Physik 2 für Maschinenwesen

Prof. Dr. Jürgen Faßbender

Institut für Festkörperphysik, TU Dresden Institut für Ionenstrahlphysik und Materialwissenschaften, Helmholtz–Zentrum Dresden–Rossendorf

Dr. Kilian Lenz

Institut für Ionenstrahlphysik und Materialwissenschaften, Helmholtz–Zentrum Dresden–Rossendorf

Vorlesungs-Webseite: http://www.hzdr.de/fassbender

Lehrbücher

- E. Hering, R. Martin, M. Stohrer: **Physik für Ingenieure** Springer Verlag
- H. Stroppe
 Physik f
 ür Studenten der Natur- und Technikwissenschaften Fachbuchverlag Leipzig
- P.A. Tippler
 Physik
 Spektrum Akademischer Verlag
- H. Lindner **Physik für Ingenieure** Hanser Verlag

Übungsbuch

 P. Müller, H. Heinemann, H. Krämer, H. Zimmer Übungsbuch Physik Hanser Verlag

Inhaltsverzeichnis

5	Elek	trizität und Magnetismus	5
	5.1	Elektrische Ladung q	5
	5.2	Elektrisches Feld \vec{E}	5
	5.3	Elektrisches Potential, Spannung	7
		5.3.1 Kurzer mathematischer Exkurs	8
	5.4	Elektrische Ladung auf Leitern, Influenz	11
	5.5	Elektrisches Zentralfeld, Coulombsches Gesetz	12
	5.6	Kapazität, Kondensatoren (Ladungsspeicher)	13
	5.7	Parallel- und Reihenschaltung von Kondensatoren	15
	5.8	Elektrische Isolatoren	17
	5.9	Gleichstrom, Ohmsches Gesetz	19
	5.10	Reihen- und Parallelschaltung von Widerständen	21
	5.11	Innenwiderstände, Klemmenspannung	22
	5.12	Verzweigte Stromkreise – Kirchhoffsches Gesetze	24
	5.13	Arbeit und Leistung elektrischer Gleichströme	25
	5.14	Mechanismen der elektrischen Leitung	26
	5.15	Magnetfelder	28
	5.16	Magnetfelder stationärer Ströme	29
	5.17	Magnetische Flussdichte (magnetische Induktion)	32
	5.18	Kraftwirkung im Magnetfeld	33
	5.19	Magnetische Materialien	36
	5.20	Elektromagnetische Induktion	41
	5.21	Selbstinduktion	43
	5.22	Ein- und Ausschalten von Gleichströmen	44
	5.23	Energie des magnetischen Feldes	45
	5.24	Wechselströme	46
6	Elek	tromagnetische Schwingungen und Wellen	53
	6.1	Freie elektromagnetische Schwingung	54
	6.2	Erzwungene elektromagnetische Schwingung	57
	6.3	Offene Schwingkreise, Hertzscher Dipol	59
	6.4	Elektromagnetische Wellen	61
7	Opti	k	65
	7.1	Geometrische Optik	65
		7.1.1 Reflexion des Lichts	65

	7.1.2	Brechung des Lichts
	7.1.3	Abbildung durch Linsen
	7.1.4	Optische Instrumente
7.2	Weller	loptik
	7.2.1	Interferenz
	7.2.2	Zweistrahlinterferenz
	7.2.3	Interferenz an dünnen Schichten
	7.2.4	Beugung
	7.2.5	Röntgenbeugung am Kristallgitter

5 Elektrizität und Magnetismus

5.1 Elektrische Ladung q

Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung

- besitzen jeweils eine Elementarladung $e = 1.602 \times 10^{-19}$ C (Coulomb) Ladung ist gequantelt (nur in Vielfachen der Elementarladung auftretend)
- Ladungen sind an Materie gebunden
- Atome bestehen aus einer gleichen Anzahl von Elektronen und Protonen und sind somit elektrisch neutral.
- Werden Atome (und somit Körper) negativ bzw. positiv aufgeladen, so geben sie Elektronen ab bzw. nehmen Elektronen auf und werden zu negativ bzw. positiv geladenen Ionen.

Ladungserhaltungssatz

Ladungen eines Vorzeichen alleine können nie erzeugt werden. Die Summe aus positiven und negativen Ladungen bleibt in einem abgeschlossenen System konstant.

5.2 Elektrisches Feld \vec{E}

Ladungen erzeugen ein elektrisches Feld in ihrer Umgebung. Positive Ladungen sind die Quellen, negative Ladungen sind die Senken des Feldes. Die Richtung der Feldlinien ist von der positiven zur negativen Ladung festgelegt.

Analogie:

Ladung \leftrightarrow elektrisches Feld Masse \leftrightarrow Gravitationsfeld

5 Elektrizität und Magnetismus

Beispiele für Feldverteilungen a) Punktladung:

Abbildung 5.1: (a) Positive und (b) negative Punktladung.

b) elektrischer Dipol: (zwei ungleichnamige Punktladungen)

Abbildung 5.2: Feldverteilung zwischen zwei ungleichnamigen Punktladungen.

c) 2 gleichnamige Punktladungen

Abbildung 5.3: Feldverteilung zwischen zwei gleichnamigen Punktladungen.

Je dichter die Feldlinien, desto stärker das Feld.

Kraftwirkung des elektrischen Feldes:

$$\vec{F} = q\vec{E} \quad \Leftrightarrow \quad \vec{E} = \frac{\vec{F}}{q}$$
(5.1)

$$[E] = 1 \frac{\mathrm{N}}{\mathrm{C}} = \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{A} \cdot \mathrm{s}^3}$$
(5.2)

A: Ampère, SI-Basiseinheit

Auf eine elektrische Probe-Ladung q übt das elektrische Feld \vec{E} eine Kraft \vec{F} aus. Betrachtet man einen elektrischen Dipol (zwei ungleichnamige Ladungen +q und -q im Abstand l voneinander, so erhält man neben der Kraftwirkung:

$$\vec{F} = (-q\vec{E}_1) + (+q\vec{E}_2) = q(\vec{E}_2 - \vec{E}_1) - q\Delta\vec{E}$$
(5.3)

ein resultierendes Drehmoment

$$\vec{M} = \vec{r}_1 \times (-q\vec{E}_1) + \vec{r}_2 \times (+q\vec{E}_2)$$
(5.4)

$$= q(\vec{r}_2 - \vec{r}_1) \times \vec{E} = \underbrace{q\vec{l}}_{\checkmark} \times \vec{E} = \vec{p} \times \vec{E}$$
(5.5)

homogenes Feld
$$\vec{E}$$
 =: \vec{p} , elektrisches Dipolmoment

5.3 Elektrisches Potential, Spannung

Wird eine Ladung q in einem elektrischen Feld \vec{E} von Punkt P₁ nach P₂ verschoben, so muß die Arbeit W aufgewendet werden:

$$W = -\int_{P_1}^{P_2} \vec{F} \, \mathrm{d}\vec{r} = -q \int_{P_1}^{P_2} \vec{E} \, \mathrm{d}\vec{r}$$
(5.6)

elektrisches Potential am Punkt P

(Referenzpunkt ∞)

$$\varphi = -\int_{\infty}^{P} \vec{E} \, \mathrm{d}\vec{r}$$
(5.7)

Das elektrische Feld \vec{E} ergibt sich aus dem elektrostatischen Potential φ durch Gradientenbildung:

$$\vec{E} = -\operatorname{grad}\varphi\tag{5.8}$$

Mit Hilfe des Potentials läßt sich die Arbeit schreiben als:

$$W = q \underbrace{(\varphi_2 - \varphi_1)}_{\substack{\text{Spannung } U, \\ \text{Differenz der}\\ \text{Potentiale}}} \underbrace{E_p(P_2) - E_p(P_1)}_{\substack{\text{Differenz der}\\ potentiellen Energien}}$$
(5.9)

7

allgemein Spannung U (Potentialdifferenz)

$$U = -\int_{P_1}^{P_2} \vec{E} \, \mathrm{d}\vec{r} = \varphi_2 - \varphi_1 \tag{5.10}$$

$$[U] = 1 \operatorname{Volt} = V = \frac{\operatorname{kg} \cdot \operatorname{m}^2}{\operatorname{A} \cdot \operatorname{s}^3}$$
(5.11)

5.3.1 Kurzer mathematischer Exkurs

 $\vec{\nabla}$: Nabla-Operator, Vektor partieller Ableitungen

$$\vec{\nabla} \stackrel{\stackrel{?}{=}}{\left(\begin{array}{c} \partial/\partial x\\ \partial/\partial y\\ \partial/\partial z\end{array}\right)} \tag{5.12}$$

Kartesische Koordinaten:

(Differential (Volumenelement): $dV = d\vec{r} = dxdydz$)

Gradient:

grad
$$a = \vec{\nabla}a = \frac{\partial a}{\partial x}\hat{e_x} + \frac{\partial a}{\partial y}\hat{e_y} + \frac{\partial a}{\partial z}\hat{e_z}$$
 (5.13)

Divergenz:

$$\operatorname{div}\vec{A} = \vec{\nabla}\vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
(5.14)

Rotation:

$$\operatorname{rot}\vec{A} = \vec{\nabla} \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\hat{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\hat{e}_z$$
(5.15)

$$\vec{\nabla} \cdot \vec{\nabla} = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 (5.16)

Zylinderkoordinaten:

$$x = r \cos \varphi$$
$$y = r \sin \varphi$$
$$z = z$$

Bestimmung des Volumenelements in Zylinderkoordinaten:

$$dV = \text{Det}\left(\frac{\partial(x, y, z)}{\partial(r, \varphi, z)}\right) dr d\varphi dz$$

$$\Rightarrow \left| \left(\begin{array}{c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial z} \end{array} \right) \right| dr d\varphi dz = \left| \left(\begin{array}{c} \cos\varphi & -r\sin\varphi & 0 \\ \sin\varphi & r\cos\varphi & 0 \\ 0 & 0 & 1 \end{array} \right) \right| dr d\varphi dz$$

$$= (r\cos^2\varphi + r\sin^2\varphi) dr d\varphi dz = r dr d\varphi dz$$
(5.17)
(5.17)

 $(\rightarrow \text{Differential: } r \, \mathrm{d} r \mathrm{d} \varphi \mathrm{d} z)$

Gradient:

grad
$$a = \vec{\nabla}a = \frac{\partial a}{\partial r}\hat{e_r} + \frac{1}{r}\frac{\partial a}{\partial \varphi}\hat{e_y} + \frac{\partial a}{\partial z}\hat{e_z}$$
 (5.19)

Divergenz:

$$\operatorname{div}\vec{A} = \frac{1}{r}\frac{\partial(rA_r)}{\partial r} + \frac{1}{r}\frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z}$$
(5.20)

Rotation:

$$\operatorname{rot}\vec{A} = \left(\frac{1}{r}\frac{\partial A_r}{\partial\varphi} - \frac{\partial A_{\varphi}}{\partial z}\right)\hat{e}_r + \left(\frac{\partial A_{\varphi}}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{e}_{\varphi} + \left(\frac{1}{r}\frac{\partial (rA_r)}{\partial r} - \frac{1}{r}\frac{\partial A_{\varphi}}{\partial\varphi}\right)\hat{e}_z$$
(5.21)

Kugelkoordinaten:

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

(Differential: $r^2 \sin \theta dr d\theta d\varphi$)

Gradient:

grad
$$a = \frac{\partial a}{\partial r}\hat{e}_r + \frac{1}{r}\frac{\partial a}{\partial \theta}\hat{e}_{\theta} + \frac{1}{r\sin\theta}\frac{\partial a}{\partial\varphi}\hat{e}_{\varphi}$$
 (5.22)

Divergenz:

$$\operatorname{div}\vec{A} = \frac{1}{r^2}\frac{\partial(r^2A_r)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial A_{\varphi}}{\partial \varphi} + \frac{1}{r\sin\theta}\frac{\partial(\sin\theta A_{\theta})}{\partial \theta}$$
(5.23)

Rotation:

$$\operatorname{rot}\vec{A} = \left(\frac{1}{r\sin\theta}\frac{\partial A_r}{\partial\varphi} - \frac{1}{r}\frac{\partial(rA_{\varphi})}{\partial r}\right)\hat{e}_{\theta} + \left(\frac{1}{r}\frac{\partial(rA_{\theta})}{\partial r} - \frac{1}{r}\frac{\partial A_r}{\partial\theta}\right)\hat{e}_{\varphi} + \left(\frac{1}{r\sin\theta}\frac{\partial(\sin\theta A_{\varphi})}{\partial\theta} - \frac{\partial A_{\theta}}{\partial\varphi}\right)\hat{e}_r$$
(5.24)

5.4 Elektrische Ladung auf Leitern, Influenz

Ein Leiter ist ein Stoff, in dem sich elektrische Ladungen frei bewegen können (z. B. Metall). Wird der Stoff aufgeladen, stoßen sich die Einzelladungen ab, bis die resultierende Kraft $\vec{F} = 0$ ist.

Mit $\vec{F} = q\vec{E}$ folgt daraus $\vec{E} = 0$ und $\varphi =$ konst.

 \Rightarrow Elektrische Feldlinien stehen immer senkrecht auf der Leiteroberfläche!

Influenz

ungeladene Metallplatte im elektrischen Feld

- \rightarrow Ladungstrennung
- \rightarrow der Leiter wird polarisiert

Abbildung 5.4: (a) Influenz (Faraday-Käfig), (b) Trennung der Leiter im \vec{E} -Feld, (c) Abschalten des \vec{E} -Feldes und Messung der influenzierten Ladung.

