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Abstract

The radiation of gluons off heavy and light quarks passing through a deconfined and
hot strongly interacting medium is calculated in various scenarios. The interaction of the
jet-like quarks with the ambient deconfined medium is simulated either as scattering at
a static Debye-potential or as quark-quark scattering. Perturbative processes of colliding
on-shell quarks are evaluated on tree-level.

The focus is on energy loss in scalar QCD with regard to different medium modifications
and kinematic parameters. Therefore, individual contributions to the single-gluon emission
spectrum are considered; thereby, effects of interferences are included in detail. The
relevance of different integration areas of the gluon emission spectrum is analysed and
the phase space distribution is considered. Divergences and their attendance within the
framework of screening described by effective parameters are discussed. In particular, the
dead-cone effect for heavy quarks is outlined.

Kurzfassung

Die Abstrahlung von Gluonen beim Durchgang von schweren und leichten Quarks
durch ein stark wechselwirkendes Medium wird in verschiedenen Szenarien berechnet.
Dabei ist die Wechselwirkung von Jet-ähnlichen Quarks in einem umgebenden Medium
im Deconfinement-Zustand entweder als Streuung von Quarks an einem statischen Debye-
Potential oder als einfache Quark-Quark Streuung betrachtet worden. Die störungstheo-
retischen Prozesse kollidierender ”on-shell” Quarks werden auf dem Niveau von Baum-
graphen ausgewertet.

Das Hauptaugenmerk wird dabei im Rahmen der skalaren QCD auf den Energieverlust
des einlaufenden Teilchens bezüglich verschiedener Medium-Modifikationen und kinematis-
cher Parameter gelegt. Dazu werden einzelne Beiträge des Ein-Gluonemissionsspektrums
hinsichtlich signifikanter Interferenzeffekte im Detail untersucht. Desweiteren wird auf
die Relevanz verschiedener Integrationsbereiche des Gluonspektrums aufmerksam gemacht
und Probleme bei der Behandlung des Phasenraums analysiert. Auftretende Divergenzen
und deren Behandlung im Rahmen einer Abschirmung durch effektive Parameter werden
diskutiert, wobei dem ”dead-cone” Effekt für schwere Quarks besonderer Bedeutung zuteil
wird.
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1 Introduction

Modern physics provides us two fundamental concepts: On one hand the standard
model of particle physics with the principle of local gauge invariance, on the other hand
the Big Bang cosmology on the basis of the principles of general relativity. Up to now,
it is an open question what happened at the very beginning of the universe. In this
first few microseconds after the birth of the universe, a primordial kind of matter, called
quark-gluon plasma (QGP) dominates this phase of evolution.

The fundamental theory for describing the dynamics of strongly interacting elementary
particles, the quarks (spin- 1

2
fermions) and gluons, is perceived to be quantum chromody-

namics (QCD). Nuclear matter in ground state consists of protons and neutrons, belonging
to the group of hadrons, which mainly interact strongly. Protons and neutrons consist of
a mixture of quarks and gluons. These latter elementary particles are often named as
partons. The quarks exist in six different types or so-called flavours. These flavours are
combined in three families or generations of quarks. The first family consists of the up
and down quarks, the second one is built of charm and strange flavours, and in the third
top and bottom quarks form the third family, which are classified by their different elec-
tronic charges and masses. In contrast to the theory of electromagnetic interaction (QED),
QCD belongs to non-Abelian gauge theories. Interactions of quarks are mediated by the
exchange of spin-1 bosons named gluons, which carry colour charges. Thus, they can
interact with each other, contrary to gauge bosons of the QED (photons). Additionally,
quarks carry three colour charges, nicknamed by the fundamental colours in nature: red,
green and blue. Actually, those are the three states of the fundamental representation of
the colour gauge group SU(3)c. The gluons obey the adjoint representation of SU(3)c,
i.e. they appear in eight colour states. A noteworthy peculiar fact is the confinement of
quarks. It means that quarks can not exist alone - they always need at least one partner
with opposite colour charge to form a colour singlet. Such quark-antiquark pairs (qq̄) are
called mesons. It is also possible for quarks to combine in triple states as baryons (qqq)
and exotic multiquark states, pentaquark (uudds̄) for instance. All multiple quark-states
follow the rule of colourless combinations. Similarly, composites of gluons - glue balls -
must be colourless, too. Another important feature of QCD is asymptotic freedom, mean-
ing that the interaction of quarks and gluons at high energies or small interparticle spacing
becomes weak.

1.1 The QCD phase diagram

Now we consider various special conditions of strongly interacting matter, e.g. comparable
to those in the early universe, shortly after Big Bang, or in the core of superdense stars.
QCD suggests a phase transition of ordinary hadron matter made of pions, kaons, etas,
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Figure 1.1: Schematic plot of the QCD phase diagram of strongly interacting
matter. From [GSI1].

neutrons and protons etc. to a hot plasma of quarks and gluons, for temperatures larger
than 1012 K, and to a cold QGP for densities larger than 1012 kg · cm−3. This behaviour
of nuclear matter is sketched in Fig. 1.1 in a plane of temperature T versus net baryon
density. For increasing temperature and/or baryon density the quarks and gluons becomes
the relevant degrees of freedom, while at lower temperature and density, hadrons are the
important building blocks of strongly interacting matter. The details of this transition
from the confined phase of strongly interacting matter to the QGP phase are still matter
of debate. The order of phase transition is possibly first, second or a crossover (i.e. no phase
transition at all), depending on the quark masses and the number of active quark flavours.
The transition from the confinement to the deconfinement area is marked in Fig. 1.1 as
transition from white to orange. Particularly interesting is the possible existence of a
critical point where a line of first-order phase transition ends.

The transition between hadronic matter and QGP can also be characterised by chiral
symmetry. It is spontaneously broken in both vacuum and nuclear matter under normal
conditions. For high temperatures and densities the chiral condensate 〈ψ̄ψ〉 is approxi-
mately zero or, in other words, the chiral symmetry is restored assuming the light quark
masses vanish. The expectation value of the chiral condensate, 〈ψ̄ψ〉, is an order parameter
of chiral phase transition. The pseudo-critical temperature separates the confined phase
and the deconfinement area at baryon chemical potential μ = 0. It is also determined by
a rapid change of the expectation value of the Polyakov loop. An evaluation by lattice
theory yields that the temperatures of these two effects might fall together for vanishing
net baryon densities.

For regions of low temperatures and very high densities one expects a colour-supercon-
ducting phase with quark Cooper pairs.
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1.2 Relativistic Heavy-Ion Collisions

With the aim of investigating the QCD phase diagram (Fig. 1.1) at high net baryon
densities and temperatures, especially chiral symmetry restoration and deconfinement
transition, many heavy-ion programs have been carried out. In 1987, the Alternating
Gradient Synchrotron (AGS) started at Brookhaven National Laboratories (BNL), New
York, reaching heavy-ion beams of energy in the range 10 - 15 AGeV1. In Europe, CERN
(Conseil Européen pour la Recherche Nucléaire) puts the Super Proton Synchrotron (SPS)
into operation. Since 1994, after a modification for accelerating heavy ions, beam ener-
gies up to 200 AGeV were available for the first time. Furthermore, at BNL with the
Relativistic Heavy Ion Collider (RHIC), the first heavy-ion collider, Au+Au collisions at
centre-of-mass (CMS) energies2 of 200 AGeV were achieved.

Presumably in 2007, experiments with very high energies of
√
sNN = 5.6 TeV, provided

by Pb+Pb collisions, will start out at the Large Hadron Collider (LHC), which is under
construction in the previous LEP (Large Electron-Positron collider) tunnel at CERN,
Geneva.

Around 2010, the new accelerator complex FAIR (Facility for Antiproton and Ion Re-
search) will be set in operation at GSI (Gesellschaft für Schwerionenforschung) in Darm-
stadt, Germany. The CBM (Compressed Baryon Matter) experiment is part of the FAIR
project. Among the primary goals are searching for the origin of mass of hadrons and
matter in a region near to or covering the QGP. A part of FAIR is a synchrotron facility
named SIS300, which operates in contrast to RHIC and LHC in an intermediate energy
range, thus reaching also intermediate temperatures but aiming at achieving maximum
baryon densities.

1.3 Quark-Gluon Plasma

The transition from hadronic matter to a quark-gluon and vice versa is fairly fascinating,
in particular, if it would be a phase transition. To explore this novel state of strongly
interacting matter in the laboratory, the above mentioned heavy-ion experiments have been
or will be performed. The intriguing question was and still is, what is a unique signature of
the quark-gluon plasma. First ideas were guided by the asymptotic freedom of QCD and
relied on pictures of nearly non-interacting quarks and gluons. The new experiment series
at RHIC resulted in an opposite view: the quark-gluon plasma is strongly coupled, at least
under conditions achieved at RHIC. The hydrodynamical flow pattern observed for many
hadron species, for instance, supports strongly such a picture. However, hadrons emerge
from the plasma by hadronisation; only the ’partonic flow’ of the primordial plasma is
imprinted to the subsequently formed hadrons. A more direct probe is looked for. As
such, photons and dileptons may serve. These do not participate in the strong interaction
but leave the strongly interacting matter, in particular the early plasma, undisturbed.
Over many years, these penetrating probes have been considered as promising tools for a
plasma diagnostics. Unfortunately, the electromagnetic signals are convolutions over the
full time evolution of the matter in heavy-ion collisions, and it is fairly difficult (and even

1We follow the usual convention for an indication of energy per nucleon with an ’A’.
2Henceforth, CMS energies per nucleon pair is denoted as

√
sNN for convenience.
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model dependent) to disentangle plasma radiation from real and virtual photons emitted
from the later hadronic stages; additionally, hard initial (Drell-Yan like) processes also
contribute to the full spectra.

1.4 Jet Quenching

Among further signals from the plasma is ’jet-quenching’. The underlying idea is as
follows. In the very first state of the high-energy heavy-ion collisions, hard processes
create quarks and gluons with large transverse momenta. The latter ones stem from a
kinematical reshuffling from the longitudinal momenta to the transverse momenta in quasi-
free parton-parton scatterings. Such hard processes are rare. The transversally moving jet-
like partons are surrounded by strongly interacting matter in heavy-ion collisions. There
are various hints that the strongly interacting matter surprisingly fast thermalises and
constitutes the QGP. That means, the jet traverses the plasma. When coming near the
boundary, the parent jet parton hadronises and continues moving outwards. The jet,
before hadronising, may undergo interactions with the ambient strongly interacting matter
produced in soft processes. The general expectation is that a jet traversing a deconfined
medium (quark-gluon plasma) experiences another interaction with the ambient medium
than a jet propagating through confined (hadron) matter. This is the qualitative picture of
jet tomography. Once knowing the jet modification one can diagnose the medium created
in high-energy heavy-ion collisions.

The basic feature of the described scenario of jet quenching has been experimentally
confirmed at RHIC: In a deuteron-gold collision, where no QGP with large space-time
extent is expected, the jet properties differ substantially from those in a gold-gold collision,
where the creation of a plasma is generally believed to happen. Once the basic properties
are clarified, one proceeds to study in more detail the beam energy dependence, the system
size and centrality dependence etc. A further interesting aspect for such a systematic
investigation is the mass dependence of the parent jet quark. This is the major topic
of this thesis. Before presenting a few theoretical ideas, let us survey the experimental
situation.

1.4.1 Experimental Background

Besides the PHENIX collaboration at RHIC, the STAR group measures electrons and
positrons from heavy flavour decays in Au+Au collisions as well as for p+p collisions at√
sNN = 200 GeV. Thus, one can introduce a so-called nuclear modification factor in order

to characterise the medium-induced suppression of high pT -electrons

RAA =
dNAu+Au

〈TAA〉dσp+p
, (1.1)

which compares the production of electrons in AA collisions with those from pp collisions.
Here, the integral 〈TAA〉 stands for the average number of inelastic nucleon-nucleon colli-
sions in a given centrality class. Note that the definition of RAA is general; it is used for
many other particle species and their momentum dependencies. Here we focus on ’non-
photonic electrons’ which is a short hand notation for inclusive electrons and positrons
after removal of unwanted sources from light mesons.
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Figure 1.2: The nuclear modification factor RAA for electrons from heavy quark
flavour non-photonic decays as a function of the measured electron transverse mo-
mentum pT ≡ p⊥ (blue boxes) perpendicular to the heavy-ion collision axis in Au+Au
collisions at RHIC

√
sNN = 200 GeV for different centrality classes. We take our

focus on the most central collisions, which are shown in the lower right hand panel,
albeit the data for small peripheral collisions differs not significantly. The figure is
taken from [Adl06a].

Figure 1.3: Central Au+Au collisions at RHIC for
√

sNN = 200 GeV: RAA for
heavy-flavoured electrons from [Wie06]. A suppression at pT � 4 GeV compared with
theoretical estimates (solid lines) for different parton-averaged transport coefficients q̂
is obvious. The shaded band indicates the theoretical uncertainty of the perturbative
baseline for q̂ = 14 GeV2/fm.
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This factor RAA is exhibited in Fig. 1.3 for non-photonic electrons for quenched heavy
quark (charm and bottom) jets, comparing PHENIX and preliminary STAR data in central
Au+Au reactions at 200 GeV3. A nuclear modification factor RAA < 1 is shown over the
whole range of electron transverse momenta, which provides a clear evidence for strong
medium effects. Additionally, it is easy to see that a significant discrepancy between the
experimental data and the theoretical prediction is observed in the region pT ∼ 4 - 8 GeV.
One can try to solve this problem of strong suppression of the heavy-quark decay electrons
by ’filling the gap’ between theoretical estimates and experimental data by a greater heavy
quark energy loss probability. This it is outlined in the next section.

Jet quenching is a generic feature in hadron spectra at RHIC energies. To demonstrate
this, we exhibit in Fig. 1.4 the transverse momentum spectra of identified p, π−, Λ, K0

s .
With increasing centrality, the spectra become steeper, meaning a reshuffling of high
momentum hadrons towards lower momenta. While the spectra shown in Fig. 1.4 are
primarily meant to highlight a particularity of mesons versus baryons, they can be used
to construct the corresponding RAA for various hadrons. The latter ones exhibit the
suppression similar to that in Fig. 1.3.

The shown transverse momentum spectra (Fig. 1.4) are for hadrons composed of u, d
and s quarks. Correspondingly, one expects that the parent partons are also such quarks,
i.e. such ones which are also created in softer processes. As strangeness seems to stay
near to chemical equilibrium at RHIC energies, these quark flavours can be contrasted
as ’normal’ constituents of matter. The next heavier quark species, charm, however is
created, according to most estimates, only in initial hard processes. In so far, charm may
serve as distinct probe with a well defined production process. Besides charmed baryons,
charm may combine with u, d quarks and s quarks as well forming D and Ds mesons.
D mesons need special identification tools. One possibility is their semi-leptonic decay,
e.g. D+ −→ e+ + anything which has the large branching ratio of 17.2 %. These decay
electrons or positrons are mesureable indirectly by subtracting the other sources which
are supposed to be known. In present terminology, charm mesons are attributed to ’non-
photonic sources’, as mentioned above. The decay electrons and positrons are intimately
related to the kinematics of the parent charm mesons. In this way, valuable information
on the momentum space distribution of charm meson can be gained.

1.4.2 Theoretical Ideas

Let us now concentrate on the framework for the treatment of jet quenching for D mesons.
The quenched lepton spectra are calculated from the generic convolution

Ee
d3σ(e)

dp3
= Ei

d3σ(Q)

dp3
i

⊗ P (Ei → Ef )⊗D(Q→ HQ)⊗ f(HQ → e) (1.2)

in a perturbative QCD framework, as mentioned in [Wic06]. Here, e denotes the spectral
electron and HQ stands for the hadronised quark. Furthermore, the first term is the initial
quark spectrum created in hard processes. The fragmentation of a quark to a hadron is
described by the function D(Q→ HQ) and is convoluted with the hadron decay function
f(HQ → e). This describes the production process of the finally detected electron. If

3At LHC energies of 5.5 TeV, heavy quark decays are expected to dominate the electron spectrum up
to pT ≈ 30 - 35 GeV, where W decay contributions take over.
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Figure 1.4: Upper panel: p (full symbols) and π− (open symbols) spectra as a
function of both centrality and low transverse momentum pT , produced in Au+Au
collisions at

√
sNN = 200 GeV. Lower panel: The same as in the upper panel, but for

the hadrons Λ (full symbols) and K0
s (open symbols). The figure is taken from the

STAR collaboration [Ada06] which shows that jet quenching increases with centrality.
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we approximate the important energy loss probability by fixing the effective quark path
length L it yields according to [Wic06]

P (Ei → Ef ;L) ≈ Prad(Ei → Ef ;L)⊗ Pel(Ei → Ef ;L), (1.3)

meaning jet quenching is performed via two independent branching processes. In this
context Prad is the energy loss probability for the radiation process while Pel describes the
collisional energy loss probability. Now, we concentrate only on the radiative energy loss,
albeit the recent works ([Ala06, Djo06b]) predict a more involved situation: another depen-
dence: The corresponding STAR and PHENIX data [Bie05, Adl06a, Adl06b, Adl06c] seem
to falsify the assumption that heavy quark energy loss is dominated by radiative energy
loss alone when the bulk QCD parton matter is constrained by the observed dN/dy ≈ 1000
rapidity density of produced hadrons. Despite this restriction, our aim is the investigation
of the radiative part of heavy quark energy loss in Eq. (1.3) with the help of a C++
program for taking into account the precise kinematic of inelastic scattering processes.

Recently, some approximations are developed to deal with the problem of radiative
energy loss of a jet parton; all basing on the potential model which was introduced by
Gyulassy and Wang [Gyu94, Wan95] (see also Section 2.3 in this thesis).

