ5,Dy]ψ|Ψ〉
)
. (2.126)

Specifications of the Dirac structures determine four-quark condensates as potential order pa-
rameters. Non-zero commutators arise forD = γµ, γ5γµ. Therewith the following four-quark
structures lead, performing Lorentz projection and symmetry consideration along the line of Sec-
tion 2.4.1, to order parameters in the sense of definition (2.64):

Dx = γ5γµ , Dy = γν −→ 〈Ψ|ψ̄γµτeψψ̄γντeψ|Ψ〉
− 〈Ψ|ψ̄γ5γµτeψψ̄γ5γντeψ|Ψ〉 , (2.127)

Dx = γ5γµ , Dy = 1 −→ 〈Ψ|ψ̄γµτeψψ̄τeψ|Ψ〉 , (2.128)

Dx = γµ , Dy = σκλ −→ 〈Ψ|ψ̄γ5γµτeψψ̄σκλτeψ|Ψ〉 . (2.129)

It is crucial to recognize that the order parameter candidate in (2.127) is a combination of two
condensates, both terms individually cannot be generated from a commutator. The other two
potential order parameters (2.128) and (2.129) correspondto condensates that are specific to the
medium scenario but vanish in vacuum.

The third possibility to specify the ansatz ofΦ is realized byX = Dxτ
b andY = Dy1f

[Qa,Φb] = −1

2
ψ̄(γ5Dxτ

aτ b+Dxγ5τ
bτa)ψψ̄Dyψ−

1

2
ψ̄Dxτ

bψψ̄(γ5Dyτ
a+Dyγ5τ

a)ψ , (2.130)

which yields

[Qa,Φb] = −1

2
ψ̄(iǫabdτ

d[γ5,Dx]+δab{γ5,Dx})ψψ̄Dyψ−
1

2
ψ̄Dxτ

bψψ̄{γ5,Dy}τaψ . (2.131)
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Flavor symmetry demands

〈Ψ|[Qa,Φb]|Ψ〉 =− 1

2
δab

(
〈Ψ|ψ̄{γ5,Dx}ψψ̄Dyψ|Ψ〉

+ 〈Ψ|ψ̄Dxτeψψ̄{γ5,Dy}τeψ|Ψ〉
)
, (2.132)

such that four-quark condensates are derived from the contraction

〈Ψ|[Qa,Φa]|Ψ〉 = −
(
〈Ψ|ψ̄{γ5,Dx}ψψ̄Dyψ|Ψ〉+ 〈Ψ|ψ̄Dxτeψψ̄{γ5,Dy}τeψ|Ψ〉

)
. (2.133)

Analog to the previous case one finds order parameters from

Dx = 1 , Dy = γ5 −→ 〈Ψ|ψ̄γ5ψψ̄γ5ψ|Ψ〉+ 〈Ψ|ψ̄τeψψ̄τeψ|Ψ〉 , (2.134)

Dx = γ5 , Dy = 1 −→ 〈Ψ|ψ̄ψψ̄ψ|Ψ〉+ 〈Ψ|ψ̄γ5τeψψ̄γ5τeψ|Ψ〉 , (2.135)

Dx = γ5 , Dy = γµ −→ 〈Ψ|ψ̄ψψ̄γµψ|Ψ〉 , (2.136)

Dx = γµ , Dy = γ5 −→ 〈Ψ|ψ̄γµτeψψ̄τeψ|Ψ〉 , (2.137)

Dx = γ5γµ , Dy = σκλ −→ 〈Ψ|ψ̄γ5γµτeψψ̄γ5σκλτeψ|Ψ〉 , (2.138)

Dx = σκλ , Dy = γ5γµ −→ 〈Ψ|ψ̄γ5σκλψψ̄γ5γµψ|Ψ〉 , (2.139)

Dx = σµν , Dy = σκλ −→ 〈Ψ|ψ̄γ5σµνψψ̄σκλψ|Ψ〉
+ 〈Ψ|ψ̄σµντeψψ̄γ5σκλτeψ|Ψ〉 . (2.140)

Again one obtains linear combinations, this time mixing thetwo different flavor contractions,
Eqs. (2.134), (2.135) and (2.140). By contraction with the epsilon pseudo-tensor the latter can be
traced back the tensor structures listed in Tab. 2.4. The table also allocates in the last column the
identified order parameter candidates. The pairs Eqs. (2.136), (2.137) and Eqs. (2.138), (2.139)
differ by the flavor structure and are absent in vacuum.

These possible order parameters could also determine the spontaneous symmetry breaking of
the axial vector symmetry. Note that it remains an open issuehow the Goldstone bosons, coupling
to the fieldsΦ used in the ansatz Eq. (2.119), are to be identified in a uniqueway with the hadronic
spectrum.

The four-quark condensates qualified as possible order parameters in the two flavor case can
similarly be found for scenarios with arbitrary numbers of flavors generalizing the products of
Pauli matrices with Eqs. (2.51) and (2.52) forSU(N) groups. For the color contractions, which
have not been specified in the ansatz, both color singlet structures, for example in Eq. (2.127) (the
color unit matrix1c explicitly shown)

〈Ψ|ψ̄1cγµτeψψ̄1cγντeψ|Ψ〉 − 〈Ψ|ψ̄1cγ5γµτeψψ̄1cγ5γντeψ|Ψ〉 , (2.141)

〈Ψ|ψ̄λAγµτeψψ̄λ
Aγντeψ|Ψ〉 − 〈Ψ|ψ̄λAγ5γµτeψψ̄λ

Aγ5γντeψ|Ψ〉 , (2.142)

are allowed. The transformation of combination (2.142) to the basis setsOc andOf is given in
Appendix C.3.

As discussed in Section 2.3.1 in the Wigner-Weyl phase the vanishing of some order parame-
ters is strongly correlated to symmetries distinct fromSU(nf )A. In the two flavor case this can
be verified beyond infinitesimal transformations in closed form. For this we concentrate on the
elements ofOf in Tab. 2.4 in the Wigner-Weyl scenario.

The vector and axial vector structures
〈
ψ̄γαψψ̄γβψ

〉
and

〈
ψ̄γ5γαψψ̄γ5γβψ

〉
are invariant

under the transformationψ → exp (iβaTaγ5)ψ in Section 2.3.1. TheSU(nf )A transformation in
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infinitesimal form

ψ̄Xψψ̄Y ψ −→
ψ̄γ0 exp(−iβaTaγ5)γ0X exp(iβaTaγ5)ψψ̄γ0 exp(−iβaTaγ5)γ0Y exp(iβaTaγ5)ψ

≈ ψ̄Xψψ̄Y ψ + iβa(ψ̄[γ5X +Xγ5]Taψψ̄Y ψ + ψ̄Xψψ̄[γ5Y + Y γ5]Taψ)

+ ψ̄(iβaTa)[γ5X +Xγ5]ψψ̄(iβaTa)[γ5Y + Y γ5]ψ

+ ψ̄(iβaTa)
2Xψψ̄Y ψ + ψ̄(iβaTa)

2γ5Xγ5ψψ̄Y ψ

+ ψ̄Xψψ̄(iβaTa)
2Y ψ + ψ̄Xψψ̄(iβaTa)

2γ5Y γ5ψ + O(β3) (2.143)

reveals that only ifX,Y areγµ and/orγ5γµ the four-quark structure is invariant, the remaining
structures are noSU(nf )A invariants. It remains questionable whether further suitable linear
combinations possess theSU(nf )A symmetry, which would describe another singlet. In the two-
flavor scenario theSU(2)A transformations

ψ −→ exp (iβaτaγ5)ψ (2.144)

of the given elements ofOf are now calculated in non-infinitesimal form. Using the properties of
the Pauli-Matricesτa andγ2

5 = 1, the exponential is evaluated and the transformation of theflavor
vectors becomes

ψ −→
(1 cos β + iγ5

~β~τ

β
sin β

)

ψ , (2.145)

ψ̄ −→ ψ̄

(1 cos β + iγ5

~β~τ

β
sin β

)

, (2.146)

with β = |~β|. As verification and prerequisite for the discussion of four-quark condensates con-
sider the bilinear terms with an arbitrary Dirac structureD

ψ̄Dψ −→







ψ̄Dψ if Dγ5 = −γ5D ,

ψ̄Dψ cos(2β) + iψ̄Dγ5

~β~τ

β
ψ sin(2β) if Dγ5 = γ5D .

(2.147)

The last term vanishes if flavor symmetry is demanded. Especially, the chiral condensate trans-
forms as

〈
ψ̄ψ
〉
→ cos(2β)

〈
ψ̄ψ
〉
, which demonstrates the fate of an order parameter in the

Wigner-Weyl phase. Only a vanishing
〈
ψ̄ψ
〉

ensures symmetry with respect toSU(2)A. Note

that the exact transformation reveals that the infinitesimal approximation in first order of~β would
lead to an invariant term (compare Eq. (2.58)). Similarly one finds for

ψ̄Dτcψ −→







ψ̄Dτcψ cos(2β) − βa

β
ǫcabψ̄Dτbγ5ψ sin(2β) +

2βc

β
ψ̄D

(~β~τ)

β
ψ sin2 β

if Dγ5 = −γ5D ,

ψ̄Dτcψ +
iβc

β
ψ̄Dγ5ψ sin(2β)− 2βc

β
ψ̄D

~β~τ

β
ψ sin2 β if Dγ5 = γ5D .

(2.148)

With this compilation of formulas the elements ofOf with any Dirac structures can be trans-
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formed. Hence, the four-quark condensates behave underSU(2)A like

〈
ψ̄Xψψ̄Y ψ

〉
−→







〈
ψ̄Xψψ̄Y ψ

〉
if Xγ5 = −γ5X , Y γ5 = −γ5Y ,

cos(2β)
〈
ψ̄Xψψ̄Y ψ

〉
+ fac. ifXγ5 = −γ5X , Y γ5 = +γ5Y ,

cos(2β)
〈
ψ̄Xψψ̄Y ψ

〉
+ fac. ifXγ5 = +γ5X , Y γ5 = −γ5Y ,

cos2(2β)
〈
ψ̄Xψψ̄Y ψ

〉
− sin2(2β)

〈
ψ̄Xγ5~τψψ̄Y γ5~τψ

〉
+ fac.

if Xγ5 = +γ5X , Y γ5 = +γ5Y ,

(2.149)

and

〈
ψ̄X~τψψ̄Y ~τψ

〉
−→







〈
ψ̄X~τψψ̄Y ~τψ

〉
+ fac. ifXγ5 = −γ5X , Y γ5 = −γ5Y ,

cos(2β)
〈
ψ̄X~τψψ̄Y ~τψ

〉
+ fac. ifXγ5 = −γ5X , Y γ5 = +γ5Y ,

cos(2β)
〈
ψ̄X~τψψ̄Y ~τψ

〉
+ fac. ifXγ5 = +γ5X , Y γ5 = −γ5Y ,

cos2(2β)
〈
ψ̄X~τψψ̄Y ~τψ

〉
− sin2(2β)

〈
ψ̄Xγ5ψψ̄Y γ5ψ

〉
+ fac.

if Xγ5 = +γ5X , Y γ5 = +γ5Y .

(2.150)

We have not written out the flavor asymmetric contributions ”fac.”, which are absent under the
applied flavor symmetry. Note that, for example, condensates withX = Y = 1 mix with those
containingX = Y = γ5. It is possible to derive a linear combination of these condensates which
transforms into itself. However, such a behavior is accidental for specific values of~β und does
not imply an invariant subspace ofSU(2)A, since therefore invariance must be realized for any
arbitrary value of the continuous parameters~β.

In conclusion, there exist no additional pureSU(nf )A singlets and thus the vanishing of all
four-quark condensates in the given basis derived as possible order parameters of chiral symme-
try breaking is related to flavor symmetry. Only the vector and axial vector structures without
Pauli matrices are invariant, but these have not been realized as commutator and are in this sense
no potential order parameters. The other condensates appear partially only in order parameter
combinations. In any QSR applications it is required to testwhether the occurring four-quark
condensates can be candidates for order parameters. This cannot be deduced from a calculation
in the factorization approach, where the chiral condensateenters in any way. One observes, e.g.
in Tab. 2.1, that even theSU(2)A invariant condensates are expressed by the chiral condensate. It
should be emphasized that a statement on chiral symmetry restoration from such terms would be
misleading.

QCD Sum Rules for Parity Partners

The previous discussion of order parameters was based on thetransformation behavior of the
condensates. A much stronger connection to spontaneous chiral symmetry breaking would start
on the observable hadronic side of a QCD sum rule. Indeed, an alternative to the study of chiral
symmetry restoration in the QCD phase diagram via modifications of individual hadron properties
is to consider parity partners in the hadronic spectrum.
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In this context the difference between vector and axial-vector correlators has been investi-
gated [65]. If both vector and axial-vector symmetrySU(nf )V,A are realized in the ground state,
this is equivalent to independent symmetries in the left andthe right handed sector. Therefrom
the equality of the expectation values〈Ψ|V a

µ (x)V b
ν (y)|Ψ〉 = 〈Ψ|Aa

µ(x)Ab
ν(y)|Ψ〉 of the vector

currentV a
µ = ψ̄γµT

aψ and the axial-vector currentAa
µ = ψ̄γ5γµT

aψ follows [66].
Especially, the thereby described parity partnersρ (JP = 1−) and a1 (JP = 1+) would

become degenerate when chiral symmetry was realized in the Wigner-Weyl phase. Their currents

jVµ =
1

2
(ūγµu− d̄γµd) , (2.151)

jAµ =
1

2
(ūγµγ5u− d̄γµγ5d) (2.152)

mix underSU(nf )A transformations. The study of the difference of their spectral functions (com-
monly abbreviated asV −A difference) has the advantage that many chirality independent terms
vanish. This concerns especially the operator product expansion in a QCD sum rule formulation.
The perturbative contributions are the same for theV andA correlator in the chiral limit of van-
ishing quark masses; also gluon condensate contributions cancel in theV − A difference. This
results in the sum rules

∫ ∞

0

ds

s
[ρV (s)− ρA(s)] = f2

π , (2.153)
∫ ∞

0
ds [ρV (s)− ρA(s)] = 0 , (2.154)

∫ ∞

0
ds s [ρV (s)− ρA(s)] = −2παs

〈
Oµ

µ

〉
, (2.155)

whereρV (ρA) denote the spectral densities in the vector (axial vector)channel. The first two
equations are the famous Weinberg sum rules [65]. The third sum rule was added in [67]. There,
also a generalization to medium is given, where the transverse and longitudinal contributions to
the spectral densitiesρT,L

V,A have to be distinguished. The third sum rule (2.155) becomesthen

∫ ∞

0
dω ω3 [2∆ρT (ω, |~p |) + ∆ρL(ω, |~p |)] = −2παs[

〈
Oµ

µ + 2O00
〉
] , (2.156)

with ∆ρT,L = ρT,L
V −ρT,L

A . The decisive condensates contributing to the QCD sum rule forV −A
spectral functions are the four-quark condensates [67]

〈Oµν〉 =
〈
(ūLγ

µλAuL − d̄Lγ
µλAdL)(ūRγ

νλAuR − d̄Rγ
µλAdR)

〉
, (2.157)

following from the difference of the operator product expansions of the currents (2.151) and (2.152).
In vacuum the important condensates have the form

〈OV −A〉 ≡
〈
Oµ

µ

〉
=
〈
(ūγµγ5λ

Au− d̄γµγ5λ
Ad)2

〉
−
〈
(ūγµλ

Au− d̄γµλ
Ad)2

〉
, (2.158)

which becomes, with flavor symmetry imposed,

〈OV −A〉 =
〈
ψ̄γµτaλ

Aψψ̄γµτaλ
Aψ
〉
−
〈
ψ̄γµγ5τaλ

Aψψ̄γµγ5τaλ
Aψ
〉
. (2.159)

It is remarkable that the combination entering〈OV −A〉 can be identified with the order parameter
derived in Eq. (2.142). The concept of order parameters for spontaneous chiral symmetry breaking
built in an abstract way for the condensates in Section 2.3.1is related by the QSR to the meaning of
chiral symmetry in the hadronic spectrum. The importance ofthe four-quark condensates〈OV −A〉
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is thus made obvious. The contribution
〈
O00

〉
, being the rest frame limit of〈Oµν〉 vµvν , obviously

plays an analog role in medium. In [58] these four-quark condensates are used to estimate the
transition line of chiral symmetry restoration in theT -µ-plane. The degeneracy ofρ anda1 meson
admittedly not yet restricts the fate of the spectral functions, since only their difference would
decrease approaching the chirally restored phase. Even thenature ofρ as quark-antiquark state
and thea1 as meson-molecule may be different [68].