Die influenzierte Ladung Q ist proportional der Feldstärke $|\vec{E}| = E$ und der Fläche A des Leiters. (ϵ_0 : Proportionalitätskonstante):

$$Q = \underbrace{\epsilon_0}_{\substack{ \cong D: \text{Verschiebungsdichte} \\ \text{Flußdichte}}} EA$$
(5.25)
mit $\epsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}}$ elektrische Feldkonstante
bzw. Influenzkonstante

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

Elektrisches Zentralfeld

Kugel mit Radius r um eine Punktladung Q

$$\Rightarrow \qquad Q = \epsilon_0 \oint_{\text{Kugel}} \vec{E} d\vec{A} = \epsilon_0 E \oint dA = \epsilon_0 E (4\pi r^2)$$
(5.26)

$$\Rightarrow \vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \vec{e_r}$$
(5.27)

mit
$$\vec{e}_r = \frac{\vec{r}}{|\vec{r}|}$$
: Einheitsvektor in radialer Richtung (5.28)

$$\Rightarrow \varphi = -\int_{-\infty}^{r} \vec{E} d\vec{r} = \frac{Q}{4\pi\epsilon_0 r}$$
(5.29)

Diese Gleichungen gelten auch für eine elektrisch geladene Kugel (Radius R) sofern $r \ge R$ ist.

Abbildung 5.5: (a) Elektrisches Feld und (b) Potential im Abstand *r*.

Feldstärke an der Oberfläche

$$\left|\vec{E}\right| = \frac{Q}{4\pi\epsilon_0 R^2} = \frac{Q}{\epsilon_0 A} = \frac{\sigma}{\epsilon_0}$$
(5.30)
 σ : Flächenladungsdichte

Coulombsches Gesetz, Kraftwirkung zwischen zwei Ladungen

$$\vec{F} = q\vec{E} = \frac{qQ}{4\pi\epsilon_0 r^2}\vec{e_r}$$

$$q, Q: \begin{array}{c} \text{gleiches Vorzeichen} & \rightarrow \text{Abstoßung} \\ \text{ungleiche Vorzeichen} & \rightarrow \text{Anziehung} \end{array}$$
(5.31)

	Gravitationsfeld	elektrisches Feld
Kraft	Massenanziehungskraft (Gravitationskraft) $\vec{F}_{Gr} = \gamma \frac{m_1 m_2}{r^2} \vec{r}_0$ $\vec{F}_{Gr} = m \vec{g}; \ \vec{g} = \frac{\vec{F}}{m}$	Ladungsanziehungskraft (Columbkraft) $\vec{F}_{el} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \vec{r}_0$ $\vec{F}_{el} = Q\vec{E}; \vec{E} = \frac{\vec{F}_{el}}{Q}$
Energie	$W_{ m Gr} = m \varphi_{ m Gr}$	$W_{ m el} = Q arphi_{ m el}$
Potential- änderung	$\mathrm{d}\varphi_{\mathrm{Gr}} = -\vec{g}\mathrm{d}\vec{y}$	$\mathrm{d}\varphi_{\mathrm{el}} = -\vec{E}\mathrm{d}\vec{y}$
Potential- linien	Linien gleicher poten- tieller Energie (Höhenlinien) $\vec{g} = -\text{grad} \varphi_{\text{Gr}}$	Linien gleichen elektri- schen Potentials (Äquipotentiallinien) $\vec{E} = -\text{grad } \varphi_{\text{el}}$
Teilchen- beschleunigung	senkrecht zu den Höhen- linien in Richtung des steilsten Abfalls	senkrecht zu den Äqui- potentiallinien in Rich- tung der größten Poten- tialänderung
Veranschau- lichung	Höhenlinien	Feldlinien Äquipotentiallinien

 Tabelle 5.1: Ähnlichkeiten zwischen Gravitationsfeld und elektrischem Feld.

5.6 Kapazität, Kondensatoren (Ladungsspeicher)

Leitende Kugel mit Ladung Q und Radius R: Potential:

$$\varphi = \frac{Q}{4\pi\epsilon_0 R}; \qquad \varphi(\infty) = 0 \text{ (Bezugspunkt)}$$
 (5.32)

5 Elektrizität und Magnetismus

Spannung:

$$U = \varphi(R) - \varphi(\infty) = \varphi(R) = \frac{Q}{4\pi\epsilon_0 R} = \frac{Q}{C}$$
(5.33)

Kapazität:

$$C = \frac{Q}{U} = 4\pi\epsilon_0 R$$
 (Kapazität einer Kugel) (5.34)

allgemein:

$$C = \frac{Q}{U}$$
 mit $[C] = \frac{\text{Coulomb}}{\text{Volt}} = \frac{C}{V} = 1 \text{ F} \text{ (Farad)}$ (5.35)

Die Kapazität bezeichnet das Fassungsvermögen eines elektrischen Leiters für elektrische Ladungen bei einer bestimmten Spannung.

Plattenkondensator

Abbildung 5.6: Wie bei der Influenz, nur dass die beiden Platten jetzt mit einer Spannungsquelle aufgeladen werden.

Als Ladung eines Kondensators ist diejenige definiert, die eine Platte trägt.

$$E = \frac{U}{d}$$
(5.36)

mit d: Plattenabstand; A: Plattenfläche

$$Q = \epsilon_0 \oint_{Platte} \vec{E} d\vec{A} \underbrace{=}_{\vec{E} \mid \mid d\vec{A}} \epsilon_0 E \oint dA$$
(5.37)

$$\Rightarrow Q = \epsilon_0 EA = \frac{\epsilon_0 A}{d} U = CU \tag{5.38}$$

$$\Rightarrow C = \frac{\epsilon_0 A}{d} \quad \text{Kapazität eines Plattenkondensators}$$
(5.39)

5.7 Parallel- und Reihenschaltung von Kondensatoren

a) parallel

Abbildung 5.7: Parallelschaltung zweier Kondensatoren.

 \Rightarrow

Gleiche Spannungen an C_1 und C_2 .

$$U = U_1 = U_2 (5.40)$$

$$Q_1 = C_1 U, \quad Q_2 = C_2 U \tag{5.41}$$

$$Q_{\rm ges} = Q_1 + Q_2$$
 (5.42)

$$\Leftrightarrow Q_{\text{ges}} = U(C_1 + C_2) \tag{5.43}$$

$$\Leftrightarrow Q_{\rm ges} = UC_{\rm ges} \tag{5.44}$$

$$\Leftrightarrow C_{\rm ges} = C_1 + C_2 \tag{5.45}$$

allgemein
$$\Rightarrow C_{\text{ges}} = \sum_{i} C_{i}$$
 (5.46)

b) seriell

Spannung liegt nur an den jeweils äußeren Platten an; die inneren Kondensatorplatten laden sich durch Influenz auf.

$$\Rightarrow Q_1 = Q_2 = Q \tag{5.47}$$

Abbildung 5.8: Reihenschaltung zweier Kondensatoren.

Spannungen addieren sich:

$$\Rightarrow U_{\rm ges} = U_1 + U_2 \tag{5.49}$$

$$U_1 = \frac{Q}{C_1}, \qquad U_2 = \frac{Q}{C_2}$$
 (5.50)

$$\Leftrightarrow U_{\rm ges} = \frac{Q}{C_1} + \frac{Q}{C_2} \tag{5.51}$$

$$\Leftrightarrow U_{\text{ges}} = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right) \tag{5.52}$$

$$\Leftrightarrow U_{\rm ges} = Q \frac{1}{C_{\rm ges}} \tag{5.53}$$

$$\Rightarrow \frac{1}{C_{\text{ges}}} = \frac{1}{C_1} + \frac{1}{C_2} \tag{5.54}$$

allgemein
$$\Rightarrow \frac{1}{C_{\text{ges}}} = \sum_{i} \frac{1}{C_{i}}$$
 (5.55)

Energieinhalt eines geladenen Kondensators: Arbeit:

$$W = \int \vec{F} d\vec{s} \underbrace{=}_{F=QE} Q \underbrace{\int \vec{E} d\vec{s}}_{U} = QU$$
(5.56)

Erhöhung der Ladung um dQerfordert ArbeitdW

$$\Rightarrow dW = UdQ, \quad U = \frac{Q}{C}$$
(5.57)

Gesamtarbeit:

$$W = \int dW = \int_{0}^{Q} U(Q') dQ' = \frac{1}{C} \int_{0}^{Q} Q' dQ'$$
(5.58)

$$\Rightarrow W = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CU^2 \tag{5.59}$$

Gilt allgemein für Kondensatoren.

Energiedichte des elektrischen Feldes:

$$\omega_{\rm el} = \frac{W_{\rm el}}{V} = \frac{1}{2}\epsilon_0 E^2 \tag{5.60}$$

mit:

$$C = \epsilon_0 \frac{A}{d} \tag{5.61}$$

$$U = Ed \tag{5.62}$$

$$\Rightarrow W = \frac{1}{2}\epsilon_0 E^2 A d \tag{5.63}$$

5.8 Elektrische Isolatoren

Da Materie aus geladenen Teilchen besteht besteht, bewirkt ein elektrisches Feld \vec{E}_0 eine entgegengesetzte Kraftwirkung auf positiv und negativ geladene Teilchen und bewirkt damit eine elektrische Polarisation.

Mechanismen:

a) Verschiebungspolarisation:

Abbildung 5.9: Verschiebungspolarisation.

- äußeres Feld $\vec{E_0}$
- Gegenfeld durch Polarisation \vec{P}
- Restfeld \vec{E} im Dielektrikum geringer

$$\vec{E} = \vec{E_0} - \frac{1}{\epsilon_0}\vec{P} \tag{5.64}$$

im Dielektrikum wird ein Dipolmoment \vec{p} erzeugt.

$$\vec{p} = \alpha \vec{E}_0 \tag{5.65}$$

$$\alpha$$
: Polarisierbarkeit (5.66)

Polarisation:

$$\vec{P} = n\alpha \vec{E_0};$$
 (5.67)
n: Dipoldichte

Aufgrund der Polarisation des Dielektrikums wird die Kapazität des Kondensators erhöht.

$$C = \epsilon C_0 \tag{5.68}$$

mit der Dielektrizitätskonstante ϵ (Materialeigenschaft, $\epsilon \geq 1$)

	ϵ
Luft	1.0006
Wasser	81
Keramik	$10 - 10^4$

Feld im Dielektrikum:

$$\vec{E} = \vec{E}_0 - \frac{1}{\epsilon_0}\vec{P}, \quad \text{mit} \ \vec{E}_0 = \epsilon \vec{E}$$
 (5.69)

$$\Rightarrow \vec{E} = \epsilon \vec{E} - \frac{1}{\epsilon_0} \vec{P} \tag{5.70}$$

$$\Leftrightarrow \vec{P} = \epsilon_0(\epsilon - 1)\vec{E} \tag{5.71}$$

Die dielektrische Verschiebungsdichte \vec{D} wird um die Dielektrizitätskonstante erweitert:

$$\vec{D} = \epsilon_0 \epsilon \vec{E} = \epsilon_0 \vec{E} + \vec{P} \tag{5.72}$$

Sie gibt die durch das äußere Feld verschobene Ladungsdichte an. b) Orientierungspolarisation:

Besitzt ein Stoff schon im feldfreien Raum ein Dipolmoment, so werden diese statistisch ungeordneten Dipole im $\vec{E_0}$ -Feld ausgerichtet.

- temperaturabhängig; je kleiner T desto besser die Orientierung
- Ausrichtung braucht Zeit; in hochfrequenten Feldern gibt es dielektrische Verluste.

- **Elektrostriktion** Eine Verschiebung der elektrischen Ladung in einem $\vec{E_0}$ -Feld bewirkt eine mechanische Deformation bzw. eine mechanische Spannung.
- **Piezoelektrizität** In manchen Stoffen tritt auch die Umkehr der Elektrostriktion auf, d. h., eine mechanische Spannung bewirkt ein \vec{E} -Feld.

5.9 Gleichstrom, Ohmsches Gesetz

Wird ein elektrischer Leiter an eine Spannungsquelle angeschlossen, so entsteht ein elektrisches Feld im Inneren des Leiters und somit eine Kraftwirkung $\vec{F} = -e\vec{E}$ auf die Elektronen. \Rightarrow Ladungstransport, d. h. elektrischer Strom.

Elektrische Stromstärke:

$$I = \frac{dQ}{dt} \tag{5.73}$$

Ladungsmenge dQ, die pro Zeiteinheit durch einen Leiter fließt. [I] = 1 Ampere = 1 A.

Transportierte Ladung:

$$Q = \int_{t_1}^{t_2} I \mathrm{d}t \tag{5.74}$$

bei zeitlich konstanten Strömen:

$$I = \frac{Q}{t}; \qquad Q = It \tag{5.75}$$

Stromdichte j: Stromstärke bezogen auf die Querschnittsfläche dA des Leiters.

$$\vec{j} = \frac{\mathrm{d}I}{\mathrm{d}A} \tag{5.76}$$

$$\Leftrightarrow = \int \vec{j} d\vec{A} \tag{5.77}$$

Stromrichtung: Per Definition fließt der Strom vom Pluspol der Spannungsquelle zum Minuspol. Aber Achtung!

- Positive Ladungsträger bewegen sich zum Minuspol
- Negative Ladungsträger bewegen sich zum Pluspol

in Metallen: Transport durch Elektronen (negative Ladungsträger) \rightarrow Stromrichtung entgegengesetzt zur Bewegung der Ladungsträger.

Elektrischer Widerstand R:

Ladungsträger können sich nicht ungehindert durch den Leiter bewegen

- \rightarrow Verlust von kinetischer Energie
- \rightarrow Umwandlung in Wärme

Dem Strom I wird somit ein "bremsender" Widerstand entgegengesetzt.