We shortly present two different analytical limits and elucidate their key ideas. They
differ in their assumptions for the density of the deconfined medium, encoded in the mean
number of jet’s scatterings. It is also termed as the opacity of the medium n = L/λ with
L as its traversed size, and λ denotes the average mean free path of the parton. The first
approach of thick media (n 
 1) was given by Baier, Dokshitzer, Mueller, Peigné and
Schiff (BDMPS) in [Bai98]. They found an ansatz firstly for a static medium but later
they generalised this for expanding matter according to Bjorken’s hydrodynamical model
which yields a higher energy loss compared to the non-expanding medium. This estimate
of energy loss - with the restriction to the high-energy limit - is growing with the square
of the medium thickness L, but it is independent of the initial parton energy.

In contrast to this, Guylassy, Levai and Vitev (GLV) developed an approach for thin
media in the high-energy eikonal approximation, meaning an assumed parton which re-
mains on a straight-line trajectory to evaluate all relevant diagrams recursively for an
arbitrary number of elastic and inelastic scatterings. This recursion is carried out via
a reaction operator, which is worked out in [Gyu00a, Gyu00b, Gyu01, Gyu02, Wie00].
Additionally, the GLV formalism considers the interaction of the parton’s production am-
plitude what makes it difficult to compare with our numerical results without interference
effects according to the production process.

But in the combination with the Landau-Pomeranchuk-Migdal effect, outlined in Sec-
tion 2.4, only the first order of the opacity expansion is sufficient for determining basically
the radiative energy loss. This is based on the reduction of the mean number of scatterings
to an efficient value, respectively the rapid convergence of the opacity expansion. So, the
induced energy loss reads in first order of opacity

ΔE
(1)
GLV =

CRαsμ
2
D

N(Ei)λg
· L2 · log

Ei

μD
(1.4)

with CR as a colour factor, μD denotes the Debye screening mass, αs is the strong coupling
constant and λg describes the mean free path length of a gluon. Ei stands for the initial
energy of the parton, and it yields for the numerical factor N(Ei) → 4 in the limit of
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Ei →∞, as shown in [Gyu00b]. The proportionality of log(Ei)/Ei to the fractional energy
loss causes a decrease for higher initial energies. Including finite kinematic boundaries,
may cause N(Ei) to deviate considerably from this asymptotic value. Another possible
access to the problem of radiative energy loss is given by Zakharov in [Zak98] by using the
path integral approach.

1.5 Outline of the Thesis

Given the above motivation, the goal of this thesis is to investigate the influence of the
parent quark mass on jet attenuation in a deconfined hot medium. To simplify the following
consideration we consider only a part of the full jet physics schematically depicted in
Eq. (1.2), i.e. we focus on the section as P (Ei → Ef ). That means, we cut out the energy
loss of a quark when traversing the medium. By separating the jet creation process we
also neglect the initial virtuality and interference effects with the production, i.e. the jet
quarks are assumed to be on-shell and are created in the far past. We furthermore do
not consider the hadronisation and possible subsequent semi-leptonic decay. Of course,
these are severe simplifications which need to be improved in a realistic treatment of the
complete process. In restricting ourselves on the idealised process of energy loss by gluon
radiation we hope to isolate most clearly the mass effect of the parent jet quark. Along
this line, we are going to contrast the gluon radiation of light and heavy quarks. Even the
radiation process itself is highly simplified: We consider here only the one-gluon emission,
again with the motivation of exploring a first step towards a more realistic description but
with the hope to highlight most transparently the quark mass effect.

Since gluon emission in our scenario must be induced by an interaction with the ambient
medium we deal here also with a schematic model widely used in previous literature: The
surrounding medium is modelled as a colour scattering centre. As step towards a more
realistic description we compare the scattering at a static centre with a scattering on a
dynamical quark taking into account recoil effects and gluon emission from the scattering
partner.

In contrasting gluon emission from light and heavy jet-like quarks [Dok06], our pre-
sentation is heavily guided by the discussion of the dead cone effect. Since we consider
here the exact kinematics, within the given other idealisations, we can quantify to which
extend the global dead cone suppression factor from [Dok01] is justified in a tree-level,
on-shell description of the induced single-gluon emission process.

The thesis is organised as follows. In Chapter 2 we investigate various scattering
events with single-gluon emission in the background of a surrounding deconfined medium.
The basic instruments to handle scattering processes - the differential cross section and
the radiation amplitude - are introduced at first. Always with the restriction of single
quark scattering, we take our attention on quark-quark scattering and compare it with the
simplified potential model by Gyulassy and Wang [Gyu94, Wan95]. Finally in this chapter,
we study multiple scatterings in successive stages (LPM effect) from an electromagnetic
point of view, and later on we focus on the medium polarisation (TM effect), i.e. the
emitted photon is affected. This is to elucidate similarities and differences of Abelian and
non-Abelian gauge theories.

The next Chapter 3 provides the kinematical framework by calculating the radiation
amplitude for the elastic and inelastic scattering. We evaluate the QCD radiation ampli-
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tude for Abelian and non-Abelian contributions, which contain of the full colour structure.
Kinematical limits by means of analytical approaches, e.g. soft gluons and massless quarks,
lead us to an approach for the radiation amplitude by Gunion and Bertsch [Gun82]. In
order to remedy these analytical approximations, we give some suggestions in form of ad-
ditional correction factors. A brief discussion of quark-quark scattering kinematic is given
in the last section of this chapter.

The main goal of the thesis is represented in Chapter 4. It contains an evaluation of the
radiative energy loss by launching our numerical calculation. This procedure includes the
exact kinematics and colour algebra in contrast to other works (cf. [Gyu02, Käm00, Wie05,
Xia04, Tho03]). In these previous works, various approaches are used in order to find
full- or semi-analytical expressions for the averaged radiative energy loss. Furthermore,
some details of multiple scatterings and opacity expansions are discussed with the aim
of requiring the separation between the emitted gluon and the parton and considering a
finite thickness of an amorphous medium. We illuminate aspects of the running coupling
strength and compare radiative energy loss with the collisional ones at the end of this
main chapter.

The conclusions can be found afterwards in Chapter 5. Technical details are relegated
to appendices.



2 Scattering Processes in
Deconfinement Matter

2.1 Cross Section and Radiation Amplitude

The differential cross section for scattering processes in the form of 1 + 2 −→ n particles
generally reads

dσ = dβ|M |2
(2π)4δ4

(
p1 + p2 −

n∑
i=1

p′i

)
vrel

(
N1

2E1

)(
N2

2E2

)
S, (2.1)

following [?] with the definition of the Lorentz-scalar flux factor

vrel =

√
(p1 · p2)2 −m2

1m
2
2

E1E2

and dβ ≡
n∏

i=1

N ′
id

3p′i
2E ′

i(2π)3
. (2.2)

We denote initial particle energies and momenta with Ek and pk, whereas final particle
energies and momenta are denoted by E ′

k and p′k. In the case of collinear collisions of the
initial particles, considered here, the relative velocity in Eq. (2.1) changes to the expression
vrel = |	v1 − 	v2|. Furthermore, the factors Ni contain spin features of the particles as

Ni =

{
1 Bose particles (e.g. photons and gluons),
2mi Dirac particles (e.g. quarks).

(2.3)

The spinors are normalised to 1 in the Dirac case. The statistical factor

S =
∏

i

1

li!
(2.4)

accounts for the case of li identical particles of sort i in final state.
Now we evaluate a relation for describing two-to-three parton scattering by including

one-gluon emission in the event 1 + 2 −→ 1’ + 2’ + 3, as sketched in Fig. 2.1.
The probability of radiating a single gluon as particular scattering process is given

by the ratio between elastic and inelastic differential cross section. The corresponding
inelastic cross section as special case of Eq. (2.1) is given by

dσinel =
S · (2π)4δ(4)(p1 + p2 − p′1 − p′2 − k)

|	v1 − 	v2|
(
N1

2E1

)(
N2

2E2

)
|Minel|2

× N ′
1d

3p′1
2E ′

1(2π)3

N ′
2d

3p′2
2E ′

2(2π)3

d3k

2ω(2π)3
,

(2.5)
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2

1

2′

3

1′

Figure 2.1: Schematic scattering diagram for the process 1+2−→1’+2’+3. It de-
scribes an event where two initial quarks scatter each other resulting into two final
quarks and a single radiated gluon. The blob stands for the matrix element of the
process.

where the four vector k = (ω,	k) is for the emitted gluon with wave three-vector 	k and
energy ω. The elastic differential cross section for the process 1 + 2 −→ 1’ + 2’ is

dσel =
S · (2π)4δ(4)(p1 + p2 − p′1 − p′2)

|	v1 − 	v2|
(
N1

2E1

)(
N2

2E2

)
|Mel|2

× N ′
1d

3p′1
2E ′

1(2π)3

N ′
2d

3p′2
2E ′

2(2π)3
.

(2.6)

Of course, one has to perform the sum and averaging of squared matrix elements (indi-
cated with an overline) before implementing in the differential cross section. Now, the
gluon number distribution, i.e. the ratio of elastic and inelastic contributions, follows from
Eqs. (2.5) and (2.6) as

dng =
dσinel

dσel

=
|Minel|2
|Mel|2

· d3k

2ω(2π)3
, (2.7)

This approach holds only true for small gluon momenta compared with momenta of the
other particles (soft-gluon limit). Thus, the phase space distribution describing the proba-
bility of single-gluon emission under the condition that a quasi-elastic scattering with soft
gluon emission event has occurred reads as

R = ω
dng

d3k
=

1

2(2π)3

|Minel|2
|Mel|2

≡ Rtotal (2.8)

which is used in further numerical calculations.
In the tree-level approximation the mentioned matrix elements |Mel| and |Minel| are

given by the Feynman diagrams depicted in Figs. 2.2 - 2.5. In what follows we rely on these
diagrams when considering quark-quark scattering. Particular emphasis is put on diagram
Fig. 2.5, where the non-Abelian character of QCD by the triple-gluon vertex shows up.

2.2 Quark-Quark Scattering

All scattering events take place in the tree level approximation with the exception of the
running coupling discussed in Section 4.6, i.e. self energy contributions and vertex correc-
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p′i, C p′f , D
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Figure 2.2: Elastic quark-quark scattering diagram.

k, g

f

p′f , D

pf , B

p′i, C

pi, A

f

k, g

p′f , D

pf , B
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Figure 2.3: One-gluon emission from projectile line.

tions are not taken into consideration. Please note that in this thesis we completely neglect
the production amplitude J(p)1 by assuming only on-shell quarks as initial particles.

For inelastic scattering we consider four Abelian diagrams with a single gluon emission
besides of the fundamental elastic scattering diagram. Due to the possibility of gluon self-
interaction the only non-Abelian diagram Fig. 2.5 has to take into account in deriving the
total radiation amplitude. In Section 3.4, various kinematic situations are investigated in
order to find analytical approaches for the Abelian and non-Abelian matrix elements. Here,
we are indexing the matrix elements as Mn,m,l from [Gyu00b]; this notation is explained
in detail in Appendix A.

The elastic scattering event with a single exchanged gluon is described in Fig. 2.2,
using the outlined notation and conventions in Appendices A and F. The Abelian inelastic
process is represented by the mentioned Feynman diagrams in Figs. 2.3 and 2.4 where we
differentiate for the sake of shorthand notation whether the gluon is emitted before (pre)
and after (post) scattering of the projectile quark with the target one. The diagrams in
Figs. 2.2 - 2.5 clarify also our momentum and colour conventions.

Of course, the QCD expressions for quark-quark scattering with emitting a single
gluon can be easily reduced to the QED case by neglecting colour algebra and considering

1This effective jet source current is due to the quarks formed from hadron jets; it is studied in [Gyu00a,
Djo03b].
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Figure 2.4: One-gluon emission from target line.
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Figure 2.5: Three-gluon contribution in quark-quark scattering.

electromagnetic coupling; diagram 2.5 does not occur in QED.

2.3 The Potential Model

In order to simplify further the quark-quark scattering, the potential model was employed
firstly by Gyulassy and Wang in [Gyu94, Wan95]. It is based on the following ideas.

In A+-gauge (see Appendix F) one can neglect target contributions, i.e. the diagrams
in Fig. 2.4, compared to projectile and three-gluon radiation. To model this situation,
target partons are considered as heavy particles, with masses much larger than projectile
quark masses. Asymptotically, no energy transfer between several heavy-light collisions
happens; that means only a spatial momentum transfer is allowed.

We start with localised scattering centres at 	xi in configuration space which create in
their surrounding areas a classical static screened Coulomb potential in the form

ϕ̃(	x ) =
Q

4π|	x− 	xi|e
−μ̃|�x−�xi|. (2.9)

In order to change to the momentum space representation of the Yukawa type potential,
one uses the Fourier transformation f(	q ) =

∫
d3x f̃(	x) to get

ϕ(	q ) = Q · e−i�q �x

	q 2 + μ̃2
. (2.10)
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pi, A pf , B

	qel, 	x, C,D

Figure 2.6: Elastic scattering diagram.
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Figure 2.7: a) Pre-projectile emission. b) Post-projectile emission.

Generalising to the QCD case we have to replace the charge Q by the strong interaction
strength g and target colour factor T a

AB. Now, the static potential screened by a modified
Debye mass μ̃, defined in Appendix D, reads as

V a
AB(	q ) = gT a

AB ·
e−i�q �x

	q 2 + μ̃2
. (2.11)

According to a separation between two successive scatterings we assume

λp 
 μ̃−1, (2.12)

where μ̃−1 denotes the modified Debye screening length and λp is the mean free path length
of the incident projectile parton. The important role of the modified screening parameter
due to its regularisation character in the denominator is discussed in Section 2.6.

The Feynman diagrams for scattering at a Debye screened potential (without target
radiation contributions, of course) are obtained as shown in Figs. 2.6, 2.7 and 2.8, following
the restriction scheme for quark-quark scattering.

2.4 Multiple Scattering:
The Landau-Pomeranchuk-Migdal (LPM) Effect

In order to better understand the radiative energy loss of quarks undergoing subsequent
scatterings we turn now to scattering from an electromagnetic point of view in a classical
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Figure 2.8: Three-gluon contribution.

context, as discussed in [Pav97, Mül99] for example. For simplicity, we study the single
scattering (SS) at first, that is to say incoming particles scatter at one centre. Later on,
the extension to double (DS)- and multiple (MS) scattering scenarios is sketched. Note
that we write explicitly the speed of light c to emphasise limits for particles with velocities
close to c.

We start with an expression for the differential intensity I as a function of the energy
ω and the solid angle Ω with respect to the radiated photon. This equation, following
expressions in Chapter 14 of the standard textbook for classical electrodynamics [Jac98],
reads as

d2I

dωdΩ
=
e2k2

4π2

∣∣∣∣∣
∞∫

−∞

dt[	n× 	v(t)]eiωt−i�k·�r(t)
∣∣∣∣∣
2

, (2.13)

where

	n =
	k

|	k|
and 	v(t) =

d

dt
	r(t) (2.14)

with 	v(t) as the velocity of a charged particle travelling along the trajectory 	r(t). The
elementary charge e is related to the Sommerfeld’s finestructure constant by α = e2/4π ∼=
1/137. Additionally, the vacuum dispersion relation ω = |	k| as a function of the wave

vector 	k is used. Furthermore, a noteworthy fact is that the integration time thresholds
t = ±∞ are covered by an additional convergence factor, e−ε|t|, and going to the limit
ε→ 0 after evaluating the integral function.

With the aim of describing a dilute medium the particle is assumed to move piecewise
on a straight line without disturbance and constant velocity unless in the centre point of
scattering. In physical terms, this means that we are interested in wavelengths being much
larger than the spatial extension of the scattering process. The details of the scattering
event itself are not resolved by such large wavelengths, and consequently, one can neglect
its spatial structure and shrink it to a point. This approximation can not be justified for
short wavelengths.
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Figure 2.9: Simplified single scattering event. The collision process is concentrated
in the point �r = 0 at the time t = 0.

Now, we investigate the process of

SINGLE SCATTERING

as sketched in Fig. 2.9. We have to integrate Eq. (2.13) over infinite times and yield

(
d2I

dωdΩ

)
SS

=
e2

4π2c2

∣∣∣∣∣[	n× 	v1]

0∫
−∞

dteiω(1−�n�v1/c)t + [	n× 	v2]

∞∫
0

dteiω(1−�n�v2/c)t

∣∣∣∣∣
2

=
e2

4π2c2

∣∣∣∣∣ 	n× 	v1(t)(
1− �n�v1

c

) − 	n× 	v2(t)(
1− �n�v2

c

)
∣∣∣∣∣
2

(2.15)

with help of ω → ω + iε. One can derive a prevailed emission radiation direction of the
intensity spectrum in Eq. (2.15), which is shown in Fig. 2.10 for different particle velocities.
If the radiation is focused in direction 	v1,2, i.e. the denominators of Eq. (2.15) become
small, the spectrum is peaked in forward direction for ultra-relativistic electrons, so to say
for |	v| → c, whereas the radiation vanishes perpendicular to the particle velocity in this
configuration.

DOUBLE SCATTERING

The consideration of a double scattering process goes in the same manner as single scat-
tering. After an idealisation referring to the medium density we obtain for the radiation
intensity of electron scattering at two centre points, as exhibited in Fig. 2.11,

(
d2I

dωdΩ

)
DS

=
e2

4π2c2

∣∣∣∣∣ 	n× 	v1(t)(
1− �n�v1

c

) +
	n× 	v2(t)(
1− �n�v2

c

) (eiω
“
1−�n�v2

c

”
Δt − 1

)

− 	n× 	v3(t)(
1− �n�v3

c

)eiω
“
1−�n�v3

c

”
Δt

∣∣∣∣∣
2

.