So farV −A data have been provided only for vacuum by ALEPH [69] and OPAL[70], where
the semi-hadronicτ decays intoππ andπππ are analyzed. It has been attempted to constrain not
only the running couplingαs from the individual vector and axial-vector spectral functions [71]
but also the condensates of dimension 6, 8, and even dimension 10 and 12 [72–74]. Such analyses
rely on the choice of suitable moments or otherwise improvedweighting of the sum rules. The
vacuum determination of the four-quark condensates in Eq. (2.158) lead to values, which agree
with the factorization hypothesis (vacuum saturation) [75]. Nevertheless, this statements holds
only for the combination〈OV −A〉 in vacuum. It cannot be excluded that cancellation effects occur
and the factorization of individual four-quark condensates fails. From the conceptional point of
view, also ambiguities in the factorization prescription,e.g. for terms of order1/N2

c in dimension
8 condensates [72], question the validity of factorizationfor Nc = 3 colors.

In this chapter all prerequisites for building QCD sum ruleshave been provided. These sum
rules basically relate, via dispersion relations, an integral over a hadronic spectral function to
QCD condensates which enter through an operator product expansion. The condensates are ex-
pectation values which are only partially known. Especially, the four-quark condensates are not
well determined. The condensates are abstract numbers universal to all QSR applications. They
might also measure symmetry effects in QCD. We elaborated onthe spontaneous chiral symmetry
breaking and showed how order parameters could be defined. The last application to parity part-
ners joined all the covered aspects: How does symmetry realize in the hadron spectrum, how is
this related to quantities of QCD, the condensates, and whenis such a condensate a qualified order
parameter?





3 Analysis of QCD Sum Rules

QCD sum rules are now specified for the examplesω meson, nucleon andD meson. We utilize
Borel transformed sum rules in this chapter. Their quantitative evaluation is discussed. The focus
is here on the effects at non-vanishing nuclear densities. The vacuum limits are reproduced along
the way. Numerical evaluations reveal for the light quark sector significant correlations between
the density dependence of four-quark condensates and changes of spectral functions quantified in
moments thereof, e.g. in hadron masses. The case of theD meson is distinct from that. The mass
of heavy quarks cannot be neglected in the OPE calculation; this new scale influences the relative
weights of condensates in the sum rule and thus reshuffles their impact on moments of spectral
functions.

3.1 Light Vector Mesons: ω Meson

The neutral vector mesons, the iso-scalarω meson and the iso-vectorρ0 meson, have been inves-
tigated within the approach of QCD sum rules already in the pioneering works [4], including the
mixing of these mesons [76]. They are described by the currents

j(V )
µ =

1

2

(
ūγµu± d̄γµd

)
, (3.1)

where the upper (lower) sign denotes theV = ω (ρ) vector meson. QCD sum rules for vector
mesons in medium are well documented, cf. [77] for our notation and references therein. The
vector meson is considered at restQ2 ≡ −q2 = −q20 in the nuclear matter frame of reference.
Then, instead of studying the transverse and longitudinal components of the correlator

Πµν(q, v) = i

∫

d4x eiqx〈〈T
[
jVµ (x)jVν (0)

]
〉〉 , (3.2)

if suffices to deal with the contracted partΠ = Πµ
µ/(−3q20).

3.1.1 Hadronic Models

The quantity which will be determined by the QCD sum rule is the ratio of moments, Eq. (2.40),

m2
V (n,M2, s+) =

∫ sV

0 ds ∆Π(s, n) e−s/M2

∫ sV

0 ds ∆Π(s, n) s−1e−s/M2 . (3.3)

In the pole + continuum ansatz this turned out to be just the squared pole mass. In medium the
sum rule relates changes of this quantity to changes of condensates. Whereas on the OPE side the
uncertainties lie in the values of condensates, the hadronic description of changes inmV should be
taken with care. Based on the conceptional restriction thatonly integrals of spectral densities can
be determined, it was early recognized that numerous changes in the form of a spectral function
can for example cause a dropping ofmV . Such reasons can be width effects or multiple peak
shapes, cf. [78–82] for discussions w.r.t. theρ meson or [82–84] for theω meson.
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The interpretation of QSR results allows to restrict hadronic models. In case of the pole ansatz,
the pole mass can be exactly determined. For any model containing more parameters the sum rule
correlates these parameter. To elucidate this aspect consider as model for the spectral function a
Breit-Wigner distribution

∆Π(s) =
1

π

√
sΓ(s)

(s −m2
0)

2 + sΓ2(s)
, (3.4)

wherem0 is the center of the Breit-Wigner curve,Γ(s) the (energy dependent) width. In the limit
Γ(s) = Γ0 → 0 the ansatz reduces to the pole limit∆Π(s) → δ(s −m2

0). For theω meson the
correlation between central massm0 and a constant widthΓ0 is exhibited in Fig. 3.1. The regions
shaded in specific colors correspond to constant momentsmV , while the band denotes the impact
of different threshold parameterssV in the definition ofmV . This figure reveals that passing to a
numerically reduced momentmV is possible by either dropping the mass centerm0 or increasing
the widthΓ0, or a combination of both effects, due to the asymmetry factor e−s/M2

in Eq. (3.3).
The axisΓ0 = 0 recovers the pole ansatz. Note, since mass and width effectscan compensate
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Figure 3.1: Correlation of fixed widthΓ0 and pole mass parameterm0 under
the assumption of constant moments (3.3) for theω meson. Three different
values formV ≡ mω are compared (red, green, blue) and the possible expla-
nations for a decrease ofmω can be read of (see text). The error bands are
due to different values of the thresholds0 (short-dashed line:s0 = 1.7 GeV2,
continuous line:s0 = 1.4 GeV2, long-dashed line:s0 = 1.1 GeV2).

each other, even an increase ofm0 with significant broadening would explain a change ofmV .
The situation of decreasing width but smaller pole mass seems not realistic, especially for a narrow
resonance like theω meson. Modelling the width as in [79],

Γ(s) = Γ0

√

1−m2
π/s

1−m2
π/m

2
0

Θ(s−m2
π) , (3.5)

with the pion massmπ, does not alter these qualitative statements. However, then the slopes in
Fig. 3.1 increase. These results are obtained for a fixed Borel massM2 = 1 GeV2. As test for
the impact of this parameter, the moments, averaged over therange of applied Borel masses, have
been adjusted to be constant. This treatment further increases the error bands and even leads in
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combination with the energy dependent width (3.5) to overlapping bands. This exemplifies the
restrictions laid upon the interpretation of the ratio (3.3), compare also [84].

Experimentally, significant broadening effects have been reported for theω meson by the CB-
TAPS/ELSA collaboration [21]. For theρ meson the CLAS collaboration reported no significant
mass shift but some broadening [22, 23]. In the following we will dwell on the consequences for
the condensates under the hypothesis that the ratio Eq. (3.3) does not increase in a nuclear medium.
This adds some details to the main results already summarized in [25]. There a major motivation
was the observed lowering of theω decay strength inside a nuclear medium [19]. Although these
experimental results are still under debate (for instance the authors of [85] argue that they are not
conclusive due to a particular choice of background separation), our hypothesis would be equally
well supported by considerable broadening effects. Fig. 3.1 showed that also an increase of width
alone drives the general momentmV to smaller values. The expectation that this ratio is not in-
creasing in a medium is therefore a reasonable assumption which alone leads to the consequences
for condensates as published in [25] and complemented hereafter. Note that the vector meson is
considered at rest which stands against a quantitative comparison with experimental results where
the mesons have non-zero three-momentum. Quantitative statements about the moment require
the treatment of final state interaction etc. We restrict ourselves to the qualitative hypothesis, that
mω not increases with increasing baryon density.

3.1.2 QCD Sum Rule

For completeness the essential steps towards the analyzable sum rule equation are collected. The
dispersion relation is improved by two subtractions

Π(V )(Q2, n)

Q2
=

Π(V )(0, n)

Q2
+ Π(V )′(0) +

Q2

π

∫ ∞

0
ds

∆Π(V )(s, n)

s2(s+Q2)
. (3.6)

Any polynomials vanish under Borel transformation (see Section 2.2.2), however, dividing byQ2

the subtraction effect is retained also in the Borel sum rule

BM2

(

Π(V )(Q2, n)

Q2

)

= Π(V )(0, n)− 1

π

∫ ∞

0
ds

∆Π(V )(s, n)

s
e−s/M2

. (3.7)

The l.h.s. is given by the operator product expansion organized in terms of mass dimensiond and
twist τ [77]

Π(V )(Q2, n) = Π
(V )
scalar + Π

(V )
d=4,τ=2 + Π

(V )
d=6,τ=2 + Π

(V )
d=6,τ=4 + . . . , (3.8)

which contains the Wilson coefficients and QCD condensates in

Π
(V )
scalar =− 1

8π2

(

1 +
3αs

4π
CF

)

Q2 ln
Q2

µ2
− 3

8π2
(m2

u +m2
d)

+
1

2

(

1 +
αs

4π
CF

) 1

Q2
〈Ψ|muūu+mdd̄d|Ψ〉+

1

24

1

Q2
〈Ψ|αs

π
G2|Ψ〉

− π

2
αs

1

Q4
〈Ψ|

(
ūγµγ5λ

auūγµγ5λ
au+ d̄γµγ5λ

add̄γµγ5λ
ad
)
|Ψ〉

∓ παs
1

Q4
〈Ψ|

(
ūγµγ5λ

aud̄γµγ5λ
ad
)
|Ψ〉

− π

9
αs

1

Q4
〈Ψ|

(
ūγµλ

auūγµλau+ d̄γµλ
add̄γµλad

)
|Ψ〉

− 2π

9
αs

1

Q4
〈Ψ|

(
ūγµλ

aud̄γµλad
)
|Ψ〉
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+ gs
1

12

1

Q6

(
m2

u〈Ψ|muūσµνG
µνu|Ψ〉+m2

d〈Ψ|mdd̄σµνG
µνd|Ψ〉

)
, (3.9a)

Π
(V )
d=4,τ=2 =

αs

2π
nf

1

Q4
qµqν〈Ψ|ŜT̂

(
G α

µ Gαν

)
|Ψ〉

−
(

2

3
− 5αs

18π
CF

)

i
1

Q4
qµqν〈Ψ|ŜT̂

(
ūγµDνu+ d̄γµDνd

)
|Ψ〉, (3.9b)

Π
(V )
d=6,τ=2 =− 41αs

27π
nf

1

Q8
qµqνqλqσ〈Ψ|ŜT̂

(
G ρ

µ DνDλGρσ

)
|Ψ〉

+

(
8

3
+

67αs

30π
CF

)

i
1

Q8
qµqνqλqσ×

〈Ψ|ŜT̂
(
ūγµDνDλDσu+ d̄γµDνDλDσd

)
|Ψ〉, (3.9c)

Π
(V )
d=6,τ=4 =∓ 1

3

1

Q6
qµqν〈Ψ|g2

s ŜT̂
(
ūγµγ5λ

aud̄γνγ5λ
ad
)
|Ψ〉

− 1

6

1

Q6
qµqν〈Ψ|g2

s ŜT̂
(
ūγµγ5λ

auūγνγ5λ
au+ d̄γµγ5λ

add̄γνγ5λ
ad
)
|Ψ〉

− 1

24

1

Q6
qµqν〈Ψ|g2

s ŜT̂
(
ūγµλ

au
(
ūγνλ

au+ d̄γνλ
ad
))
|Ψ〉

− 1

24

1

Q6
qµqν〈Ψ|g2

s ŜT̂
(
d̄γµλ

ad
(
ūγνλ

au+ d̄γνλ
ad
))
|Ψ〉

− 5

12

1

Q6
qµqν〈Ψ|g2

s ŜT̂

(

ū
[

Dµ, G̃να

]

+
γαγ5u+ d̄

[

Dµ, G̃να

]

+
γαγ5d

)

|Ψ〉

− 7

3

1

Q6
qµqν〈Ψ|g2

s ŜT̂
(
muūDµDνu+mdd̄DµDνd

)
|Ψ〉 . (3.9d)

The operatorŝS, T̂ project on symmetric and traceless terms w.r.t. Lorentz indices. For the Borel
transformed OPE side on the left of Eq. (3.7) one finds then

BM2

(

Π(V )(Q2, n)

Q2

)

= c0M
2 +

∞∑

i=1

ci

(i− 1)!M2(i−1)
, (3.10)

with the coefficient functions given by

c0 =
1

8π2

(

1 +
3αs

4π
CF

)

, (3.11a)

c1 = − 3

8π2
(m2

u +m2
d) , (3.11b)

c2 =
1

2

(

1 +
αs

4π
CF

) (
mu 〈ūu〉vac +md

〈
d̄d
〉

vac
+ σNn

)
+

1

24

[〈αs

π
G2
〉

vac
− 8

9
M0

Nn

]

+

(
1

4
− 5αs

48π
CF

)

A
(u+d)
2 MNn−

3

16
nf
αs

π
AG

2 MNn , (3.11c)

c3 = −112

81
παs

[

κvac
ω 〈q̄q〉2vac + κmed

ω

σN 〈q̄q〉vac
mq

n

]

−
(

5

12
+

67αs

192π
CF

)

A
(u+d)
4 M3

Nn

+
205αs

864π
nfA

G
4 M

3
Nn+

1

4
MNn

(
3

8
K2

u +
3

2
K1

u +
15

16
Kg

u

)

− 7

144
σNM

2
Nn , (3.11d)

where we adopted the notation and values given for the condensates from [77]. Especially, some
further moments of parton distribution functions are used to determine the density dependence of
condensates. The used values in this notation areCF = 4

3 ,nf = 3 ,αs = 0.38 ,mu = 0.004 GeV,

md = 0.007 GeV, mq = 0.0055 GeV, M0
N = 0.77 GeV, A(u+d)

2 = 1.02, Ag
2 = 0.83, MN =
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0.939 GeV, Q0 = 0.15 GeV, fπ = 0.093 GeV, A(u+d)
4 = 0.12, Ag

4 = 0.04, K2
u = 0.11

K1
u = −0.112 ,Kg

u = −0.3, and the saturation densityn0 = 0.15 fm−3.
The evaluation is based on the final Borel sum rule

Π(V )(0, n)− 1

π

∫ ∞

0
ds

ImΠ(V )(s, n)

s
e−s/M2

= c0M
2 +

∞∑

i=1

ci

(i− 1)!M2(i−1)
. (3.12)

The termΠ(V )(0, n) accounts for the Landau damping effect and represents the meson-nucleon
forward scattering amplitude being9n/4MN (n/4MN ) for theω (ρ) meson. Combining this sum
rule with its derivative one obtains the expression for the ratio of generalized moments

m2
ω(n,M2, sV ) =

c0M2
[

1−
(

1 +
sV

M2

)

e−sV /M2
]

− c2
M2
− c3
M4
− c4

2M6

c0
[
1− e−sV /M2

]
+

c1
M2

+
c2
M4

+
c3

2M6
+

c4
6M8

− Π(V )(0, n)

M2

. (3.13)

In this form the QCD sum rule equation will be evaluated below.

3.1.3 Constraints on Four-Quark Condensates

In the following we concentrate on the four-quark condensates entering Eq. (3.9a) for theω meson.
The combined four-quark condensates there

1

2

〈
ūγ5γµλ

Auūγ5γ
µλAu

〉
+

1

2

〈
d̄γ5γµλ

Add̄γ5γ
µλAd

〉
+
〈
ūγ5γµλ

Aud̄γ5γ
µλAd

〉

+
2

9

〈
ūγµλ

Aud̄γµλAd
〉

+
1

9

〈
ūγµλ

AuūγµλAu
〉

+
1

9

〈
d̄γµλ

Add̄γµλAd
〉

=
112

81

(

κvac
ω 〈q̄q〉2vac + κmed

ω 〈q̄q〉vac
σN

mq
n

)

(3.14)

are already present in vacuum. Note that in this case the additional, medium specific, four-quark
condensates in Eq. (3.9d) are directly linked to the parametrizationK1,2

u of twist-4 matrix elements
in the nucleon [77, 86], and are not modified here. This does not suffice to determine all four-quark
condensates in theω sum rule. Using for the investigated four-quark condensates in Eq. (3.14) the
individual parametrizations from Tabs. 2.1 and 2.2 with theslightly different definition ofκ̃4a,v

from [25], the relations

κvac
ω = −2

7
κvac

2v +
9

7
κvac

2a +
Q2

0

π2f2
π

(
9

28
κ̃vac

4a −
1

14
κ̃vac

4v

)

, (3.15)

κmed
ω = −2

7
κmed

2v +
9

7
κmed

2a +
Q2

0

π2f2
π

(
9

28
κ̃med

4a −
1

14
κ̃med

4v

)

(3.16)

elucidate the important point that only statements about certain linear combinations of four-quark
condensates can be derived when comparing to hadronic models. This accounts especially for the
strength of the density dependence of the examined four-quark condensates.