Ohmsches Gesetz:

$$I = \frac{U}{R}; \qquad R = \text{konst.}$$

$$\text{mit} [R] = \frac{V}{A} = 1 \text{ Ohm} = 1 \Omega$$
(5.78)

Spezifischer Widerstand ρ : Materialspezifische Größe:

$$R = \rho \frac{l}{A} \tag{5.79}$$

mit *l*: Länge des Drahtes, *A*: Querschittsfläche des Drahtes, ρ : spezifischer Widerstand (temperaturabhängig).

Spezifische Leitfähigkeit σ : Kehrwert des spezifischen Widerstandes

$$\sigma = \frac{1}{\rho} \tag{5.80}$$

Ohmsches Gesetz (in anderer Schreibweise):

$$\vec{j} = \sigma \vec{E}; \quad \text{mit } \vec{E} = \frac{U}{l}$$
 (5.81)

Spezifischer Widerstand	ρ (Ω m) bei 20°C
Ag	$1.6 imes 10^{-8}$
Cu	$1.7 imes 10^{-8}$
Fe	$1 imes 10^{-7}$
H_2O	$2 imes 10^5$
Glas	$> 10^{10}$
Kunststoff	> 10 ¹³

 Tabelle 5.2: Spezifische Widerstände einiger Materialien.

5.10 Reihen- und Parallelschaltung von Widerständen

Reihenschaltung von Widerständen

Abbildung 5.10: Reihenschaltung zweier Widerstände.

$$U = U_1 + U_2 (5.82)$$

$$I = I_1 = I_2 (5.83)$$

$$\Rightarrow U = R_1 I_1 + R_2 I_2 \tag{5.84}$$

$$\Rightarrow U = (R_1 + R_2)I \tag{5.85}$$

$$\Leftrightarrow U = R_{\rm ges}I \tag{5.86}$$

$$\Rightarrow R_{\rm ges} = R_1 + R_2 \tag{5.87}$$

allgemein:
$$\Rightarrow R_{\text{ges}} = \sum_{i} R_{i}$$
 (5.88)

Parallelschaltung von Widerständen

Abbildung 5.11: Parallelschaltung zweier Widerstände.

5 Elektrizität und Magnetismus

$$U = U_1 = U_2 (5.89)$$

$$I = I_1 + I_2 (5.90)$$

$$\Rightarrow I = \frac{U}{R_1} + \frac{U}{R_2} \tag{5.91}$$

$$\Leftrightarrow I = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) U \tag{5.92}$$

$$\Leftrightarrow I = \frac{1}{R_{\text{ges}}} U \tag{5.93}$$

$$\Rightarrow \frac{1}{R_{\text{ges}}} = \frac{1}{R_1} + \frac{1}{R_2} \tag{5.94}$$

allgemein:
$$\Rightarrow \frac{1}{R_{\text{ges}}} = \sum_{i} \frac{1}{R_{i}}$$
 (5.95)

5.11 Innenwiderstände, Klemmenspannung

Alle in einem Stromkreis liegenden Elemente, wie Meßgeräte und Spannungsquellen haben ebenfalls einen Widerstand, den sogenannten Innenwiderstand.

 \rightarrow Meßgeräte sollen einen bestimmten Innenwiderstand R_J haben, um die Messung nicht zu verfälschen.

Strommessung:

Abbildung 5.12: Idealer Strommesser (kein Spannungsabfall) $\Rightarrow R_J \rightarrow 0$.

Spannungsmessung:

Abbildung 5.13: Idealer Spannungsmesser (kein Stromfluss) $\Rightarrow R_{\rm J} \rightarrow \infty$.

Klemmenspannung einer Spannungsquelle, Kurzschlußstrom:

Abbildung 5.14: Innenwiderstand.

Eine Spannungsquelle hat den Innenwiderstand R_J . Dieser ist mit dem äußeren Widerstand R_A in Reihe geschaltet. Liefert die Spannungsquelle die Urspannung U_0 (elektromotorische Kraft) liegt an ihren Polen nur die Klemmenspannung U_K an:

$$R_{\rm ges} = R_{\rm J} + R_{\rm A} \tag{5.96}$$

$$I = I_{\rm J} + I_{\rm A} \tag{5.97}$$

$$U_{\rm ges} = U_{\rm J} + U_{\rm A} \tag{5.98}$$

$$\Rightarrow U_{\text{ges}} = U_0 \quad (\text{Urspannung}) \tag{5.99}$$

$$\Rightarrow U_{\rm A} = U_{\rm K}$$
 (Klemmenspannung) (5.100)

$$\Rightarrow U_0 = U_J + U_K \tag{5.101}$$

$$\Leftrightarrow U_{\rm K} = U_0 - U_{\rm J} \tag{5.102}$$

$$\Leftrightarrow U_{\rm K} = U_0 - R_{\rm J}I \tag{5.103}$$

Leerlauf
$$(I = 0)$$
: $\Rightarrow U_{\rm K} = U_0$ (5.104)

. .

Kurschluss
$$(R_{\rm A} = 0 \iff U_{\rm K} = 0): \implies I = \frac{U_0}{R_{\rm i}}$$
 (5.105)

5.12 Verzweigte Stromkreise – Kirchhoffsches Gesetze

1. Kirchhoffsches Gesetz: Knotensatz

In jedem Knoten ist die Summe aller zu- und abfließenden Ströme Null.

$$\sum_{i} I_i = 0 \tag{5.106}$$

Abbildung 5.15: Ströme in einem Knoten.

2. Kirchhoffsches Gesetz: Maschensatz

In jeder Masche ist die Summe aller Spannungsabfälle an den Widerständen gleich der Summe der Urspannungen.

$$\sum_{i} R_i I_i = \sum_{k} U_k \tag{5.107}$$

Abbildung 5.16: Spannungen in einer Masche.

5.13 Arbeit und Leistung elektrischer Gleichströme

Arbeit

$$W = \int \vec{F} d\vec{s} \underbrace{=}_{\vec{F} = Q\vec{E}} Q \underbrace{\int \vec{E} d\vec{s}}_{U} = QU = UIt$$
(5.108)

$$\Rightarrow W = UIt$$
(5.109)
mit [W] = 1 Joule = 1 J

für geladene Teilchen in Vakuum auch $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ (Elektronenvolt).

Leistung

$$P = \frac{W}{t} = UI = RI^{2}$$
mit $[P] = 1\frac{J}{s} = 1$ Watt $= 1$ W.
(5.110)

Stromdurchflossener Leiter wird erwärmt \Rightarrow Joulsche Wärme

Beispiel: Wheatstone-Brücke

Abbildung 5.17: Wheatstone-Brückenschaltung

Knotenregel:

A :
$$I - I_1 - I_3 = 0$$
 (5.111)
B : $I_3 - I_4 - I_5 = 0$
C : $I_1 + I_5 - I_2 = 0$
D : $I_2 + I_4 - I = 0$

Maschenregel:

$$I : R_1 I_1 + R_2 I_2 = U_0$$

$$II : R_3 I_3 + R_5 I_5 - R_1 I_1 = 0$$

$$III : R_4 I_4 - R_2 I_2 - R_5 I_5 = 0$$
(5.112)

Bei abgeglichener Brücke ist $I_5 = 0$.

$$\Rightarrow I_{3} = I_{4} \quad \text{und} \quad I_{1} = I_{2} \quad (\text{Knoten B und C})$$

$$\Rightarrow R_{1}I_{1} = R_{3}I_{3} \quad \text{und} \quad R_{2}I_{2} = R_{4}I_{4} \quad (\text{Maschen II und III})$$

$$\Rightarrow \frac{R_{1}I_{1}}{R_{2}I_{2}} = \frac{R_{3}I_{3}}{R_{4}I_{4}}$$

$$\Rightarrow \frac{R_{1}}{R_{2}} = \frac{R_{3}}{R_{4}} \qquad (5.114)$$

5.14 Mechanismen der elektrischen Leitung

Festkörper

Die elektrische Leitfähigkeit beruht meistens auf Elektronenleitung.

- Nichtleiter, Isolatoren: besitzen keine freien Ladungsträger; Gläser, Keramiken, polymere Stoffe
- Leiter (Metalle): besitzen bei Raumtemperatur Ladungsträger (Elektronen)
 ⇒ Widerstand erhöht sich bei steigender Temperatur aufgrund von Stößen
- Halbleiter (Si, Ge, etc.): Ladungsträger müssen erst erzeugt werden (z. B. durch Licht, Temperatur, etc.) ⇒ Widerstand sinkt bei steigender Temperatur aufgrund höherer Ladungsträgerdichte
- Supraleiter (Hg, Nb): elektrischer Widerstand verschwindet vollständig unterhalb einer kritischen Temperatur T_c (Sprungtemperatur) → Ladungsträger: Cooper-Paare

Flüssigkeiten: Elektrolytische Stromleitung

Wasser, in dem Salze, Säuren oder Basen gelöst sind, ist elektrische leitend. Die gelösten Stoffe dissoziieren, d. h. sie spalten in positiv und negativ geladene Ionen auf. Die positiven Kationen wandern zur Kathode (negativ geladen); die negativ geladenen Anionen zur Anode (positiv geladen).

Wichtig: Mit der Stomleitung geht ein Massetransport einher.

Abbildung 5.18: Elektrolyse von Kochsalz: NaCl \rightarrow Na⁺+ Cl⁻

Gase

Gase sind bei nicht zu hohen Temperaturen Isolatoren. Gase werden erst durch Injektion von Ladungsträgern oder Ionisation der Gasmoleküle elektrisch leitend \rightarrow Gasentladung

unselbständige Gasentladung:

- Ladungsträger injiziert
- UV- oder Röntgenstrahlung ionisiert Gas
- ⇒ Ionisationskammer, Geiger-Müller-Zählrohr

selbständige Gasentladung:

Ladungsträger werden durch den Stromfluß selbst erzeugt:

- \rightarrow Stoßionisation
- \rightarrow Elektronenlawine
- \rightarrow Plasma (quasi-neutral)
- \rightarrow Leutstoffröhre, Lichtbogenschweißen, Funkenerosion
- → Ionisationskammer, Geiger-Müller-Zählrohr

5.15 Magnetfelder

Magnetfelder werden erzeugt durch:

- magnetisches Material (Fe, Co, Ni,..., Permanentmagnete)
- elektrische Ströme

Permanentmagnet

Abbildung 5.19: Feldlinienbild eines Stabmagneten.

Es existieren Nord- und Südpole.

- Magnetische Feldlinien treten am Nordpol aus dem Material aus und am Südpol in das Material hinein.
- Innerhalb des magnetischen Materials laufen die magnetischen Feldlinien vom Südzum Nordpol.

Beobachtungen:

- Feldlinien sind immer geschlossen, d. h., der magnetische Fluss ist quellenfrei.
- Es existieren keine isolierten magnetischen Pole (im Gegensatz zu elektrischen Ladungen)
- Gleichnamige Pole stoßen sich ab; ungleichnamige Pole ziehen sich an.

Analog zur elektrischen Feldstärke \vec{E} , kann eine magnetische Feldstärke \vec{H} definiert werden. \rightarrow Kraft eines Magneten auf einen "Probemagneten"

Einheit von $\vec{H}: [H] = 1 \frac{A}{m}$ Richtung von $\vec{H}:$ Nordpol \rightarrow Südpol (auch in magnetischem Material!)

5.16 Magnetfelder stationärer Ströme

Die magnetischen Feldlinien sind geschlossene konzentrische Kreise um den Leiter. Der Drehsinn ist durch die Rechte-Hand-Regel gegeben,

Daumen: Stromrichtung; gekrümmte Finger: Drehsinn von \vec{H}

Abbildung 5.20: Magnetfeld eines geraden stromdurchflossenen Leiters.

Berechnung der magnetischen Feldstärke mittels des Ampereschen Gesetzes

$$I = \int \vec{j} d\vec{A} = \oint \vec{H} d\vec{r}$$
(5.115)

Das Integral der magnetischen Feldstärke \vec{H} längs einer geschlossenen Umlauflinie ist gleich dem gesamten Strom *I*, der durch die eingeschlossene Fläche fließt.

Beispiel: Geradliniger Leiter

Integrationsweg: konzentrischer Kreis um den Leiter $\Rightarrow |\vec{H}| = \text{konst.}$

$$I = \oint_{\text{Kreis}} \vec{H} d\vec{r} = H \oint_{\text{Kreis}} d\vec{r} = H2\pi r \qquad (5.116)$$
$$H = \frac{I}{2\pi r} \qquad (5.117)$$

Die magnetische Feldstärke fällt mit $\frac{1}{r}$ ab.

 \Rightarrow

Beispiel: Zylinderspule

Abbildung 5.21: Magnetfeld einer langen Zylinderspule der Länge ℓ mit N Windungen.

5 Elektrizität und Magnetismus

$$NI = \oint \vec{H} \,\mathrm{d}\vec{r} \tag{5.118}$$

$$\Leftrightarrow NI = \underbrace{\int \vec{H_i} \, \mathrm{d}\vec{r_i}}_{\text{innen}, H_i = \text{konst.}} + \underbrace{\int \vec{H_A} \, \mathrm{d}\vec{r_A}}_{\text{außen: } H_A \approx 0}$$
(5.119)

$$\Leftrightarrow NI = H\ell \tag{5.120}$$

$$\Leftrightarrow H = \frac{NI}{\ell} \tag{5.121}$$

Für beliebig geformte dünne Stromleiter gilt das Gesetz von Biot-Savart

Abbildung 5.22: Berechnung für beliebig geformte Leiter.

$$\mathrm{d}H = \frac{I}{4\pi r^2} \mathrm{d}\ell \sin\varphi \tag{5.122}$$

 $d\ell \sin \varphi$: Projektion von $d\ell$ auf Achse senkrecht zu \vec{r} . Komponenten in Richtung \vec{r} tragen nicht bei.