(2.16)
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Figure 2.10: The club-shaped radiation cone in a polar plot of the gluon radiation
angle ϑ for different parameters of |β| = |�v|/c. The particle’s velocity vector �v(t)
is orientated horizontally. The red curve shows the spectrum for a slowly particle
(β � 0), whereas the strongly peaked cone is for β = 0.6 in forward direction (blue
line), β = 0.4 is an intermediate case. The club represents the radiated power per
infinitesimal spatial angle element dP (t)/dΩ ∝ sin2 ϑ/(1− β cos5 ϑ) (see [Jac98]).

Figure 2.11: Schematic representation of a double scattering process.
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If we are now interested in the soft photon limit, ω → 0, it yields only two dominant
contributions in Eq. (2.16), corresponding to the initial electron before the first scattering
and the final electron after the second collision. Thus, we encounter a condition for the
formation time as

τf ≡ 1

ω

(
1− 	n	v2

c

) 
 Δt, (2.17)

which hence allows us to neglect the intermediate part between the two interactions.
Indeed, for this soft photon approximation one can speak about a destructive interference
if the formation length lf is much larger than the distance d between two scattering events,
i.e.

lf ≡ |	v2| · τf 
 d. (2.18)

Owing to this, the double scattering looks effectively like a single scattering.
For the opposite case of relation Eq. (2.18), lf � d, the double scattering process is

expressed like a sum of two independent single scatterings, each in form of Eq. (2.15), due
to fluctuations in the exponential factors of Eq. (2.16) which cancel interference terms.

MULTIPLE SCATTERING

We study the scattering at N centres as displayed in Fig. 2.12. Referring to SS and
DS scenarios, the intensity spectrum is now evaluated in a similar way. We find in an
generalisation of DS from Eq. (2.16) an expression for the formation length

lf ≡ |	v‖|
ω

(
1− 	n	v‖

c

) 
 d (2.19)

with a dependency of the electron’s velocity projection 	v‖ in the initial direction of the
particle 	vi. We now consider a medium with thickness L with an anticipated effective
number of scatterings given by

Neff =
L

lf
assuming lf < L, (2.20)

reading as a superposition of effective single spectra, labelled with SS. Due to this fact,
the resulting spectrum factorises and is a multitude of SS:(

d2I

dωdΩ

)
MS

= Neff ·
(

d2I

dωdΩ

)
SS

. (2.21)

The standard approach to bremsstrahlung effects was presented by Bethe and Heitler (BH).
It is based on a Born approximation for relativistic electrons. In the limit of Neff → N
the BH limit yields Eq. (2.21), as shown in standard literature [Lan86].
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Figure 2.12: Multiple scattering in the LPM regime within an amorphous medium.
The effective single scattering centres are displayed in the lower picture as filled
points. The number of this points is labelled by Neff , in contrast to the number
of real scatterings which is sketched in the upper graphics with small black points,
situated within the formation length lf .

Now, we give some further explanations and comments with respect to the radiation
cone exhibited in Fig. 2.10 and comments to conditions of the LPM effect.

The typical relation of the average (squared) emission angle for relativistic radiation is

θrad ≡ 〈θ2
rad〉1/2 =

1

γ
=
mc2

E
(2.22)

with the electron’s mass m and its energy E. This implies a separation of the photon and
electron over the same distance, called formation length lf . Hence, the process of emission
can be disturbed, e.g. by the scattering of electrons. This is actually called LPM effect.
If the electron scatters out of the radiation cone, θ2

s 
 θ2
rad, an estimate for the mean

squared scattering angle θ2
s in a random walk picture can be given [Pav97]. It yields a

relation of this average angle to the formation length

lf ∝
√
ω

E
, (2.23)

and thus the intensity, respectively the energy spectrum Eq. (2.21), becomes proportional
to the inverse formation length. In the other case, i.e. for θ2

s < θ2
rad, the spectrum in BH

limit becomes constant.
In a comprehensive notation, the proper LPM effect denotes the electron scattering

off the forward radiation cone due to multiple scatterings after a particular distance,
respectively the formation length lf . As a result, the radiation becomes suppressed due
to destruction interferences. For the interested reader we refer to [Mig56, Ter72, Akh96]
for further details. Very often, each destructive interference is denoted as LPM effect.

In the following section, the influence of the intensity spectrum by the medium polar-
isation is discussed.
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2.5 Ter-Mikaelian (TM) Effect

We further continue our explanation on an electromagnetic analogue by considering brems-
strahlung effects, basing on ultra-relativistic electrons. In order to outline the basic ideas
of this effect, first described by Ter-Mikaelian [Ter72], we start with an estimate for the
in-medium gluon dispersion relation and follow later classical coherence arguments by
Galitsky and Gurevich in [Gal64] in addition to qualitative estimates for the formation
length.

The proper TM effect refers to photons, but having in mind the QCD analogue, we
apply the corresponding notions already here to gluons. The dispersion relation in a
medium between gluon energy ω and the spatial momentum 	k becomes

ω ≡ ω(k) =
|	k|√
ε
, (2.24)

in contrast to the vacuum relation ω = |	k| with the ’dielectrical’ medium parameter ε.
This dielectrical ’constant’ becomes in the high-frequency approximation

ε =

(
1− ω2

0

2ω2

)2

≈ 1− ω2
0

ω2
(2.25)

following ideas from [Ter72]. Here, we associate the effective gluon mass parameter ω0

with a constant value directly related to the plasma frequency ωp of the surrounding
medium. We are not taking into account asymptotic- and dynamical masses (for this,
see [Djo03a, Djo03b]). We combine Eqs. (2.24) and (2.25) and yield nothing else but the
on-shell condition for gluons traversing a medium,

k2 = ω2 − |	k|2 = ω2
0. (2.26)

This dispersion relation expresses the modification of gluonic excitations propagating
through a medium. The vacuum case is recovered by ω0 → 0. Equation (2.26) is the
input and constitutes the basis of modified kinematical expressions and propagators for
calculating the total radiation amplitude, compared to those in vacuum.

The basic idea from Galitsky and Gurevich is based on a geometrical condition,

l(ω, ϑ) =
λv · cosϑs

2

(
1√
ε
− v cosϑ · cosϑs

) , (2.27)

to maintain coherence2. This length l can be defined as the pathlength the emitting
electron travels over which the radiation remains coherent and is identified over the for-
mation length given by Eq. (2.19) in the previous section. It corresponds, apart from a
constant factor π, only by setting ε = 1 for the vacuum, λ = 2π/ω as the wavelength
and |	v‖| = v · cosϑs, where ϑs denotes the multiple scattering angle of the electron (in

contrast to ϑ as the radiation emission angle) with cos ϑs as its average value. Now, the

2The additional modification term 1/
√

ε in Eq. (2.27) stands for the increased phase velocity of the
emitted bremsstrahlung
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radiation intensity can be expressed in terms of the BH intensity by a reduction factor
q ≡ I(ω)/IBH(ω) = l(ω, 0)/lvac(ω, 0). It is the ratio of the forward emission (cos ϑ ≈ 1)
coherence length in medium and the length lvac in the absence of medium effects (ε = 1
and cosϑs = 1). Hence, one finally obtains with the help of some approximations and
under the assumption ε ≈ 1 the relation

q =
ω2

ω2 + ω2
0

(
E2

m2

) < 1, (2.28)

with the already introduced definitions of m and E as electron mass and energy. This
behaviour shows a strong suppression of the electron spectrum for low energies, thus
removing the infrared divergences for ω → 0.

This reduction of the formation length can also be seen in electrodynamics by following
more simple qualitative estimates. The formation length in vacuum can also be written as

lvac
f =

2γ2

ω
with γ−2 = 1− v2, (2.29)

where γ is the Lorentz factor of the radiating particle. In considering medium polarisation,
the Lorentz factor can be rewritten as γ = 1− εv2, and thus the vacuum formation length
(see Eq. (2.29)) is reduced to

lf =
2ω

ω2
0

(2.30)

in the limit ω0 � ω � γω0. This reflects the suppression of photon radiation due to the
dielectrical medium effect. In Section 4.3, additional attendance is given on the formation
time which is directly related to the previous in-medium formation length lf .

Note that the TM effect3 shows a different behaviour compared with the LPM ef-
fect. The TM effect we discussed here suppresses the bremsstrahlung photon spectrum
at the very soft threshold, while the LPM effect becomes operative at larger photon or
gluon energies. At even larger energies one recovers the BH regime, in case of photon
bremsstrahlung by electrons.

In summarising the previous discussion, one can find a reduction of the soft-brems-
strahlung spectrum off an relativistic electron passing an amorphous medium. This be-
haviour is caused by the polarisation of the medium.

Here, we outlined this effect only in an electrodynamical framework. Other works
(cf. [Mül99, Käm00, Djo03a, Djo03b]) extend this medium effect on the QCD case for
radiated gluons instead of photons. We follow the ideas from Kämpfer et al. [Käm00],
while only taking the modified gluon on-shell condition into account and neglecting higher
order effects, e.g. gluon self-energy as considered in works of Gyulassy and Djordjevic4

[Djo03a, Djo03b].

3It is also known as dielectrical effect or longitudinal density effect.
4Recently, QCD lattice data extract ω0(T ) with typical effective gluon mass of a few hundred MeV

(slightly above the confinement temperature). This causes a relevance of only transverse gluon modes in
contrast to [Djo03b].



3 Single Quark Scattering

The radiation amplitude is the basis for calculating the energy loss of heavy quarks.
In the backround of that aim, we concentrate on analytical estimations for the matrix
elements in order to give an approach for this often used amplitude of the radiation process
and compare the results later on with numerical computations.

Here, we consider mainly the kinematical situation for single quark scattering with
induced one-gluon radiation in the QCD case, meaning that double scattering contribu-
tions and higher order diagrams are neglected. This consideration demonstrates in an
impressive way the importance of the modified dispersion relation which was introduced
in the previous chapter. Furthermore, we will give a brief overview on the Gunion-Bertsch
radiation amplitude as one possible description of quark-quark scattering.

3.1 Kinematics for Potential Model with One-Gluon
Emission

In this section, the kinematical situation is derived for a single quark scattering event with
emitting one gluon in the potential model, analogue to [Wan95]. The aim is to derive a few
suitable approximations for analytical evaluations. The numerical evaluation in Chapter
4, however, is performed with exact kinematics.

We start with the on-shell condition of the projectile quark, p2
i = m2 (see Figs. 2.1

- 2.5), with a quark mass parameter m given as constant. The direction of the incident
quark is chosen in z-direction,

pi = (Ei, 0, 0, piz) . (3.1)

For simplicity, we use the notation Ei ≡ E as the initial quark energy determined by the
positive root of the on-shell condition.

It is suitable to work in light-cone coordinates due to our special choice of fixing the
gauge at A+ = 0 (see Appendices B and E). With this declaration one yields1

pi =
[
E +
√
E2 −m2, E −

√
E2 −m2,	0⊥

]
≈
[
2E − m2

2E
,
m2

2E
,	0⊥

]
, (3.2)

where the last expression assumes a small quark mass m compared to the energy E,
m/E � 1.

1Please note that the quark on-shell condition is only satisfied in order of (1/E)0.
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The on-shell condition for the emitted gluon, k2 = ω2
0, leads us to one possible repre-

sentation of the gluon four-momentum

kμ ≡ (k0, 	k⊥, kz) =

(√
ω2 + ω2

0, ω · cosϕ sinϑ, ω · sinϕ sinϑ, ω · cos ϑ

)
, (3.3)

where (ϕ, ϑ, ω) denotes the usual 3-dimensional spherical coordinates. So, the momentum
of the gluon is expressed in light-cone coordinates as

k =

[
2Ex,

	k 2
⊥ + ω2

0

2Ex
,	k⊥

]
. (3.4)

For the sake of neglecting target contributions in the total radiation amplitude we fixed
the special gauge. Thus, we obtain for the polarisation four-vector

ε =

[
0, 2 · 	ε⊥

	k⊥
2Ex

,	ε⊥

]
. (3.5)

The gluon momentum is parametrised in its plus-component by x which is defined in
agreement with Eqs. (3.4) and (3.5) as

x ≡ k0 + k‖
2E

=

√
ω2 + ω2

0 + ω cosϑ

2E
. (3.6)

In association to the screening parameter ω0 as the effective gluon mass and m as the
incident quark mass one can define the parametric angles

ϑp =
ω0

k0
and ϑd =

m

E
(3.7)

as related quantities to the according particle energies k0 and E. With the help of this
definition we find another expression for the parameter x in the form of

x =
k0

2E

(
1 +
√

1− ϑ2
p cosϑ
)

(3.8)

with the restriction 0 ≤ x ≤ 1, because the maximum energy available for the gluon is
2E. Furthermore, the limits E 
 m and E 
 q⊥ have to be assumed when we simplify
kinematical expressions by a Taylor expansion and neglect higher orders in 1/E.

3.1.1 Elastic Potential Scattering

At first we apply the relevant Feynman rules (see Appendix D) on the single elastic scat-
tering process, Fig. 2.6, within the potential model approach. The process is described by
the matrix element M1,el. Therefore, the matrix element reads

M1,el = T c
ABT

c
CD · (−ig)(pf + pi)μ · (−ig)g0μ · e

−i�qel�x

	q 2
el + μ̃2

= T c
ABT

c
CD · 2E(−g2) · e

−i�qel�x

	q 2
el + μ̃2

,

(3.9)

using the fact that the potential only imparts a spatial momentum transfer to the projec-
tile, i.e. q0 = 0. The denominator of (3.9) contains the modified Debye screening parameter
μ̃ and implements in this way the non-vanishing mass of the intermediate gluon in the
medium.
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3.1.2 Inelastic Potential Scattering

The general conservation of the total four-momentum,

pi + q = pf + k, (3.10)

besides the on-shell condition for the emitted gluon, k2 = ω2
0, and the Lorentz condition,

εk = 0, constitutes the basis of the following evaluations for inelastic scatterings. We also
use the proper relation for the zeroth-component of the transverse momentum, q0 = 0,
due to the potential ansatz.

We begin our discussion with the

PRE-PROJECTILE GLUON EMISSION.

In Fig. 2.7a, the situation is depicted for single gluon emission from the projectile line
before the initial quark scatters with the static potential, associated to the matrix element
M1,0,0. The accompanying matrix element is given by

M1,0,0 = (T fT g)ABT
f
CD · (−ig)(pf + pi − k)μ · i

(pi − k)2 −m2 + iε

× (−ig)(2pi − k)σε
σ · (−ig)g0μ · e−i�q �x

	q 2 + μ̃2
,

(3.11)

which can be reduced to

M1,0,0 = (T fT g)ABT
f
CD · 2(E − k0)g

3 · e−i�q �x

	q 2 + μ̃2
· piε

pik
. (3.12)

Now, we have to calculate the latter ratio in the equation above. It yields with the previous
kinematical approximations

piε

pik
≈ 2	ε⊥	k⊥
	k2
⊥ + x2m2 + ω2

0

. (3.13)

For small effective gluon masses ω0 compared to ω and in the limit of small gluon emission
angles ϑ (forward direction) one is able to rewrite the energy pre-factor in (3.12) as E(1−x)
and obtains

M1,0,0 ≈ M1,el

TA′B′TC′D′
· (−2g) · (T fT g)ABT

f
CD · (1− x)

× 	ε⊥	k⊥
	k2
⊥ + x2m2 + ω2

0

,

(3.14)

i.e. , a factorisation of the elastic amplitude (3.9) and remaining part characterising the
radiation. This is only possible under the important assumption

	qrad ≡ 	q = 	qel, (3.15)
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and is discussed further in Section 3.6 in detail. Since in the soft gluon limit with x� 1,
the factor (1− x) can be omitted and (3.32) is obtained.

Now, we continue with the

POST-PROJECTILE GLUON EMISSION

and start again at the application of Feynman rules in the according diagram, shown
in Fig. 2.7b. The corresponding matrix element can be written as

M1,1,0 = (T gT f)ABT
f
CD · (−ig)(2pf + k)σε

σ · i

(pf + k)2 −m2 + iε

× (−ig)(pf + k + pi)μ · (−ig)g0μ · e−i�q �x

	q 2 + μ̃2
,

(3.16)

in the same manner as (3.11) according to the appropriate diagram, and one obtains

M1,1,0 = (T fT g)ABT
f
CD · 2E · (−g3) · e−i�q �x

	q 2 + μ̃2
· pfε

pfk
. (3.17)

Here, it is absolutely necessary to consider the momentum transfer q due the entering of
the final quark momentum. We give only the needed relations as a summary of the used
expressions. The relevant quantity q in light-cone variables reads

q = [qz,−qz, 	q⊥] . (3.18)

Later on needed relations are combinations with the momentum transfer,

qpi = qz

(
m2

2E
− E
)
, qk = qz

(
	k2
⊥ + ω2

0

4Ex
− Ex
)
− 	q⊥	k⊥. (3.19)

With squaring the four-momentum conservation (3.10) we reach our aim to describe the
z-component of the momentum transfer in terms of the given quantities pi, q and the gluon
momentum k. So, it yields from p2

f = (pi + q − k)2 the equation for qz

0 = q2
z +2qz

(
E(1− x) +

	k2
⊥ + ω2

0

4Ex
− m2

2E

)
+(	k⊥−	q⊥)2 +

	k2
⊥
x

(1−x)+x2m2 +
ω2

0

x
(3.20)

with the positive root solution

q(+)
z = −

	k2
⊥ + ω2

0

2Ex
− (	k⊥ − 	q⊥)2

2E(1− x) −
xm2

2E(1− x) , (3.21)

while we are neglecting again higher orders in powers of (1/E). We are not interested
in the negative root solution, because those results for backward scattering are usually
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suppressed by orders of magnitude, compared to the forward scattering event2. Thus, the
final quark momentum reads as

pf = pi + q − k ≈
[
2E(1− x)− ω0,

(	k⊥ − 	q⊥)2 +m2

2E(1− x) , 	q⊥ − 	k⊥
]
, (3.22)

and we can evaluate the ratio of the needed four-products

pfε

pfk
= 2(1− x) · 	ε⊥(	k⊥ − x	q⊥)

(	k⊥ − 	q⊥)2 + x2m2 + (1− x)2ω2
0

. (3.23)

With this ratio, the post-emission matrix element (3.17) finally becomes

M1,1,0 ≈ M1,el

TA′B′TC′D′
· (−2g) · (T gT f)ABT

f
CD · (1− x)

×
−	ε⊥
[
	k⊥(1− ω0

2E
)− x	q⊥

]
(	k⊥ − x	q⊥)2 + x2m2 + (1− x)2ω2

0

.