The dependence of the finite density behavior of the momentmω on the value ofκmed
ω is

understood qualitatively as follows. Expand all functionsf(n) according to

f(n) = f (0) + f (1) n

n0
with f (0) = f(0) and f (1) = n0

∂

∂n
f(0) , (3.17)

m2
ω(n,M2, sV ) = R+ ∆

n

n0
, (3.18)
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ci = c
(0)
i + c

(1)
i

n

n0
, (3.19)

sω = s(0)ω + s(1)ω

n

n0
, (3.20)

which gives

R =
1

N

(

c
(0)
0 M2

[

1−
(

1 +
s
(0)
ω

M2

)

e−s
(0)
ω /M2

]

− c
(0)
2

M2
− c

(0)
3

M4
− c

(0)
4

2M6

)

, (3.21)

∆ =
1

NM2

{[
9R

4MN
n0 + c

(0)
0 e−s

(0)
ω /M2

s(1)ω (s(0)ω −R)− c(1)2

(

1 +
R

M2

)]

− c
(1)
3

M2

(

1 +
R

2M2

)

− c
(1)
4

2M4

(

1 +
R

3M2

)}

,

(3.22)

N = c
(0)
0

[

1− e−s
(0)
ω /M2

]

+
c
(0)
1

M2
+
c
(0)
2

M4
+

c
(0)
3

2M6
+

c
(0)
4

6M8
. (3.23)

From the above set of parameters one finds the values ofc
(0)
i andc(1)i , where especially

c
(1)
2 =n0

{
1

2

(

1 +
αs

4π
CF

)

σN −
1

27
M0

N

+

(
1

4
− 5αs

48π
CF

)

A
(u+d)
2 MN −

3

16
nf
αs

π
AG

2 MN

}

, (3.24)

c
(1)
3 =n0

{

−112

81
παsκ

med
ω

σN 〈q̄q〉vac
mq

−
(

5

12
+

67αs

192π
CF

)

A
(u+d)
4 M3

N

+
205αs

864π
nfA

G
4 M

3
N +

1

4
MN

(
3

8
K2

u +
3

2
K1

u +
15

16
Kg

u

)

− 7

144
σNM

2
N

}

. (3.25)

The sign of∆ dictates whether the measuremω decreases or increases in medium. Since the
values ofN are positive for relevant parameters, the qualitative behavior is given by the sign of
the expression in brackets in Eq. (3.22). Assumings

(0)
ω = 1.4 GeV2, s(1)ω = −0.15 GeV2, the

vacuum reference valueR = 0.612 GeV2 andc4 = 0, the sign change is driven byκmed
ω as

M2 = 0.4 GeV2 : ∆ ∝ (1.86 − κmed
ω ) , (3.26)

M2 = 1.0 GeV2 : ∆ ∝ (3.96 − κmed
ω ) , (3.27)

M2 = 2.0 GeV2 : ∆ ∝ (5.32 − κmed
ω ) . (3.28)

In [25] the caseM2 = 1 GeV2 was representative for the numerical evaluation of the sum rule
explained below. The other cases also denote that the critical situation, an approximately constant
momentmω is related toκmed

ω > 1, i.e. the four-quark condensates change stronger than expected
in the factorization picture.

Beyond this estimate the sum rule equation (3.13) is evaluated by numerical means. Therefore
the dependence ofmω on the Borel massM2 has to be reduced. Technically, the threshold pa-
rametersω is optimized to produce a curve of maximum flatness within a certain range of Borel
masses. This range, the so-called Borel window, has to contain physically reasonable values of
the Borel mass. Its borders are here determined by standard criteria: the upper limit is set to
restrict the continuum contribution to the initial hadronic side to at most 50 %; the lower Borel
limit is determined such that the highest dimensional condensates contribute less than 10 % to the
operator product expansion. These criteria are well established for the vector meson sum rules,
however, they cannot be taken as general rules. Since the asymptotic behavior of the OPE in the
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non-perturbative sector is not understood, higher condensates could still spoil the sum rule. Also
extending local quark-hadron duality down to the thresholdsω might not describe the continuum
appropriately. For compatibility we follow in the analysisthese techniques well proven in the
literature. The QSR considered here is fairly robust w.r.t.different evaluation approaches. We
have checked that the method applied to the nucleon, compareSection 3.2, successfully recovers
similar results.

In the vacuum limit the working Borel window isM = 0.8 . . . 2.7 GeV, changing slightly
in medium. The undetermined four-quark condensates are in vacuum adjusted to reproduce the
vacuumω mass withκvac

ω = 2.94. The density dependence of the four-quark condensates is then
adjusted to remain at the same momentmω at a baryon densityn > 0. This depends of course
on the density where the moment is calculated for comparison: The critical values ofκmed

ω for
a constant moment are 4.25 atn = 0.01n0, 4.06 atn = 0.1n0, 3.79 atn = 0.6n0, and 3.57 at
n = n0. Fig. 3.2 shows the squared momentm2

ω for this particular adjustments ofκmed
ω , it exhibits

also the general impact of variations inκmed
ω : mω increases when the density dependence of the

combination of four-quark condensates (3.14) is reduced. In all of the following discussions the
choice of a reference density of 10 percent saturation density is made.
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Figure 3.2: Adjustment ofκmed
ω with c4 = 0 to the case of a non-changed

value ofm2
ω with respect to different reference points in density. Increasing

density dependenceκmed
ω of the combined four-quark condensate suppresses

the momentmω at non-vanishing baryon densityn.

We also estimated the impact of mass dimension 8 condensatesenteringc4. The influence of
c4 is correlated toκmed

ω . Variation ofc(1)4 from 0 . . . 10−5 GeV8 yields the following condition
whenm2

ω is to give the same value in vacuum and at our selected reference density or is even
reduced,

κmed
ω > 4.05 − 2.80 · 103 GeV−8c

(1)
4 (c

(0)
4 = 0) . (3.29)
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The influence of different contributions ofc(0)4 is exemplified in Tab. 3.1. Modifications in the
vacuum sum rule require readjustments to the vacuum mass with κvac

ω . The critical parameters
κmed

ω are not significantly altered.

c
(0)
4 κvac

ω κmed
ω (n = 0.1n0)

−1.0 · 10−3 1.14 3.81

−5.0 · 10−4 2.05 4.36

0.0 2.94 4.06

5.0 · 10−4 3.80 3.75

1.0 · 10−3 4.64 3.48

Table 3.1: The impact of constant dimension 8 condensates on the adjustment
of κvac

ω andκmed
ω . A non-vanishing termc(0)4 requires a readjustment of the

vacuum limit. Also the critical density dependenceκmed
ω to ensure a constant

moment is modified.

Fig. 3.3 collects the essential results: The momentm2
ω is calculated as a function of the baryon

densityn adjusted such that it remains approximately constant at least at small densities. The
critical value therefore isκmed

ω ∝ 4 meaning that four-quark condensates change stronger with
density compared to the factorization hypothesis.

Supplementary, we study the influence of a variation of several input parameters in the QCD
sum rule: For a variation of the vacuum initial moment (vacuum mass)R by±10% one obtains in
the linearized sum rule Eq. (3.18) the values of∆ given in Tab. 3.2.

M2 (a)R = 0.5508 GeV2 (b)R = 0.612 GeV2 (c)R = 0.6732 GeV2

0.4 GeV2 (1.76 − κmed
ω )0.247/n0 (1.86 − κmed

ω )0.311/n0 (1.95 − κmed
ω )0.425/n0

1.0 GeV2 (3.39 − κmed
ω )0.027/n0 (3.96 − κmed

ω )0.028/n0 (4.50 − κmed
ω )0.029/n0

2.0 GeV2 (3.63 − κmed
ω )0.009/n0 (5.32 − κmed

ω )0.009/n0 (6.97 − κmed
ω )0.009/n0

Table 3.2: The value of the analytical estimate∆ in units of GeV2 for 10%
variations of the vacuum limitR = mω(n = 0) usingsω = 1.4 GeV2 −
0.15n/n0 GeV2 andc4 = 0. In all cases a criticalκmed

ω > 1 is found.

If the complete numerical analysis of the QSR equation (3.13) is carried out with the same
modifications, then the new constraints for a decreasing mass at our chosen reference density of
0.1n0 are

(a) R = 0.5508 GeV2 : κvac
ω = 2.35, κmed

ω > 3.37 − 2.99 · 103 GeV−8n0c
(1)
4 ,

(b) R = 0.6120 GeV2 : κvac
ω = 2.94, κmed

ω > 4.05 − 2.80 · 103 GeV−8n0c
(1)
4 ,

(c) R = 0.6732 GeV2 : κvac
ω = 3.63, κmed

ω > 4.76 − 2.43 · 103 GeV−8n0c
(1)
4 .

Again c4 = c
(0)
4 + c

(1)
4 n with c(0)4 = 0 has been used.



3.1 Light Vector Mesons:ω Meson 59

0 0.05 0.10 0.15
0.45

0.50

0.55

0.60

0.65

m
2 ω

[G
e
V

2
]

n [fm
−3

]

Figure 3.3: The mass parameterm2
ω in Eq. (3.3), averaged within the Borel

window, as a function of the baryon density forκN = 4 andc4 = 0 (solid
curve). Note that the parameterm2

ω coincides only in zero-width approxima-
tion with theω pole mass squared; in general it is a normalized moment of
∆Πω to be calculated from data or models. The sum rule Eq. (3.13) is eval-
uated as described in the text with appropriately adjustedκvac

ω . Inclusion of

c
(0)
4 = O(±10−3) GeV8 requires a readjustment ofκvac

ω in the range1 · · · 5
to m(0)2

ω . A simultaneous change ofκmed
ω in the order of 20 % is needed to

recover the same density dependence as given by the solid curve at small val-
ues ofn. The effect of ac(1)4 term is exhibited, too (c(1)4 = ±10−5n−1

0 GeV8:

dashed curves,c(1)4 = ±5× 10−5n−1
0 GeV8: dotted curves; the upper (lower)

curves are for negative (positive) signs).

Finally, the uncertainties emerging from other input parameters are investigated. A conservative
estimate with uncorrelated±10% deviations ofR, αs, mu, md, 〈q̄q〉vac, σN ,

〈
αs

π G
2
〉

vac
, M0

N ,

A
(u+d)
2 , Ag

2, Q0, A(u+d)
4 , Ag

4, K2
u, K1

u, Kg
u, s(0), s(1), with 0.4 GeV2 < M2 < 1.6 GeV2,

2.24 < κvac
ω < 3.64, yields for theω meson

∆ = (a− κmed
ω )

b

n0
GeV2 , (3.30)

where the uncertainties for the standard valuesa = 3.96 andb = 0.0283 are1.24 < a < 9.5,
0.00842 < b < 1.14. This shows how robust the conclusionκmed

ω > 1 would be.
For theρ meson the numerically large Landau damping term pushes up the weighted strength

[87]. Indeed, the term∆ takes for theρ meson the valuesa = −1.07 and b = 0.0283, with
uncertainties−6.79 < a < 0.656, 0.00842 < b < 1.14. The negative value ofa signals that for
any positiveκmed

ρ the ratiom2
ρ will always be decreasing. Note, that the underlying combination

of four-quark condensates slightly differs from that in theω sum rule.
In an analysis of finite energy sum rules for theρ meson [88], the values of four-quark con-

densates enter a third sum rule, where for consistency reasons a strong violation of factorization
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of four-quark condensates is supported, although the authors use finite energy sum rules to avoid
the impact of these dimension 6 condensates. In the vacuum limit, comparable to theω case, the
reported valueκvac

ρ & 4.5 supports our findings. In the medium case strong deviations from fac-
torization are indicated there for theρ meson. The evaluation of finite energy sum rules for theω
meson [84] supports our findings.

Certainly, the errors assigned to the criticalκmed
ω do not allow to determine the density depen-

dence exactly. Nevertheless, the main insight is, that comparisons of hadronic information with
condensates approve serious doubts about the factorization of the four-quark condensates.

Coming back to chiral symmetry, the condensate combinationin Eq. (3.14) reads in terms of
(two-component) flavor vectors

1

2

〈
ūγ5γµλ

Auūγ5γ
µλAu

〉
+

1

2

〈
d̄γ5γµλ

Add̄γ5γ
µλAd

〉
+
〈
ūγ5γµλ

Aud̄γ5γ
µλAd

〉

+
2

9

〈
ūγµλ

Aud̄γµλAd
〉

+
1

9

〈
ūγµλ

AuūγµλAu
〉

+
1

9

〈
d̄γµλ

Add̄γµλAd
〉

=
1

2

〈
ψ̄γ5γµλ

Aψψ̄γ5γ
µλAψ

〉
+

1

9

〈
ψ̄γµλ

Aψψ̄γµλAψ
〉
. (3.31)

This combination could not be directly constructed by a generating operatorΦ in Section 2.4.3.
Under the restriction to the applied definition of potentialorder parameters, spontaneous breaking
of chiral symmetry can therewith not be related to the specific four-quark condensate combination
entering the QCD sum rule for theω meson. However, the change of these four-quark condensate
combination would still signal the complicated modifications of strongly interacting matter in the
vicinity of a nuclear medium.
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3.2 Light-Quark Baryons: Nucleon

The nucleon is of fundamental interest as it represents as carrier of mass the hard core of visible
matter in the universe and thus an important source for gravitation. Our investigations presented
are to be considered in line with previous QCD sum rule investigations [42, 54, 89, 90] for nu-
cleons inside cold nuclear matter, which are also discussedin [91] and continuously explored
in [55, 61, 92–97]. For the nucleon an important dependence of self-energies on four-quark con-
densates was found. Comparisons with results of chiral effective field theory [98], where nucleon
self-energies show strong cancellation effects (i.e. theychange with the same magnitude but have
opposite signs) suggest that the relevant four-quark condensates should be weakly density depen-
dent [42]. The aim is to specify these condensates and their impact on nucleon self-energies.
Chiral effective field theory provides self-energies that our QSR results will be compared to. Parts
of the presented material can be also found in [27].

Basis of the QSR for the nucleon is again a correlator, this time defined as in Eq. (2.19),

Π(q, v) = i

∫

d4x eiqx〈〈T [η(x)η̄(0)]〉〉 , (3.32)

with the nucleon currentη. Following Ioffe [13] one can write down two independent interpo-
lating fields representing the nucleon with the corresponding quantum numbersI(JP ) = 1

2(1
2

+
),

ǫabc[uT
aCγµub]γ5γ

µdc and ǫabc[uT
aCσµνub]γ5σ

µνdc , when restricting to fields that contain no
derivatives and couple to spin12 only.1 Extended forms of the nucleon current include deriva-
tives [99, 100], or make use of tensor interpolating fields [101, 102] (also used to extrapolate the
vacuum nucleon mass via QCD sum rules [103] to (unphysical) larger values obtained on the lat-
tice, comparable to similar efforts within chiral perturbation theory [104]). The complications in
nucleon sum rules can further be dealt with when taking into consideration the coupling of positive
and negative parity states to the nucleon interpolating field [105].

In this work, our structures are always written for the proton; by exchangingu and d the
neutron is obtained. Even the neutron-proton mass difference has been analyzed in this frame-
work [106]. For the case of exact flavor symmetrySU(3)V a compilation of baryon interpolating
fields and their chiral representations is given in [107].

As interpolating field for the nucleon a Fierz rearranged andthus simplified linear combination
is widely used [42]

η(x) = 2ǫabc
{
t[uT

a (x)Cγ5db(x)]uc(x) + [uT
a (x)Cdb(x)]γ5uc(x)

}
, (3.33)

which in the above basis reads

η̃(x) =
1

2
ǫabc

{
(1− t)[uT

a (x)Cγµub(x)]γ5γ
µdc(x) + (1 + t)[uT

a (x)Cσµνub(x)]γ5σ
µνdc(x)

}
.