Beispiel: kreisförmige Leiterschleife

Kreiskoordinaten: $d\ell = R d\alpha$

Abbildung 5.23: Magnetfeld einer kreisförmigen Leiterschleife.

$$dH = \frac{I}{4\pi R^2} R \, d\alpha \tag{5.123}$$

$$\Rightarrow H = \frac{I}{4\pi R^2} R \int_{0}^{2\pi} d\alpha = \frac{I}{2R}$$
(5.124)

Feld im Mittelpunkt der Leiterschleife.

5.17 Magnetische Flussdichte (magnetische Induktion)

Magnetischer Fluss Φ : Anzahl der Feldlinien

Magnetische Flussdichte \vec{B} : Gesamtzahl der Feldlinien, die die Fläche A senkrecht durchsetzen.

$$B = \frac{\Phi}{A} \tag{5.125}$$

Einheit der Flussdichte \vec{B} : $[B] = 1 \frac{Vs}{m^2} = 1 T = 1$ Tesla. Richtung der Flussdichte \vec{B} : Die Richtung von \vec{B} ist parallel zu \vec{H} ; außer im Inneren von Ferromagnetika (antiparallel).

Im Vakuum:

$$\vec{B} = \mu_0 \vec{H}$$
(5.126)
mit $\mu_0 = 4\pi \, 10^{-7} \frac{\text{Vs}}{\text{Am}}$
der Induktionskonstanten (Permeabilitätskonstanten)

der Induktionskonstanten (Permeabilitätskonstanten).

5.18 Kraftwirkung im Magnetfeld

a) bewegte Ladung im Magnetfeld Lorentz-Kraft:

Abbildung 5.24: Lorentzkraft.

$$\vec{F} = q(\vec{v} \times \vec{B})$$
(5.127)

$$\vec{v}: \text{ Geschwindigkeit der Ladung}$$

$$\vec{B}: \text{ Magnetfeld}$$

$$\text{Richtung von } \vec{F}: \text{ senkrecht auf } \vec{v} \text{ und } \vec{B}$$

$$|\vec{F}| = qvB\sin\Theta$$
(5.128)

$$\Rightarrow F = 0, \text{ wenn } \vec{v} ||\vec{B}$$

$$\Rightarrow F = F_{\text{max}}, \text{ wenn } \vec{v} \perp \vec{B}$$

$$\Rightarrow \text{ Ladung durchläuft eine geschlossene Kreisbahn.}$$

Radius der Kreisbahn: Zentrifugalkraft = Lorentzkraft

$$\frac{mv^2}{r} = qvB, \, \mathrm{da} \, \vec{v} \perp \vec{B} \tag{5.129}$$

$$\Leftrightarrow r = \frac{mv}{aB} \tag{5.130}$$

$$\Leftrightarrow \frac{q}{m} = \frac{v}{rB} \tag{5.131}$$

 $\frac{q}{m}$ ist die spezifische Ladung eines Teilchens. Für Elektronen ergibt sich: $\frac{-e}{m} = -1.76 \times 10^4 \frac{\text{C}}{\text{kg}}.$

Bei einem zusätzlichen elektrischen Feld \vec{E} ergibt sich:

5 Elektrizität und Magnetismus

$$\Rightarrow \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{5.132}$$

Abbildung 5.25: Kraftwirkung auf einen stromdurchflossenen Leiter der Länge *l*.

b) Kraft auf stromdurchflossenen Leiter im Magnetfeld

$$\mathrm{d}\vec{F} = I(\mathrm{d}\vec{\ell} \times \vec{B}) \tag{5.133}$$

$$\Rightarrow F = I\ell B \text{ für } \vec{\ell} \perp \vec{B}$$
(5.134)

Äquivalent zur Lorentz-Kraft:

$$\mathrm{d}\vec{F} = I(\mathrm{d}\vec{\ell} \times \vec{B}) \tag{5.135}$$

$$\Leftrightarrow \mathrm{d}\vec{F} = \mathrm{d}Q(\frac{\mathrm{d}\ell}{\mathrm{d}t} \times \vec{B}) \tag{5.136}$$

$$\Leftrightarrow \mathrm{d}\vec{F} = \mathrm{d}Q(\vec{v}\times\vec{B}) \tag{5.137}$$

Abbildung 5.26: Kraftwirkung zwischen zwei stromdurchflossenen Leitern.

c) Kräfte zwischen zwei stromdurchflossenen Leitern Magnetfeld des Leiters 1 am Ort des Leiters 2:

$$B = \frac{\mu_0 I_1}{2\pi R}$$
(5.138)

Kraft auf Leiter 2:

$$dF_{12} = I_2(d\vec{L} \times \vec{B}) \quad \text{für} \quad \vec{L} \perp \vec{B}$$
(5.139)

$$F_{12} = \frac{\mu_0 I_1 I_2 L}{2\pi R} \tag{5.140}$$

 $I_1 \uparrow I_2 \uparrow$: Anziehung $I_1 \uparrow I_2 \downarrow$: Abstossung

Definition der Stromstärke: 1 Ampere ist der Strom, der zwischen zwei geraden im Abstand von 1 m angeordneten Leitern eine Kraft von 2×10^{-7} N pro 1 m Länge verursacht.

Abbildung 5.27: Kräfte und Felder beim Halleffekt.

d) Halleffekt Elektrischer Strom in x-Richtung I_x ; Magnetfeld in z-Richtung B_z .

 \Rightarrow Lorentz-Kraft in - y-Richtung F_L .

 \Rightarrow Ladungsträgerseparation und dadurch Entstehung eines elektrischen Feldes F_{el} im stationären Zustand:

$$F_{el} = F_L \tag{5.141}$$

$$\Rightarrow -eE_y = -ev_x B_z \quad \text{mit} \quad E_y = \frac{U_y}{h} \tag{5.142}$$

$$\Rightarrow U_y = bv_x B_z = U_H \quad \text{Hall-Spannung} \tag{5.143}$$

$$\Rightarrow U_H = \frac{1}{ne} j_x B_z b \quad \text{mit} \quad j_x = nev_x \tag{5.144}$$

$$\Rightarrow U_H = \frac{1}{ne} \frac{IB}{d} \quad \text{mit} \quad j_x = \frac{IB}{d} \tag{5.145}$$

(5.146)

Anwendung: Messung von Magnetfeldern

5.19 Magnetische Materialien

Genau so wie Isolatoren in elektrischen Feldern polarisiert werden, werden Stoffe in Magnetfeldern magnetisiert

$$\vec{M} = \chi_m \vec{H}$$
 (5.147)
 \vec{M} : Magnetisierung
 χ_m : magnetische Suszeptibilität (5.148)

Ursache:

- Um das Magnetfeld entstehen Kreisströme, die ihrerseits ein Magnetfeld erzeugen, das dem Ursprungsfeld entgegen gerichtet ist → Diamagnetismus
- Magnetische Dipole, die auf den Atomaufbau zurück zu führen sind, richten sich im äußeren Magnetfeld aus → Paramagnetismus, Ferromagnetismus

Betrachtet man eine Ringspule, so ändert sich die magnetische Feldstärke \vec{H} durch das Einbringen eines Stoffes nicht, aber die magnetische Flußdichte \vec{B} aufgrund der magnetischen Polarisation \vec{J} :

$$\vec{B} = \mu_0 \vec{H} + \vec{J} = \mu_0 \mu_r \vec{H}$$
(5.149)

$$\mu_r: \text{Permeabilitätszahl}$$

$$\Leftrightarrow \vec{J} = \vec{B} - \mu_0 \vec{H} = \underbrace{(\mu_r - 1)}_{\chi_m} \mu_0 \vec{H} = \mu_0 \vec{M}$$
(5.150)

Einteilung der Materie in verschiedene Stoffklassen:

Abbildung 5.28: Feldabhängigkeit der Magnetisierung für (a) dia- und paramagnetische Materialien und (b) ferromagnetische Materialien.
a) diamagnetische Stoffe: $\chi < 0$; $|\chi| \ll 1$

Cu, Pb, Edelgase, H₂O, ... temperaturunabhängig

b) paramagnetische Stoffe: $\chi > 0$; $|\chi| \ll 1$

Pt, Al, Alkali-Metalle, ...

temperaturabhängig; Curie-Gesetz (C: Curie-Konstante)

$$\chi = \frac{C}{T} \tag{5.151}$$

Sowohl für diamagnetische als auch für paramagnetische Stoffe sind \vec{J} bzw. \vec{M} proportional zu \vec{H}

c) ferromagnetische Stoffe: $\chi > 0$; $|\chi| \gg 1$

Fe, Co, Ni, Gd

 χ_m und μ_r sind keine Konstanten mehr und hängen stark von der Vorgeschichte ab. Oberhalb der sogenannten Curie-Temperatur T_C (Ordnungstemperatur) verhalten sich Ferromagnete wie Paramagnete \rightarrow Curie-Weiss-Gesetz

$$\chi_m = \frac{C}{T - T_C} \tag{5.152}$$

- Unterhalb der Curie-Temperatur besitzen Ferromagnete eine spontane Magnetisierung.
- Es existieren sogenannte Weißsche Bezirke (Domänen) mit gleicher Magnetisierungsrichtung, die willkürlich verteilt sind.
- Bei Variation des angelegten Feldes wird eine Hystereseschleife durchlaufen.

Abbildung 5.29: Weißsche Bezirke.

5 Elektrizität und Magnetismus

Abbildung 5.30: Hysteresekurve eines Ferromagneten.

 $M_{\rm S}$: Sättigungsmagnetisierung $M_{\rm R}$: remanente Magnetisierung $H_{\rm S}$: Sättigungsfeldstärke $H_{\rm C}$: Koerzitivfeldstärke

 Tabelle 5.3: Typische Curie-Temperaturen einiger Ferromagnete.

Anwendung: Elektromagnet

Ringspule mit N Windungen durch die der Strom I fließt, mit Eisenkern gefüllt und Luftspalt der Dicke d.

μ_R: Permeabilität des Eisens *I*: Spulenstrom *l*: Länge der Spule *N*: Anzahl der Windungen

N Windungen

Abbildung 5.31: Ringspule mit N Windungen und Luftspalt der Dicke d.

Ringspule ohne Spalt:

$$\oint \vec{H}\vec{ds} = NI = 2\pi RH \tag{5.153}$$

$$\Rightarrow H = \frac{NI}{2\pi R} \tag{5.154}$$

$$\Rightarrow B = \mu_0 \mu_R \frac{NI}{2\pi R} \tag{5.155}$$

(5.156)

Ringspule mit Spalt:

$$B_{\rm Fe} = B_{\rm Luft} \tag{5.157}$$

$$\Rightarrow \mu_r H_{\rm Fe} = H_{\rm Luft} \tag{5.158}$$

$$\oint \vec{H} d\vec{s} = (2\pi R - d)H_{\rm Fe} + dH_{\rm Luft}$$
(5.159)

$$= \left(\frac{2\pi R - d}{\mu_r} + d\right) H_{\text{Luft}} \tag{5.160}$$

$$= NI \tag{5.161}$$

$$\Rightarrow H_{Luft} = \frac{\mu_r NI}{2\pi R - d + \mu_r d} \stackrel{d \ll R}{\approx} \frac{\mu_r NI}{2\pi R + \mu_r d}$$
(5.162)

$$\Rightarrow B = \frac{\mu_0 \mu_r N I}{2\pi R + \mu_r d} \tag{5.163}$$

$$\stackrel{2\pi R \ll \mu_r d}{\Rightarrow} B = \mu_0 \frac{NI}{d}$$
(5.164)

Im Vergleich zur ungefüllten Ringspule hat sich B um den Faktor $\frac{2\pi R}{d}$ erhöht.

5.20 Elektromagnetische Induktion

1831 Faraday: Zeitlich veränderliche Magnetfelder erzeugen elektrische Spannung

Faradaysches Induktionsgesetz

$$U_{\rm ind} = -\frac{d\Phi}{dt} \tag{5.165}$$

Die induzierte Spannung ist gleich der Änderungsgeschwindigkeit des magnetischen Flusses Φ .

$$\Phi = \oint \vec{B} d\vec{A} \tag{5.166}$$

Spule mit N Windungen:

$$U_{\rm ind} = -N \frac{\mathrm{d}\Phi}{\mathrm{d}t} \tag{5.167}$$

Lenzsche Regel

(Minuszeichen im Induktionsgesetz)

Der induzierte Strom ist stets so gerichtet, dass das von ihm erzeugte Feld der Ursache seiner Entstehung entgegenwirkt.

 \rightarrow Folge der Energieerhaltung

Anwendung: Wechselstromgenerator

Drehung einer Leiterschleife im Magnetfeld

Abbildung 5.32: Induktion durch Rotation einer Leiterschleife im Magnetfeld.

5 Elektrizität und Magnetismus

 $\varphi(t)$: Winkel zwischen Magnetfeld \vec{B} und der Flächennormalen $d\vec{A}$.

$$\varphi = \vec{A}\vec{B} = BA\cos\varphi(t) \tag{5.168}$$

$$\varphi(t) = \omega t \tag{5.169}$$

$$\Rightarrow \varphi = BA\cos(\omega t) \tag{5.170}$$

$$\Rightarrow U_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \underbrace{BA\omega}_{=U_0} \sin(\omega t)$$
(5.171)

$$\Rightarrow U_{\rm ind} = U_0 \sin(\omega t) \tag{5.172}$$

BeiN Windungen ist: $U_0=NBA\;\omega$

Wirbelströme

Induktionsströme in ausgedehnten Leitern führen zu Wirbelströmen. Die Größe des Wirbelstroms I_W hängt von der Gestalt ab. \rightarrow Wirbelstrombremse

Abbildung 5.33: Wirbelströme in (a) einer Platte und (b) einem Kamm.