(3.24)

The last contributing diagram is from the non-Abelian

THREE-GLUON EMISSION.

The more complex matrix element structure exhibited in Fig. 2.8 as a Feynman graph
is due to the three-gluon vertex and is written as

M1,0,1 = (−ig)(pf + pi)μT
e
AB ·

−igτμ

(pi − pf)2
· εσ · (−ig)g0ρ · e−i�q �x

	q 2 + μ̃2
· T f

CD

× (−ig)(ifegf [(pi − pf + k)ρgτσ + (−k − q)τgσρ + (q − pi + pf )σgρτ ].

(3.25)

It can be cast also in the form

M1,0,1 = [T f , T g]ABT
f
CD · g3 · e−i�q �x

	q 2 + μ̃2
· 1

(pi − pf)2 − ω2
0

× [2k0(pi + pf)ε− ε0 · (pi + pf )(k + q) + (2E − k0) · 2qε].
(3.26)

Hence, we have to evaluate firstly the denominator in Eq. (3.26) as

(pi − pf )
2 = 2m2 − 2pipf

≈ − 1

1− x
[
(	k⊥ − x	q⊥)2 + x2m2

]
+
ω0m

2

2E
− ω2

0.
(3.27)

2Please note that here we consider about forward resp. backward scattering of the final quark and not
the gluon, like often in previous and further investigations.
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The single contributions in (3.26) are calculated to

Ia ≡ 2k0(pi + pf)ε ≈ 2E · 	ε⊥
[
(2	k⊥ − x	q⊥)− 	k⊥ · ω0

2E

]
(3.28)

for small emission angles, ω ≈ xE, and ϑp � 1. A further contribution, Ib ≡ ε0(pi +
pf)(k+ q), can be approximated in leading order in (1/E), and the last term in Eq. (3.26)
reads

Ic ≡ 2qε(2E − k0)

≈ −2E(2− x)	ε⊥	q⊥ + 2E	ε⊥	k⊥ · ω0

2E
.

(3.29)

The complete nominator in (3.26) is given by the sum of (3.28) and (3.29):

Ia − Ib + Ic ≈ Ia + Ic = 2E · 2	ε⊥(	k⊥ − 	q⊥), (3.30)

since we take into account only orders up to (1/E)0 in the second term of (3.30). Thus,
the three-gluon matrix element yields

M1,0,1 ≈ M1,el

TA′B′TC′D′
· (−2g) · [T f , T g]ABT

f
CD · (1− x)

× −	ε⊥(	k⊥ − 	q⊥)

(	k⊥ − 	q⊥)2 +m2
[
x2 − (1− x) ω0

2E

]
+ (1− x)ω2

0

.
(3.31)

In summary, we can approximate the matrix elements (3.14), (3.24) and (3.31) in the
limit of soft gluons as

M1,0,0 =
M1,el

TA′B′TC′D′
· (−2g) · (T fT g)ABT

f
CD ·

	ε⊥	k⊥
	k2
⊥ + x2m2 + ω2

0

, (3.32)

M1,1,0 =
M1,el

TA′B′TC′D′
· (−2g) · (T gT f)ABT

f
CD ·

−	ε⊥
[
	k⊥(1− ω0

2E
)− x	q⊥

]
(	k⊥ − x	q⊥)2 + x2m2 + ω2

0

, (3.33)

M1,0,1 =
M1,el

TA′B′TC′D′
· (−2g) · [T f , T g]ABT

f
CD ·

−	ε⊥(	k⊥ − 	q⊥)

(	k⊥ − 	q⊥)2 +m2
[
x2 − ω0

2E

]
+ ω2

0

. (3.34)

They reduce to the relations given in [Tho05] for a vanishing effective gluon mass ω0. In
the limit of vanishing projectile quark masses, the Eqs. (3.14), (3.24) and (3.31) confirm
the estimations in [Käm00]. Now, one can combine both approximations and obeys the
well-known expressions which were firstly derived by Gunion and Bertsch (cf. [Gun82],
Eqs. (12a) - (12c) and Eqs. (3.59), (3.60) and (3.61) in Section 5 of this chapter).

3.2 QCD Radiation Amplitude

We are interested in the ratio of the total coherent sum of the single contributions to the
full scattering process and their elastical part, considering colour factors as well. Before
doing so, we investigate the ϕ-dependence of the radiation amplitude in general with the
aim of finding a simplification for subsequent considerations.
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The anticipation of ϕ-dependency in the total gluon radiation amplitude should show
a symmetry around the the projectile velocity direction, here chosen along the z-axis. But
the following outline shows a weak dependence in contrast to this expection.

In Fig. 3.1, the ratio of the total squared radiation amplitude Eq. (3.35) is exhibited
for an arbitrary pair (ϑ, ϕ) divided by the amplitude for ϕ = 0. The gluon emission polar
angle ϑ is fixed to ϑ = 2 · 10−6 (upper panel) and ϑ = 0.1 (lower panel) besides the fact of
various tiny effective gluon masses ω0. The kinematical input obeys the condition |	q⊥| > ω
allowing to reduce the total amplitude Rtotal to the post-emission contribution due to the
dead cone effect. If we apply this approach to the approximated matrix elements which
are given in the previous section, it effectively yields for the ratio

Rtotal(ϑ, ϕ)

Rtotal(ϑ, ϕ = 0)
− 1 ≈ Rpost(ϑ, ϕ)

Rpost(ϑ, ϕ = 0)
− 1

=
(
(	k⊥ − x	q⊥)2 +O(m2) +O(ω2

0)
)−1

=
ω2 sin2 ϑ+ x2	q 2

⊥ − 2xqxω sin ϑ

(	k⊥ − x	q⊥)2
.

(3.35)

Now, the calculation of the zeros of (3.35) is given by

0
!
= 2x	q⊥	k⊥ + ω2 sin2 ϑ− 2xqxω sin ϑ− 	k2

⊥

= cosϕ+
qy
qx

sinϕ− 1.
(3.36)

This relation has two solutions in the limit of small quark masses m and negligibly small
screening parameters ω0:

ϕ1 = 0,

ϕ2 = arcsin

[
2qxqy
q2
x + q2

y

]
= 2 · ϕm

(3.37)

with the definition of a maximum angle ϕm ≡ arctan[qy/qx]. Its importance is treated
later on in Chapter 4 when we discuss divergences in the radiation amplitude.

Henceforth, we dedicate our attention to the radiation amplitude in QCD and firstly
discuss the Abelian case.

3.2.1 Abelian Contributions

To highlightthe relative importance of the triple gluon vertex diagram we consider the
Abelian diagrams separately but keep the colour factors.

The Abelian total matrix element is found as sum of pre- and post-emission matrix
elements

Mabel
1,rad = M1,0,0 +M1,1,0. (3.38)

If we use the approximated expressions (3.32) and (3.33) and the limit of small values of
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Figure 3.1: The relation Rtotal(ϑ,ϕ)/Rtotal(ϑ, 0) - 1 as a function of the azimuthal
angle ϕ. The upper panel is calculated for ϑ = 2·10−6, the lower panel its for ϑ = 0.1.
Both diagrams differ in the effective screening mass ω0. The curves intersect always
at the same points, representing the initial and final quark emission angles ϕ. Used
conditions are �pi = (0, 0, 10) GeV, �q⊥ = (0.3, 0.2) GeV, ω = 1 MeV, μD = 0.5 GeV
and m = md.
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x, the sum of the amplitudes yields

Mabel
1,rad =

M1,el

TA′B′TC′D′
· (−2g) ·

(
(T fT g)ABT

f
CD ·

	ε⊥	k⊥
	k2
⊥ + x2m2 + ω2

0

− (T gT f)ABT
f
CD ·

	ε⊥(	k⊥ − x	q⊥)

(	k⊥ − x	q⊥)2 + x2m2 + ω2
0

)
.

(3.39)

Furthermore, the value q⊥ acts as a scale, also in form of xq⊥ � k⊥ for small x and allows
to reduce Eq. (3.39) to

Mabel
1,rad =

M1,el

TA′B′TC′D′
· (−2g) · 	ε⊥	k⊥

	k2
⊥ + x2m2 + ω2

0

(
(T fT g)ABT

f
CD − (T gT f)ABT

f
CD

)
(3.40)

with a colour structure, which can be cast into a colour commutator

Mabel
1,rad =

M1,el

TA′B′TC′D′
· (−2g) · 	ε⊥	k⊥

	k2
⊥ + x2m2 + ω2

0

· [T f , T g]ABT
f
CD. (3.41)

This exactly leads us to the modified dead cone factor, which will be introduced later on
in this thesis in Section 3.4. Thus, we obtain for the Abelian radiation amplitude

Rabel
1 ∝ 4g2 ·

	k2
⊥

(	k2
⊥ + x2m2 + ω2

0)
2
· CA (3.42)

with an arising colour part from Eq. (C.17) in Appendix C. It is easy to see, that in
the limit of vanishing quark and effective gluon masses the radiation amplitude becomes
proportional to 1/k2

⊥ which is nothing else than the famous infrared divergence.
In some possible cases only the pre- or post-emission diagram becomes relevant and

dominates over the non-Abelian contribution. Such a scenario modifies the Abelian radi-
ation amplitude in the previously given limits to

Rabel
1,pre/post ∝ 4g2 ·

	k2
⊥

(	k2
⊥ + x2m2 + ω2

0)
2
· CF . (3.43)

It equals for pre- and post-emission contributions due to the identity

|(T fT g)ABT
f
CD|2 ≡ |(T gT f)ABT

f
CD|2, (3.44)

which is also explicitly calculated in Eq. (C.16).

3.2.2 Non-Abelian Contributions

Let us study now the total single scattering radiation amplitude in QCD by taking the
additional three-gluon vertex diagram into account.

Before we start the derivation for the total amplitude we have to ask the question, in
how far the non-Abelian diagram is relevant for the full result. The answer is given in
[Tho05] and is formulated, shortly summarised, by the condition q⊥ < ω which relates the
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gluon radiation energy ω to the fixed transverse momentum transfer q⊥. In this restriction
the non-Abelian diagram rules over the whole range of gluon emission angles ϑ in contrast
to the opposite case of q⊥ > ω. In this area, the three-gluon vertex diagram is suppressed
by orders of magnitude compared to the Abelian contributions.

Within the full QCD result, derived within the approximations given in Section 3.1,
the complete matrix element is

M1,rad = M1,0,0 +M1,1,0 +M1,0,1

=
M1,el

TA′B′TC′D′
· (−2g) ·

(
(T fT g)ABT

f
CD ·

	ε⊥	k⊥
	k2
⊥ + x2m2 + ω2

0

− (T gT f)ABT
f
CD ·

	ε⊥(	k⊥ − x	q⊥)

(	k⊥ − x	q⊥)2 + x2m2 + ω2
0

− [T f , T g]ABT
f
CD ·

	ε⊥(	k⊥ − 	q⊥)

(	k⊥ − 	q⊥)2 + x2m2 + ω2
0

)
.

(3.45)

Again, one finally obtains for the sum of matrix elements in connection with the polarisa-
tion sum the radiation amplitude

R1 ∝ 4g2 · (	k⊥	q⊥ + x2m2 + ω2
0)

2

(	k2
⊥ + x2m2 + ω2

0)
2(	k⊥ − 	q⊥)2

· CA, (3.46)

provided k⊥ 
 xq⊥. Here, one can see in the denominator of Eq. (3.46) the influence of
the modified dispersion relation which cuts off the gluon spectrum at small values of k⊥
in contrast to the vacuum case (ω0 = 0), where the total radiation amplitude becomes
R1 ∝ 1/k2

⊥, and in the limit of k⊥ → 0 the dominant contribution comes from the three-
gluon vertex diagram. Within this approach we can estimate the total radiation amplitude
as

R1 ∝ 4g2 · 	q 2
⊥

(	q 2
⊥ + x2m2 + ω2

0)
2
· CA, (3.47)

as long as q⊥ > k⊥, i.e. Abelian diagrams can be neglected in the small-k⊥ region.
This should give us the tool for estimating the plateau of the three-gluon vertex diagram

for small gluon radiation angles ϑ on a qualitative level, see Fig. 3.2. In the limits of
ω < q⊥ < ω0 and omitting the factor x2m2, Eq. (3.47) can be written as

|M1,0,1|2 ∝ |M1,el|2 · 	q 2
⊥

(	q 2
⊥ + ω2

0)
2
, (3.48)

and, with q
(+)
z ≈ −ω0 in leading order, yields

|M1,0,1|2 ∝ 1

(	q 2 + μ2
D + ω2

0)
2
· q2

⊥
(q2

⊥ + ω2
0)

2
=

1

(q2
⊥ + μ2

D + 2ω2
0)

2
· q2

⊥
(q2

⊥ + ω2
0)

2
, (3.49)

since we consider the z-component of the momentum transfer in the denominator of the
elastic amplitude.
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Figure 3.2: Contributions of individual diagrams to the total radiation amplitude
as a function of small gluon emission angles ϑ. In the limits ω < q⊥ < ω0, the
three-gluon vertex diagram dominates and remains constant for small values of ϑ.
Here, the ratio of suppression for this plateau (small blue dots) with ω

(1)
0 is about

6 orders of magnitude larger compared to the strongly screened plateau (large blue
dots) with ω

(2)
0 . This is due to the proportionality of (1/ω0)8 (!) of the ratio in this

limit. Here, we employ down-quark masses and ω = 1 MeV, ϕ = π/2, �pi = (0, 0,
10) GeV, �q⊥ = (0.3, 0.2) GeV, μD = 0.5 GeV and ω

(1)
0 = 0.02 GeV, ω

(2)
0 = 2 GeV.
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Now, we introduce a ratio K2
1 as an expression for the amount of screening as compar-

ison of non-Abelian diagram 1 to another diagram 2. It reads with Eq. (3.49) as

K2
1 =

(
q2
⊥ + μ2

D + 2
(
ω

(1)
0

)2)2(
q2
⊥ +
(
ω

(1)
0

)2)2

(
q2
⊥ + μ2

D + 2
(
ω

(2)
0

)2)2(
q2
⊥ +
(
ω

(2)
0

)2)2 ≈
(q2

⊥ + μ2
D)2 · q4

⊥

4
(
ω

(2)
0

)8 (3.50)

and, for example, one obtains in the scenario given in Fig. 3.2 a factor of 1/106, which is
so enormous due to the suppression of (ω0)

8 in the denominator of Eq. (3.50).
Further analysis of the complete situation for different sets of parameter relations are

done in [Käm00] with vanishing quark masses m. In contrast to this, various effects of
taking m into account but neglect the effective gluon mass ω0 are discussed in [Tho03] in
detail.

3.3 Dead Cone Factor with In-Medium Extension

The dead cone effect strongly reduces the emission probability in projectile direction,
based on a factor which was introduced and popularised by Dokshitzer and Kharzeev
[Dok01]. This dead cone factor considers the quark mass as a screening parameter and
corrects the expression for the total radiation amplitude, firstly derived in the approach
for massless projectile quarks in the high-energy limit by Gunion and Bertsch [Gun82]. It
is also discussed for various scenarios in [Tho03].

Now, we take into consideration a surrounding medium which modifies the kinematic
situation, thus screening effects by the effective parameter ω0 become relevant. The sig-
nificant term which yields the modified dead cone factor is given by the relation (3.42) for
deriving the projectile emission contributions in the radiation amplitude. Thus, we take
into account this dead cone factor in addition to the GB expression [Gun82] with the aim
of considering finite quark- and gluon masses. Accordingly, we obtain for the dead cone
factor

F̃ =
	k2
⊥

	k2
⊥ + x2m2 + ω2

0

(3.51)

with the parameter x defined in (3.6), the projectile quark mass parameter m and the
additional screening parameter ω0, referring to the polarisation of the medium. Expressed
for arbitrary gluon emission angles ϑ the factor reads

F =
sin2 ϑ

sin2 ϑ+
ϑ2

d

4

(
cosϑ+

1√
1− ϑ2

p

)2

+
ϑ2

p

1− ϑ2
p

with ϑp ≡ ω0

k0
, (3.52)

where ϑp denotes the ’angle’ with respect to the effective gluon mass, and ϑd ≡ m/E gives
the usual form of the dead cone angle. It takes into account the quark mass and the energy
E of the incident quark. Therefore, one can define an effective dead cone angle

ϑeff =
√
ϑ2

d + ϑ2
p. (3.53)
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Note that this relation is obtained in the soft gluon limit. If we assume ϑp � 1 as another
limit, the approximated dead cone factor alters to

F ≈ sin2 ϑ

sin2 ϑ+ ϑ2
eff

, (3.54)

which reveals the interplay of both effects. This is exhibited in the lower panel of Fig. 4.8
in Chapter 4 in which we compare with the scattering of massless quarks in vacuum, i.e.
F = 1.