(3.34)

Both currents,η and η̃, are related by Fierz transformations whereby in such a straightforward
calculation the remaining difference vanishes for symmetry reasons (analog to the exclusion of
Dirac structures in [13] when constructing all possible nucleon fields). The consequence of these
two equivalent representations (3.33) and (3.34) is that two different forms of the OPE arise.
On the level of four-quark condensates the identity is not obvious, but is understood with the
constraints on pure flavor four-quark condensates, Eqs. (2.115), derived in Section 2.4.1. Our
subsequent equations will be given for the ansatz (3.33) with arbitrary mixing parametert. In

1Note, the second term can be rewritten with the identityγ5σ
αβ = i

2
ǫαβµνσµν . The charge conjugation matrix is

defined asC = iγ0γ2.
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nucleon sum rule calculations the particular choice of the field with t = −1, the so-called Ioffe
interpolating field, is preferred for reasons of applicability of the method and numerical stability
of the evaluation procedure (cf. also [108] for a discussionof an optimal nucleon interpolating
field; another choice oft would emphasize the negative-parity state in the sum rule [109]).

3.2.1 QCD Sum Rule Equations

The OPE forΠ(x) is the important step towards the sum rule formulation. Lorentz invariance
and the requested symmetry with respect to time/parity reversal allow the decomposition of the
correlator into invariant functions

Π(q) = Πs(q
2, qv) + Πq(q

2, qv)q/+ Πv(q
2, qv)v/ , (3.35)

wherev again is the four-velocity vector of the medium. The three invariant functions, which
accordingly yield three sum rule equations, can be projected out by appropriate Dirac traces

Πs(q
2, qv) =

1

4
Tr (Π(q)) , (3.36a)

Πq(q
2, qv) =

1

4[q2v2 − (qv)2]

{
v2Tr (q/Π(q))− (qv)Tr (v/Π(q))

}
, (3.36b)

Πv(q
2, qv) =

1

4[q2v2 − (qv)2]

{
q2Tr (v/Π(q))− (qv)Tr (q/Π(q))

}
, (3.36c)

and are furthermore decomposed into even(e) and odd(o) parts w.r.t.qv

Πi(q
2, qv) = Πe

i (q
2, (qv)2) + (qv)Πo

i (q
2, (qv)2) . (3.37)

For the nucleon interpolating field (3.33), this leads to

Πe
s(q

2, (qv)2) = +
c1

16π2
q2 ln(−q2) 〈q̄q〉+ 3c2

16π2
ln(−q2) 〈q̄gs(σG)q〉

+
2c3

3π2v2

(qv)2

q2

(
〈
q̄(viD)2q/v2

〉
+

1

8
〈q̄gs(σG)q〉

)

, (3.38a)

Πo
s(q

2, (qv)2) =− 1

3v2

1

q2
{c1 〈q̄q〉 〈q̄v/q〉}1eff , (3.38b)

Πe
q(q

2, (qv)2) =− c4
512π4

q4 ln(−q2)− c4
256π2

ln(−q2)
〈αs

π
G2
〉

+
c4

72π2v2

(

5 ln(−q2)− 8(qv)2

q2v2

)

〈q̄v/(viD)q〉

− c4
1152π2v2

(

ln(−q2)− 4(qv)2

q2v2

)〈αs

π
[(vG)2 + (vG̃)2]

〉

− 1

6

1

q2

{

c1 〈q̄q〉2 +
c4
v2
〈q̄v/q〉2

}q

eff
, (3.38c)

Πo
q(q

2, (qv)2) = +
c4

24π2v2
ln(−q2) 〈q̄v/q〉+ c5

72π2v2

1

q2
〈q̄gsv/(σG)q〉

− c4
12π2v2

1

q2

(

1 +
2(qv)2

q2v2

)(
〈
q̄v/(viD)2q/v2

〉
+

1

12
〈q̄gsv/(σG)q〉

)

,

(3.38d)

Πe
v(q

2, (qv)2) = +
c4

12π2v2
q2 ln(−q2) 〈q̄v/q〉 − c5

48π2v2
ln(−q2) 〈q̄gsv/(σG)q〉

+
c4

2π2v4

(qv)2

q2

(
〈
q̄v/(viD)2q/v2

〉
+

1

12
〈q̄gsv/(σG)q〉

)

, (3.38e)
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Πo
v(q

2, (qv)2) = +
c4

288π2v4
ln(−q2)

〈αs

π
[(vG)2 + (vG̃)2]

〉

− 5c4
18π2v4

ln(−q2) 〈q̄v/(viD)q〉 − 1

3v2

1

q2

{ c4
v2
〈q̄v/q〉2

}v

eff
, (3.38f)

where theci(t)’s, being polynomials of the mixing parametert, are

c1 = 7t2 − 2t− 5 , (3.39a)

c2 = −t2 + 1 , (3.39b)

c3 = 2t2 − t− 1 , (3.39c)

c4 = 5t2 + 2t+ 5 , (3.39d)

c5 = 7t2 + 10t+ 7 . (3.39e)

Numerical values for condensates are collected in Section 2.3.2.
In Eqs. (3.38) the contributions from four-quark condensates are written as the usual factorized

result denoted by{. . .}1,q,v
eff ; full expressions which replace and overcome this simplification are

the focus of Section 3.2.2 (see especially Eqs. (3.50) below). Note that, in contrast to the OPE for
light vector mesons Eqs. (3.8) and (3.9), four-quark condensates enter already without a factorαs

(the strong coupling), and the chiral condensate〈q̄q〉 does not appear in a renormalization invariant
combination with the quark mass.

We utilize the weighted sum rule in the form of Eq. (2.43) repeated here as basis for our
investigations

(E − Ē)
1

π

∫ ω+

0
dω∆Π(ω)e−ω2/M2

= Πe(M2)− 1

π

∫ ∞

ω+

dωωΠe
per(ω)e−ω2/M2

−Ē
{

Πo(M2)− 1

π

∫ ∞

ω+

dωΠo
per(ω)e−ω2/M2

}

+
1

π

∫ −ω+

ω−

dω∆Π(ω)[ω − Ē]e−ω2/M2
.

(3.40)

In general, the Dirac structure of∆Π would require definitionsEi, Ēi to account for the distinct in-
variant functions(i = s, q, v) of the decomposition (3.35). In the case considered here we assume
that these weighted moments coincide withEs,q,v = E (analogouslyĒ). Also for the threshold
parametersω± we use common values for thes, q, v parts. For shortness, in the shown Borel
transformed equations the decomposed terms are symbolically rearranged to full Dirac structures.

It should be emphasized that the applied sum rule Eq. (3.40) is for a certain, weighted moment
of a part of the nucleon spectral function. Without further assumptions, local properties of∆Π(ω)
cannot be deduced. Note also that in this form the anti-nucleon enters inevitably the sum rule. The
reasoning behind the choice of the combined sum rule, Eq. (2.42), with the momentsE andĒ,
Eqs. (2.41), is that in mean field approximation, where self-energy contributions in the propagator
are real and energy-momentum independent (cf. also [42]), the pole contribution of the nucleon
propagatorG(q) = (q/−MN − Σ)−1 can be written as

G(q) =
1

1− Σq

q/+M∗
N − v/Σv

(q0 − E+)(q0 − E−)
. (3.41)

Pauli corrections to positive-energy baryons and propagation of holes in the Fermi sea give rise
to an additional pieceGD(q) ∝ Θ(| ~qF | − |~q |) [110] vanishing for nucleon momenta~q above
the Fermi surface| ~qF | considered here. The self-energyΣ is decomposed into invariant structures
Σ = Σ̃s+Σqq/+Σ̃vv/ [111] (for mean fieldΣq = 0), where one introduces scalarΣs = M∗

N−MN

and vector self-energiesΣv, which are related to the decomposition as [42]

M∗
N =

MN + Σ̃s

1−Σq
, Σv =

Σ̃v

1− Σq
. (3.42)
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In the rest frame of nuclear matter the energy of the nucleon isE+, correspondinglyE− that of
the antinucleon excitation, where

E± = Σv ±
√

~q 2 +M∗2
N . (3.43)

Since the sum rule explicitly depends on the nucleon momentum, however, the self-energyΣ as
well as invariant structuresΣi and derived quantities acquire now a momentum dependence and
become functions of the Lorentz invariantsq2, qv andv2, extending mean field theory towards
the relativistic Hartree-Fock approximation [110]. Eq. (3.41) is giving rise to a discontinuity
∆G(q0) = 1

2i limǫ→0(G(q0 + iǫ)−G(q0 − iǫ)) with a simple pole structure

∆G(q0) =
π

1− Σq

q/+M∗
N − v/Σv

E+ − E−
(δ(q0 − E−)− δ(q0 −E+)) , (3.44)

where the general expression, Eq. (2.41), identifies the moment Ē with the anti-nucleon pole
energyE− for all 3 Dirac structures (analogously,E is identified withE+). Then the l.h.s. of the
sum rule (3.40) reads

(E − Ē)
1

π

∫ ω+

0
dω∆Π(ω)e−ω2/M2

= − λ2
N

1− Σq
(q/+M∗

N − v/Σv)e
−E2

+/M2
. (3.45)

Here,λN enters through the transition from the correlator in terms of quarks (3.32) to the nucleon
propagator (3.41), compare Eq. (2.1)-(2.3), and can be combined into an effective couplingλ∗2N =

λ2
N

(1−Σq) . More general one can interpret Eq. (3.45) as parametrization of the l.h.s. of (3.40), where

integrated information of∆Π is mapped onto the quantitiesM∗
N , Σv, λ∗2N andE±, which are

subject of our further analysis, by virtue of Eqs. (3.36)

−λ∗2NM
∗
Ne

−E2
+/M2

= (E − Ē)
1

π

∫ ω+

0
dω∆Πs(ω)e−ω2/M2

, (3.46a)

−λ∗2N e
−E2

+/M2
= (E − Ē)

1

π

∫ ω+

0
dω∆Πq(ω)e−ω2/M2

, (3.46b)

λ∗2N Σve
−E2

+/M2
= (E − Ē)

1

π

∫ ω+

0
dω∆Πv(ω)e−ω2/M2

. (3.46c)

Due to the supposed pole structure in (3.41) the self-energycomponents are related toE± (or
more general toE andĒ) and the relations from distinct Dirac structures are coupled equations.
The given general spectral integrals however not yet relatethe unknown quantities, so that our
numerical results presented here are not completely independent of the given nucleon propagator
ansatz. These relations highlight also the dependence on the Borel massMwhich determines how
the spectral density is weighted in the general spectral integrals on the right hand sides.

In [112], it has been pointed out, thatΠ also contains chiral logarithms, e.g.
◦ 2
mπ log

◦ 2
mπ,

which, however, do not appear in the chiral perturbation theory expression forMN . It was ar-
gued [113, 114] that low-lying continuum likeπN excitations aroundMN cancel such unwanted
pieces. In this respect, the parametersM∗

N , Σq, Σv in Eqs. (3.46) are hardly to be identified with
pure nucleon pole characteristics, but should be considered as measure of integrated strength of
nucleon like excitations in a given interval. Moreover, many hadronic models point to a quite dis-
tributed strength or even multi-peak structures (e.g. [115]). The importance of an explicit inclusion
of scattering contributions in the interval0 . . . ω+ has been demonstrated in [59, 116, 117] for fi-
nite temperature effects on the in-medium nucleon. In vacuum QCD sum rules for baryons, e.g.
the nucleon, improvement of the continuum treatment is achieved by the inclusion of negative-
parity states, which are equally described by a given correlation function as the corresponding
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positive-parity states [105, 109, 118–120]. Resorting to integrated strength distributions avoids
these problems, but loses the tight relation to simple pole parameters.

Eq. (3.40) is the sum rule we are going to evaluate with respect to the above motivated identi-
fications. Inserting the decomposition (3.35) with Eqs. (3.36)-(3.38) we arrive at the three coupled
sum rule equations

λ∗2NM
∗
Ne

−(E2
+−~q 2)/M2

= A1M4 +A2M2 +A3 , (3.47a)

λ∗2N e
−(E2

+−~q 2)/M2
= B0M6 +B2M2 +B3 +B4/M2 , (3.47b)

λ∗2N Σve
−(E2

+−~q 2)/M2
= C1M4 + C2M2 + C3 , (3.47c)

with coefficients

A1 = − c1
16π2

E1 〈q̄q〉 , (3.48a)

A2 = − 3c2
16π2

E0 〈gsq̄σGq〉 , (3.48b)

A3 = − 2c3
3π2

~q 2

(

〈q̄iD0iD0q〉+
1

8
〈gsq̄σGq〉

)

− 1

3
E− {c1 〈q̄q〉 〈q̄v/q〉}1eff , (3.48c)

B0 =
c4

256π4
E2 , (3.48d)

B2 =
c4E0

24π2
E−

〈

q†q
〉

− 5c4E0

72π2

〈

q†iD0q
〉

+
c4E0

256π2

〈αs

π
G2
〉

+
c4E0

1152π2

〈αs

π
[(vG)2 + (vG̃)2]

〉

, (3.48e)

B3 =
c4~q

2

9π2

〈

q†iD0q
〉

− c4~q
2

288π2

〈αs

π
[(vG)2 + (vG̃)2]

〉

+
c5E−

72π2

〈

gsq
†σGq

〉

− c4
4
E−

(〈

q†iD0iD0q
〉

+
1

12

〈

gsq
†σGq

〉)

+
1

6

{

c1 〈q̄q〉2 +
c4
v2
〈q̄v/q〉2

}q

eff
,

(3.48f)

B4 =
c4

6π2
~q 2

(〈

q†iD0iD0q
〉

+
1

12

〈

gsq
†σGq

〉)

, (3.48g)

C1 =
c4

12π2
E1

〈

q†q
〉

, (3.48h)

C2 =
5c4

18π2
E0E−

〈

q†iD0q
〉

− c4E0

288π2
E−

〈αs

π
[(vG)2 + (vG̃)2]

〉

− c5E0

48π2

〈

gsq
†σGq

〉

,

(3.48i)

C3 =
c4

2π2
~q 2

(〈

q†iD0iD0q
〉

+
1

12

〈

gsq
†σGq

〉)

+
1

3
E−

{ c4
v2
〈q̄v/q〉2

}v

eff
, (3.48j)

and factorsEj emerging from continuum contributions, with the definitions0 = ω2
+ − ~q 2,

E0 = 1− e−s0/M2
, (3.49a)

E1 = 1−
(

1 +
s0
M2

)

e−s0/M2
, (3.49b)

E2 = 1−
(

1 +
s0
M2

+
s20

2M4

)

e−s0/M2
, (3.49c)

and the asymmetric continuum threshold integral in Eq. (3.40) neglected. The list (3.48) is ex-
haustive for all condensates up to mass dimension 5 in the limit of vanishing quark masses.
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Note that nucleon QCD sum rules in the vacuum case are included: Thereby only Eqs. (3.47a)
and (3.47b) remain, the condensates entering the r.h.s. of Eq. (3.47c) vanish at zero density as
well as the vector-self energyΣv on the left hand side. Also the pole energies are simplified to
E+ = −E−. Care should be taken with condensate projections. They change qualitatively when
the impact of the medium, accounted for by projection ontov, is absent.

