Quelle: A. Züttel

Nanostrukturierte Materialien für die Wasserstoffspeicherung

Lars Röntzsch

Fraunhofer-Institut für Fertigungstechnik & Angewandte Materialforschung Institutsteil Dresden für Pulvermetallurgie und Verbundwerkstoffe Winterbergstraße 28, 01277 Dresden www.ifam-dd.fraunhofer.de

Kontakt:

lars.roentzsch@ifam-dd.fraunhofer.de (fon: + 49 351 253 7411, mobil: + 49 172 271 5859)

IFAM

Fraunhofer Institut Fertigungstechnik Materialforschung

Fraunhofer Institutszentrum Dresden, Winterbergstraße 28

Fraunhofer FEP Institut für Elektronenstrahl- und Plasmatechnik

Fraunhofer IFAM Institut für Fertigungstechnik und Angewandte Materialforschung

Fraunhofer IKTS Institut für Keramische Technologien und Systeme

Fraunhofer IWS Institut für Werkstoff- und Strahltechnik

Fraunhofer Institut Fertigungstechnik Materialforschung

IFAM

Fraunhofer Institut Fertigungstechnik Materialforschung

Fraunhofer Institut Fertigungstechnik Materialforschung

H-Speicherdichten im Vergleich

Fraunhofer Institut Fertigungstechnik Materialforschung

H-Speicherdichten im Vergleich

Quelle: Schlapbach, Züttel

Fraunhofer _{Institut} Fertigungstechnik Materialforschung

vor 100 Jahren: Erlwein-Gasometer (1908)

→ Gleiche Menge an Wasserstoff im Feststoff: Metallhydrid, z.B. MgH_2 Mg-Würfel (*a*=4,03m) → MgH_2 -Würfel (*a*=4,39m)

→ Miniaturisierung!

Fraunhofer Institut Fertigungstechnik Materialforschung

Stadien der Hydrid-Bildung

Fraunhofer Institut Fertigungstechnik Materialforschung

Thermodynamik

Fraunhofer Institut

Fertigungstechnik Materialforschung

konventionelle (Mikro-)Struktur

Zeit: 0000000x10¹ MCS

Nanostruktur

00000000x10¹ MCS

- \rightarrow große ,innere' Oberfläche
- → Korngrenzen, Defekte wirken als ,Autobahnen' der H-Diffusion

00025000x10¹ MCS

Schnellere Kinetik der Be- und Entladung

Fraunhofer Institut Fertigungstechnik Materialforschung

Methoden der Nanostrukturierung

Hochenergiemahlen ("top-down")

- mechanischer Energieeintrag
- neue Oberfläche wird geschaffen
- Kristalldefekte (Korngrenzen) entstehen
- Mahlen unter Ar od. H2
- Hochdruck-Mahlsystem bis 150bar H2 (Prevention von Oxidation, H-induzierte Amorphisierung etc.)

Fraunhofer Institut Fertigungstechnik Materialforschung

Methoden der Nanostrukturierung

Melt-spinning ("bottom-up")

- Rascherstarrung einer metall. Schmelze (Kühlrate bis 1Mio. Kelvin per Sekunde)
- Prozessierung in inerter Atomsphere
- Massenproduktion möglich (high-yield)
- nanokristalline Bänder → Häckseln
 → Kompaktieren → Hydrieren → Dehydrieren ...

Fraunhofer Institut Fertigungstechnik Materialforschung

Bsp.: Mg-Ni-Y

Fraunhofer _{Institut} Fertigungstechnik Materialforschung

Nanokristallines Mg-Ni-Y in Hochauflösung (TEM)

Fraunhofer Institut Fertigungstechnik Materialforschung

Wasserstoff-Sorptionskinetik via Thermogravimetrie (TGA)

- \rightarrow Magnetschwebewaage
- → Reaktor und Wägeapparat getrennt

- Probenmasse: bis 10g
- Auflösung: 10µg
- Druckbereich: Vakuum ... 350 bar
- Temperaturbereich: RT bis 400°C
- Desorption bei BZ Arbeitsdruck (2-8 bar H2)

Fraunhofer Institut Fertigungstechnik Materialforschung

Wasserstoff-Sorptionskinetik via TGA

- \rightarrow Magnetschwebewaage
- → Reaktor und Wägeapparat getrennt

- Probenmasse: bis 10g
- Auflösung: 10µg
- Druckbereich: Vakuum ... 350 bar
- Temperaturbereich: RT bis 400°C
- Desorption bei BZ Arbeitsdruck (2-8 bar H2)

Fraunhofer Institut Fertigungstechnik Materialforschung

Problematik: Hydrid-Kartusche

Quelle: A. Raheim

Pmax = 100 bar

Tmax = 200 °C

Pwork = 3-5 bar @ RT 20-25 bar (80 °C)

Fraunhofer Institut Fertigungstechnik Materialforschung

Institutsteil Dresden Pulvermetallurgie & Verbundwerkstoffe Quelle: J. Töpler

Danke für die Aufmerksamkeit.

Kontakt:

lars.roentzsch@ifam-dd.fraunhofer.de (fon: + 49 351 253 7411, mobil: + 49 172 271 5859)

IFAM

Fraunhofer Institut Fertigungstechnik In Materialforschung Pr