In Fig. 3.3, the probability for emitting a single gluon in dependence of different screen-
ing parameters is shown. The upper panel exhibits the influence of only the quark mass.
With increasing mass the peak, and with this the dead cone, is shifted to larger angles.
The other situation of decreasing masses yields a smaller magnitude of the radiation prob-
ability, which points to a reduction of the energy loss. One obtains the same suppression
effect by a variation of ω0 for light quarks, as shown in the lower panel of Fig. 3.3. Let
us now inspect the influence of the screening parameter ω0 in some detail which acts as
effective gluon mass. In the upper panel of Fig. 3.4 the very important screening effect
of ω0 for radiating gluons in backward direction ϑ → π is discussed. It is easy to see the
relevance of a finite screening mass in this limit for the radiation angle: It reduces the
divergence at ϑ = π due to the appearance of the denominator in Eq. (3.51). One may ask
the question why the quark mass, also appearing in this denominator is not able to sup-
press this backward divergence. The answer is hidden in the parameter x (see Eq. (3.51))
proportional to m2, which equals to zero for cosϑ → −1 in the limit of ϑ2

p � 1, meaning
small ω0 compared to the gluon energy ω. The visual proof that only the extreme cases
of forward and backward gluon emission yield possibly a divergent behaviour of the total
radiation amplitude is given in the lower panel of Fig. 3.4, where the whole range of ϑ is
exhibited.

3.4 Kinematic Corrections

Now, the total radiation matrix element is calculated numerically and is also given an ana-
lytical approach with the same approximations as in Section 3.4. There, the latter approx-
imation is done by a factorisation of the elastic amplitude and the inelastic contribution.
This is only possible for the assumption of small components of the gluon four-momentum
k, because k can be neglected compared to the momentum transfer q. Hence, in the case
of non-vanishing gluon momenta, the radiation four-momentum transfer qrad is given by

qrad = (pf |rad − pi) + k ≡ qel + k. (3.55)

If one factors out the denominator of the potential ansatz (see Eq. (2.1)) in the elastic
amplitude, we add a kinematic factor

fkin ≡ 	q 2
el + μ̃2

	q 2
rad + μ̃2

(3.56)

to the total radiation amplitude in order to correct this factorisation. It contains only
the spatial components of the momentum transfer due to the condition of vanishing en-
ergy transfer (q0 = 0) in the Debye screened potential. Expressed in terms of transverse
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Figure 3.3: The total radiation amplitude R versus the gluon emission angle ϑ
for different screening parameters ϑd and ϑp. The upper panel is calculated for
different quark masses m without polarisation effects (ω0 = 0), whereas the lower
panel exhibits various polarisation parameters with a fixed quark mass, m = 7 MeV.
The radiation is suppressed at angles smaller than ϑeff - this is known as the dead
cone effect. The used parameters in this figure are ω = 1 MeV, ϕ = π/2, �pi = (0, 0,
10) GeV, �q⊥ = (0.3, 0.2) GeV and μD = 0.5 GeV.
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Figure 3.4: The total radiation amplitude R plotted as a function of the gluon
emission angle ϑ for backward gluon radiation ϑ→ π (upper panel) and fixed quark
mass m = md. Only for vanishing effective gluon mass ω0, a divergence at ϑ = π
appears, otherwise it is screened by this effective parameter. In the lower panel the
ϑ-dependence over the whole range from forward up to backward emission angles
is shown. Here, we used additionally �q⊥ = (0.03, 0.02) GeV and μD = 0.05 GeV;
parameters otherwise as in Fig. 3.3.
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components 	qel ≡ 	q⊥ and 	k⊥, the correction factor is

fkin =
	q 2
⊥ + q2

z + μ̃2

	q 2
⊥ + q2

z + μ̃2 + 2(	q⊥	q⊥ + qzkz) + ω2
. (3.57)

In the case of μ̃2 > ω2 the factor obeys fkin → 1 and no correction effect changes the
radiation probability. This result is implemented in the plots in Chapter 4 for calculating
numerically the relative radiated energy loss and compared with the analytical approach.

3.5 Gunion-Bertsch Limit of Quark-Quark Scattering

In this section we briefly outline the analytical results of Gunion and Bertsch (GB), who
firstly discussed the problem of induced gluon radiation in the limit of high-energy quarks
and soft gluon energies, based on real quark-quark scattering. Our aim in the next chapter
is to compare the numerical results for quark-quark scattering with the potential model
and use the extended GB approaches, which are given here, to understand our results
qualitatively.

Gunion and Bertsch have used the A+ - gauge and massless quarks with neglecting spin
effects. We use the same notation as in [Gun82]3 for the momentum transfer l = p′f − p′i
only in this section. Anywhere else in this thesis, q is used as a naming for the momentum
transfer. Additionally, the calculations are carried out in the CMS.

We start with the relevant expressions for the elastic quark-quark scattering, Fig. 2.2,

MGB
elastic = Celastic · ig2 · (pf + pi)μ(p′f + p′i)

μ

(pf − pi)2
= (T f)AB(T f)CD · (−ig2)

2s

	l 2
⊥
. (3.58)

Here, the Mandelstam variable s = 2p is used which holds only in the limit m = 0. This
amplitude, obtained in absence of radiation contains of an infrared divergence, ∝ 1/	l 2

⊥,
which will be regulated by the additional effective mass ω0 of the intermediate gluon. But
it does not count for the total GB radiation amplitude due to the elastic part which is
factorised out of the total matrix element.

For the inelastic contributions, the pre-projectile part reads as follows

MGB
prePro = CprePro · ig3 · (pf + pi − k)μ(p′f + p′i)

μ · (2pi − k)νε
ν

[(pi − k)2 −m2] · (p′f − p′i)2

=
MGB

elastic

Celastic
· (T fT g)AB(T f)CD · (−2g)(1− x) · 	ε⊥

	k⊥
	k2
⊥
,

(3.59)

corresponding to Fig. 2.3. With referring to this, we obtain for the post-projectile contri-
bution

MGB
postPro = CpostPro · ig3 · (pf + pi + k)μ(p

′
f + p′i)

μ · (2pf + k)νε
ν

[(pf + k)2 −m2] · (p′f − p′i)2

=
MGB

elastic

Celastic
· (T gT f)AB(T f)CD · (−2g)(1− x) · −	ε⊥(	k⊥ − x	l⊥)

(	k⊥ − x	l⊥)2
.

(3.60)

3Please also be careful with relations including q⊥. GB unusually occupied the gluon momentum with
such a variable; we do so for k⊥ in common.
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The expression for the non-Abelian three-gluon vertex contribution is written as

MGB
threeGlu = CthreeGlu · ig3

(pi − pf)2 · (p′i − p′f)2

× [(pf + pi)
μεμ · (pi − pf + k)ν(p′f + p′i)ν

+ (pf + pi)
μ(p′f − k − p′i)μ · (p′f + p′i)

νεν

+ (p′i − p′f − pi + pf )
μεμ · (pf + pi)

ν(p′f + p′i)ν ]

=
MGB

elastic

Celastic
· ifegf (T

e)AB(T f)CD · (−2g)(1− x) · 	ε⊥(	k⊥ −	l⊥)

(	k⊥ −	l⊥)2
,

(3.61)

with corresponds to Fig. 2.5.
Finally, we give the relevant expressions for gluon emission from the target line, de-

picted in Fig. 2.4. They read

MGB
preTar = (T f)AB(T fT g)CD · ig3 · (p

′
f + p′i − k)μ(pf + pi)

μ · (2p′i − k)νε
ν

[(p′i − k)2 −m′2] · (pf − pi)2
= 0. (3.62)

Please note that in the considered case the predicted GB result in Eq. (3.62) equals zero
due to the relation p′iε = 0 in the limit of a target quark at rest.

The post-target contribution is

MGB
postTar = CpostTar · ig3 · (p

′
f + p′i + k)μ(pf + pi)

μ · (2p′f + k)νε
ν

[(p′f + k)2 −m′2] · (pf − pi)2

=
MGB

elastic

Celastic
· (T f)AB(T gT f )CD · (−2ig3) · 	ε⊥

	l⊥(2− x)(x− 1)

x(	k⊥ −	l⊥)2
.

(3.63)

Within the GB approach, the contributions from radiation off the target lines to the
total matrix element are neglected. With accounting the limits m,m′ → 0 and x→ 0 the
total GB radiation amplitude finally yields

MGB
total

MGB
elastic

=
ifefg(F

e)AB(F f)CD

Celastic
· 2g
(
	ε⊥	k⊥
	k2
⊥
− 	ε⊥(	k⊥ −	l⊥)

(	k⊥ −	l⊥)2

)
, (3.64)

coinciding with Eq. (15) in [Gun82]. A singularity is found in the equation above (but only
in the absence of a surrounding medium) due to a divergent part, (pf − pi)

2, arising from
the pre-target, post-target and three-gluon contributions. This agrees with the condition
	l⊥ = 	k⊥, and Eq. (3.64) can be regularised to

MGB,reg
total ∝ 	ε⊥	k⊥

	k2
⊥ + ω2

0

− 	ε⊥(	k⊥ −	l⊥)

(	k⊥ −	l⊥)2 + ω2
0

, (3.65)

which corresponds in principle to Eq. (7) in [Käm00] and Eq. (58) in [Wan95]. Hence,

the medium effect screens both divergences, k2
⊥ = 0 and 	k⊥ = 	l⊥, with the effective gluon

mass ω0, implemented only via the fundamental dispersion relation for gluons propagating
in a medium.





4 Radiative Energy Loss

The main results of the numerical code are presented in the following. We compute the
radiative energy loss for various conditions and in different dependencies. Additionally,
we take attention on the individual contributions to the total amplitude and appropriate
integration boundaries to the numerical integration process. Comparisons to analytical
approaches and results of other groups will constitute a conclusive framework of the thesis.

4.1 Divergences

A crucial treatment of radiative energy loss is to handle divergences1 appearing in the non-
Abelian contribution to the total amplitude and after all in the target gluon radiations as
well.

The critical terms in form of (pi − pf )
2 in the denominator of the single three-gluon

contribution Eq. (3.61) as well as the contributions of the pre- and post-target emission
need special consideration, see Eq. (3.62) and Eq. (3.63) - preliminary derived in the
absence of the surrounding medium. Fortunately, we can approach the relevant expression
in the potential model with a Taylor expansion

M1,0,1(ω, ϑ, ϕ) ∝ 1

(pi − pf)2
≈ − piz − ω

piz(	q⊥ − 	k⊥)2
(4.1)

in the limit of small projectile quark masses; ω denotes again the gluon energy. Hence,
we obtain with the proper definition of the gluon four-momentum vector the maximum
parameter set (ϕm, ϑm) as

tanϕm =
qy
qx
, (4.2)

sinϑ(1)
m =

|	q⊥|
ω

and ϑ(2)
m = π − ϑ(1)

m . (4.3)

After squaring the three-gluon matrix element, these two peaks in general are exhibited
in Figs. 4.1 and 4.2 for different, but fixed values of ω and q⊥. It is clearly to be seen, that
in Fig. 4.2 the two real maxima shrink to only one maximum due to the special choice of
parameters and so displaying the interplay between the gluon energy and the transverse
momentum transfer, as demonstrated in Eq. (4.3).

1A further possibility for treating divergences of the infra-red problem is the Bloch-Nordsieck trick
to deal with soft divergences and the Kinoshita-Lee-Nauenberg theorem for collinear singularities, see
[Kin62, Lee64].
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Figure 4.1: The approximated squared non-Abelian three-gluon vertex radiation
amplitude as a function of the polar and azimuthal gluon emission angles ϑ resp. ϕ
with a constant value �pi = (0, 0, 10) GeV. Here, we fix the parameter to �q⊥ = (0.3,
0.2) GeV and ω = 0.5 GeV. Two real peaks indicate singularities at ϑ

(1)
m and ϑ
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m are

obvious on a special ϕm-line, symmetric to ϑ = π/2.
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Figure 4.2: The same representation as in the Fig. 4.1, but for �q⊥ = (0.6, 0.8) GeV
and ω = 1 GeV. This special set of parameters yields only a single peak pointing to
a divergence at ϑ

(1)
m = ϑ

(2)
m = π/2, as expected.
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Figure 4.3: The 3d-performance of the numerically computed three-gluon vertex
amplitude as a function of the gluon emission angles ϑ and ϕ for a fixed value of ω
= 1.17 GeV but without a screening parameter ω0. Despite the complex structure
of the exact non-Abelian contribution, it is easy to verify at least one of the two real
singularities in the expected point. Again, we calculate with �pi = (0, 0, 10) GeV, �q⊥
= (0.3, 0.2) GeV and μD = 0.5 GeV.
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Figure 4.4: Similarly to Fig. 4.3, the same numerically calculated amplitude is
shown but now as a function of the gluon energy ω and the gluon emission angle
ϑ for an identical set of parameters. Here, the fixed value is ϕ = ϕm = 0.98, and
one can see that the divergences in 4.1 finally fall together at a gluon energy of
ω = |�q⊥| = 0.36.

Of course, we have to testify the analytical predictions with our numerical code. This
is confirmed in the Figs. 4.3 and 4.4 impressively, but no effects of quark mass and effective
gluon mass are taken into account, yet.

Our aim should be handling and avoiding singularities. Subsequently, we consider an
effective gluon mass and additionally quark masses. It is not a surprise that with these
screening parameters the divergences vanishes and become suppressed effectively due to
the additional appearance in the denominator of Eq. (3.47). Another power of ω0 is a
small peak-shift to higher gluon frequencies in the limit of ω0 < q⊥, while the transverse
momentum transfer accounts again as a scale. In spite of this, much smaller changes are
effected by the quark mass m. It is also implemented in the denominator of Eq. (3.47), as
anticipated. In contrast to ω0, the quark mass is combined with the parameter x which
simply explains this tiny effect of suppression and shift of the regularised divergence.

4.2 Gluon Distribution

It is essential to the integration over phase space to clarify the role of the intgrand function.
Firstly, we focus on the gluon distribution itself which is represented in gluon rapidities
and transverse momenta, in agreement with literature [Mus97, Wan95, Xia04].

In light-cone coordinates the definition of the rapidity reads

y ≡ 1

2
ln

(
k+

k−

)
=

1

2
ln

(
k0 + kz

k0 − kz

)
=

1

2
ln

(
1 +
√

1− ϑ2
p cosϑ

1−√1− ϑ2
p cosϑ

)
, (4.4)
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with ϑp = ω0/k0 and the proper representation of kμ. Please note that negative boost
parameters refer to backward gluon scattering, whereas rapidities greater than zero are
accompanied at forward gluon emission.

The probability of radiating a single gluon is simply expressed as an invariant radiation
spectrum

R ≡ ω
dng

d3k
≈ x

dng

dxd2k⊥
=

dng

dyd2k⊥
, (4.5)

for small values of x, where x is the fractional momentum carried by the radiated gluon
relative to the maximum available in the way of confining the radiation to a uniform
(central) rapidity region, which represent the most important zone in relativistic heavy-
ion collisions. Note, that this midrapidity-plateau is in sharp contrast to the QED case
where the radiation amplitude strongly depends on rapidity.

Subsequently, the relation above is used as the integration function, acting like the
phase space distribution which has to be integrated. According to Eq. (4.5), Gunion and
Bertsch delivered in [Gun82] a well-known analytical expression (see also explanations to
Eq. (3.64) in Chapter 3) for gluon bremsstrahlung from quarks, assuming a factorisation of
the elastic matrix element. The same holds true for our expanded GB radiation amplitude
Eq. (3.65), while the different kinematical situation for elastic and inelastic scattering is
recovered by the formal introduction of the kinematical correction factor fkin in Section
3.6 in a medium.

Of course, we also encounter factorisation in our integration function computed with
the numerical code. It is questionable if one is allowed to factorise out the elastic part
of the amplitude from the inelastic part, meaning pre- and post emission diagrams from
projectile- and target lines as well as the non-Abelian three-gluon contribution. We just
follow the analytical representation of the radiation amplitude Eq. (3.46) and normalise
to the elastic amplitude because the inelastic process can not happen without an elastic
event, i.e. a mixture of both effects2.

Possible problems of normalisation referring to the radiative energy loss are also dis-
cussed in the following section.

4.3 Average Energy Loss

4.3.1 Definition

It is not trivial to give a convincing concept for the radiative energy loss. Clearly, we
have to weight the gluon distribution function and integrate over phase space. While
going this way we orientate on work of Mustafa et al., Gyulassy et al. and Wang et al.
[Mus97, Gyu01, Wan95]. In order to find an estimate for the radiative energy loss per unit
length we multiply the interaction rate Γ = 1/τ and the average energy loss per collision,
Ω, which is calculated in terms of rapidity as

Ω ≡ 〈ngk0〉 =

∫
dyd2k⊥

(
dng

dyd2k⊥

)
k0 Θ(τ − τf) (4.6)

2This total separation of elastic- and inelastic contributions is discussed in Section 4.5 as well where
higher orders in the collisional energy loss becomes relevant.
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where Θ denotes the Heaviside function: Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0.
This further corrects the LPM effect by including a formation time restriction through the
step function Θ(τ − τf ). It automatically restricts the phase space of the emitted gluon in
which the variable formation time τf(k⊥) has to be smaller than the interaction time τ ,
requiring a separation between the radiated gluon and the parton from which it is emitted.