3.2.2 Impact of Four-Quark Condensates

We are especially concerned with the impact of four-quark condensates on the nucleon self-
energies. The full expressions for the four-quark condensates in the orderα0

s, abbreviated in
Eqs. (3.38) and (3.48) so far symbolically, are

{c1 〈q̄q〉 〈q̄v/q〉}1eff =
3

2
ǫabcǫa′b′c

(

−2c2

〈

ūa′

v/uaūb′ub
〉

+ c6

〈

ūa′

v/uad̄b′db
〉

− 3c2

〈

ūa′

uad̄b′v/db
〉

+c7

〈

ūa′

γ5γκu
ad̄b′σλπd

bǫκλπξvξ

〉)

, (3.50a)

{

c1 〈q̄q〉2 +
c4
v2
〈q̄v/q〉2

}q

eff
= ǫabcǫa′b′c

(

2c9

〈

ūa′

γτu
aūb′γτub

〉

− 2c9

〈

ūa′

v/uaūb′v/ub/v2
〉

+ 4t
〈

ūa′

γ5γτu
aūb′γ5γ

τub
〉

− 4t
〈

ūa′

γ5v/u
aūb′γ5v/u

b/v2
〉

− 9c2

〈

ūa′

uad̄b′db
〉

+
9

2
c2

〈

ūa′

σκλu
ad̄b′σκλdb

〉

− 9c2

〈

ūa′

γ5u
ad̄b′γ5d

b
〉

+ c10

〈

ūa′

γτu
ad̄b′γτdb

〉

− 2c9

〈

ūa′

v/uad̄b′v/db/v2
〉

+c8

〈

ūa′

γ5γτu
ad̄b′γ5γ

τdb
〉

− 4t
〈

ūa′

γ5v/u
ad̄b′γ5v/d

b/v2
〉)

,

(3.50b)

{ c4
v2
〈q̄v/q〉2

}v

eff
= ǫabcǫa′b′c

(

−c9
〈

ūa′

γτu
aūb′γτub

〉

+ 4c9

〈

ūa′

v/uaūb′v/ub/v2
〉

− 2t
〈

ūa′

γ5γτu
aūb′γ5γ

τub
〉

+ 8t
〈

ūa′

γ5v/u
aūb′γ5v/u

b/v2
〉

− c9
〈

ūa′

γτu
ad̄b′γτdb

〉

+ 4c9

〈

ūa′

v/uad̄b′v/db/v2
〉

−2t
〈

ūa′

γ5γτu
ad̄b′γ5γ

τdb
〉

+ 8t
〈

ūa′

γ5v/u
ad̄b′γ5v/d

b/v2
〉)

. (3.50c)

Here, additional polynomials which express the mixing of interpolating fields are

c6 = t2 − 2t+ 1, (3.51a)

c7 = t2 − t, (3.51b)

c8 = 9t2 + 10t+ 9, (3.51c)

c9 = t2 + 1, (3.51d)

c10 = 11t2 + 6t+ 11. (3.51e)

These expressions extend the non-factorized four-quark condensates for the nucleon in vacuum
listed in [33, 59].
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Parametrization

Similar to the case of theω meson the individual four-quark condensates can be parametrized
according to Tabs. 2.1 and 2.2. However, numerically only a statement about the obtained lin-
ear combinations of four-quark condensates can be made. Therefore we work with effective
parametrizations for the combinations (3.50). The contraction of tensors in color space,ǫabcǫa′b′c,
also exhibits the linear combination of two independent color structures of four-quark conden-
sates, compare Eq. (2.110). In the sum rule analysis this is collected in the parametersκmed

s , κmed
q ,

κ̃med
v describing the density dependence as

{c1 〈q̄q〉 〈q̄v/q〉}1eff = c1

(

κmed
s 〈q̄q〉vac

3

2
n

)

, (3.52a)

{

c1 〈q̄q〉2 +
c4
v2
〈q̄v/q〉2

}q

eff
= c1

(

κvac
q 〈q̄q〉2vac + κmed

q 〈q̄q〉vac
σN

mq
n

)

, (3.52b)

{ c4
v2
〈q̄v/q〉2

}v

eff
= c4

(

κ̃med
v 〈q̄q〉vac

σN

mq
n

)

, (3.52c)

and have to be specified for a mixing parametert. Here, we restrict the discussion to the limit
of the Ioffe interpolating field,t = −1. Note again, theκmed values are effective combinations
representing the density dependence of the respective condensate lists (3.50) and thus e.g. neg-
ativeκmed, a four-quark condensate behavior contrary to the factorization assumption, comprise
cancellation effects within these condensate combinations. The sum rule is only sensitive to these
effective combinations and can thus only reveal information on the behavior of these specific linear
combinations of four-quark condensates.

The density dependence of four-quark condensates specific to this sum rule was calculated
within a perturbative chiral quark model (PCQM) [60] and further analyzed in [61]. With our
translation in Tab. 2.3 these values can be used to calculatethe respective effective parameters

κmed (apart from the term∝
〈

ūa′

γ5γκu
ad̄b′σλπd

b
〉

N
ǫκλπξvξ not considered in [60], which we

had to neglect in the determination ofκmed
s )

κmed
s = −0.25 , κmed

q = −0.10 , κ̃med
v = −0.03 . (3.53)

Interestingly, individualκmed parameters are not small compared to these effective numbers in-
dicating significant cancellation effects in the density dependent parts of combined four-quark
condensates. Moreover, for pure flavor four-quark condensates the ambiguity due to Fierz rela-
tions between condensates does not allow to prefer a specificfour-quark condensate in the sum
rule. This equivalence of certain four-quark condensate combinations has to be respected, espe-
cially when such matrix elements are derived independently, as for example in [60]. Finally, notice
some difference to the OPE part stated in equations (87)-(89) of [61] for the whole combination
of the density dependent four-quark condensate contribution. Our equivalent OPE calculation
utilizing the same nucleon four-quark expectation values (encoded inκmed

s,q , κ̃med
v as above) yields

Π4q =

(

0.49
(qp)

MN
1+ 0.52q/ + 0.57

(qp)

M2
N

v/

) 〈q̄q〉
q2

n , (3.54)

as defined in [61] withp = MNv.

Approximations

The QCD sum rule evaluation for light vector mesons in Section 3.1 was carried out on the basis
of an equation for a generalized moment optimized for maximum flatness w.r.t. the Borel win-
dow. This, however, includes derivative sum rules and seemsnot to be appropriate in the case
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of fermions where the condensates are distributed over coupled sum rule equations for several
invariant functions due to the Dirac structure. This disentanglement of condensates likewise im-
pedes the application of convergence rules for the operatorproduct expansion to specify a working
Borel window. Despite of this, equations for the self-energies can be formed dividing Eqs. (3.47a)
and (3.47c) by (3.47b) thus arriving at a generalization of Ioffe’s formula [13] for the nucleon vac-
uum mass. Approximated forms incorporating only lowest dimension condensates are sometimes
used as estimates for in-medium nucleon self-energies [121, 122],

Σv =
64π2

3M2

〈

q†q
〉

= 0.36 GeV
n

n0
, (3.55)

Σs = −MN −
8π2

M2
〈q̄q〉 = −0.37 GeV

n

n0
, (3.56)

atM2 = 1 GeV2. Within chiral effective field theory such a direct dependence of the reduction
of the in-medium nucleon mass on the change of the chiral condensate, obtained in the same
framework, seems to be ruled out [123].

Although to be confirmed by dedicated sum rule analysis, it isinstructive to understand the
impact of four-quark condensates at finite density from naive decoupled self-energy equations
linearized in density. For fixed Borel massM2 = 1 GeV2, thresholds0 = 2.5 GeV2 and
condensates listed in Section 2.3.2, the self-energies become independent when a constantE− =
−MN is assumed; withκvac

q adjusted to yield the vacuum nucleon mass the self-energiesare
estimated as

Σv = (0.16 + 1.22κ̃med
v ) GeV

n

n0
, (3.57)

Σs = −(0.32 + 0.11κmed
s − 0.31κmed

q ) GeV
n

n0
. (3.58)

Indeed at small values of the Fermi momentumkF the impact ofκmed
s , κmed

q and κ̃med
v is as

follows: The vector self-energyΣv only depends oñκmed
v , the scalar self-energyΣs is effected

by κmed
s andκmed

q , whereby a negativeκmed
s works equivalent to a positive value forκmed

q and
vice versa. Comparable effects inΣs point out that a characteristic value ofκmed

s is three times
the corresponding absolute value ofκmed

q . Whereas this qualitative estimate from Eqs. (3.57)
and (3.58) is in line with the numerical analysis below for small densitiesn < 0.7n0 corresponding
to Fermi momentakF = (3π2n/2)1/3 < 1.2 fm−1, the limit of constant four-quark condensates
deviates from the widely excepted picture of cancelling vector and scalar self-energies which can
be traced back to competing effects of higher order condensates. Since even in the small density
limit for constant four-quark condensates the estimated ratio Σv/Σs ∼ 1

2 cannot be confirmed
numerically, these estimates cannot substitute a numerical sum rule evaluation.

Numerical Analysis

In order to investigate numerically the importance of the three combinations of four-quark con-
densates entering the sum rule equations (3.47) at finite baryon density we perform an evalua-
tion for fixed continuum threshold parameters0 = 2.5 GeV2 in a fixed Borel windowM2 =
0.8 . . . 1.4 GeV2. Since we are especially interested in medium modificationswe use all sum rule
equations although chiral-odd sum rule equations have beenidentified more reliable in the vacuum
case [124] (however note that instanton contributions might change the relevance of particular sum
rule equations [125, 126]).

Technically we follow the method used in [89, 127]: Eqs. (3.47) are divided to obtain equal left
hand sidesL ≡ λ∗2N e

−(E2
+−~q 2)/M2

. For an exact solution the four extracted terms,L and the right
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hand sidesRs,q,v, had to be equal. However, this equality cannot be guaranteed in an extended
range of Borel masses, the Borel window. Therefore one proceeds to minimize the difference of
these four different terms in a given Borel window. A logarithmic deviation measure

∆(M∗
N ,Σv, λ

∗
N , s0;M2) = ln

max(L,Rs, Rq, Rv)

min(L,Rs, Rq, Rv)
, (3.59)

averaged over the Borel window, is therefore optimized as function ofM∗
N , Σv, andλ∗N using

established numerical, multi-dimensional optimization routines. Similar results are obtained if
one uses for example as quadratic deviation measure the sum

∑

i=s,q,v(L−Ri)
2/(L+Ri)

2 over
the equations (3.47). Casually, such optimization methodsyield in contrast to mass equations
additional information about the coupling, hereλ∗N , between the physical hadron state and its
interpolation field.
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Figure 3.4: Nucleon vector and scalar self-energies as functions of thenucleon
Fermi momentumkF = (3π2n/2)1/3. The sum rule result for constant four-
quark condensates (QSR with constant fqc:κmed

s = κmed
q = κ̃med

v = 0,
solid curve) is compared to an evaluation with density dependent four-quark
condensates as given in Eqs. (3.53) (QSR with fqc from PCQM, dotted curves).
The latter choice causes only minor differences inΣv andΣs, for the scalar
self-energy also because of competing impact ofκmed

s andκmed
q . The self-

energies from chiral effective field theory [26] (ChEFT, dashed curves) are
shown as well but should be used as comparison only at small densities.

The results of these numerical evaluations for a nucleon on the Fermi surface|~qF | = kF are
summarized in Figs. 3.4-3.9. Fig. 3.4 shows the scalar and vector self-energies of the nucleon as a
function of the Fermi momentum. The situation with four-quark condensate combinations (3.52a)-
(3.52c) kept constant at their vacuum value (i.e.κmed

s = κmed
q = κ̃med

v = 0) is compared to
the QCD sum rule evaluation withκ parameters from Eqs. (3.53). The results have the same
qualitative behavior as self-energies determined from chiral effective field theory with realistic
NN potentials [26, 98].
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Figure 3.5: The variation of nucleon self-energies (upper panel) and the effec-
tive coupling (lower panel) for different assumptions of the density dependence
of the four-quark condensates in Eq. (3.47a) parametrized by κmed

s ; other four-
quark condensate combinations are held constant (κmed

q = κ̃med
v = 0).
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the four-quark condensates in Eq. (3.47b),κmed
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v = 0.
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Figure 3.7: The same as Fig. 3.5 but for a variation of the parameterκ̃med
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the four-quark condensates in Eq. (3.47c),κmed
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q = 0.

Figs. 3.5, 3.6 and 3.7 exhibit the impact of the 3 different four-quark condensate combinations:
The vector self-energy is, in agreement with Eq. (3.57), mainly determined byκmed

v especially for
small densities (for positive values ofκmed

v even the qualitative form of the vector self-energy
changes),κmed

q has only small impact, andκmed
s does not effectΣv at all. The scalar self-energy,

in contrast, is influenced by all 3 combinations, whereby thechange ofκmed
v is only visible for

Fermi momentakF > 0.8 fm−1 as also suggested by Eq. (3.58). Figs. 3.5 and 3.6 also revealthe
opposed impact ofκmed

s versusκmed
q .

A variation ofs0 is not crucial (see Fig. 3.8). The inclusion of anomalous dimension factors in
the sum rule equations as in [89, 90] leads to a reduction ofΣv in the order of20% but causes only
minor changes inΣs. Thereby the naive choice of the anomalous dimension from the factorized
form of the four-quark condensates leaves space for improvement since it is known that four-quark
condensates mix under renormalization [128]. Our analysisconcentrates on the impact of four-



3.2 Light-Quark Baryons: Nucleon 73

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

0.4

0.2

0.00.0

−0.2

−0.4

−0.6

Σ
v
[G

e
V

]
Σ

s
[G

e
V

]

kF [fm
−1

]

s0 = 2.5 GeV
2

s0 = 2.0 GeV
2

s0 = 3.0 GeV
2

Figure 3.8: The impact of different threshold parameterss0 on the nucleon
self-energies for the case of constant four-quark condensates, i.e. forκmed

s =
κmed

q = κ̃med
v = 0.

quark condensates, but also the variation of the density dependence of further condensates can
change the result. For example, a large change of the densitybehavior of the genuine chiral con-
densate, as determined by theσN term, by factor 2{0.5} leads to 8 % decrease{4 % increase} in
the effective mass parameterM∗

N atkF ∼ 0.8 fm−1, while Σv is less sensitive. Correspondingly,
the effective couplingλ∗2N is reduced by 10 %{enhanced by 5 %}.

An improved weakly attractive cancellation pattern between Σs (attraction) andΣv (repul-
sion), and thus agreement with chiral effective field theory[26], can be achieved for a parameter
setκmed

s = 1.2, κmed
q = −0.4, κmed

v = 0.1 (see Fig. 3.9). However, such a fit would allow larger
values ofκmed

s compensated by a larger magnitude of the negative value ofκmed
q and vice versa.

Note that in both ways the factorization limitκmed
s,q = 1 is violated by one or the other four-quark

condensate combination. Such optimizedκ parameters, adjusted to results of [26], deviate notice-
ably from those in Eqs. (3.53) deduced from [60]. To be comparable to theω case in Fig. 3.3,
the same results are again exhibited in Fig. 3.10, now as function of the density. Slight deviations
between the QSR results and values from chiral effective field theory arise already for densities
n > n0/3.

Quantities characterizing the energy of an excitation withnucleon quantum numbers areM∗
N

andE+, introduced in Eq. (3.41). SinceΣs is negative,M∗
N drops continuously with increasing

density achieving a value of about540 MeV at nuclear saturation density (corresponding tokF ∼
1.35 fm−1) if extrapolated from the optimized fit in Fig. 3.9. The energy E+ barely changes as
function ofkF .

The behavior of the effective coupling parameter as function of the Fermi momentum is also
investigated in Figs. 3.5-3.7. The maximum impact ofκmed

s {κmed
q } on λ∗2N is 6 % {3 %} at

kF ∼ 0.8 fm−1. In the extreme case,̃κmed
v = 1 leads to a 40 % increase ofλ∗2N . The variation
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Figure 3.9: QCD sum rule evaluations of nucleon self-energies with the pa-
rameter setκmed

s = 1.2, κmed
q = −0.4, κ̃med

v = 0.1 (dash-dotted curves)
compare to chiral effective field theory [26] with realisticNN forces as input.

of this coupling as a function ofkF is in the order of 10 % in the optimized scenario of Fig. 3.9.
Generally, specific assumptions on the four-quark condensates can cause a decrease or an increase
as well. This alternation ofλ∗2N has already been pointed out in [89], whereby their assumptions
yield even a±20 % change at nuclear density compared to the vacuum limit (cf. also [101]).
The vacuum limit of the calculatedλ∗2N agrees with the existing range of values (see [108] for a
compilation of results for the coupling strength of the nucleon excitation to the interpolating field
in vacuum).

These investigations show that nucleon self-energies are subject to numerous four-quark con-
densates. Originating from the color structure of baryons the four-quark condensates entering
here cannot be translated to those in theω sum rule. Although a few constraints on their density
dependence could be derived, their significance for spontaneous break-down of chiral symmetry
remains an open issue. One of the elementary limitations is,like for theω meson, that the four-
quark condensate combinations entering QCD sum rules for a specific hadron cannot be directly
linked to order parameters in the sense of definition (2.64).