5.21 Selbstinduktion

Ändert sich in einer stromdurchflossenen Spule der Strom I so änder sich das erzeugte Magnetfeld und damit der magnetische Fluss. Eine induzierte Spannung ist die Folge:

$$\Phi = \oint \vec{B} d\vec{A} = LI \qquad (5.173)$$

$$L: \text{ Induktivität}$$

$$[L] = 1 \frac{\text{Vs}}{\text{A}} = 1 \text{ Henry (H)}$$

L hängt nur von der Gestalt des Leiters ab und von der Permeabilität des umgebenden Mediums.

$$U_{\rm ind} = -L \,\frac{\mathrm{d}I}{\mathrm{d}t} \tag{5.174}$$

Zylinderspule

$$B = \mu_0 \frac{NI}{l} \tag{5.175}$$

$$N\Phi = NBA = \mu_0 \frac{N^2 IA}{l}$$
(5.176)

$$N\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \underbrace{\frac{\mu_0 N^2 A}{l}}_{=L} \frac{\mathrm{d}I}{\mathrm{d}t}$$
(5.177)

$$\Rightarrow U_{\rm ind} = -L\frac{\mathrm{d}I}{\mathrm{d}t} = -N\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$
(5.178)

Reihen- und Parallelschaltung von Spulen

Spulen verhalten sich bei Verschaltung wie Widerstände, d.h.:

Reihenschaltung:

$$L_{\rm ges} = \sum_{i} L_i \tag{5.179}$$

Parallelschaltung:

$$\frac{1}{L_{\text{ges}}} = \sum_{i} \frac{1}{L_i} \tag{5.180}$$

5.22 Ein- und Ausschalten von Gleichströmen

Abbildung 5.34: RL-Kreis.

a) Einschalten:

$$U_R = U_0 + U_{\text{ind}} = U_0 - L \frac{\mathrm{d}I}{\mathrm{d}t} = RI$$
 (5.181)

$$\Leftrightarrow U_0 = RI + L \frac{\mathrm{d}I}{\mathrm{d}t} \tag{5.182}$$

$$\Rightarrow I(t) = \frac{U_0}{R} \left(1 - \exp\left(-\frac{t}{\tau}\right) \right)$$
(5.183)

Zeitkonstante:
$$\tau = \frac{L}{R}$$

b) Ausschalten:

$$0 = RI + L\frac{\mathrm{d}I}{\mathrm{d}t} \tag{5.184}$$

$$\Rightarrow I(t) = I_0 \exp\left(-\frac{t}{\tau}\right) \tag{5.185}$$

Zeitkonstante:
$$\tau = \frac{-}{R}$$

Abbildung 5.35: Strom-Zeitdiagramm für Ein- und Ausschalten eines RL-Kreises.

5.23 Energie des magnetischen Feldes

Beim Aufbau des Magnetfeldes in der Spule muss die Spannungsquelle die entgegen wirkende Selbstinduktionsspannung kompensieren:

$$U + U_{ind} = 0$$

$$dW = U dQ$$

$$= U I dt$$
(5.186)
(5.187)

$$= -U_{ind}Idt$$

$$= L\frac{dI}{dt}Idt$$

$$= LIdI \qquad (5.188)$$

$$\Rightarrow W = \int dW$$

$$= L\int IdI$$

$$= \frac{1}{2}LI^{2} \qquad (5.189)$$

Magnetische Feldenergie:

$$W = \frac{1}{2}LI^{2}$$
(5.190)
(analog zu Kondensator: $W = \frac{1}{2}CU^{2}$)
mit $L = \frac{\mu_{0}N^{2}A}{\ell}, \quad I = \frac{H\ell}{N}$
folgt für die Energiedichte $w = \frac{W}{V} = \frac{W}{A\ell}$
(5.191)

$$w = \frac{1}{2}BH\tag{5.192}$$

Energiedichte des magnetischen Feldes (gilt für beliebige Magnetfelder im Vakuum).

5.24 Wechselströme

Wie in 5.20 gezeigt, können harmonische Wechselströme durch eine gleichförmig rotierende Leiterschleife im homogenen Magnetfeld erzeugt werden.

$$u = U_0 \sin(\omega t)$$
 Momentanwert der Spannung (5.193)

$$i = I_0 \sin(\omega t - \varphi)$$
 Momentanwert der Stromstärke (5.194)

mit

$$U_0, I_0$$
: Scheitelwerte (Amplituden) der Spannung bzw. Stromstärke.
 $\omega = 2\pi f = \frac{2\pi}{T}$: Kreisfrequenz.

$$\varphi$$
: Phasenverschiebung zwischen Spannung und Strom. (5.195)

Wirkarbeit:

$$W = QU = UIt = RI^2t \tag{5.196}$$

$$\Rightarrow I^2 = I_0^2 \underbrace{\sin^2(\omega t - \varphi)}$$
(5.197)

über T gemittelt=1/2

$$\Rightarrow I^2 = \frac{1}{2}I_0^2 \tag{5.198}$$

$$\Rightarrow I = \frac{I_0}{\sqrt{2}} \quad \text{Effektivwert der Stromstärke}$$
(5.199)

$$\Rightarrow U = \frac{U_0}{\sqrt{2}} \quad \text{Effektivwert der Spannung}$$
(5.200)

Mittlere Leistung:

$$P = U_0 I_0 \frac{1}{T} \int_0^T \sin(\omega t) \sin(\omega t - \varphi) dt$$
(5.201)

$$\Rightarrow P = \frac{U_0 I_0}{2} \cos \varphi = U I \cos \varphi \tag{5.202}$$

Wirkleistung mit dem Leistungsfaktor: $\cos \varphi$

Der Phasenwinkel φ hängt von den im Stromkreis vorhandenen Widerständen R, Induktivitäten L und Kapazitäten C ab.

 $\operatorname{Für} \varphi = 0 \Rightarrow P = P_{max}$

In der Spule oder dem Kondensator aufgenommene Leistungs des Wechselstroms \rightarrow **Blindleistung**

Abbildung 5.36: Wechselstromkreis mit Induktivität L.

Wechselstromkreis mit Induktivität:

$$U_O + U_{\rm ind} = 0 \tag{5.203}$$

$$\Rightarrow U_0 \cos(\omega t) = L \frac{\mathrm{d}I}{\mathrm{d}t} \tag{5.204}$$

$$\Rightarrow I = \frac{U_0}{L} \int \cos(\omega t) dt$$
 (5.205)

$$\Rightarrow I = \frac{U_0}{\omega L} \sin(\omega t) \tag{5.206}$$

mit $I = I_0 \sin(\omega t)$ folgt: $I_0 = \frac{U_0}{\omega L}$

 \Rightarrow induktiver Widerstand

$$R_L = \frac{U_0}{I_0} = \omega L \tag{5.207}$$

Der Wechselstrom durch eine Spule ist um 90° gegenüber der Wechselspannung verzögert ($\varphi = 90^{\circ}$).

Wechselstromkreis mit Kapazität:

Abbildung 5.37: Wechselstromkreis mit Kapazität C.

$$U = \frac{Q}{C} \tag{5.208}$$

$$\Rightarrow \frac{\mathrm{d}U}{\mathrm{d}t} = \frac{1}{C} \frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{I}{C} \operatorname{mit} U = U_0 \cos(\omega t)$$
(5.209)

$$\Rightarrow I = -\omega C U_0 \sin(\omega t) \tag{5.210}$$

$$\Leftrightarrow I = \omega C U_0 \cos(\omega t + 90^\circ) \tag{5.211}$$

Der Strom eilt der Spannung um 90° voraus ($\varphi = -90^{\circ}$).

$$R_C = \frac{1}{\omega C} \tag{5.212}$$

Komplexer Widerstand Z:

Berücksichtigt Phasenverschiebung φ zwischen U und I als komplexe Zahl: Vektor in komplexer Zahlenebene.

Abbildung 5.38: Zeigerdiagramm für den komplexen Widerstand Z.

$$Z_L = i\omega L \tag{5.213}$$

$$Z_C = \frac{1}{i\omega C} = -\frac{i}{\omega C} \tag{5.214}$$

läßt sich ableiten aus: $U = U_0 \exp(i\omega t)$ für $\varphi = \pm 90^{\circ}$ \rightarrow Realteil von Z ist Null.

Abbildung 5.39: LCR-Kreis (Serienschaltung).

Allgemeiner Fall: a) Serienschaltung

$$U_a + U_{\rm ind} = IR + \frac{Q}{C} \tag{5.215}$$

$$\Rightarrow U_a = IR + L\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{Q}{C} \tag{5.216}$$

$$\Rightarrow \frac{\mathrm{d}U}{\mathrm{d}t} = L\frac{\mathrm{d}^2I}{\mathrm{d}t^2} + R\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{C}I \quad \text{Differentialgleichung}$$
(5.217)

Komplexe Lösung:
$$U = U_0 \exp i\omega t$$
 (5.218)

$$I = I_0 \exp i\omega t - \varphi \tag{5.219}$$

Einsetzen in Differentialgleichung:

$$i\omega U = \left(-\omega^2 L + i\omega R + \frac{1}{C}\right)I \tag{5.220}$$

$$\Leftrightarrow U = \left(-\frac{\omega}{i}L + R + \frac{1}{i\omega C}\right)I \tag{5.221}$$

$$\Leftrightarrow U = \left(i\omega L + R - \frac{i}{\omega C}\right)I \tag{5.222}$$

 \Rightarrow Komplexer Widerstand:

$$Z = \frac{U}{I} = R + i\left(\omega L - \frac{1}{\omega C}\right)$$
(5.223)

$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \tag{5.224}$$

$$\tan\varphi = \frac{\omega L - \frac{1}{\omega C}}{R} \tag{5.225}$$

 \Rightarrow Ohmsches Gesetz:

$$U = |Z|I = I\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
(5.226)

Serien-/Reihenschaltung: Widerstände und Spannungen werden geometrisch addiert!

b) Parallelschaltung: Komplexer Scheinleitwert $\frac{1}{Z}$ = Summe aus reellem Wirkleitwert $\frac{1}{R}$ und imaginären Blindleitwerten $\frac{1}{i\omega L}$ und $i\omega C$.

$$\frac{1}{Z} = \frac{1}{R} + i\omega C + \frac{1}{i\omega L}$$
(5.227)

$$\Leftrightarrow \frac{1}{Z} = \frac{1}{R} + i\left(\omega C - \frac{1}{\omega L}\right) \tag{5.228}$$

 \Rightarrow Ohmsches Gesetz:

$$I = \frac{U}{|Z|} = U\sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$$
(5.229)

Parallelschaltung: Leitwerte und Stromstärken werden geometrisch addiert!

c) Hochpass, Tiefpass, Frequenzfilter Hochpass:

Hohe Frequenzen ω werden ungedämpft durchgelassen.

Abbildung 5.40: Hochpass-Filter aus Kapazität und Widerstand.

Eingangskreis:

$$U_{\rm in} = |Z|I_{\rm in} \tag{5.230}$$

$$\Leftrightarrow I_{\rm in} = \frac{U_{\rm in}}{|Z|} \tag{5.231}$$

$$|Z| = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}$$
(5.232)

$$\Rightarrow I_{\rm in} = \frac{U_{\rm in}}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} \tag{5.233}$$

$$I_{\rm in} = I_{\rm aus} \tag{5.234}$$

$$U_{\rm aus} = RI_{\rm aus} = RI_{\rm in} = R \frac{U_{\rm in}}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$
 (5.235)

$$\Rightarrow U_{\rm aus} = \frac{U_{\rm in}}{\sqrt{1 + \frac{1}{\omega^2 C^2 R^2}}}$$
(5.236)

Grenzfälle:

$$\omega \to \infty \Rightarrow U_{\rm aus} = U_{\rm in} \tag{5.237}$$

$$\omega \to 0 \Rightarrow U_{\rm aus} = 0 \tag{5.238}$$

Tiefpass:

Tiefe Frequenzen ω werden ungedämpft durchgelassen.

Abbildung 5.41: Tiefpass-Filter aus Kapazität und Widerstand.

$$U_{\rm aus} = R_C I_{\rm in} = \frac{\frac{1}{\omega C} U_{\rm in}}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$
(5.239)

$$\Rightarrow U_{\rm aus} = \frac{U_{\rm in}}{\sqrt{\omega^2 C^2 R^2 + 1}} \tag{5.240}$$

51

5 Elektrizität und Magnetismus

Grenzfälle:

$$\omega \to 0 \Rightarrow U_{\text{aus}} = U_{\text{in}} \tag{5.241}$$

$$\omega \to \infty \Rightarrow U_{\rm aus} = 0 \tag{5.242}$$

Frequenzfilter, (Bandpass-) Durchlassfilter:

Abbildung 5.42: Bandpass-Filter aus Induktivität, Kapazität und Widerstand.

$$U_{\rm aus} = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)}} U_{\rm in}$$
(5.243)

Für Resonanzfrequenz $\omega = \omega_R = \frac{1}{\sqrt{LC}} \Rightarrow U_{aus} = U_{in}.$

6 Elektromagnetische Schwingungen und Wellen

Elektromagnetischer Schwingkreis

Schaltung mit Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen.

elektromagnetischer	Zeitpunkt	mechanische
Schwingkreis		Schwingung
	$\stackrel{\textcircled{1}}{t} = 0$	
	(3) t = T/2	
	(4) t = 3/4T	← m' / ← m' / E _{kin}
	5 t = T	

Tabelle 6.1: Vergleich elektromagnetischer Schwingkreis \leftrightarrow mechanische Schwingung.