The average process in the definition of Eq. (4.6) refers to the average momentum
transfer3 of the scattering event, which is defined as

〈q2
⊥〉 � 〈q2〉 ≡ 〈t〉 =

kmax2

⊥∫
kmin2
⊥

dt t

(
dσel

dt

)

kmax2
⊥∫

kmin2
⊥

dt

(
dσel

dt

) , (4.7)

meaning that we try to find a relevant input parameter of the momentum transfer within
its range. Hence, we have to specify the k⊥-thresholds for this integration by following
ideas in [Mus97]. Therefore, we choose the Debye screening mass of a pure gluon gas
restricting the lower k⊥ boundary as

kmin
⊥ = μD ≡

√
4παsT, (4.8)

where T is the system’s temperature. Note, that the infrared divergence is also removed
when we screen with an effective gluon mass ω0, as discussed in previous sections; but
here, only the Debye mass as an effective parameter is used. Now, an expression for the
maximum value of k⊥ is searched for. So, we compute the Mandelstam variable s with its
definition as

s ≡ (p+ p′)2 = (p1 + p′1 + k)2 = m2
Q + 2k(p1 + p′1) (4.9)

for quark scattering with one-gluon emission. We use the quark on-shell condition and
vacuum gluon dispersion relation, k2 = 0, i.e. put ω0 = 0. The average values are

〈s〉 ≈ m2
Q + 6ET,

〈1/s〉 =
1

2

∫
d cosϑ

m2
Q + 2EE ′ − 2(E2 −m2

Q)E ′ cosϑ

≈ 1

4(E2 −m2
Q)

ln

(
m2

Q + 2EE ′ + 2(E2 −m2
Q)E ′

m2
Q + 2EE ′ − 2(E2 −m2

Q)E ′

)
,

(4.10)

where E and p are the energy and the four-momentum of the incoming heavy projectile
quark and p′ ∝ 3T is the average momentum of the light quark or gluon being a constituent
of QGP. Then, kmax

⊥ finally becomes

(kmax
⊥ )2 =

3ET

2
− m2

Q

4
+

m2
Q

48pT
ln

(
m2

Q + 6ET + 6pT

m2
Q + 6ET − 6pT

)
. (4.11)

3In further relations the approximation 〈q2
⊥〉 ≈ 〈q⊥〉2 is used, according to the average squared mo-

mentum transfer. The expressions are not equivalent due to a generally distributed momentum transfer.
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This result is obtained owing to the kinematic restriction of the transverse gluon momen-
tum squared

(k⊥)2 <

(
s−m2

Q

)2
4s

. (4.12)

With the aim of an analytical integration of Eq. (4.7) the average transverse momentum
transfer is expressed only in terms of integration boundaries kmax

⊥ and kmin
⊥ . Hence, this

gives rise to the differential cross section for elastic scattering,

dσel

dt
=

|M(s, t)|2
16π [s− (mQ +mq)2] [s− (mQ −mq)2]

. (4.13)

In the limits mq � mQ and |t| � s, the cross section (4.13) can be approximated by

dσel

dt
∝ 1

t2
. (4.14)

Thus, the analytic integration of Eq. (4.12) yields

〈q2
⊥〉 =

3αs

π

(kmin
⊥ )

2
(kmax

⊥ )2

(kmax
⊥ )2 − (kmin

⊥ )
2 ln

[
(kmax

⊥ )2

(kmin
⊥ )

2

]
, (4.15)

with help of Eq. (4.14). Now, we are well prepared for our numerical calculation according
to the momentum transfer input. We give the analytic result of Mustafa et al. [Mus97]
for the radiative energy loss for completeness. With lots of severe approximations like,
q0, k⊥ 
 q⊥ and (k⊥τ)2 
 1, the average energy loss per collision is obtained as

Ω =
6αs

π
〈q2

⊥〉τ ln

(
kmax
⊥
kmin
⊥

)
. (4.16)

With taking into account the factor of the interaction rate Γ we finally obtain(
−dE
dx

)
rad

≈ 3αs

π

μ2
D (kmax

⊥ )2

(kmax
⊥ )2 − μ2

D

ln2

[
(kmax

⊥ )2

μ2
D

]
(4.17)

as an approximated expression of the radiative energy loss for heavy quarks.
Now, our aim is the numerical integration of Eq. (4.6). For the sake of symmetry to the

process of gluon emission as well as for a better imagination we use spherical coordinates
in our code, and no rapidities. Thus, we must rewrite the energy loss per collision in the
new coordinates. Using the approximation k0 ≈ k⊥ cosh y and an approximation for the
formation time τf ≈ cosh y/k⊥, we get

Ω =

ϕmax∫
ϕmin

dϕ

ymax∫
ymin

dy Θ(τ − τf ) cosh y

kmax
⊥∫

kmin
⊥

dk⊥k2
⊥

(
dng

dyd2k⊥

)

≈ τ

ϕmax∫
ϕmin

dϕ

kmax
⊥∫

kmin
⊥

dk⊥k3
⊥

(
dng

dyd2k⊥

)

= τ

ϕmax∫
ϕmin

dϕ

ϑmax∫
ϑmin

dϑ sin3 ϑ

kmax
⊥ / sinϑ∫

kmin
⊥ / sinϑ

dω ω4

(
dng

d3k

)
.

(4.18)
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Generically, the phase space intergal has to be three-dimensional. This seems to be not
fulfilled in the second term of Eq. (4.18). Indeed, this issue is resolved by the fact that
the variable pair (k⊥, y) is not independent, in contrast to (ϑ, ω). Admittedly, it nests the
anyway complex integration structure. The restriction through the step function occurs
in the integration boundaries over the special choice of the rapidity interval to the length
of unity. Hence, the corresponding ϑ-restrictions read as ϑmin = π/2 and ϑmax ≈ 1/

√
2

which refer to ymin = 0 and to ymax = 1, respectively. One interprets this restriction as a
focus on the strongly peaked forward emission of gluons, as also suggested in [Djo03b] for
isolating the energy of the near-side jet.

Finally, the integration procedure for the resulting radiative energy loss is based on
the relation

(
−dE
dx

)
rad

=
1

2(2π)3

2π∫
0

dϕ

ϑmax∫
ϑmin

dϑ sin3 ϑ

kmax
⊥ / sinϑ∫

kmin
⊥ / sinϑ

dω ω4 |Minel|2
|Mel|2

. (4.19)

We give a brief comment to the normalisation problem referring to the energy loss. A
näıve definition of the total averaged gluon energy is

〈k0〉 ≡
∫
d2q⊥d3k

dσ

d2q⊥d3k
k0(q⊥, k)

∫
d2q⊥d3k

dσ

d2q⊥d3k

=

∫
d2q⊥d3k

(
dσel

d2q⊥

)(
dng

d3k

)
k0(q⊥, k)

∫
d2q⊥d3k

(
dσel

d2q⊥

)(
dng

d3k

)

=

∫
d2q⊥

[(
dσel

d2q⊥

)∫
d3k

(
dng

d3k

)
k0(q⊥, k)

]
∫
d2q⊥

[(
dσel

d2q⊥

)∫
d3k

(
dng

d3k

)] ,

(4.20)

with the assumption of a factorisation of the elastic cross section out of the total cross
section. Furthermore, we use the general independence of the gluon momentum k in the
elastic scattering amplitude. Now, we fix for simplicity (instead of an integration over
qx) an average transverse momentum transfer as an input parameter which completely
separates the radiation part from the elastic one. It also happens that the averaging
procedure for q⊥ consists of a normalisation in the elastic contribution, see Eq. (4.7).
Considering the previous ideas it follows

〈k0〉 =

∫
d3k

(
dng

d3k

)
k0(q⊥, k)

∫
d3k

(
dng

d3k

) , (4.21)

where the denominator normalises the whole expression in the background of an arbitrary
number of emitted gluons. But here only the energy loss per single emission is taken into
account, i.e. the denominator is set to one and the effect of multiple collisions is totally
recovered by multiplying the interaction rate Γ with Eq. (4.21), which is valid for a single
collision. Indeed, we have to add a restriction of the one-gluon spectrum (LPM effect) in
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the integrand referring to only a single collision which is expressed as an additional step
function. Hence, we obtain for the radiative energy loss per collision(

−dE
dx

)
rad

�
∫
d3k

(
dng

dyd2k⊥

)
k0 Θ(τ − τf ), (4.22)

where the formation time τf (k) in the integration boundaries as well as the integration
function enter. This expression corresponds to the definition Eq. (4.6) and lets trace back
the origin of Eq. (4.17) in a better way.

4.3.2 Integration over Phase Space Distribution

Firstly, we consider another problem before special results of radiative energy loss are
presented. A general point of discussion is the consideration of the input momentum
transfer 	q, respectively the x- and y-components of this spatial vector4. Usually, one has
the freedom of fixing both parameters by accounting for the kinematical thresholds of the
particular scattering process. To survey the dependence on qx,y, one can use as a first
simplification the special relation

qx ≡ qx(γ) = |	q⊥| cos γ,

qy ≡ qy(γ) = |	q⊥| sin γ,
(4.23)

with a range of 0 ≤ γ ≤ 2π. In this way, the true independent variables qx and qy are
mapped to one variable γ. This behaviour is checked in Fig. 4.5, where integrated sum
and squared total matrix element versus the polar angle γ is shown. This plot confirms
our conjecture which leads to the fact that the total radiation amplitude only depends on
terms of total transverse momentum transfer after integration in the (ϑ, ϕ, ω) phase space.
It is explained as follows: The dominating part to the radiative energy loss is delivered
by the non-Abelian diagram, while integrating over a large range of gluon energies ω, e.g.
the total radiation amplitude is approximated well by the three-gluon vertex. Hence, the
divergences play an important role which are regulated over the screening parameter ω0.
This occurs at a fixed emission angle ϕ = ϕm, and one obtains a dependency on |	q⊥| only
instead on the single components of 	q⊥. This simplifies the kinematics in such a way that
we are free in the choice of the special q⊥-direction, for example assuming a vanishing
y-component of the momentum transfer in all numerical and analytical calculations.

The induced energy loss is now investigated for quark-quark scattering processes but
with neglecting target contributions. At the beginning we consider the fractional energy
loss for different fixed values of the transverse momentum transfer q⊥ in a numerical
computation, see Fig. 4.6. One can easily elucidate the different behaviour for different
input values of q⊥ when we use Eq. (4.16). For maximum momentum transfer, the relation
ΔE/E ∝ lnE is obtained what lets grow the energy loss for increasing projectile energies,
whereas the minimum value leads to ΔE/E ∝ lnE/E and yields a weak suppression effect
for higher energies.

A direct comparison of analytical approaches given in the previous chapter with im-
plementing results of [Mus97] and adapted numerical calculation is exhibited in Fig. 4.7.
In this figure, the quantitative dependence of the essential screening parameter ω0 is at-

4The z-component does not play any role as a fixed parameter. It is calculated from the setting of qx

and qy.
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Figure 4.5: The summed, squared and averaged integrated total radiation ampli-
tude R as a function of the polar angle γ for increasing integration accuracy deter-
mined by the number of Monte Carlo steps N at a constant value of |�q⊥| = 3.6 GeV.
One obtains the same result (i.e. the independence of R g−2 of γ) with other sets of
kinematical parameters, too. Calculation is done for m = md, ω0 = 0.1 GeV and μD

= 0.5 GeV. The particular choice of the integration boundaries does not influence
this behaviour.
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Figure 4.6: The relative energy loss in charm quark-charm quark scattering for
various input parameters q⊥: q⊥ = kmax

⊥ (red line), q⊥ = 0.7 (green line) and q⊥ =
kmin
⊥ (blue line) as a function of the projectile quark energy. The curve standing

for the maximum value of q⊥ shows a different behaviour due to the proportionality
kmax
⊥ ∝ E compared to the other lines. The screening parameter reads as ω0 = 0.2

GeV.
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Figure 4.7: The relative radiative energy loss in potential model as a function of
the effective gluon mass ω0. Here, numerical (thick lines) and analytical (thin lines)
calculations are depicted for various quark masses and a fixed energy of E = 10 GeV.
In the region of ω0 ≈ 0.4 GeV, the analytical and numerical results meets each other.

tended, here for fixed initial quark energy E of 10 GeV in the potential model5. Only
a small screening area of 0.2 GeV < ω0 < 0.6 GeV appears to be sensible according the
strength of suppression, especially the three-gluon vertex radiation amplitude. Further-
more, it confirms the assumption of a critical increase for small screenings which explains
the unphysical behaviour in this region, as expected for the light quarks. For the sake
of completeness, we refer the interested reader to a prediction made in Fig. 5 of [Xia04].
There, a strong suppression effect of taking into account the dead cone factor additionally
compared to the result without the dead cone effect is observed. This is definitely not the
case as shown in both panels of Fig. 4.8, even not if we add the modified dead cone factor
for in-medium extension!

In this connection, we depict the projectile contributions compared with the Abelian
ones in Fig. 4.9. The projectile diagrams dominate in this special choice of parameter set
over the non-Abelian three-gluon vertex diagram and confirms the assumption of a factor
CA/CF = 9/4 which has to be multiplied the pre- or post projectile diagram to yield the
Abelian amplitude. This only works in the limit of small x and is based on Eqs. (3.42)
and (3.43) as outlined in Chapter 3.

The choice of the integration boundaries is not trivial, in particular, the range of ϑ.
This is demonstrated in Fig. 4.10 where the single contributions to the total radiation
amplitude for quark-quark scattering (qq) are exhibited in form of the relative energy loss
as well as a comparison between qq scattering and the potential model. It is obvious that

5Of course, in the analytic results we implement a kinematical correction factor as well as the medium-
extended dead cone factor, as introduced in Chapter 3.
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Figure 4.8: The radiative energy loss for charm quarks in potential model as a func-
tion of incidence energy. In the upper panel the energy loss is calculated analytically
in the case of various temperatures T = 0.5 GeV (red line) and T = 0.3 GeV (green
line) is plotted, while entering the medium temperature over the Debye mass μD(T ).
The smaller temperature yield a smaller phase space what lets decrease the energy
loss. The lower panel shows the reduction of the radiative energy loss for T = 0.3
GeV without additional factor (blue line), with the proper dead cone factor (orange
line) and with the modified dead cone factor (black line), i.e. taking into account the
effective gluon mass ω0 in addition. Here, we calculate with ω0 � μD(0.3) = 0.58
GeV.
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Figure 4.9: It is shown the radiative energy loss in the potential model as a function
of the initial charm-quark energy E for different single contributions: pre-projectile
gluon emission (green line), post-projectile gluon emission (blue line) and the coher-
ent superposition of both diagrams which is summarised in the Abelian amplitude
(red line). Impressively, one encounters a difference between the single contributions
and the Abelian amplitude of a factor CA/CF = 9/4 in the case of dominating pro-
jectile contributions. We use the same set of parameters as in the lower panel of
Fig. 4.8.
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Figure 4.10: The fractional radiative energy loss of a projectile charm quark is
shown as a function of various initial momenta p while scattering with a charm target
quark. Upper panel: The potential model (red line) is hard to compare to the quark-
quark scattering amplitude (blue line) and even not if we omit target contributions
(green line). This is due to the small target mass and the non-vanishing post-target
amplitude. Lower panel: The single contributions to the total radiation amplitude
is exhibited. Note that the post-target diagram is important as well as the three-
gluon vertex diagram and the projectile contributions, always with the phase-space
restriction of 0 < ϑ < π/2. Besides this, the the pre-target contribution can be
neglected and confirms our prediction in this way.
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the total amplitude, which consists of all single contributions, is suppressed compared
to the amplitude without target gluon emission which is also observed in [Tho03] for
ϑ � 0.5. This can understood by a destructive interference between the target diagrams
and the projectile- and three-gluon vertex diagrams. Actually, one expects a vanishing
target quark line contribution, and so the total qq radiation amplitude should recover the
potential model result in the limit of heavy and slow target quarks. The crucial point is
now the range of integration over ϑ-phase space by using the analytical approximations
from the previous section. There, we restrict the area to 0 < ϑ < π/2, meaning a cut-
off in gluon backward emission. If we now assume ϑ � 0.5, what peaked the gluon in
forward direction, the target line contributions become irrelevant compared to projectile-
and three-gluon vertex contributions and can actually be neglected. Indeed, the potential
model well predicts the qq scattering scenario, as also mentioned in Fig. 4.11 for increasing
target masses. This suppression of target gluon emission in A+-gauge can be understood
while considering the GB approach for target contributions, as outlined in Section 3.5. The
pre-target diagram has to be 0; this is easy to verify in the lower panel of Fig. 4.10. Post-
target contributions are proportional to the dimensionless factor 1/x(ϑ). This behaviour
strictly differs from all other single contributions in qq scattering events! Hence, the
smaller ϑ the bigger becomes x and so let decrease the post-target contribution.

Finally, we just stresses the fact again that the target contributions must encounter to
the total radiation amplitude and thus the total radiative energy loss of heavy quarks due
to gauge invariance6. This makes it really hard to compare with other results which all
based on computations within the potential model.

4.4 The Running Coupling Constant

The coupling strength of the strong interaction is known to vary considerably over the
range of scales probed, e.g. in heavy-ion collisions. Thus, we study here some quantum field
theoretical corrections to the tree level scattering processes by investigating the influence
of a running coupling strength on radiative energy loss instead of using a constant value
αs.

In all previous calculations the strong coupling was put to αs = 0.3, in agreement to
previous approaches to radiative energy loss, cf. [Käm00, Wie05, Gyu02, Tho03]. Now
we take the self-energy contributions to tree-level processes as a divergent loop correction
into account, that means the exchanged gluon is dressed by a self-energy Πi, depending
on transversal and longitudinal modes (i = t, l) which is expressed as a finite matter
contribution f i. This boson self-energy in a thermal medium has a generic structure, cf.
[Pes06],

Πi(p0, |	p |) = 4πβ0

[(
ε−1 − ln(−q2/μ2

D

)
p2 + f i(p0, |	p |)

]
(4.24)

with a Debye mass μD as effective infrared cut-off for the gluon radiation spectrum. The
scale of the running coupling is set by the squared four-momentum transfer q2. Referring
to previous relations and considering an absorbing of the self-energy in running coupling

6Of course, in other gauges, e.g. A−-gauge the target contributions can not be neglected. This is also
the reason why we chose A+-gauge for being able to compare qq scattering with the potential model.
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Figure 4.11: The relative energy loss of a projectile charm quark, scattering on
various targets: potential (red line); charm quark m = 1.5 GeV (green line); hypo-
thetical heavy quark mQ = 10 GeV (green line), and very massive quark mQ = 100
GeV (blue line) plotted for different projectile initial momenta p. One can verify a
considerable approach to the case of infinite target mass (potential model) for in-
creasing target masses. This limit is only valid for a restricted integration range of
0 < ϑ < 0.5 but nevertheless the same behaviour for a full-range ϑ.