For instance, in vacuum nucleon QCD sum rules the four-quarkcondensate combination (the
vacuum limit of Eq. (3.50b) with isospin symmetry being applied; ψ is the flavor vector) can be
divided into a part being invariant underSU(nf )A in the Wigner-Weyl phase

[
2(2t2 + t+ 2)

〈
ψ̄γµψψ̄γ

µψ
〉

+ (3t2 + 4t+ 3)
〈
ψ̄γ5γµψψ̄γ5γ

µψ
〉]

− 3

4

[
2(2t2 + t+ 2)

〈
ψ̄γµλ

Aψψ̄γµλAψ
〉

+ (3t2 + 4t+ 3)
〈
ψ̄γ5γµλ

Aψψ̄γ5γ
µλAψ

〉]
,

(3.60)
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Figure 3.10: Nucleon vector and scalar self-energies as a function of the
baryon densityn at T = 0 for the special choice ofκmed

s , κmed
q , κ̃med

v used
in Fig. 3.9. In this view the deviations from a linear change of the self energies
can be read off. This figure is to be compared to Fig. 3.3 for theω meson.

and a part which breaks this symmetry (pointed out in factorized form already in [109])
[

3(t2 − 1)

(
〈
ψ̄ψψ̄ψ

〉
+
〈
ψ̄γ5ψψ̄γ5ψ

〉
− 1

2

〈
ψ̄σµνψψ̄σ

µνψ
〉
)]

− 3

4

[

3(t2 − 1)

(
〈
ψ̄λAψψ̄λAψ

〉
+
〈
ψ̄γ5λ

Aψψ̄γ5λ
Aψ
〉
− 1

2

〈
ψ̄σµνλ

Aψψ̄σµνλAψ
〉
)]

.

(3.61)

In the preferred caset = −1 only the first part, the invariant contribution (3.60), survives. Would
this first part be non-zero, then one could try to quantify thespontaneous breaking of theSU(nf )A
symmetry in the Nambu-Goldstone phase. However, the first combination (3.60) contains con-
densates that could not be directly constructed from a correlator like (2.64), cf. Tab. 2.4. The
four-quark condensates in the nucleon sum rule thus appear to mix with non-order parameters.
These cannot measure pure symmetry effects but are object toother modifications of the QCD
ground state at non-vanishing nuclear density as well. In the nucleon sum rule such conclusions
are impeded by the interplay of the different linear combinations of four-quark condensates.

A strict statement requires to reorganize the basis of four-quark condensates w.r.t. the possible
representations by the commutator in Eq. (2.64) including flavor symmetry and Fierz relations.
Note that these results would still be confined to the two flavor case. The opposed numerical
impact of two combinations here would even not allow a precise statement from the comparison
to (otherwise provided) self-energies. Finally, there arearguments that doubt that condensate
changes in medium are pure symmetry restoration effects. The change of the chiral condensate,
for example, might partially originate from virtual low-momentum pions and thus could not clearly
signal partial restoration of chiral symmetry in matter [114].
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Additional insight into the change of four-quark condensates could be acquired from other
hadronic channels, as the generalization of further baryonsum rules in vacuum [127, 129, 130] to
the medium case, e.g. for the∆ [131, 132]. What their role as order parameters of spontaneous
chiral symmetry breaking is concerned, the study of chiral partners is a promising alternative for
undisturbed statements on measures for chiral symmetry breaking. An analogy to the difference
between vector and axial-vector correlators in the baryon sector is challenging.

The impact of four-quark condensates on hadronic quantities was studied for theω meson and
the nucleon as function of the nuclear density. The main results of these numerical studies are ex-
hibited in Figs. 3.3 and 3.10. In both cases a specific densitydependence of (different) four quark
condensate combinations had to be assumed. Whereas for theω example this density dependence
turned out stronger than the factorization hypothesis would suggest, it is not uniquely determined
for the nucleon case. Here three combinations enter but the results also disprove the factorization
limit for four-quark condensates.
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3.3 Pseudoscalar Heavy-Light Quark Mesons: D Meson

The description of properties of charmed mesons is increasingly important in view of the upcoming
experimental prospects at FAIR with its dedicated possibilities to study the in-medium effects of,
especially,D mesons. Due to the quantum numbers one could expect in-medium modifications of
excitation strength similar to effects reported for kaons [133, 134], a down shift ofK− (D+,D0)
and some increase forK+ (D−, D̄0).

The constitution of the pseudoscalar open charm mesons,D+ (d̄c),D− (c̄d),D0 (ūc), D̄0 (c̄u),
reveals as new physical scale the massmc of the charm quark. Whereas in our previous examples
the masses of the light quarksmu,d were negligible compared toλQCD, this is no more the case
for mc ≈ 1.5 GeV [1]. For example, it was very early noted, that theD meson QCD sum rule
is entered by the combinationmc〈q̄q〉 [5], i.e., the charm massmc acts as magnifier of the chiral
condensate. For light vector mesons its impact was numerically small due to the small light quark
mass appearing there. This naive argument not yet suggests ameasurable chiral symmetry order
parameter, since it might be shadowed by the influence of further condensates. Nevertheless it is
a strong motivation to ask for the conceptional new aspects for such heavy-light quark systems.
Such aspects based on the new mass scale are the topic of Section 3.3.1. In a simple-minded
classical picture with one nearly static quark it would be not surprising that the mass of a heavy
meson, e.g.mD± = 1.87 GeV, is driven by the large current quark mass of its constituent. Some
numerical results of a specific QCD sum rule for theDmeson, given in Section 3.3.2, are collected
in Section 3.3.3.

The QCD sum rule method is applied to the Lorentz and Dirac scalar correlation function

Π(q, v) = i

∫

d4x eiqx〈〈T
[

j(x)j†(0)
]

〉〉 , (3.62)

with the pseudoscalar interpolating fields

jD+(x) = id̄(x)γ5c(x) , (3.63a)

jD−(x) = ic̄(x)γ5d(x) , (3.63b)

jD0(x) = iū(x)γ5c(x) , (3.63c)

jD̄0(x) = ic̄(x)γ5u(x) . (3.63d)

QCD sum rules forD mesons in vacuum are documented, e.g. in [135–137], however, gen-
eralizations to sum rules in a nuclear medium are rarely published [138–140]. A complete re-
evaluation of the in-mediumD meson QCD sum rule, in particular the complete OPE side up to
mass dimension 5 for products of quark masses and condensates, is presented in [141], which we
will rely on.

3.3.1 Operator Product Expansion for Heavy-Light Quark Sys tems

The evaluation of the sum rule for theD± mesons involves the renormalization of non-perturbative
condensates as follows. In an OPE for light quark systems thesmall quark mass contributions can
be included as minor corrections, technically in the quark propagator (B.1). If masses cannot be
neglected one is confronted with an increasing number of terms. These are significantly reduced in
the limitmq → 0 for the light quark, here thed quark. Problematically, not all OPE parts converge
in this limit due to terms∼ 1/mq or mass logarithms∼ lnmq. They arise from (perturbative)
loop integrations which cover the full range of loop momenta. With the operator product expan-
sion a conceptional separation of scales into non-perturbative (small momenta: condensates) and
perturbative physics (large momenta: Wilson coefficients)is performed. However, perturbative
calculation of Wilson coefficients results in another non-perturbative contribution. The divergent
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parts formq → 0 in the OPE calculation are of non-perturbative origin and thus should be covered
by the appropriately defined non-perturbative condensates(usually called ”non-normal ordered”
condensates [6])

〈q̄ Ô (∂µ − igAµ) q〉 = 〈: q̄ Ô (∂µ − igAµ) q :〉− i
∫

d4p
〈

Tr
[

Ô
(

−ipµ − iÃµ

)

Sper(p)
]〉

,

(3.64)

which quantify the non-perturbative regime [142]. The integral denotes the perturbatively calcu-
lated contribution [143]. The operator̂O is a function of the covariant derivative and contains
general Dirac structures,Aµ is the gluon gauge field in fixed-point gauge andÃµ its Fourier trans-
form; : · · · : denotes again normal ordering, andSper is the quark propagator in the gluonic
background field. For technical aspects we refer to AppendixB and [141, 144].

Introducing these renormalized (physical) condensates cancels mass logarithms in OPE cal-
culations [145] but also causes a mixing between different types of condensates, e.g., the chiral
condensate mixes with the gluon condensate (cf. also [6])

〈q̄q〉 = 〈: q̄q :〉+ 3

4π2
m3

q

(

ln
µ2

m2
q

+ 1

)

− 1

12mq

〈

:
αs

π
G2 :

〉

+ ... , (3.65)

which relates in the heavy quark sector the heavy quark condensate (e.g.〈c̄c〉 for the charm con-
densate) to gluon condensates [143, 146]

mc〈c̄c〉 = − 1

12

〈αs

π
G2
〉

− 1

m2
c

1

1440π2
〈g3

sG
3〉+ ... . (3.66)

This is also utilized in the QCD sum rule for theJ/ψ meson entered by the combination
mc〈c̄c〉, which one expects to exhibit the weak density dependence ofthe gluon condensate, as
shown in Fig. 2.4. In fact, the evaluation of the QCD sum rule for J/ψ shows only a tiny change
of the in-medium mass [147].

In finite density QCD sum rules for theD meson, medium-specific condensates appear and
introduce, via their mixing, further gluon condensates into the OPE. The even and odd parts of
the operator product expansion, compare definition (2.33),of the in-mediumD meson in the limit
md → 0 in the nuclear matter rest frame are [141]

Πe
D+(q20) = c0(q

2
0) + 〈d̄d〉 mc

q20 −m2
c

− 〈d̄gsσGd〉
1

2

(
m3

c

(q20 −m2
c)

3
+

mc

(q20 −m2
c)

2

)

+

〈
αs

π

(
(vG)2

v2
− G2

4

)〉(
7

18
+

1

3
ln
µ2

m2
c

+
2

3
ln

(

− m2
c

q20 −m2
c

))(
m2

c

(q20 −m2
c)

2
+

1

q20 −m2
c

)

−
〈αs

π
G2
〉 1

12

1

q20 −m2
c

+
〈

d†iD0d
〉

2

(
m2

c

(q20 −m2
c)

2
+

1

q20 −m2
c

)

−
[
1

3

〈
d̄D2

0d
〉
− 1

24

〈
d̄gsσGd

〉
]

12

(
m3

c

(q20 −m2
c)

3
+

mc

(q20 −m2
c)

2

)

, (3.67a)

Πo
D+(q20) = −

〈

d†d
〉 1

q20 −m2
c

−
〈

d†gsσGd
〉 1

(q20 −m2
c)

2

+
〈

d†D2
0d
〉

4

(
m2

c

(q20 −m2
c)

3
+

1

(q20 −m2
c)

2

)

, (3.67b)

where the condensates are properly renormalized accordingto Eq. (3.64) in first orderαs; c0 is the
perturbative term.
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3.3.2 QCD Sum Rules for the D Meson

The operator product expansion Eq. (3.67) is via the dispersion relation related to the spectral
integral, cf. Section 2.2. Model independent statements require the definition of suitably combined
moments of the hadron spectral density like for theω meson in Eq. (2.40). The intrinsic description
of both particle and anti-particle by the correlator (3.62)complicates such general formulation.
This was already realized in the nucleon case. To visualize the impact of condensates and the
significance of QCD sum rules for theD meson one can still dwell on the pole + continuum
ansatz. Certainly, one cannot claim predictions for the shape of the spectral density in a nuclear
medium, as they are provided with many-body approaches, e.g. [148, 149]. Here QCD sum rules
can at best offer a constraint to test such a given hadronic model if the relevant condensates are
under control.

Nevertheless, in order to investigate the impact of individual condensates we apply the follow-
ing pole ansatz forD± (D0 andD̄0 are equivalently described, we restrict ourselves to the first
case). Inserting a complete set of hadronic states, compareEq. (2.8), where only theD+ andD−

remain, the spectral density is motivated as

∆Π(q, v) = π (F+δ(q0 −m+)− F−δ(q0 +m−)) , (3.68)

whereF± are independent couplings between hadron and interpolating fields,m± the pole masses
of D±. We have set the hadron momentum~q = 0 and the momentum of the matter ground
state~pΨ = 0. The effective pole masses, incorporating the ground stateenergy of matterEΨ

like m± = M± − EΨ, can be related to medium-dependent self energiesΣ± introduced in the
propagators (e.g. [149])

ΠD±(q, v) =
1

q2 −M2
± −Σ±

. (3.69)

The even and odd Borel transformed sum rules (2.38) in the ansatz (3.68) with the OPE given in
Eqs. (3.67) are

m+F+e
−m2

+/M2
+m−F−e

−m2
−

/M2
=

1

π

∫ s0

m2
c

ds e−s/M2
ImΠper(s)

+ e−m2
c/M2

(

−mc

〈
d̄d
〉

+
1

2

(
m3

c

2M4
− mc

M2

)
〈
d̄gsσGd

〉
+

1

12

〈αs

π
G2
〉

+

[(
7

18
+

1

3
ln
µ2m2

c

M4
− 2γE

3

)(
m2

c

M2
− 1

)

− 2m2
c

3M2

]〈
αs

π

[
(vG)2

v2
− G2

4

]〉

+ 2

(
m2

c

M2
− 1

)〈

d†iD0d
〉

+ 4

(
m3

c

2M4
− mc

M2

)[
〈
d̄D2

0d
〉
− 1

8

〈
d̄gsσGd

〉
]

,

(3.70a)

F+e
−m2

+/M2 − F−e
−m2

−
/M2

=

e−m2
c/M2

(〈

d†d
〉

− 4

(
m2

c

2M4
− 1

M2

)〈

d†D2
0d
〉

− 1

M2

〈

d†gsσGd
〉)

. (3.70b)

The continuum contribution, approximated in the semi-local quark-hadron duality hypothesis, is
brought to the r.h.s. in the even part and elucidates in the upper bounds0 of the finite integration
over the perturbative term

ImΠper(s) =
3

8π

(s−m2
c)

2

s

{

1 +
4αs

3π

[
9

4
+ Li2

(
m2

c

s

)

+ ln

(
s

m2
c

)

ln

(
s

s−m2
c

)

+
3

2
ln

(
m2

c

s−m2
c

)

+ ln

(
s

s−m2
c

)

+
m2

c

s
ln

(
s−m2

c

m2
c

)

+
m2

c

s−m2
c

ln

(
s

m2
c

)]}

,

(3.71)
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with the Spence functionLi2 = −
∫ x
0 dt t

−1 ln(1 − t); γE is the Euler constant. The relation
〈

αs

π

[
(vG)2

v2 − G2

4

]〉

= 1
2

〈
αs

π

[
(vG)2

v2 + (vG̃)2

v2

]〉

holds; for the renormalization scaleµ ≈ mc is

used. The medium-specific mixed quark-gluon condensate
〈
d†gsσGd

〉
, even its sign, is not well

determined. A value of+0.33 GeV2n is used in this section, cf. [150], in contrast to Eq. (2.107).
The condensate

〈
q†D2

0q
〉

is then derived from Eq. (2.106).

3.3.3 QCD Sum Rules for the D Meson

The sign structure on the l.h.s. of Eqs. (3.70) suggests to introduce instead of the massesm± the
centroidm = 1

2 (m+ +m−) of this hadron doublet and its splitting∆m = 1
2(m+ −m−), i.e.

m+ = m+ ∆m, (3.72a)

m− = m−∆m. (3.72b)

Indeed if one assumes constantF = F± and performs an expansion in first order of∆m (with
∆m≪ m and∆m≪M) one obtains for the hadronic side on the left of the sum rules(3.70)

m+F+e
−m2

+/M2
+m−F−e

−m2
−

/M2 ≈ 2Fme−m2/M2
, (3.73a)

F+e
−m2

+/M2 − F−e
−m2

−
/M2 ≈ −4Fm∆m

M2
e−m2/M2

. (3.73b)

Eqs. (3.73) indicate that at sufficiently small densities the odd part of the OPE dominates the mass
splitting. Strictly, it is still coupled viam to the even part of the OPE. For a typical Borel mass
M = 1 GeV the weight of the condensates in Eq. (3.70b) is approximately

〈

d†d
〉

:
〈

d†D2
0d
〉

:
〈

d†gsσGd
〉

∝ 4 : 0.005 : −1 . (3.74)

The large impact of the exactly given positive value of
〈
d†d
〉

explains, due to the negative sign
in Eq. (3.73b), that the splitting takes only negative values, ∆m < 0. Since quite restrictive,
changes ofF± andm are neglected in Eq. (3.73b), this gives only a rough estimate for the impact
of condensates, to be compared with the numerical results ofthe QCD sum rule evaluation.