Energie im Schwingkreis

a) ungedämpft (R=0): magnetische Energie in Spule: $W_{magn} = \frac{1}{2}LI^2$ elektrische Energie in Kondensator: $W_{el} = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$

Energieerhaltung:

$$\frac{1}{2}LI^2 + \frac{1}{2}\frac{Q^2}{C} = \text{ konst.}$$
(6.1)

Analogie zur Mechanik (Feder):

$$\frac{1}{2}mv^2 + \frac{1}{2}Dx^2 = \text{ konst.}$$
(6.2)

b) gedämpft (R≠0):

Zeitliche Abnahme der Energie:

$$-\frac{d}{dt}\left(W_{magn} + W_{el}\right) = IR^2 \tag{6.3}$$

Verlustleistung; Energie wird als Wärme entzogen (Joulsche Wärme)

6.1 Freie elektromagnetische Schwingung

Abbildung 6.1: LCR-Schwingkreis

$$U_L = L \frac{dI}{dt} \tag{6.4}$$

$$U_C = \frac{Q}{C} \tag{6.5}$$

$$U_R = RI \tag{6.6}$$

Kirchhoffsche Maschenregel:

$$\rightarrow U = U_L + U_C + U_R = 0 \tag{6.7}$$

$$\Leftrightarrow L\frac{dI}{dt} + \frac{Q}{C} + RI = 0 \tag{6.8}$$

$$\frac{dt}{C} = C$$
differenzieren (6.9)

$$\Rightarrow L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = 0$$
(6.10)

Analogie zur Mechanik:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + Dx = 0$$
(6.11)

Lösungsansatz:

$$I = I_0 \exp\left(\lambda t\right) \tag{6.12}$$

$$\frac{dI}{dt} = \lambda I_0 \exp\left(\lambda t\right) \tag{6.13}$$

$$\frac{d^2I}{dt^2} = \lambda^2 I_0 \exp\left(\lambda t\right) \tag{6.14}$$

einsetzen:

$$\lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC} = 0 \tag{6.15}$$

$$\Rightarrow \lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\beta^2}$$
(6.16)

Verschiedene Schwingfälle je nach Verhältnis von α und β .

a) starke Dämpfung (Kriechfall):

$$\beta^2 > 0 \tag{6.17}$$

$$\Rightarrow \frac{R^2}{4L^2} > \frac{1}{LC} \tag{6.18}$$

b) aperiodischer Grenzfall:

$$\beta^2 = 0 \tag{6.19}$$

$$\Rightarrow \frac{R^2}{4L^2} = \frac{1}{LC} \tag{6.20}$$

c) gedämpfte Schwingung:

$$\beta^2 < 0 \tag{6.21}$$

$$\Rightarrow \frac{R^2}{4L^2} < \frac{1}{LC} \tag{6.22}$$

$$\Rightarrow I(t) = I_0 \exp(-\lambda t) \cos(\omega t + \varphi)$$
(6.23)

R

mit der Dämpfungskonstante:
$$\alpha = \frac{\pi}{2L}$$

und der Frequenz: $\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$
 $\Rightarrow \omega = \sqrt{\frac{\omega_0^2 - \alpha^2}{4L^2}}$
(6.24)

mit
$$\omega_0 = \frac{1}{LC}$$
 Frequenz der ungedämpften Schwingung $\alpha = 0.$ (6.25)

Abbildung 6.2: Amplituden-Zeitdiagramm einer gedämpften Schwingung.

Einfluss der Dämpfung:

- \rightarrow Abnahme der Amplitude
- \rightarrow Verschiebung der Resonanzfrequenz

6.2 Erzwungene elektromagnetische Schwingung

Schwingkreis mit äußerer periodischer Anregung.

Abbildung 6.3: LCR-Schwingkreis mit Anregung.

$$L\frac{\mathrm{d}I}{\mathrm{d}t} + RI + \frac{Q}{C} = U_0 \cos\left(\omega t\right) \tag{6.26}$$

differenzieren:

$$L\frac{\mathrm{d}^2 I}{\mathrm{d}t^2} + R\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{C}I = \frac{\mathrm{d}U}{\mathrm{d}t}$$
(6.28)

(6.27)

Der Strom I im Kreis hat eine zeitlich konstante Amplitude $I_0 = \frac{U_0}{|Z|}$ mit:

$$I = I_0 \cos\left(\omega t - \varphi\right) \tag{6.30}$$

$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \tag{6.31}$$

Resonanz für:

$$\omega = \omega_R = \frac{1}{\sqrt{LC}} \tag{6.32}$$

$$\Rightarrow Z(\omega_R) = R \tag{6.33}$$

 \rightarrow rein reeller Widerstand, $\varphi = 0$, U und I in Phase.

 $\rightarrow |Z|$ minimal, I_0 maximal.

Anregungstypen:

 $\omega \ll \omega_R$: quasistatische Anregung $\omega \approx \omega_R$: resonante Anregung $\omega \gg \omega_R$: hochfrequente Anregung

57

6 Elektromagnetische Schwingungen und Wellen

Abbildung 6.4: Frequenzabhängigkeit von (a) Strom I_0 und Impedanz Z , sowie (b) der Phase φ im LCR-Reihenschwingkreis.

6.3 Offene Schwingkreise, Hertzscher Dipol

Im geschlossenen Schwingkreis sind L und C separiert \rightarrow Übergang zum offenen Schwingkreis.

Abbildung 6.5: Entwicklung vom LC-Schwingkreis (a) zum Dipol (d). Aus der Spule wird eine Leiterschlaufe (b) bzw. ein Stab. Der Kondensator wird "aufgebogen". Die Kapazität wirkt zwischen den Enden des Stabes (c).

 \rightarrow keine räumliche Trennung von elektrischem und magnetischem Feld.

Abbildung 6.6: Elektrisches und magnetisches Feld eines Hertzschen Dipols.

Bei zeitlicher Änderung der Strom- und Ladungsdichte:

- \rightarrow Änderung der Felder
- \rightarrow Ausbreitung mit Lichtgeschwindigkeit im Raum
- \rightarrow Energieverlust durch Abstrahlung elektromagnetischer Wellen

Anregung eines offenen Schwingkreises durch induktive oder kapazitive Kopplung an einen geschlossenen Kreis. Erhöhung der Resonanzfrequenz durch Verkleinerung von L und C:

$$\omega_R = \frac{1}{\sqrt{LC}} \tag{6.34}$$

Strom- und Spannungsverteilung

Abbildung 6.7

$$I(z,t) = I_0(z)\sin\left(\omega t\right) \tag{6.35}$$

entspricht einer stehenden Welle mit einer Wellenlänge von $\lambda = 2\ell$. Niedrigste Resonanzfrequenz:

$$\omega_0 = \frac{2\pi}{\lambda}c = \frac{\pi}{l}c_{\rm Ph} \quad \text{mit} \quad c_{\rm Ph} = \frac{c}{\sqrt{\epsilon\mu}} \tag{6.36}$$

*c*_{Ph}: Phasengeschwindigkeit der elektromagnetischen Welle.

Wechselstrom im Stab induziert:

Negativ geladene Elektronen schwingen gegenüber positiv geladenen Atomrümpfen.

- \rightarrow schwingender, elektrischer Dipol
- \rightarrow Hertzscher Dipol

Abbildung 6.8: Ladungsbewegung beim Hertzschen Dipol.

$$d = d_0 \sin\left(\omega t\right) \tag{6.37}$$

$$\vec{p}(t) = q \, d_0 \sin\left(\omega t\right) \tag{6.38}$$

$$\Rightarrow \vec{p}(t) = q \, \vec{d} \tag{6.39}$$

Abstrahlcharakteristik:

Abbildung 6.9: Abstrahlcharakteristik eines Dipols.

$$S \propto \frac{\omega^4 \sin^2 \vartheta}{r^2} \tag{6.40}$$

S: Poynting-Vektor gibt die strömende elektromagnetische Feldenergie nach Betrag und Richtung an.

6.4 Elektromagnetische Wellen

Abstrahlung eines Hertzschen Dipols \rightarrow fortschreitende elektromagnetische Welle mit der

Geschwindigkeit:
$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$
 (6.41)

Ausbreitungsvektor
$$\vec{k}$$
: $|\vec{k}| = \frac{2\pi}{\lambda} = \frac{\omega}{c}$ (6.42)

Wellengleichung

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = \epsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2}$$
(6.43)

eines zeitlich veränderlichen elektrischen Feldes $E(\vec{r}, t)$ im Vakuum \rightarrow periodische, ebene Welle in der Fernzone des Dipols ($r \gg \lambda$)

_

$$\vec{E} = \vec{E}_{0,y} \sin\left(kz - \omega t\right) \tag{6.44}$$

$$\vec{B} = \vec{B}_{0,x} \sin\left(kz - \omega t\right) \tag{6.45}$$

mit
$$\vec{k} \perp \vec{E}$$
 $\vec{k} \perp \vec{B}$ $\vec{E} \perp \vec{B}$ (6.46)

61

6 Elektromagnetische Schwingungen und Wellen

Abbildung 6.10: (a) $\vec{E}(z, t = t_1)$: Momentaufnahme für $t = t_1$. (b) $\vec{E}(z = z_1, t)$: Zeitabhängigkeit an festem Ort $z = z_1$.

Polarisation

Richtung des \vec{E} -Vektors gibt die Polarisation an.

- a) linear polarisiert $\vec{E_0}$ zeigt immer in die gleiche Richtung \perp zur Ausbreitungsrichtung
- **b) zirkular polarisiert** $\vec{E_0}$ ändert periodisch die Richtung \perp zur Ausbreitungsrichtung
- c) elliptisch polarisiert Wie zirkular; ändert aber zusätzlich den Betrag von $\vec{E_0}$ mit der gleichen Periode
- **d) unpolarisiert** Überlagerung der elektromagnetischen Wellen vieler statistisch verteilter Dipole (häufigster Fall)

Beispiel: lineare Polarisation

Abbildung 6.11: Schwingungsebenen der Felder einer linear polarisierten elektromagnetischen Welle: $\vec{E} = (0, E_y, 0), \vec{B} = (B_x, 0, 0)$. Elektrisches und magnetisches Feld schwingen senkrecht zueinander $(\vec{E} \perp \vec{B})$.

Stehende Welle:

Analog zur mechanischen, stehenden Welle: phasenrichtige Überlagerung in entgegengesetzter Richtung laufender Wellen gleicher Frequenz ω .

Abbildung 6.12: Stehende Wellen.

Wellen in Wellenleitern und Kabeln:

- Mikrowellentechnik (Hohlleiter)
- Lichtwellenleiter in der Optoelektronik (Glasfaser)
- Lecherleitung: Elektromagnetische Wellen entlang leitender Drähte
- Radiowellen in der Erdatmosphäre: Höhe 50 100 km.

Abbildung 6.13: Radiowellenausbreitung in der Erdatmosphäre. Ionosphäre: Die Moleküle und Atome sind teilweise ionisiert. Dadurch Reflexion der elektromagnetischen Welle im Radiobereich.

Elektromagnetisches Frequenzspektrum

Im Vakuum: Ausbreitungsgeschwindigkeit $c = \frac{\omega}{k} = \lambda f$ hängt nicht von der Frequenz ab.

	$\lambda[m]$	f [Hz]
Radiowellen	$10^4 - 10^0$	$10^4 - 10^8$
Mikrowellen	$10^0 - 10^{-4}$	$10^8 - 10^{12}$
Infrarot	$10^{-4} - 10^{-6}$	$10^{12} - 10^{14}$
sichtbares Licht	$400 - 700 \times 10^{-9}$	$10^{14} - 10^{15}$
Ultraviolett	$10^{-7} - 10^{-9}$	$10^{15} - 10^{17}$
Röntgenstrahlung	ab 10^{-9}	ab 10^{17}
γ -Strahlung	ab 10 ⁻¹¹	ab 10 ¹⁹

 Tabelle 6.2:
 Typische Wellenlängen und Frequenzen elektromagnetischer Strahlung.

Elektromagnetische Wellen in Materie:

Ausbreitungsgeschwindigkeit kleiner als im Vakuum.

$$c'(n) = \frac{c}{n} \tag{6.47}$$

$$n > 1$$
 Brechungsindex (6.48)

hängt von der Wellenlänge λ ab

$$n = n(\lambda) \tag{6.49}$$

$$\lambda = \frac{\lambda_0}{n} \tag{6.50}$$

$$\Rightarrow c = c(\lambda) \text{ Dispersion}$$
(6.51)

Modell: Anregung von Elektronen in der Materie, die Sekundärwellen ausstrahlen. Diese sind gegenüber der Primärwelle verzögert c' < c.

Wellen in nichtleitendem Medium:

$$c\prime = \frac{1}{\mu\mu_0\epsilon\epsilon_0} = \frac{c}{\mu\epsilon} \tag{6.52}$$

$$\Rightarrow n = \sqrt{\epsilon} \tag{6.53}$$

da $\mu \approx 1$ für nicht ferromagnetische Materialien.

Wellen in leitenden Medien:

Dämpfung der elektromagnetischen Welle. Begrenzte Eindringtiefe (Skintiefe), abhängig von der Frequenz und der elektrischen Leitfähigkeit. Metalle sind im sichtbaren undurchsichtig, aber im Ultravioletten transparent.

7 Optik

7.1 Geometrische Optik

Geometrische Optik: Gegenstände \gg Wellenlänge des sichtbaren Lichts ($\lambda = 380 - 780$ nm). Bei der geometrischen Optik wird das Licht als "Lichtstrahl" aufgefasst.