64 4 Radiative Energy Loss

in this way, the matter part of boson self-energy reads as

Πi
mat = 4πβ0α(q2)f i, (4.25)

and we arrive at the coupling

αs(q
2) =

1

β0 ln (|q2|/Λ)
with β0 =

11− 2nf/3

4π
, (4.26)

where β0 is the leading coefficient of the beta-function corresponding to a one-loop cor-
rection. We choose the parameter Λ ≈ 205 MeV7 for nf = 2 as active number of quark
flavours. The important coupling behaviour determines the dependence of the momentum
scale q2. This strong logarithmic dependence of the four-momentum transfer q2 is exhib-
ited in Fig. 4.12. The usual value αs = 0.3 can be translated into a value for q2 of about
1.7 GeV2, which confirms the choice of various free parameters in our numerical calcula-
tion; or from the opposite point of view, with the chosen average momentum transfer one
directly obtains αs ≈ 0.3.

This running coupling is implemented in numerical calculations for radiative energy
loss spectra, shown in Fig. 4.13 for different projectile quark masses with a constant target
charm-quark mass parameter. One can recognise in this figure only a small dependence of
relative energy loss when using the running αs compared to the constant value of 0.3. For
small projectile quark energies, the transfer momentum q2 = q2

0 − q2
⊥ − q2

z ≈ q2
z increases

due to the dominant relation of the z-component,

qz ∝ −m
2

E2
, (4.27)

omitting anyway small q0 and q⊥ contributions of the momentum transfer. Hence, a
greater qz is directly correlated to smaller values of αs due to Eq. (4.26) and lets decrease
the coupling strength.

In Fig. 4.13 is also shown an intersection where the corresponding squared momentum
transfer belongs to the constant value αs = 0.3. With increasing projectile quark masses,
this point moves to higher energies, in agreement with Eq. (4.27) on a qualitative level.

In contrast to this, it is possible that for a larger range of squared momentum transfer or
complicated structures in αs (e.g. considerable two- or three loop corrections) the running
coupling effect may becomes more relevant at least for the radiative part of energy loss.
Further recent discussions of the importance of the running coupling constant are given
in [Pes06, Pro06].

4.5 Radiative vs. Collisional Energy Loss

In this last section we give a very short explanation of the idea of collisional energy
loss in order to compare this results with our radiative energy loss for heavy quarks.
This is simply motivated by the previous investigations [Mus05, Ala06, Adi06] which
suggest that collisional rather than the radiative processes are the dominant mechanisms

7It appears in the QCD running coupling via dimensional transmutation as a scale parameter varying
with the quark flavour number nf .
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Figure 4.12: Running coupling constant in QCD according to Eq. (4.26) with
Λ = 205 MeV and nf = 2.
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Figure 4.13: The fractional energy loss for light (red), charm (green) and bottom
(blue) projectile quarks as a function of their initial energies E, scattering with a
charm target quark at rest. The thin lines stand for the constant value αs = 0.3
while the fat lines represent the calculations with running coupling.
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for the partonic energy loss in the measured pT domain of RHIC, i.e. comparatively small
transverse momenta.

The key of calculating the energy loss of an elastic scattering event is perceived on tree
level but its relevant part is derived from the internal, so-called Hard-Thermal-Loop (HTL)
gluon propagator and takes the production of an ’off-shell’ jet into account. Considering
this higher order process, Djordjevic et al. give a numerical approximation in [Djo06b]
for the collisional energy loss in finite size QCD media, shown in Fig. 4.15 for light and
heavy quarks as a function of their momenta. Additionally, they use approximations for
the net radiative energy loss and compare it directly with numerical results of collisional
energy loss by means of a separation between those two contributions. For small momenta
(i.e. p < 10 GeV) the energy loss from the elastic scattering overestimates the radiative
part. Thus, collisional energy loss should play an important role in the low momentum
range at RHIC. In summary, one can interpret collisional energy loss and radiative energy
loss as two competing effects of gain respectively induced suppression in the limit of small
projectile quark momenta.

The numerical results of our program are shown in Fig. 4.14 for heavy projectile quarks.
Results from [Djo06b] for radiative energy loss, as exhibited in Fig. 4.15, are confirmed in
the limit of assuming only a single scattering. This could be possibly an evidence for not
accounting for the crucial multiple scattering processes in comparison to the single events.
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Figure 4.14: The relative radiative energy loss as a function of the momentum
for charm (upper panel) and bottom (lower panel) projectile quarks which scatter
with a slow and light target. It is comparable with results for the net fractional
radiative energy loss of Fig. 4.15 in principle. Because of this, we use the parameter
〈�q⊥〉 = 0.76 GeV and ω0 = 0.2 GeV.
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Figure 4.15: The net fractional radiative (dot-dashed line) and collisional (solid
line) energy loss as a function of momentum for light quarks (upper panel), charm
quarks (left lower panel) and bottom quarks (right lower panel) with an assumed
medium thickness of L = 5 fm and λ = 1.2 fm. In the lower momentum range, the
collisional energy dominates the radiative one. The figures are taken from [Djo06b,
Wic06].



5 Summary and Outlook

The present thesis deals with radiative energy loss of heavy quarks traversing a hot
deconfined medium. The actual relevance of this topic is provided by recent precision
measurements at RHIC. While the theoretical interpretation of jet quenching, manifest
itself as steepening of transverse momentum spectra of hadrons or as RAA < 1, seems
to be on a satisfying level for light-quark hadrons, the final understanding for heavy-
quark mesons is not yet accomplished. It seems that besides the radiative energy loss, the
collisional energy loss gives a significant contribution for the full energy loss. Nevertheless,
the treatment of purely radiative energy loss of heavy quarks (charm in particular) still
needs improvements.

It is the aim of the work to separate the gluon emission process of a charm quark
with finite momentum and to consider this process in an isolated manner. In doing so,
various further simplifications are introducted. Among them is the assumption of on-
shell quarks and the restriction to one-gluon emission. The emission process is analysed
in tree-level approximation. Potentially important unitary conditions, first considered
in [Gyu01] in this context, are not yet accounted for. The given idealisations, however,
allow a comparatively transparent treatment of the one-gluon bremsstrahlung process.
Particular emphasis is put on (i) a correct kinematical treatment of the kinematics (most
approaches employ the asymptotic high-energy limit for jet partons and soft-gluon limit
for the emitted radiation), (ii) the use of the exact matrix elements (many approaches
employ a factorisation into an elastic part and a radiation part owing to the soft-gluon
approximation), (iii) comparing with the dynamical quark-quark scattering. The ultimate
goal is to obtain an estimate for the phase space integrated, averaged relative energy
loss. Since truncated tree-level radiation amplitudes suffer from collinear divergences, a
modified gluon dispersion relation is introduced, where the effective in-medium gluon mass
serves as screening parameter, in addition to a finite quark mass.

As ’working horse’ we employ here a numerical code, developed by R. Thomas, which
accounts for the above items (i)...(iii). The results are compared with several approxi-
mations employed in previous approaches in literature. The code calculates numerically
exactly the for various radiation processes and performs the squaring of the summed am-
plitudes for scalar QCD. Spin effects have been previously shown to be small.

Our findings can be summarised as follows. We have extended analytical expressions
for single quark scattering in medium with one-gluon emission, i.e. consider a non-zero
effective gluon mass ω0, accounting for the in-medium dispersion relation, and finite quark
masses. The interplay of both screening effects was discussed in detail, particularly the
importance of ω0 when we consider backward gluon emission, ϑ → π. Additionally, we
have found corrections to the often used dead cone factor and treated the factorisation
of the elastic amplitude in the right way by means of kinematic corrections to the proper
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total radiation amplitude.
Moreover, we showed the dominance of the non-Abelian three-gluon vertex diagram

over the Abelian contributions which is only due to the integration of the gluon distribu-
tion over wide phase space areas. We compared this divergent behaviour of the relevant
analytically found three-gluon matrix element to the complex structure of the numerical
calculated matrix element with success.

The radiative energy loss was derived with efficient phase space restrictions for the
gluon momenta thresholds in the integration procedure as well as using an averaged value
for the transverse momentum transfer. In this connection, we have emphasised that one
is free in the choice of the single components of 	p⊥ that is to say one degree of freedom
can be omitted; this simplifies further relations.

We have compared the total radiation energy loss in the potential model to the case of
quark-quark scattering and found crucial differences between both models in the limits of
slow and heavy target quarks! This suffers from a strong restriction of the gluon emission
angle ϑ - only in the case of strongly forward-peaked gluon radiation the target contribu-
tions can be neglected in A+-gauge and so confirms the potential model. In this context,
further investigations should consider the colour structure of the radiation amplitudes in
particular, i.e. one has to compare the energy loss in QED and QCD according to the
validity of the potential model.

Furthermore, we have considered the importance of a running coupling strength and
found no significant deviations from constant coupling here in the used range of q2.

Finally, we compared our numerical computations for the process of radiative energy
loss to other results and found in the limit of neglecting target gluon radiation coincidental
results for heavy projectile quarks.

For a realistic treatment of the energy loss of heavy quarks in a hot, deconfined medium,
successively the following extensions are needed, at least. Referring to experiments at
RHIC, one has to ask about double- or multiple scattering scenarios which yield to a
description of dynamical thick media. Of course, one has to implement the interference
with the production amplitude of the quark, meaning the quark is not ’on-shell’ any more.
Tree-level processes, which we take into account in the present thesis, do not consider
dynamical effects of QCD, e.g. loop diagrams. The consideration of the whole possible
range of the transverse momentum transfer might be a further step to a more realistic
treatment of heavy quark energy loss. That means, besides the additional integration over
q⊥-phase space, the relevance in running coupling could raise.

All this previous aspects of investigations indicate the importance of further research
in energy loss of heavy quarks; hopefully one day close the gap between experimental data
and theoretical predictions.



Appendix A Notation and
Conventions

Here, we present some declarations and conventions which are used throughout the
whole thesis, as used for instand in [Gyu94], following the standard textbook from Itzykson
and Zuber [Itz80].

All calculations have done in natural units c = � = 1. For the description of an
arbitrary point in space-time we use following contravariant four-vector convention:

xμ ≡ (x0, x1, x2, x3) = (t,x) = (t, x, y, z). (A.1)

The covariant vector xμ can be expressed by the contravariant vector xμ and the funda-
mental metric tensor gμν

xμ ≡ (x0, x1, x2, x3) ≡ gμνx
ν = (t,−x,−y,−z), (A.2)

where the metric tensor is given by

gμν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (A.3)

with a negative signature. Of course, for considering dynamical space-times a variable
metric tensor is also possible, but in this work we need to use a non-curved space-time
(Minkowski space-time). All expressions have to be summed up over indices appear-
ing twice (contravariant and covariant), in conformity with the Einstein sum convention.
Lorentz indices are denoted by Greek letters (μ, ν, σ, ...). In contrast to this we use small
Latin letters (a, b, c, ...) describing colour indices and capital Latin letters (A,B,C, ....) to
label the different colour states.

The considered scattering processes are based on tree-level diagrams. Correspondingly,
we neglect all higher order diagrams. That means, the coupling αs = g2/4π, considered
only in first order, does not run. All calculations are done with a constant value of αs =
0.3 except of accounting the running coupling constant αs in Section 4.5.

To investigate schematically different kinematic situations of scattering, we employ
three quark mass parameters. As used in common the mass of the light down quark is
set md = 0.007 GeV/c2, mc = 1.5 GeV/c2 for charm quark mass, and the heavy bottom
quark with mb = 4.5 GeV/c2. In general, we denote light quarks (up, down) with mq and
heavy quarks (charm, strange, bottom) with mQ.

Furthermore, we often use an abbreviation for |	k⊥| and |	q⊥|, which has to be understand
as shorthand expressions k⊥ and q⊥.
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Additionally, we use a system to indices the matrix elements Mn,m,l in a clear way.
This notation was firstly introduced by Gyulassy, Levai and Vitev [Gyu00b]. The label n
stands for the number of scatterings. In this thesis, we concentrate on single scattering,
n = 1, m denotes that the gluon is emitted after the m-th scattering with the restriction
0 ≤ m ≤ n. l labels the final state interaction pattern after the gluon is emitted, e.g. l = 1
in the case of a triple gluon vertex. This procedure represents an efficient index-type,
especially referring to the extension of double scattering scenarios.



Appendix B Light-cone Variables,
Dirac Matrices and
Spinors

B.1 Light-cone Variables

According to use of special gauges of the gluon field (see Appendix F) it is suitable to
work in light-cone coordinates1, defined for an arbitrary covariant four-vector as follows

xμ = (x0, xx, xy, xz) ≡ (x0, 	x⊥, xz) = [x+, x−, 	x⊥]. (B.1)

A customary notation for x+ and x− is used

x+ = x0 + xz and x− = x0 − xz , (B.2)

where the incident beam of the projectile is designated to the z-direction. With this
definition and a modified metric tensor gμν the scalar product expressed in light-cone
coordinates reads

aμb
μ =

1

2
(a+b− + a−b+)− 	a⊥	b⊥. (B.3)

The light-cone variables are applied especially in Chapter 3 for finding exact kinematics.

B.2 Dirac Matrices and Spinors

The numerical calculation of matrix elements with the implementation of particle spins
uses γ matrices as fundamental algebraic objects. The Dirac matrices satisfy the relations

{γμ, γν} = 2gμν , (γμ)† = γ0γμγ0 (B.4)

with the Minkowski metric gμν = diag(1,−1,−1,−1) as defined in Appendix A. The
four-dimensional γ matrices in Dirac representation are defined as follows:

γ0 =

( I O
O −I

)
, γk =

( O σj

−σj O
)
, γ5 =

( O I
I O
)
, (B.5)

1In order to distinguish a light-cone vector between a four-vector we confine the light-cone components
in edged brackets.
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where the γ matrices obey the properties

(γ0)† = γ0, (γj)† = −γj , (γ0)2 = 1, (γj)2 = −1 (B.6)

and σj labels two-dimensional Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
. (B.7)

Additionally, unity- and zero matrices are given by

I =

(
1 0
0 1

)
and O =

(
0 0
0 0

)
. (B.8)

With the aim of describing the dynamical behaviour of partons we define Dirac bispinors
and their adjuncture spinors as solutions of the Dirac equation

ū(α)
s (p)(iγμ←−∂ μ +m) = 0 and (B.9)

(iγμ∂μ −m)u(α)
s (p) = 0 with s = 1, 2 , α = 1, 2 , (B.10)

where s denotes positive and negative spin projections along a chosen quantisation axis,
and α labels the polarisation. Moreover, the arrow represents the direction of applying the
differential operater. To solve equation (B.10) and to take the used relations into account,
we get the spinors2 normalised to 2m as

u
(1)
+ (	p) =

√
E(	p) +m

⎛
⎜⎜⎝

(
1
0

)
	σ	p

E(	p) +m

(
1
0

)
⎞
⎟⎟⎠ ,

u
(1)
− (	p) =

√
E(	p) +m

⎛
⎜⎜⎝

(
0
1

)
	σ	p

E(	p) +m

(
0
1

)
⎞
⎟⎟⎠

(B.11)

for positive energies. Similarly, the solution of free Dirac equation for negative energies
are

v
(1)
+ (	p) =

√
E(	p) +m

⎛
⎜⎜⎝

	σ	p

E(	p) +m

(
1
0

)
(

1
0

)
⎞
⎟⎟⎠ ,

v
(1)
− (	p) =

√
E(	p) +m

⎛
⎜⎜⎝

	σ	p

E(	p) +m

(
0
1

)
(

0
1

)
⎞
⎟⎟⎠ .

(B.12)

2Only the spinor u is used in the numerical calculations.



Appendix C Colour Algebra in QCD

The QCD is a non-Abelian gauge theory with underlying colour SU(3) algebra. In
general, the group SU(N) as a object of special, unitary (N × N)-matrices satisfies the
Lie algebra

[T a, T b] = ifabcT
c, (C.1)

where T a (a, b, c = 1...N2 − 1) are the generators of the group. The structure constant,
given by fabc, is totally anti-symmetric in all indices. In the case of N = 2 it reduces to
the epsilon symbol, εijk, with ε123 = 1 (even permutation). The generators are related to
their matrix representation as

T a =
λa

2
. (C.2)

For SU(3) one can choose eight representations to be the (3× 3) matrices of Gell-Mann,
given by

λ1 =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ ,

λ7 =

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ and λ8 =

1√
3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ . (C.3)

These matrices are normalised according to

tr(λaλb) = 2δab. (C.4)

Additionally, the generators fulfil further important relations. They are traceless

tr(T a) = 0 (C.5)

and hermitian1

T a† = T a. (C.6)

1In SU(3), both properties reduces the number from 18 needed quantities to specify (3× 3) complex
matrices to a set of 8 real quantities.
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For general N another useful relation of T a is as follows:

T a
ijT

a
kl =

1

2
(δilδjk − 1

N
δijδkl), (C.7)

what leads us to

(T aT a)il = CF δil, CF =
N2 − 1

2N
. (C.8)

Here, the CF denotes the eigenvalues of Casimir operator. Every quadratic operator (T b)2

commutating with an arbitrary generator T a of the group SU(N) is called quadratic
Casimir operator. The adjoint representation satisfies the relation

N2−1∑
c,d=1

facdfbcd = δabCA, CA = N. (C.9)

For SU(3) we obtain for the eigenvalues

CF =
4

3
, CA = 3. (C.10)

In order to evaluate matrix elements, as done in Section 3.3, we focus on an explicit
calculation of colour quantities. Therefore, we take over the short hand notation from
[Gyu94] to express the product of colour matrices, structure constants and colour states

(Ca1···am

b1···bn
)AB ≡ χ†

BC
a1···am

b1···bn
χA with A,B,C = 1...N, (C.11)

where m and n are arbitrary colour indices, and N is the number of colour states. For
SU(3) the colour states χJ can be written as three-dimensional unit vectors

χ1 =

⎛
⎝ 1

0
0

⎞
⎠ , χ2 =

⎛
⎝ 0

1
0

⎞
⎠ and χ3 =

⎛
⎝ 0

0
1

⎞
⎠ . (C.12)

They obey the very useful equations

N∑
A=1

χAχ
†
A = E and

N∑
A=1

χ†
AMχA = tr(M) (C.13)

with E as the identity matrix and M as an arbitrary complex matrix, all in (N × N)
format. Using the abbreviation (C.11), the summed and averaged colour squared matrix
elements read in general

|Cg1···gk,g′1···g′l
A1···As,A′

1···A′
t
)AB|2 =

1

(N2 − 1)k ·N s

∑
A1...As=1...N
A′

1...A′
t=1...N

g1...gk=N2−1
g′1...g′l=N2−1

[
C

g1···gk,g′1···g′l
A1···As,A′

1···A′
t
·
(
C

g1···gk,g′1···g′l
A1···As,A′

1···A′
t

)†]
.