In order to reach numerical results, the even and odd sum rules (3.70) are added (subtracted)
with a factorm+ (m−) for the second Eq. (3.70b). In this new set the couplings aredisentangled,
and by dividing each of these combination by its derivative with respect to the inverse squared
Borel massM2, the termsF± are eliminated in the end. (This is analog to theω case.) One
obtains two final sum rules, one form+ and one form−. However, due to the previous weighting
by m± this is still a system of coupled equations. Subsequently, the Borel curves form± or m,
∆m can be analyzed. A number of possible criteria were used to actually determine quantitative
values for the pole masses from such Borel curves. In [139] a region around a minimum of a Borel
curve is considered, flatness in a Borel window was demanded in [137].

If one looks for the medium changes one can diminish the technical aspects of the evaluation.
For the Borel curve ofm it was observed that these curves intersect for different densities in
the applied Borel window when the thresholds0 is varied [141]. This questions the stability
of predictions for the mass centroid, and could explain the different findings for the change of
m at nuclear saturation density from almost no change [151] toan approximate down shift of
50 MeV [139].

The situation is much better for the behavior of the splitting ∆m at non-vanishing densities.
Its Borel curve is less deformed but clearly shifted [141]. The authors of [138] claimed aD±

splitting of about50 MeV at nuclear saturation density, a similar value was given by [151]. Latest
investigations suggest that these are rather lower bounds for the absolute value of∆m, and point
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to a value of2∆m ≈ −60 MeV [150]. The different QSR evaluations agree on the sign of∆m
meaning theD+ is lowered with respect to theD−; mD− > mD+ . This is consistent with the
kaon analogy in the introduction to this section.
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Figure 3.11: The mass splitting∆m = 1
2 (mD+−mD−) in a pole mass ansatz

as a function of the baryon densityn at zero temperature. The relevant con-
densates in the odd part of the OPE (Eq. (3.67b)) and the density dependence
of the chiral condensate are varied by factors 2 to highlightthe impact of these
condensates on the mass splitting (data with courtesy of T. Hilger; obtained
with sophisticated threshold criteria [150]).

The result of a numerical sum rule evaluation, selecting particle and anti-particle thresholds to
adjust them± Borel minima at the same Borel mass [150], are shown in Fig. 3.11. The splitting
is displayed as a function of the nuclear matter density and,starting from degeneracy ofD±

in vacuum, reaches a value of2∆m ≈ −60 MeV at saturation density. From the variation of
condensates shown there one deduces the largest impact for〈d†d〉, as approximated in Eq. (3.74),
followed by the condensate〈d†gsσGd〉. The choice of this medium-specific mixed quark-gluon
condensate as in Eq. (2.107) would amplify the splitting. Although the directions of changes in
the splitting are in agreement, compare Fig. 3.11 and Eq. (3.74), the relative modifications deviate
from the approximation. The particular choice of the Borel parameter leads in this evaluation
procedure to this advanced impact of the condensates. The variation of the density dependence
of the chiral condensate also effects the splitting. With respect to the slopes in Fig. 3.11, the
modification is relatively pronounced at saturation density. This effect appears in higher order of
the densityn.

One should be aware that these results are bound to the pole ansatz. The pole parameters
can be generalized to combinations of moments of spectral functions, such that the results could
be interpreted in view of complicated spectral densities. The transition toB meson sum rules is
straightforward and leads to somewhat higher amounts of thesplitting [150]. ForDs mesons the
intermediate value of the neither light nor heavy strange quark impedes a final conclusion. There
the operator product expansions become, as for kaons, conceptionally even more advanced.





4 Summary

QCD sum rules have been applied to the examples of theω meson, the nucleon, and theD me-
son embedded in cold nuclear matter. The method is universalsince finally only condensates deter-
mine the spectral integral of any considered hadron. It is thus conceptionally close to fundamental
parameters of quantum chromodynamics. This is highlightedby the relation of condensates to
fundamental symmetries of the theory. Especially, chiral symmetry, supposed to be spontaneously
broken in the hadronic phase, represents a fundamental concept of hadron physics. Quantities
which could measure the degree of this symmetry breaking, order parameters, are thus desired.
Most prominently the chiral condensate is considered as such a quantity. The operator product
expansion, however, includes numerous other condensates,and to find a clear correspondence be-
tween spectral integral and just one significant condensateis difficult. In analogy to an abstract
introduction of the chiral condensate as candidate for an order parameter we have discussed other
condensates. A number of potential order parameters have been deduced, in particular specific
combinations of four-quark condensates.

Four-quark condensates have a strong impact on spectral QCDsum rules for light vector
mesons like theω meson or for the nucleon. Unfortunately, four-quark condensates and their den-
sity dependencies are poorly known. One possible solution is to consider a large set of hadronic
observables and to try to constrain these parameters characterizing the QCD vacuum. In order
to accomplish a systematic approach, we derived a complete catalog of independent four-quark
condensates for equilibrated symmetric or asymmetric nuclear matter. While the number of such
condensates is fairly large already in the light quark sector, we point out that only special combi-
nations enter the QCD sum rules. The combinations which appear in theω meson and nucleon
sum rule could not be identified as potential order parameters. More promising for investigations
of chiral symmetry are differences of sum rules for chiral partners. This was exemplified for the
chiral partnersρ meson anda1 meson. Indeed, the four-quark condensate combination entering
there could also be derived from an abstract definition of possible order parameters.

In case of theω meson a ratio of spectral moments was analyzed. In a pole ansatz this moment
can be identified with the pole mass. In general, changes of this moment can be understood by
other deformations of the spectral density, e.g. broadening effects. In this sum rule the chiral
condensate is suppressed by the light quark mass. Contrary,the impact of four-quark condensates
is quite important. Motivated by experimental indicationsone might expect that this moment
does not increase at non-vanishing nuclear densities. Therefrom it was deduced that the relevant
combination of four-quark condensates should have a strongdensity dependence, compared to
the factorization hypothesis which approximates four-quark condensates by the squared chiral
condensate. This finding suggests that the factorization approximation is questionable at non-
vanishing densities.

For the nucleon QCD sum rule three different combinations offour-quark condensates were
identified. The knowledge of these combinations (even the individual condensates entering) is
not sufficient to convert them into the combination being specific for the spectral QCD sum rule
for light vector mesons. This was traced back to the different color decompositions of color
neutral interpolating fields for mesons and baryons. In analyzing the set of independent four-quark
condensates we found also identities which must be fulfilledin a consistent treatment. Model
calculations of four-quark condensates seem not to fulfill automatically these constraints.
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On the level of an exploratory study we showed the impact of the three combinations of four-
quark condensates on the vector and scalar self-energies ofthe nucleon. In cold nuclear matter
at sufficiently low densities the density dependence of onlyone effective four-quark condensate
combination is found to be important for the vector self-energy and the other two combinations
dominate the scalar self-energy. Bearing in mind that the nucleon self-energy pieces are not proved
to represent observables, one is tempted to try an adjustment of these parameters to advanced
nuclear matter calculations. While the overall pattern agrees fairly well (i.e. large and opposite
scalar and vector self-energies) we can reproduce also the fine details on a quantitative level at
low densities. Keeping the four-quark condensates constant at vacuum values or giving them a
density dependence as suggested by a perturbative chiral quark model induces some quantitative
modifications which may be considered as estimator of systematic uncertainties related to the four-
quark sector. Furthermore, the special use of sum rules and interpolating current and details of the
numerical evaluation procedure may prevent QCD sum rules for the nucleon as a precision tool.
The knowledge of this situation may be of relevance for approaches to the nuclear many-body
problem which utilize chiral dynamics and condensate-related features of the mean field.

In the example of theD meson the heavy quark mass as new scale changes the impact of
condensates compared to the situation for theω meson. Robust statements in a pole ansatz are
only possible for the splitting of theD+ andD− mesons. Qualitatively the QCD sum rule predicts
the lowering ofD+ with respect toD−. Deduced quantitative pole mass differences are mainly
subject to condensates in the odd part of the operator product expansion, especially to a medium-
specific mixed quark-gluon condensate. The chiral condensate enters only the even part of the
operator product expansion and affects the splitting for densities approaching nuclear saturation
density.

These investigations covered a broad range of conceptionalaspects in QCD sum rule evalu-
ations: The nucleon sum rule extends the case of the neutralω meson due to Dirac structures.
Coupled sum rule equations arise from the entanglement of particle and anti-particle spectral con-
tributions. Otherwise, for theD meson as heavy-light quark system with a new physically relevant
scale in the operator product expansion, the calculation iscomplicated by the proper treatment of
quark masses and mass divergences.

The dispersion integrals underlying the method do not allowpredictions for the spectral shapes.
One depends on the choice of a hadronic ansatz or an otherwiseobtained spectral density. Never-
theless, the spectral sum rules represent a fundamental constraint on hadronic models, and conse-
quences for condensates may be derived utilizing predictions for the spectral density. In case of
the neutralω meson even a statement about a specific ratio of weighted moments of the spectral
density was formulated in a model independent manner. The restrictions on reliable numerical
predictions, due to the choice of suitable Borel masses and threshold assumptions, might be re-
duced when referring to medium changes. Certainly, difference sum rules, as for chiral partners,
could again be a very promising alternative. Finally, we remind that our study is restricted to cold
nuclear matter. The extension towards finite temperature deserves separate investigations.

In summary, we discussed the QCD sum rules for hadrons in an ambient nuclear medium.
The sum rules allowed a direct relation of hadron propertiesto QCD condensates which change
at non-vanishing nuclear densities. For theω meson and the nucleon, four-quark condensates
determine to a large extent the density dependence of these hadrons composed of light quarks. The
four-quark condensates entering could not explicitly be identified as possible order parameters for
spontaneous chiral symmetry breaking. In contrast, in the heavy-light quark sector, exemplified
byD mesons, the impact of the chiral condensate is noticeable.

QCD condensates measure the properties of the ground state.Changes in these universal
parameters at non-vanishing nuclear densities, although not always related to symmetry breaking,
signal the complicated modifications in the physical groundstate of the strong interaction.



A Borel Transforms

The Borel transformation is used in QCD sum rules since the advent of the method [3]. It can be
defined as in Eq. (2.35)

F(Q2) −→ F(M2) ≡ lim
Q2,n→∞

Q2/n=M2

(Q2)n+1

n!

(

− d

dQ2

)n

F(Q2) , (A.1)

whereQ2 = −q20 for medium QCD sum rules orQ2 = −q2 in the vacuum case, respectively.
Alternative definitions, for example in [6] (equivalent to the form in [3]),

F(Q2) −→ F̃(M2) ≡ lim
Q2,n→∞

Q2/n=M2

(Q2)n+1

n!

(

− d

dQ2

)n+1

F(Q2) , (A.2)

slightly differ in absolute factors or index offsets, and are related to Eq. (A.1), in this case by

F(M2) =M2F̃(M2) . (A.3)

In any application of a Borel transform to a sum rule equationsuch overall factors cancel. The
Borel summation is a suitable tool to deal with divergent series, and therefore it is adequate to be
applied to the operator product expansion. Taking derivatives of arbitrary order diminishes poly-
nomials of any degree. For the sum rules of theω and the nucleon the required Borel transforms
are

F(Q2) = (Q2)k (k = 0, 1, 2, . . .) −→ F(M2) = 0 , (A.4)

F(Q2) =
1

(Q2)k
(k = 1, 2, 3, . . .) −→ F(M2) =

1

(k − 1)!

1

(M2)k−1
, (A.5)

F(Q2) = (Q2)k lnQ2 (k = 0, 1, 2, . . .) −→ F(M2) = (−1)k+1k!(M2)k+1 . (A.6)

The given transforms can directly be obtained taking the derivatives in definition (A.1).
Mathematically, the operator of the Borel transform can be identified with the inversion of the

Laplace transform

L[f(t)] = F(p) =

∫ +∞

0
e−ptf(t) dt . (A.7)

This may be utilized to find Borel transforms of complicated functions if one can identify the ini-
tially given functionF as Laplace transform off . Eventually the numerous properties of Laplace
transforms can be applied therefore. As example consider the functionf(t) = tk−1/(k − 1)! and
its Laplace transformF(p) = 1/pk. Upon the substitutionsp = Q2 and t = 1/M2 the Borel
transform already given in Eq. (A.5) can be read off.

The rule for Laplace transformsL[e−atf(t)](p) = L[f(t)](p+a) delivers the Borel transform
required for the hadronic side of sum rules

F(Q2) =
1

(Q2 + a)k
(k = 1, 2, 3, . . .) −→ F(M2) =

1

(k − 1)!

1

(M2)k−1
e−a/M2

.

(A.8)
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By iteration of

Q2m

Q2 + ω2
= Q2(m−1) − Q2(m−1)ω2

Q2 + ω2
, (A.9)

and with Eqs. (A.4), (A.8) the Borel transform for Eqs. (2.34)

F(Q2) =
(Q2)l

(Q2 + ω2)k
(k = 1, 2, 3, . . .) −→ F(M2) =

1

(k − 1)!

(−ω2)l

(M2)k−1
e−ω2/M2

(A.10)

is obtained.
In more advanced problems the advantage of this approach over the derivative rule (A.1) be-

comes obvious. In QCD sum rules for theD meson, for example, also the function

F(Q2) =
1

(Q2)k
lnQ2 (k = 1, 2, 3, . . .) (A.11)

appears in the operator product expansion. Withp = Q2 this is the tabulated Laplace transform of

f(t) =
tk−1

(k − 1)!

(
k−1∑

n=1

1

n
− γE − ln t

)

, (A.12)

and the required Borel transform is readily found as

F(M2) =
1

(k − 1)!

1

(M2)k−1

(

lnM2 − γE +

k−1∑

n=1

1

n

)

. (A.13)

The Euler constant is given byγE = limn→∞

(∑n
k=1

1
k − lnn

)
. For additional Borel transforms,

specific to further QCD sum rules, confer [90, 152].



B Operator Product Expansion
Techniques

For completeness and to clarify some technical details we recollect important steps of an OPE
calculation for light quark systems. The expressions can than be expanded in powers of the small
quark masses, which simplifies the calculation for, e.g., the nucleon and theω meson. A con-
venient way to obtain the OPE series is to calculate the Wilson coefficients in an external weak
gluon field [144]. In the background field formalism, the correlation function (2.3) is expanded
according to Wick’s theoremΠ(x) = Πper(x) + Π2q(x) + Π4q(x) + . . . , where the full con-
tractions are collected in the perturbative termΠper and further termsΠ2q,4q,... denote the number
of non-contracted quark operators. The latter terms give rise to non-local condensates contain-
ing the indicated number of quark operators. The use of Wick’s theorem naturally introduces the

normal ordering of operators
〈

Ψ
∣
∣
∣: Â1 · · · Ân :

∣
∣
∣Ψ
〉

≡
〈

Â1 · · · Ân

〉

, which will be assumed in all

expectation values formed out of products of field operators.
Under the presence of the gluon background field the quark propagatorSq which appears in

the terms inΠ(x) is modified, following from the solution of the Dirac equation in an external
field in the Fock-Schwinger gauge for the gluon field. The corrections to the free quark operator
appear in an expansion in the couplinggs =

√
4παs

Sq
ab(x) = 〈Ψ |T [qa(x)q̄b(0)]|Ψ〉 =

i

2π2

x/

x4
δab +

igs

8π2
G̃A

µν(0)TA
ab

xµ

x2
γνγ5 + . . . , (B.1)

with the dual gluon field strength tensor̃GA
µν = 1

2ǫµνκλG
κλA and color matricesTA

ab, valid for
massless quarks and inclusion of pure gluon condensates up to mass dimension 4.

The Fock-Schwinger gauge is determined by(x − x0)µA
µ(x) = 0, and usually one chooses

x0 = 0. It allows to express partial derivatives of fields easily bycovariant derivatives which
matters when expanding non-local products of such operators. In general, results are gauge in-
variant, however technically fixing this gauge has enormousadvantages in calculations of Wilson
coefficients. Let us remark, that although the termΠ2q initially contains two uncontracted quark
field operators, the expansion of the non-local expectationvalue into local condensates together
with weak gluon fields resulting from modified quark propagators and the use of the equations of
motion would induce further four-quark condensates at the orderαs.