Wellenoptik: Gegenstände \approx Wellenlänge des sichtbaren Lichts

Strahlen und Wellenflächen:

Abbildung 7.1: Strahlen und Wellenflächen einer Kugelwelle.

Abbildung 7.2: Strahlen und Wellenflächen einer ebenen Welle (z. B. Laser).

7.1.1 Reflexion des Lichts

Abbildung 7.3: Reflexion

- 7 Optik
- a) ebene Flächen: Einfallender und reflektierter Strahl liegen in einer Ebene und Einfallsund Reflexionswinkel sind gleich ($\alpha = \beta$); z. B. Spiegel. Es entsteht ein virtuelles (scheinbares) Bild L' der Lichtquelle L hinter dem Spiegel. Gegenstandspunkt L und Bildpunkt L' haben den gleichen Abstand zum Spiegel.

Abbildung 7.4: Strahlengang bei Reflexion am ebenen Spiegel.

b) gekrümmte Flächen: Sphärischer Hohlspiegel (konkav) mit Mittelpunkt M (Radius R).
 Parallel zur Achse einfallende Strahlen werden reflektiert und treffen sich im Brennpunkt F (gilt nur für paraxiale, d.h. achsennahe Strahlen).
 Abstand MO = R Radius

Abstand $\overline{FO} = f$ Brennweite

Abbildung 7.5: Strahlengang bei Reflexion am sphärischen Hohlspiegel.

Für achsennahe Strahlen gilt:
$$f = \frac{R}{2}$$
 (7.1)

Abbildung 7.6: Katakaustik beim Hohlspiegel. (a) Entstehung. (b) Foto eines Hohlzylinders. Aus [Physik in unserer Zeit 29, 120 (1998)].

Bildentstehung (Konkav-Spiegel), Hohlspiegel:

- ① Parallelstrahlen werden Brennpunktstrahlen
- ⁽²⁾ Mittelpunktstrahlen bleiben Mittelpunktstrahlen
- ③ Brennpunktstrahlen werden Parallelstrahlen

Abbildung 7.7: Bildentstehung am Hohlspiegel.

- G: Gegenstandsgröße, g: Gegenstandsweite
- B: Bildgröße, b: Bildweite
- F: Brennpunkt, f: Brennweite

ff

Abbildungsgleichung

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

$$> 0 \quad \text{Hohlspiegel}$$

$$< 0 \quad \text{Wölbspiegel}$$
(7.2)

7 Optik

Gegenstands-/Bildgrößen:

$$\frac{G}{B} = \frac{g - R}{R - b} \tag{7.3}$$

$$\frac{2}{R} = \frac{1}{g} + \frac{1}{b}$$
(7.4)

$$\Rightarrow \frac{G}{B} = \frac{g}{b} \quad \text{gilt betragsmäßig}$$
(7.5)

g > 0: Gegenstand auf der linken Seite

g < 0: Bild auf der linken Seite

Abbildungsmaßstab:

$$\beta = \frac{B}{G} = -\frac{b}{g} \quad , \text{ da } B < 0 \tag{7.6}$$

Abbildungsmöglichkeiten am Hohlspiegel:

- $|\beta| < 1$: Bild reell, umgekehrt, verkleinert, g > R > f
- $|\beta| = 1$: Bild reell, umgekehrt, gleich groß, g = R = b
- $|\beta| > 1$: Bild reell, umgekehrt, vergrößert, R > g > f
- β < 1: Bild virtuell, aufrecht, vergrößert, g < f

Bildentstehung (konvexer Spiegel), Wölbspiegel: $F = -\frac{R}{2}$

Abbildung 7.8: Bildentstehung an konvexen Spiegeln (Wölbspiegel)

Die Abbildungsgleichungen gelten wie beim Hohlspiegel mit negativer Brennweite. Es entstehen immer virtuelle, aufrechte, verkleinerte Bilder.

7.1.2 Brechung des Lichts

Abbildung 7.9: Lichtbrechung beim Übergang zwischen zwei Medien $(n_1 < n_2)$.

Übergang von Medium 1 ins Medium 2 mit den Brechzahlen n_1 bzw. n_2 .

- \rightarrow Änderung der Phasengeschwindigkeit der elektromagnetischen Welle (Licht)
- \rightarrow Frequenz bleibt erhalten
- \rightarrow Wellenlänge ändert sich

Snelliussches Brechungsgesetz

$$c_{\rm Ph} = \frac{c}{n} = f\lambda \tag{7.7}$$

$$\Rightarrow \frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1} \tag{7.8}$$

Veranschaulichung: Strecken s_1 und s_2 werden in der gleichen Zeit t durchlaufen.

Abbildung 7.10: Änderung der Ausbreitungsgeschwindigkeit in Medien.

$$s_1 = \frac{c}{n_1}t\tag{7.9}$$

$$s_2 = \frac{c}{n_2}t\tag{7.10}$$

$$\sin \alpha = \frac{s_1}{d} \tag{7.11}$$

$$\sin\beta = \frac{s_2}{d} \tag{7.12}$$

$$\Rightarrow \frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1} \tag{7.13}$$

 $\beta < \alpha$: Übergang vom optisch dünneren ins optisch dichtere Medium.

 $\beta < \alpha$: Übergang vom optisch dichteren ins optisch dünnere Medium.

$$\beta = 90^{\circ} \Rightarrow \text{Totalreflexion}$$
 (7.14)

$$\Rightarrow \sin \alpha_{\rm g} = \frac{n_2}{n_1} \tag{7.15}$$

 $\alpha_{\rm g} {:} \ {\rm Grenzwinkel}$

Ist das dünnere Medium Luft, so gilt: $\sin \alpha_{g} = \frac{1}{n_{1}}$ \rightarrow technische Nutzung als Lichtwellenleiter

Abbildung 7.11: Prinzip des Lichtwellenleiters als (a,b) Stufenindexfaser und (c,d) Gradientenfaser (mit kontinuierlich veränderlichem Brechungsindex). (b,d) Verlauf der Brechzahl *n* über dem Radius *r*.

Brechung am Prisma

Abbildung 7.12: Lichtbrechung am Prisma.

 δ : Ablenkung von der Einfallsrichtung; $\delta = \alpha_1 - \beta_1 + \alpha_2 - \beta_2$; kleinste Ablenkung für symmetrischen Strahlengang: $\delta = 2\alpha - \gamma$ Brechungsindex hängt von der Wellenlänge ab (Dispersion)

$$n = n(\lambda);$$
 meistens $\frac{\mathrm{d}n}{\mathrm{d}\lambda} < 0$ (7.16)

 \Rightarrow Ablenkwinkel δ im Prisma hängt von der Wellenlänge λ ab.

Für $\frac{dn}{d\lambda} < 0$ folgt: blaues Licht (kleinere Wellenlänge) wird stärker gebrochen als rotes Licht.

Abbildung 7.13: Wellenlängenabhängige Aufspaltung am Prisma.

	n
Luft	1,0003
Wasser	1,333
Eis	1,3
Benzol	1.5
Quarzglas	1,459
Flintglas	1,613
Diamant	2,417

Tabelle 7.1:	Brechzahlen n	<i>i</i> einiger Stoffe
--------------	---------------	-------------------------

7 Optik

Abbildung 7.14: Brechung an gekrümmten Flächen.

Brechung an gekrümmten Flächen:

$$\gamma = \alpha - \beta \tag{7.17}$$

$$\widehat{OA} = R\alpha \approx f\gamma = f(\alpha - \beta) \tag{7.18}$$

$$\Rightarrow f = \frac{\alpha}{\alpha - \beta} R; \text{ Brennweite}$$
(7.19)

Für kleines α und β (achsennahe Strahlen):

$$n_1 \alpha \approx n_1 \sin \alpha = n_2 \sin \beta \approx n_2 \beta \tag{7.20}$$

$$\Rightarrow f_2 = \frac{n_2}{n_2 - n_1} R \tag{7.21}$$

 f_2 : Brennweite der gekrümmten Fläche im Medium 2.

Konstruktion des Bildes wie beim Hohlspiegel durch zwei Strahlen:

- 1. Strahl senkrecht zur Fläche wird nicht gebrochen und geht durch M
- 2. Strahl parallel zur optischen Achse wird durch den Brennpunkt gebrochen.

Abbildung 7.15: Konstruktion des Bildes bei Brechung an gekrümmten Flächen.
Umkehrung des Strahlenganges (gegenstandsseitiger Brennpunkt):

$$\Rightarrow f_1 = \frac{n_1}{n_1 - n_2} R \tag{7.22}$$

$$\Rightarrow \frac{n_1}{g} + \frac{n_2}{b} = \frac{n_2 - n_1}{R}$$
(7.23)

7.1.3 Abbildung durch Linsen

Wir betrachten dünne Linsen, d.h., Linsendicke vernachlässigbar. Linsen bestehen aus durchsichtigem Material mit der Brechzahl n_2 und sind von einem Medium (z.B. Luft) der Brechzahl n_1 umgeben.

Klassifikation durch den Krümmungsradius R; R positiv, wenn Lichtquelle (Gegenstand) und Krümmungsmittelpunkt auf verschiedenen Seiten der Linse \Rightarrow **konvex**

Abbildung 7.16: Klassifikation der Linsentypen. Plankonkav nicht dargestelt.

Die optische Abbildung entspricht zwei aufeinander folgenden Brechungen an den beiden Grenzflächen (Luft/Glas, Glas/Luft).

1. Grenzfläche:

$$\frac{1}{g_1} + \frac{n}{b_1} = \frac{n-1}{R_1} \tag{7.24}$$

2. Grenzfläche:

$$\frac{n}{g_2} + \frac{1}{b_2} = \frac{1-n}{R_2} \tag{7.25}$$

mit $g_2 = -b_1$ folgt die Linsengleichung für beide Grenzflächen:

$$\frac{1}{g} + \frac{1}{b} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
(7.26)

73

7 Optik

für achsenparallele Strahlen: $g = \infty, b = f$ folgt:

$$f = \frac{1}{n-1} \left(\frac{R_1 R_2}{R_2 - R_1} \right) \tag{7.27}$$

Bikonvexlinse:

Abbildung 7.17: Bildkonstruktion an der Bikonvexlinse.

Bildkonstruktion:

- 1. Objektseitige Parallelstrahlen werden zu bildseitigen Brennpunktstrahlen
- 2. Hauptstrahlen (Mittelpunktstrahlen) bleiben Hauptstrahlen
- 3. Objektseitige Brennpunktstrahlen werden zu bildseitigen Parallelstrahlen

$$R_1 = -R_2 = R (7.28)$$

$$f = \frac{1}{n-1}\frac{R}{2} \quad \text{Brennweite} \tag{7.29}$$

Kombination von 7.26 und 7.27 ergibt die Abbildungsgleichung dünner Linsen:

$$\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$$
(7.30)

Abbildungsmaßstab:

$$\beta = \frac{B}{G} = -\frac{b}{g} \tag{7.31}$$

 $\beta < 0$: Bild steht auf dem Kopf.

Bikonkavlinse:

Abbildung 7.18: Bildkonstruktion an der Bikonkavlinse. Es entsteht ein virtuelles aufrechtes Bild.

Bildkonstruktion:

- 1. Objektseitige Parallelstrahlen werden zu objektseitigen Brennpunktstrahlen
- 2. Hauptstrahlen (Mittelpunktstrahlen) bleiben Hauptstrahlen

Bild auftrecht und verkleinert; Virtuelles Bild

Brennweite f < 0: Abbildungsgleichung und Gleichung für Abbildungsmaßstab gleich.

Linsensysteme:

Mehrere Linsen auf gemeinsamer optischer Achse dicht beieinander (\rightarrow dicke Linse). Brennweite des Linsensystems:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \tag{7.32}$$

Dicke Linsen:

Dicke der Linse ist gegenüber dem Krümmungsradius nicht mehr zu vernachlässigen \rightarrow Konzept der Hauptachsen:

Konstruktionsprinizipien bleiben erhalten, außer dass zwei Hauptebenen benötigt werden \rightarrow Strahlversatz

7 Optik

Blenden im Strahlengang:

- \rightarrow Verkleinerung der Strahldivergenz
- \rightarrow Größere Tiefenschärfe

Abbildung 7.20: Auswirkungen einer Blende im Strahlengang. Die Strahldivergenz wird verkleinert.

Linsenfehler

Abbildung 7.21: Auswirkungen von (a) chromatischer und (b) sphärischer Aberation, sowie (c) des Astigmatismus.

- a) Chromatische Aberation: Wegen der Dispersion des Glases gibt es unterschiedliche Brennpunkte f
 ür verschiedene Lichtwellenl
 ängen. → Kann durch Achromatlinsen, d.h. eine Kombination aus Konvex- und Konkavlinse, behoben werden.
- b) Sphärische Aberation: Achsenferne Strahlen haben einen anderen Brennpunkt als achsennahe Strahlen. → Achsenferne Strahlen unterbinden (Blenden); Verwendung von Linsensystemen; asphärische Linsen
- **c)** Astigmatismus: Brechkraft in zueinander senkrechten Ebenen ist nicht gleich stark. Es ergeben sich Brennlinien statt Brennpunkte. → Zylinderlinsen

7.1.4 Optische Instrumente

Auge:

Sammellinse fokussiert im Ruhezustand parallel einfallendes Licht auf die Netzhaut.

Abbildung 7.22: Fehlsichtigkeit der Augen. (a) normalsichtig, (b) kurzsichtig (Korrektur durch Konkavlinse), (c) weitsichtig (Korrektur durch Konvexlinse).

Nahpunkt des Auges: Kürzeste Entfernung (deutliche Sehweite) s_0 bei dem ein Gegenstand noch auf die Netzhaut fokussiert werden kann.