(C.14)
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We use here k as the number of initial gluons and l as the number of final gluons. The
number if initial quarks is denoted with s, final quarks are expressed with t. The overline
at the colour structure means an average over all initial colour states and a sum over all
final colours. At first we calculate the elastic colour part C1,el with the help of relations
above,

C1,el ≡ |T f
ABT

f
CD|2 =

1

N2

N∑
A,B,C,D=1

(χ†
BT

fχAχ
†
DT

fχC) · (χ†
BT

gχAχ
†
DT

gχC)†.

This can be simplified by using Eqs. (C.4), (C.6) and (C.8) to

C1,el =
1

N2
(χ†

BT
fχAχ

†
DT

fχC) · (χ†
BT

gχAχ
†
DT

gχC)†

=
1

N2
χ†

BT
fχAχ

†
DT

fχCχ
†
CT

gχDχ
†
AT

gχB

=
1

N2
tr(T fT g)tr(T fT g)

=
1

2N2
δfgtr(T fT g)

=
CF

2N
.

(C.15)

In the case of N = 3 we obtain C1,el = 2
9
. Subsequently, the sum signs for colour indices

and the indices for colour states are neglected. Thus, colour expressions from Eqs. (3.32)
and (3.33) are evaluated for SU(3) as

|(T fT g)ABT
f
CD|2 ≡ |(T gT f)ABT

f
CD|2

=
1

N2
χ†

BT
fT gχAχ

†
DT

fχCχ
†
CT

eχDχ
†
AT

gT eχB

= CF · 1

N2
tr(T fT e)tr(T fT e)

= CF · C1,el =
8

27
.

(C.16)

The colour commutation structure of Eq. (3.34) can be derived in the same way as

|[T f , T g]ABT
f
CD|2 = |iffgeT

e
ABT

f
CD|2

=
1

N2
ffgefbgaχ

†
BT

eχAχ
†
DT

fχCχ
†
CT

bχDχ
†
AT

aχB

=
1

N2
ffgefbga

1

2
δeatr(T

fT b)

= CA · 1

2N2
δfbtr(T

fT b) = CA · C1,el =
2

3
.

(C.17)





Appendix D Feynman Rules

In this appendix the used propagators and vertices for the employed Feynman rules
are given. Following the scheme below, colour factors appear in curly brackets, as also
discussed in Appendix A. For omitting self coupling of gauge bosons, like photons do, all
colour generators are set to unity. Additionally, due to the U(1) symmetry of the QED
structure constants fabc equals to zero.

In the case of spinor QCD calculations one has to make allowance for different ad-
ditional factors of bosonic or fermionic particles. Outgoing photons or gluon lines are
assigned with their polarisation vector εμ, whereas incoming fermionic spinor lines obtain
a Dirac bispinor u(p, s) multiplied with a colour state χA. In contrast to this, outgoing
fermions get a factor χ†

A · ū(p, s). For scalar particles1 only the colour parts χA and χ†
A

take into account.

The colour algebra is explained in Appendix C in detail, whereby comments to Dirac’s
bispinors can be found in Appendix B.

PROPAGATORS :

• quark scalar propagator
i

p2 −m2
0 + iε

· {δij}

p
i j

• quark spinor propagator
i

pμγμ −m0 + iε
· {δij}

1In general, one has to distinct between particles or antiparticles by interchanging the spinors u and v.
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• gluon propagator
−i

k2 − ω2
0 + iε

(
gμν − (1− λ) · kμkν

k2 − λω2
0 + iε

)
·{δij}

λ→ 1: Feynman gauge, λ→ 0: Landau gauge.

k

μ, a ν, b

VERTICES2:

• scalar vertex −ig(p+ p′)μ ·
{
T c

ji

}
p, i p′, jμ, c

• spinor vertex −igγμ ·
{
T c

ji

}

• three-gluon vertex ig [(p1 − p2)σ · gμν + (p2 − p3)μ · gνσ + (p3 − p1)ν · gσμ] · {ifabc}

p1, μ, a p2, ν, b

p3, σ, c

2To ensure four-momentum conservation it is essential to multiply the vertices with corresponding
delta functions. For the sake of clearness it is neglected here.
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• static Debye screened potential −ig · g0ν e−i�q·�x

	q 2 + μ̃2
· {T a

CD}

μ, aq

Vertices describing the Debye screened potential are introduced in Section 2.4; they
are labelled by a cross in the Feynman diagram. The denominator combines two screening
parameters:

μ̃2 = μ2
D + ω2

0, (D.1)

where μD notes the Debye screening mass and ω0 stands for the effective screening pa-
rameter, causes by the surrounding medium3. In the nominator of the ratio, the sign of
exponent is just defined with ’minus’ and does not play any role due to absolute squaring
the vertex in calculating radiation amplitudes.

3Unusually, we consequently assign the intermediate gluon with an effective gluon mass ω0 which
expresses as an additional term in the denominator of Eq. (D.1) as well.





Appendix E Scalar QCD versus
Spinor Calculation

The radiation amplitude, as a basic feature of calculating radiative energy loss, is
derived with the help of spinor Feynman rules. If we investigate the general process of
quark-quark scattering there exist sixteen different possibilities for spin configurations.
The spin of the initial states for projectile and target quarks has to be compared with
the final projectile and target spin; that is due to the possible spin flip for up and down
states of the quarks. Computations with the program package of those spin flip effects
were accomplished and it shows absolutely no effect compared with the scalar results, only
in the scattering of two light or two heavy quarks with high energies, small momentum
transfers and soft gluon radiation [Tho03]. The other case of light projectiles and heavy
targets and vice versa yields a small dependence of the gluon emission angle ϑ in the
summed and averaged squared total matrix element of the gluon radiation process. Of
course, this effect also accounts for the integration over the gluon emission angles ϕ and ϑ
at last for obtaining the radiative energy loss, but our focus is more on kinematical effects
than taking into consideration spin flips in addition. The latter ones opens a door for
further interesting investigations.

The whole calculation of matrix elements becomes much more complicated by account-
ing spinor rules, analytical derivations as well as numerical ones, compared with the results
from scalar QCD. Finally because of this, we use scalar computations for the sake of the
enormous time reduction in the working process of the numerical code, despite the fact
that our program is powerful enough to deal with spinor rules.





Appendix F General Aspects of
Gauges

Physical quantities have to be independent of gauge parameters. The calculation of
quark energy loss basically uses the total summed and squared matrix element1. Therefore
we have to specify the gluon field operator Âμ(x), respectively the not quantised field mode
Aμ(x) for solving the wave equation

(� + ω2
0) = 0, (F.1)

derived from the Lagrangian of the Proca theory. This relation valids only for massive
gluon fields with the Lorentz condition ∂νA

ν = 0 following from current conservation.
Hence, the vector field reads as2

Aμ(	k, λ, x) = Nεμ(	k, λ)e−ikx, (F.2)

separated in planar waves. The four-dimensional transversal condition εσk
σ = 0 is obeyed

automatically.
Now, the attention is on polarisation vectors in a manner of various polarisation modes.

Gupta and Bleuler derived a quantisation method to cancel longitudinal and scalar po-
larisation modes. This formalism is based on expectation value of physical states with
operator relations as

〈Φ|∂μÂμ(x)|Φ〉 = 0. (F.3)

But the cancelling of longitudinal and scalar modes of observable gluons is not valid for
intermediate3 (non-observable) gluons!

Massless gluons have only two transverse polarisation modes, but in the real massive
case, which is not consequently realised in our consideration as an effective gluon mass
parameter, one additional transverse polarisation appears (cf. [Gre93]).

F.1 Gauge Invariance for Polarisation Vectors

Because of Eq. (F.1) the plan wave solution (F.2) is not fixed by the Lorentz condition.
Thus, we add a local gauge transformation Λ(x) in the following manner

A′μ(x) = Aμ(x) + ∂μΛ(x) (F.4)

1It is a noteworthy fact that only the total matrix element obeys gauge invariance. Single amplitude
contributions do not behave like this.

2Here, we neglect colours by treating gluons. Thus, these relations hold also for ’massive’ photons
(k2 �= 0).

3A formal introduction of ghost field terms in the Lagrangian cancel internal contributions forming
non-transverse gluons.
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obeying the homogeneous wave equation

�Λ = 0. (F.5)

Any solution of (F.5) as Λ ∼ e−ikx appears a new degree of freedom for a modification of
the four-dimensional polarisation vectors

ε′μ = εμ + βkμ (F.6)

with an arbitrary parameter β.
Henceforth, three different gauge conditions with respect to polarisation vectors are

considered:

• A0 = 0 gauge,

• A− = 0 gauge,

• A+ = 0 gauge.

The nature of gauge invariance is that physical observable remain invariant. For the total
matrix element Fig. C.3(b) this is exhibited in [Tho05].

Here, we take our focus on the A+ gauge. In order to compare quark-quark scattering
with the potential model, target radiation can be neglected in contrast to projectile- and
three-gluon contributions, as shown in [Gun82, Wan95]. This raises the A+ gauge to our
favourite class of Lorentz gauge.

The polarisation vectors follow in light-cone coordinates as

ε1/2 = (ε0,	ε
(1/2)
⊥ ,−ε0) with 	ε

(1)
⊥ · 	ε (2)

⊥ = 0. (F.7)

The transformation (F.10) allows additional conditions for gluon polarisations, given by

ε(j) k = 0{
ε(j)
}2

= −1

}
j = 1, 2. (F.8)

An implementation of the transverse condition and the gluon momentum kμ yields

ε
(j)
0 =

	ε
(j)
⊥ 	k⊥
k0 + kz

. (F.9)

For completeness we note the expressions ε(1) and ε(2) in used spherical coordinates,

ε
(1)
0 =

(
ω cosϕ sinϑ

2Ex
, 1, 0,−ω cosϕ sinϑ

2Ex

)
, (F.10)

ε
(2)
0 =

(
ω sinϕ sinϑ

2Ex
, 0, 1,−ω sinϕ sinϑ

2Ex

)
(F.11)

with

	ε
(1)
⊥ = (1, 0) and 	ε

(2)
⊥ = (0, 1) (F.12)

as the transverse polarisations to be employed in the numerical calculations.
A possible singularity problem for backward gluon emission (ϑ → π) is screened by

an effective gluon mass ω0 in the denominator of expression (F.9), discussed in detail in
Section 2.5.
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F.2 Linear and Circular Polarisations

The introduction of an object consisting of various possible gluon polarisation states de-
scribes various degrees of polarisations. Thus, the polarisation matrix with three real
so-called Stokes parameters ξ1, ξ2 and ξ3 is given by

ραβ =
1

2

(
1 + ξ3 ξ1 − iξ2
ξ1 + iξ2 1− ξ3

)
with − 1 ≤ ξi ≤ 1. (F.13)

The gluon polarisation states are combined to the parameters ξi like

ξ1 =

⎧⎪⎨
⎪⎩

1 linear polarisation vector ε(+) =
1√
2
(ε(1) + ε(2)),

−1 linear polarisation vector ε(−) =
1√
2
(ε(1) − ε(2)),

(F.14)

ξ2 =

⎧⎪⎨
⎪⎩

1 circular polarisation vector ε(+) = − i√
2
(ε(1) + iε(2)),

−1 circular polarisation vector ε(−) = − i√
2
(ε(1) − iε(2)),

(F.15)

ξ3 =

{
1 linear polarisation vector ε(1),
−1 linear polarisation vector ε(2).

(F.16)

Using the projection

p(e) = ε†ρε (F.17)

as a description of a probability for special polarisations yields

p(1) = ε(1)†ρε(1), p(2) = ε(2)ρε(2)†,

p(+) = ε(+)†ρε(+), p(−) = ε(−)ρε(−)†,
(F.18)

implemented directly in the numerical calculations.
Due to the summed and averaged squared matrix elements in calculating gluon ra-

diation spectra the result is shown to be invariant by a comparison between linear and
circular polarisations4 (see Fig. C.5 in [Dok01]). The sum of each ratio pair of different
polarisation contributions equals one.

F.3 Gauge Invariance of the Gluon Propagator

The internal gluon propagator is given by

iD(k)μν =
−i

k2 − ω2
0 + iε

(
gμν − (1− λ) · kμkν

k2 − λω2
0 + iε

)
(F.19)

according to the proper Feynman-Stueckelberg Lagrangian ([Itz80, Gre93]). The gauge
fixing term in the propagator introduces a gauge parameter λ, called Feynman gauge for
λ = 1 and Landau gauge for λ = 0. It is possible to cover λ with arbitrary amounts, but
this two special cases named historically persue to simpler expressions in propagators.
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Figure F.1: The fractional energy loss for different gauge parameters λ is sketched
as a function of the screening parameter ω0. As expected, one can verify no depen-
dency of the gauge parameter λ for the relative charm quark energy loss.

For simple elastic quark-quark scattering one can show the disappearance of the gauge
term proportional to kμkν due to Dirac equation (B.10) for spinors u and ū (see also
Section 6.1.3 in [Itz80]). Please note that for spinor calculations one obtains nearly the
same results as shown in Fig. F.1.

4The same results yield by including spinor rules.



Appendix G Numerical Integration
and C++ Code

In the following we give a short description of the structure of the numerical C++
program, which calculates the radiation amplitudes and integrates the gluon distribution
over several phase space areas.

In general, the program calculates the gluon emission amplitudes for different single
scattering scenarios in medium as described in Chapter 3.

Besides the variable kinematical parameters and an effective gluon mass as input pa-
rameters of the scattering processes, it is possible to evaluate matrix elements in different
gauges (A+, A− or A0). Therefore, the fundamental Feynman diagrams of involved vertices
are implemented. The code uses as basic objects three dimensional complex matrices for
Gell-Mann matrices used for colour algebra and four dimensional matrices needed for the
spinor algebra. It has also built in complex column and row vectors of same dimensions
together with rules of matrix multiplication and the right behaviour of complex numbers.
For all numerical calculations we take the exact kinematics into account. In general, one
has to make a decision wheather a calculation is performed in scalar or spinor QCD.
Additionally, for some numerical tests of kinematics, on-shell and gauge conditions are
introduced check boundaries on a global level.

Here, the code is aimed at avoiding the approximations of analytical or semi-analytical
approaches, like in [Sor06, Bai06, Kid06]. We do not discuss technical aspects of our
program in detail, but for the interested reader and the sake of reproducibility some
explanations for calculations of the gluon distribution are displayed in Appendix F of
[Vit05].

Now, we consider the numerical integration part. First of all one has to select an
appropriate integration method. One aspect, despite some technical ones, is important in
this context: What is the intrinsic statistical error of the technique and how fast converges
the integration method? In general we have the choice between two different methods. On
the one hand the traditional separation of integration area in simple geometric objects,
on the other hand a modern integration technique, like Monte Carlo (MC)-integration
with all its different versions. We choose the latter one and give a short overview of this
technique in the following.

First we pick N random points x1, ..., xN being uniformly distributed in a multidimen-
sional volume V . The procedure of MC integration estimates the integral of an arbitrary
function f over the multidimensional volume

∫
fdV ≈ V 〈f〉 ± V

√
〈f 2〉 − 〈f〉2

N
(G.1)
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Figure G.1: Accuracy calculation of the relative radiative energy loss for quark-
quark scattering with increasing N : 50 (red line), 500 (green line), 5000 (blue line)
and 50000 (black line); error estimates decrease rapidly as 1/

√
N for MC integration

methods.

with taking an arithmetic mean over N sample points according to

〈f〉 ≡ 1

N

N∑
i=1

f(xi) and 〈f 2〉 ≡ 1

N

N∑
i=1

f 2(xi). (G.2)

If one interprets the multidimensional volume in terms of the phase space (e.g. in 3D
spherical coordinates) the volume integral looks like1

∫
fdV =

ϕ2∫
ϕ1

dϕ

[ ϑ2∫
ϑ1

dϑ

{ ω2∫
ω1

dω R̃ (f1(ϕ), f2(ϑ), f3(ω))

}]
. (G.3)

It is an incontestable fact that for multidimensional integrations the calculation time
grows up dependent the number of a dimensions. Fortunately, the error estimate of MC
integration decreases as 1/

√
N what makes a big advantage compared to conventional

integration methods. There the calculation time explodes exponentially with the space
dimension contrary to MC integration. With some more complicated extensions of the MC
method it should be possible to break the ’barrier’ of 1/

√
N , hence gets higher accuracy.2

This aspect is shown in Fig. G.1 for an increasing number of random points.
For all MC calculations a uniform distribution of the phase space points is absolutely

indispensable. Thus, a random generator producing highly non-correlated numbers is
necessary. We use an appropriate generator from Numerical Recipes [NUM88].

1This is only a simplified performance of the integration over phase space. The true multidimensional
integral is given in Eq. (4.19).

2Our method is precisely called simple MC integration. Unfortunately, the more accurate MC method
with importance sampling is not useful due to the analytical ignorance of the integrand function R̃.
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und ihre zahlreichen inspirierenden sowie motivierenden Worte, besonders in schwierigen
Phasen dieser Diplomarbeit.
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