The use of the quark propagator (B.1) leads to gluon insertions in the expectation values in
Π and thus to condensates of higher mass dimension. To obtain the condensates the expectation
values are projected onto all possible Dirac, Lorentz and color scalars obeying symmetry w.r.t. time
and parity reversal. This introduces all possible condensates up to the considered dimension, and
having inserted the projections for the specific correlation function offers also the corresponding
Wilson coefficients and therefore the OPE [54].

For example, the non-local diquark expectation value can beprojected on color and Dirac
structures

〈qaα(x)q̄bβ(0)〉 = −δab

12

∑

Γ

ǫΓ 〈q̄(0)Γq(x)〉Γαβ , (B.2)
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where elements of the Clifford algebraΓ ∈ {1, γµ, σµν , iγ5γµ, γ5}, are contracted over Lorentz
indices,ǫΓ = 1

2 for Γ = σµν andǫΓ = 1 otherwise. A Taylor expansion of the quark operator at
x = 0 in the Fock-Schwinger gauge

q(x) = q(0) + xµDµq(0) +
1

2
xµxνDµDνq(0) + . . . (B.3)

leads to additional Lorentz structures, such that the localexpansion of the non-local diquark
term (B.2) up to mass dimension 5 in the expectation values taken atx = 0 yields

〈qaα(x)q̄bβ(0)〉 = −δab

12

∑

Γ

ǫΓΓαβ

(

〈q̄Γq〉+ xµ 〈q̄ΓDµq〉+
1

2
xµxν 〈q̄ΓDµDνq〉

)

. (B.4)

However, matrix elements〈q̄(0)Γq(x)〉 with Γ ∈ {σµν , iγ5γµ, γ5} do not contribute due to the
demand of time and parity reversal invariance and the multiplication with the symmetric Tay-
lor expansion inx. Condensates with field derivatives can be transformed whereby a couple of
manipulations using the equations of motion

(iD/ −m)q = 0 , q̄(i
←−
D/ +m) = 0 , DAB

µ Gµν
B = gs

∑

f

q̄γνTAq , (B.5)

and the representation of the gluon tensorGµν = TAG
A
µν

Gµν =
i

gs
[Dµ,Dν ], and thus

1

2
gsσG+D/D/ = D2, Dµ =

1

2
(γµD/+D/γµ) , (B.6)

are exploited to yield simplifications in condensate projections. Terms which contain factors of
the small quark mass are neglected in these considerations.

Similar projections can be performed for structures which include gluonic parts from the prop-
agator (B.1) and lead to gluon condensates inΠper(x) and are also carried out to find the linear
combinations of four-quark condensates inΠ4q. Following this sketched line of manipulations,
one arrives for example at Eqs. (3.38) for the nucleon. The OPE for theω meson is deduced
similarly but using also the next orderαs in Eq. (2.46).

To substantiate a complete presentation we list the required projections of Lorentz structures in
increasing mass-dimension of the implied condensates. Thecondensates are rewritten in canonical
forms using the equations of motion and identities as well astranslational invariance of the nuclear
matter ground state; especially we write out the exact formsfor finite quark massesmq, which
usually are neglected. Combinations which are not listed are zero by the assumption of time
and/or parity reversal invariance or vanish due to symmetryreasons. The projections are those
quoted in [54]. Note that here the quark operator and the quark massmq are not restricted to the
light quark sector. If the mass cannot be neglected then these formula highlight that in counting
condensate dimensions the mass factors should be respected.

Condensates of mass-dimension 3:

〈q̄q〉 , (B.7)

〈q̄γµq〉 =
1

v2
〈q̄v/q〉 vµ . (B.8)
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Condensates of mass-dimension 4:

〈q̄Dµq〉 =
1

v2
〈q̄(vD)q〉 vµ = − imq

v2
〈q̄v/q〉 vµ , (B.9)

〈q̄γµDνq〉 = −1

3

〈
q̄v/(vD)q/v2

〉
(

gµν −
4vµvν

v2

)

+
1

3
〈q̄D/q〉

(

gµν −
vµvν

v2

)

= −1

3

〈
q̄v/(vD)q/v2

〉
(

gµν −
4vµvν

v2

)

− imq

3
〈q̄q〉

(

gµν −
vµvν

v2

)

.

(B.10)

Condensates of mass-dimension 5:

〈q̄DµDνq〉 = −1

3

〈
q̄(vD)2q/v2

〉
(

gµν −
4vµvν

v2

)

+
1

3

〈
q̄D2q

〉 (

gµν −
vµvν

v2

)

= −1

3

〈
q̄(vD)2q/v2

〉
(

gµν −
4vµvν

v2

)

+
1

6
〈q̄gσGq〉

(

gµν −
vµvν

v2

)

−
m2

q

3
〈q̄q〉

(

gµν −
vµvν

v2

)

, (B.11)

〈q̄γµDνDαq〉 =
1

v4

〈
q̄v/(vD)2q

〉
(

2vµvνvα

v2
− 1

3
[vµgνα + vνgµα + vαgµν ]

)

+
1

3v2

〈
q̄v/D2q

〉 (

vµgνα −
vµvνvα

v2

)

+
1

3v2
〈q̄(vD)D/q〉

(

vνgµα −
vµvνvα

v2

)

+
1

3v2
〈q̄D/(vD)q〉
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vαgµν −
vµvνvα
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)

=
1

v4
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q̄v/(vD)2q

〉
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2vµvνvα
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− 1

3
[vµgνα + vνgµα + vαgµν ]

)

− 1

6v2
〈q̄v/gσGq〉

(vµvνvα

v2
− vµgνα

)

+
m2

q

3v2
〈q̄v/q〉

(vµvνvα

v2
− vµgνα

)

+
imq

3v2
〈q̄(vD)q〉

(
2vµvνvα

v2
− vνgµα − vαgµν

)

, (B.12)

〈q̄γ5γµDνDαq〉 = − 1

6v2

〈

q̄γ5ǫ
κλπξvξγκDλDπq

〉

ǫµναβv
β

= − 1

6v2
ǫµναβv

β

(
i

2
〈q̄v/gσGq〉 + im2

q 〈q̄v/q〉+ im2
q 〈q̄(vD)q〉

)

, (B.13)
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〈q̄σµνDαDβq〉 =
1

6

〈

q̄σκλD
κDλq

〉

(gµαgνβ − gναgµβ

−gµα
vνvβ
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+ gνα

vµvβ

v2
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(B.14)

〈q̄gγ5γαGµνq〉 = − 1

6v2

〈

q̄gγ5γκGλπǫ
κλπξvξq

〉

ǫαµνσv
σ =

1

6v2
〈q̄v/gσGq〉 ǫαµνσv

σ ,

(B.15)

〈q̄gσαβGµνq〉 =
1

6

〈

q̄gσκλG
κλq
〉(

gαµgβν − gανgβµ

−gαµ
vβvν

v2
+ gαν

vβvµ

v2
− gβν

vαvµ

v2
+ gβµ

vαvν

v2

)

− 1

3v2
〈q̄gσκλGπξq〉 gκπvλvξ

(

gαµgβν − gανgβµ

−2gαµ
vβvν

v2
+ 2gαν

vβvµ

v2
− 2gβν

vαvµ

v2
+ 2gβµ

vαvν

v2

)

=
1

6
〈q̄gσGq〉

(

gαµgβν − gανgβµ

−gαµ
vβvν

v2
+ gαν

vβvµ

v2
− gβν

vαvµ

v2
+ gβµ

vαvν

v2

)

− 2

3v2

(
〈
q̄(vD)2q

〉
+ imq 〈q̄v/(vD)q〉

)

(

gαµgβν − gανgβµ − 2gαµ
vβvν

v2
+ 2gαν

vβvµ

v2
− 2gβν

vαvµ

v2
+ 2gβµ

vαvν

v2

)

.

(B.16)
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Technical details and additional aspects to Section 2.4 concerning four-quark condensates are
supplemented here.

C.1 Alternative Derivation of Pure-Flavor Four-Quark
Condensate Interrelations

The constraints between two different color structures of pure-flavor four-quark condensates have
been presented in Section 2.4.1 by analyzing the specific color structure transformation. For the
typical baryon color combination of four-quark condensates, the conversion matrix̂B (2.114) was
derived with the decisive property that it cannot be inverted. In algebraic terms, the underlying
system of linear equations is linearly dependent. This gaverise to the Fierz relations (2.115).
If one is only interested in these relations, another directway of derivation exists. Thereby one
considers the ”zero identity”

ǫabcǫa
′b′c′ q̄

e

a′

q
f

aq̄
g

b′q
h

b (ΓC)
e,g

(CΓ̃)
f,h

= 0 if (ΓC)T = −(ΓC) or (CΓ̃)T = −(CΓ̃), (C.1)

which can be seen by a rearrangement of the product and renaming of indices (this is the analog
discussion as for the choice of possible interpolating fields for the nucleon). Fierz transformation
of this relations yields the basic formula

ǫabcǫa
′b′c′ q̄a′

Omq
aq̄b′Onqb Tr

(

Γ̃OnΓCOmTC
)

= 0 , (C.2)

which gives, with insertion of allowedΓ and Γ̃, all possible constraints on the color combina-
tions in the sense of the vector~z in (2.114). From the non-vanishing possibilities we list only
combinations relevant for four-quark condensates and contract them to achieve relations between
components of~z:

Γ = 1, Γ̃ = 1 =⇒ 0 = −2z1 + 2z2 + z4 + 2z6 − 2z8 ,

Γ = γ5, Γ̃ = γ5 =⇒ 0 = −2z1 − 2z2 + z4 − 2z6 − 2z8 ,

Γ = iγ5γ
α, Γ̃ = iγ5γβ =⇒

{

0 = −2z1 + z2 − z6 + 2z8 ,

0 = −2z1 + 2z2 − 4z3 + z4 − 4z5 − 2z6 + 4z7 + 2z8 ,

Γ = iγ5γ
α, Γ̃ = γ5 =⇒ 0 = iz9 + z10 .

(C.3)

This set of constraints is equivalent to (2.115) in Section 2.4.1.
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C.2 Four-Quark Expectation Values in the Nucleon

Supplementary to Tab. 2.3 we collect in Tabs. C.1 and C.2 the underlying coefficients to be under-
stood in connection with the work of Drukarev et al. [60].

Expectation Parameters in [60] Minimal Modification Mean Value

value N = p N = n N = p N = n N = p+n
2

US,uu
N 3.94 4.05 3.939 4.047 3.993

aV,uu
N 0.52 0.51 0.520 0.510 0.515

bV,uu
N −0.13 −0.02 −0.143 −0.023 −0.083

aT,uu
N 0.98 1.02 0.968 1.009 0.989

bT,uu
N 0.05 < 0.01 0.045 0.007 0.026

aA,uu
N −0.45 −0.50 −0.471 −0.502 −0.487

bA,uu
N −0.06 −0.01 −0.054 −0.009 −0.032

UP,uu
N 1.91 1.96 2.002 2.030 2.016

Table C.1: Coefficients of pure flavor nucleon four-quark expectation values
(in units of 〈q̄q〉vac = (−0.245 GeV)3) as determined in [60] in the termi-
nology introduced there and modified values from a fine-tunedparameter set
which fulfill the constraints (2.115). The parametersκmed

s,q andκ̃med
v are finally

derived from the right column which shows the result for isospin symmetric
baryonic matter.

C.3 Basis Transformations

In this section the transformation laws between the flavor symmetric four-quark condensate basis
systemsOc andOf in Tab. 2.4, derived from multiple application of Fierz transformations, are
given. It allows to proceed the discussion of possible orderparameters in the basis systemOc and
their interrelations. This substantiates also the relation between different color structures of four-
quark condensates, Eq. (2.111), which is based on the same technique. But here we generalize it
to two flavor degrees of freedom.

We require the general property of theN -dimensional fundamental generatorsT a for the spe-
cial unitary groupSU(N) (normalized asTr(T aT b) = 1

2δ
ab)

T a
ijT

a
kl =

1

2

(

δilδjk −
1

N
δijδkl

)

, (C.4)

derived from a completeness relation in matrix space;a = 1 . . . (N2 − 1) is summed over and the
lower indices running over1 . . . N express the matrix structure .

In color space,N = NC = 3, TA = λA

2 (λa are the Gell-Mann matrices) this reads

λA
ijλ

A
kl = 2

(

δilδjk −
1

3
δijδkl

)

. (C.5)

Also the equivalent relation in flavor space is now needed,N = nf = 2, T a = τa

2 (τa are the
Pauli matrices)

τa
ijτ

a
kl = 2δilδjk − δijδkl . (C.6)
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Expectation Parameters in [60] Mean Value

value N = p N = n N = p+n
2

US,ud
N 3.19 3.19 3.19

aV,ud
N −0.44 −0.44 −0.44

bV,ud
N −0.29 −0.29 −0.29

aT,ud
N 0.19 0.19 0.19

bT,ud
N 0.18 0.18 0.18

aA,ud
N 0.43 0.43 0.43

bA,ud
N −0.06 −0.06 −0.06

UP,ud
N −0.20 −0.17 −0.185

UV S,ud
N −0.28 −0.21 −0.245

Table C.2: As Tab. C.1 but for coefficients of nucleon four-quark expecta-
tion values parametrizing mixed flavor structures as determined in [60] and
the mean values used to calculate medium strength parametersκmed in isospin
symmetric matter. The modifications referring to pure-flavor four-quark con-
densates are not needed here.

Together with the Dirac projection, Eq. (2.108), all requisites are provided to reorganize the con-
traction of four flavor vectors in the four-quark condensates (Fierz transformation). Starting from
〈ψ̄DxCxF xψψ̄DyCyF yψ〉, by exchanging the order of the flavor vectorsψ the given index re-
ordering is subsequently pursued for the Dirac (D), color (C) and flavor structures (sayF x = τ e,
for example). Choosing forDx,y the basis elements of the Dirac algebra, see Section 2.4.1, one
obtains

〈

ψ̄Okτ eψψ̄Olτ eψ
〉

= −
〈

ψ̄Okψψ̄Olψ
〉

− 1

8
Tr(OkOnO

lOm)

[
1

3

〈
ψ̄Omψψ̄Onψ

〉
+

1

2

〈
ψ̄Omλaψψ̄OnλAψ

〉
]

.

(C.7)

The effort to calculateTr(OkOnO
lOm) can be circumvented when resorting to the vector formu-

lation (2.112) which is only a way to organize all relevant Dirac structures. Hence, by comparison
with Eq. (2.111), the transformation is traced back to the matrix Â, Eq. (2.113), symbolically

〈~τ〉 =
1

3

(

Â− 7

3

)〈

~1〉+
1

2

(

Â+
2

3

)〈
~λA
〉

(C.8)

where the formal vectors collect the Dirac structuresDx,y of the respective condensates in

〈~τ〉 ↔ 〈ψ̄Dxτ eψψ̄Dyτ eψ〉 , (C.9a)
〈

~1〉↔ 〈ψ̄Dxψψ̄Dyψ〉 , (C.9b)
〈
~λA
〉

↔ 〈ψ̄DxλAψψ̄DyλAψ〉 , (C.9c)
〈

~τ eλA
〉

↔ 〈ψ̄Dxτ eλAψψ̄Dyτ eλAψ〉 . (C.9d)

Similarly, relations including
〈
ψ̄Okτ eλAψψ̄Olτ eλAψ

〉
can be derived. Note, that the transforma-

tions in general will depend onnf andNc.





D List of Acronyms

QCD Quantum Chromodynamics

QSR QCD Sum Rules

OPE Operator Product Expansion

PCAC Partial Conservation of the Axial vector Current

GOR Gell-Mann–Oakes–Renner

PCQM Perturbative Chiral Quark Model

ChEFT Chiral Effective Field Theory

fqc four-quark condensates

CERN European laboratory for particle physics (French acronym)

SPS Super Proton Synchrotron

KEK High Energy Accelerator Research Organization (Japanese acronym)

GSI Gesellschaft für Schwerionenforschung

HADES High Acceptance Dielectron Spectrometer

CB-TAPS Crystal-Barrel - Two Arms Photon Spectrometer

JLAB Thomas Jefferson Lab National Accelerator Facility

CLAS CEBAF Large Acceptance Spectrometer

CEBAF Continuous Electron Beam Accelerator Facility

FAIR Facility for Antiproton and Ion Research

CBM Compressed Baryonic Matter

PANDA p̄ Annihilations at Darmstadt
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Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit
wurde bisher weder im Inland noch im Ausland in gleicher oderähnlicher Form einer anderen
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