	Nahpunkt des Auges s_0
Kinder	10 cm
Standard	25 cm
hohes Alter	100 - 200 cm \rightarrow Lupe

Lupe:

Sammellinse, die ein heranrücken über den Nahpunkt hinaus ermöglicht und den Gegenstand vergrößert.

Abbildung 7.23: (a) Normale Fokussierung des Auges auf den Nahpunkt. (b) Sicht mit Lupe.

7 Optik

Gesamtbrennweite:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \tag{7.33}$$

$$\epsilon_0 = \frac{G}{s_0} \tag{7.34}$$

$$\epsilon = \frac{G}{f} \tag{7.35}$$

Winkelvergrößerung:
$$v_l = \frac{\epsilon}{\epsilon_0} = \frac{s_0}{f}$$
 (7.36)

Mikroskop:

Betrachtung kleiner Gegenstände mit kurzem Abstand.

Einfachste Ausführung: zwei Sammellinsen (Objektiv und Okular). Das Objektiv erzeugt ein vergrößertes Zwischenbild, das durch das Okular, das als Lupe wirkt, betrachtet wird.

Abbildung 7.24: Strahlengang im Mikroskop.

Abstand zwischen den beiden Brennpunkten \rightarrow Tubuslänge t

$$\tan \beta = \frac{G}{f_{\rm Ob}} = -\frac{B}{t} \tag{7.37}$$

Objektiv: Abbildungsmaßstab: $v_{Ob} = \frac{B}{G} = -\frac{t}{f_{Ob}}$

Okular: Winkelvergrößerung: $v_{Ok} = \frac{s_0}{f_{Ok}}$, s_0 : Nahpunkt des Auges

Gesamtvergrößerung:

$$v_{\rm M} = v_{\rm Ob} v_{\rm Ok} = -\frac{ts_0}{f_{\rm Ob} f_{\rm Ok}} \tag{7.38}$$

Teleskop (Kepler-Fernrohr):

Betrachtung sehr weit entfernter Gegenstände.

 \rightarrow Nur parallel einfallendes Licht soll abgebildet werden (Sehwinkelvergrößerung)

Abbildung 7.25: Strahlengang im Teleskop

Vergrößerung (Teleskop):

$$v_t = \frac{\epsilon_{\rm Ok}}{\epsilon_{\rm Ob}} = -\frac{f_{\rm Ob}}{f_{\rm Ok}} \tag{7.39}$$

7.2 Wellenoptik

In Kapitel 6.4 wurde Licht bereits als Welle identifiziert. Wellenphänomene können immer dann beobachtet werden, wenn Gangunterschiede, Blenden, Partikel etc. in der Größenordnung der Wellenlänge liegen.

7.2.1 Interferenz

Überlagerung zweier Wellen.

Auslöschung: Gangunterschied $\Delta x = (2m+1)\frac{\lambda}{2}$, mit $m = 0, \pm 1, \pm 2, ...$

Verstärkung: Gangunterschied $\Delta x = m\lambda$, mit $m = 0, \pm 1, \pm 2, ...$

Der Gangunterschied Δx entspricht einem Phasenunterschied $\Delta \varphi$ von

$$\Delta \varphi = k \Delta x = \frac{2\pi}{\lambda} \Delta x \tag{7.40}$$

Auslöschung: Phasenunterschied $\Delta \varphi = (2m+1)\pi$, mit $m = 0, \pm 1, \pm 2, ...$

Verstärkung: Phasenunterschied $\Delta \varphi = 2m\pi$, mit $m = 0, \pm 1, \pm 2, ...$

Voraussetzung für zeitlich stationäre Interferenzstruktur \rightarrow **Kohärenz**: In jedem Raumpunkt ist die Phasenbeziehung zwischen den Wellen zeitlich konstant.

Inkohärente Wellen: Keine feste Phasenbeziehung \rightarrow keine Interferenzmuster (z. B. spontan emittiertes Licht heißer Körper; unabhängige Atome tragen bei)

Kohärenzzeit τ : Zeit τ während der der Phasenunterschied $\Delta \varphi$ kleiner als 2π ist \rightarrow Kohärenzlänge l: $l = c\tau$ für verschiedene Lichtquellen:

Tabelle 7.2: Kohärenzlängen von Licht		
	Kohärenzlänge	
weißes Licht	1.5 μm	
Spektrallampe	20 cm	
Halbleiterlaser	150 cm	
HeNe-Laser	2 km	

Eine endliche Kohärenzlänge entspricht nach der Fourier-Zerlegung einer endlichen Band-

breite der Frequenz:

$$\Delta f \approx \frac{1}{\tau} \tag{7.41}$$

$$|\Delta\lambda| = \lambda \frac{|\Delta f|}{f}$$
, Linienbreite (7.42)

Bedingung für Interferenz:

Gangunterschied $\Delta x < \text{Kohärenzlänge } l$.

Erzeugung kohärenter Strahlen:

Eine Quelle emittiert Licht, das in zwei Teilstrahlen aufgespalten wird und nach Durchlaufen verschiedener optischer Wege wieder überlagert wird.

7.2.2 Zweistrahlinterferenz

a) Fresnelscher Spiegelversuch

Schirm

Abbildung 7.26: Fresnelscher Spiegelversuch. Eine Lampe beleuchtet zwei leicht gegeneinander verkippte Spiegel. Es entsteht ein Interferenzmuster auf dem Schirm.

7 Optik

Winkel für konstruktive Interferenz:

$$\sin\varphi_{\rm m} = \frac{\Delta x}{d} \tag{7.43}$$

$$\Rightarrow \sin \varphi_{\rm m} = \frac{m\lambda}{d} \tag{7.44}$$

 $\sin \varphi \approx \varphi$, für kleine Winkel (7.45)

$$\Rightarrow \varphi \approx \frac{m\lambda}{d} \tag{7.46}$$

b) Youngscher Doppelspaltversuch

Beleuchtung von zwei Spalten mit einer ausgedehnten Lichtquelle.

Abbildung 7.27: Der Doppelspalt wird von einer ausgedehnten Lichtquelle beleuchtet.

Interferenzen am Schirm in Punkt P. S_1 und S_2 sind Ausgangspunkte neuer Wellen. \rightarrow Huygenssches Prinzip

wichtig: kohärente Beleuchtung der Spalte S_1 und S_2 :

$$\rightarrow \Delta S_{\max} \approx \frac{bd}{2D}$$
 muss kleiner als $\frac{\lambda}{2}$ sein. (7.47)

$$\rightarrow \frac{d}{\lambda} < \frac{D}{b} \tag{7.48}$$

Michelson-Interferometer

Konstruktive Interferenz: $\Delta S = 2l = m\lambda$ Destruktive Interferenz: $\Delta S = 2l = (2m + 1)\frac{\lambda}{2}$ Kann als **Interferenzmikroskop** zur Bestimmung der Oberflächentopographie herangezogen werden.

Abbildung 7.28: Michelson-Interferometer. Das Licht wird am Strahlteiler geteilt und nach Reflexion an den Spiegeln wieder am Schirm überlagert.

7.2.3 Interferenz an dünnen Schichten

Interferenzen an planparalleler Platte. Vielfachreflexion an den Grenzflächen. Um Interferenzmuster zu berechnen muss der Gangunterschied zwischen den Einzelstrahlen berechnet werden.

Abbildung 7.29: (a) Vielfachreflexion an planparallelen Platten. (b) Ausschnitt zur Bestimmung des Gangunterschieds.

Gesamtgangunterschied (optisch):

$$s = n(\bar{AB} + \bar{BC}) - \bar{AP} \tag{7.50}$$

$$\bar{AB} = \frac{d}{\cos\epsilon'}; \bar{BC} = \frac{d}{\cos\epsilon'}$$
(7.51)

$$\bar{AP} = 2d \tan \epsilon' \sin \epsilon$$
, mit Brechungsgesetz $\frac{\sin \epsilon}{\sin \epsilon'} = n$ folgt: (7.52)

$$s = 2d\sqrt{n^2 - \sin^2 \epsilon} \tag{7.53}$$

Reflexion am dichteren Medium gibt einen zusätzlichen Phasenunterschied von π , d.h. Gangunterschied von $\frac{\lambda}{2}$. \Rightarrow Gesamtgangunterschied Δ inkl. Phasensprung:

$$\Delta = 2d\sqrt{n^2 - \sin^2 \epsilon} - \frac{\lambda}{2} \tag{7.54}$$

Konstruktive Interferenz: $\Delta 2d\sqrt{n^2 - \sin^2 \epsilon} - \frac{\lambda}{2} = (2m+1)\frac{\lambda}{2}$ Destruktive Interferenz: $\Delta 2d\sqrt{n^2 - \sin^2 \epsilon} - \frac{\lambda}{2} = m\lambda$

Bei gegebener Plattendicke d und Wellenlänge λ sind diese Bedingungen nur für bestimmte Einfallswinkel ϵ erfüllbar.

- Interferenzen gleicher Dicke an keilförmigem Glas
- Interferenzfarben dünner Filme (Seifen- oder Öllamellen); aus weißem Licht werden bestimmte Farben reflektiert und andere ausgelöscht (abhängig von d, n, ϵ)
- Antireflexionsbeschichtungen; an der Grenzfläche zwischen einem Medium mit Brechungsindex n_1 und einem Medium mit Brechungsindex n_3 wird eine Zwischenschicht der Dicke d_2 mit n_2 aufgebracht. d und n_2 sind so zu wählen, dass sich die reflektierten Strahlen auslöschen. $d = \frac{\lambda}{4n_2}$; vollständige Auslöschung für $n_2 = \sqrt{n_1 n_3}$

7.2.4 Beugung

Lichtstrahlen ändern ihre Richtung sobald Hindernisse ihre freie Ausbreitung stören. Sie werden an den Rändern der Hindernisse gebeugt. Die Beugung ist umso stärker je kleiner die Hindernisse sind.

Deutung der Beugung: Huygenssches Prinzip der Elementarwelle + Interferenz dieser Wellen. Erzeugung der Elementarwellen durch Beugung; jeder Punkt ist Ausgangspunkt einer Elementarwelle (Kugelwelle)

Abbildung 7.30: Huygens Prinzip: Jeder Spalt ist Ausgangspunkt einer Kugelwelle.

Beugung am Einzelspalt:

Aufteilung des Spaltes in Elemente der Breite ds die jeweils Elementarwellen aussenden; Überlagerung in Punkt P unter Berücksichtigung der Phasenbeziehung.

Abbildung 7.31: (a) Konstruktion und (b) Beugungsintensität beim Einzelspalt.

Gangunterschied: $\Delta x = ds \sin \theta$ Phasenunterschied: $\Delta \varphi = 2\pi \frac{\Delta x}{\lambda} = 2\pi \frac{ds \sin \theta}{\lambda}$

Aufsummation von ds = 0 bis ds = b ergibt:

$$I(\theta) = I_0 \frac{\sin^2 x}{x^2}, \text{ mit } x = \pi \frac{b}{\lambda} \sin \theta$$
(7.55)

Hauptmaximum: $x = 0 \rightarrow \theta = 0 \rightarrow I = I_0$ Nebenmaxima: $\sin \theta = (2m + 1)\frac{\lambda}{2b} \rightarrow x = (2m + 1)\frac{\pi}{2}$ Minima: $\sin \theta = \pm m\frac{\lambda}{b} \rightarrow x = m\pi$

Die Intensitätsverteilung hängt von $\frac{b}{\lambda}$ ab. Je größer $\frac{b}{\lambda}$ desto schmaler ist der Hauptpeak und enger liegen die Nebenmaxima zusammen.

Doppelspalt

Abbildung 7.32: a) Konstruktion und (b) Beugungsintensität beim Doppelspalt.

d: Spaltabstand *b*: Spaltbreite Konstruktive Interferenz: $d \sin \theta = m\lambda$ Destruktive Interferenz: $d \sin \theta = (2m + 1)\frac{\lambda}{2}$

Beugungsbilder der beiden Spalte interferieren für d > b.

 $\begin{array}{l} \text{Maxima: } \sin\theta = m\frac{\lambda}{d} \\ \text{Minima: } \sin\theta = (2m+1)\frac{\lambda}{2d} \\ \rightarrow \text{Innerhalb der Hauptmaxima treten Interferenzen auf.} \end{array}$

Beugungsintensität:

$$I(\theta) = \left(\frac{\sin[\pi(b/\lambda)\sin\theta]}{[\pi(b/\lambda)\sin\theta]}\right)^2 \cos^2[\pi(d/\lambda)\sin\theta]$$
(7.56)

Beugung am Beugungsgitter

Abbildung 7.33: a) Konstruktion und (b) Beugungsintensität beim Gitter mit N=5 Spalten.

N äquidistante Spalte im Abstand d mit Breite b. \rightarrow jeder Spalt erzeugt eine Elementarwelle.

Wenn $\rightarrow b \ll d \Rightarrow$ Beugungsbild des Einzelspaltes breit gegen Interferenzstrukturen. **Überlagerung der Elementarwellen:**

Beugung des Einzelspaltes:

$$I(\theta) \propto \frac{\sin^2 x}{x^2} \tag{7.57}$$

$$x = \frac{\pi b}{\lambda} \sin \theta \tag{7.58}$$

Interferenz der N Spalte:

$$I(\theta) \propto \frac{\sin^2(Nz)}{z^2} \tag{7.59}$$

$$z = \frac{\pi d}{\lambda} \sin \theta \tag{7.60}$$

$$\Rightarrow I(\theta) = I_0 \frac{\sin^2 x}{x^2} \cdot \frac{\sin^2(Nz)}{\sin^2(z)}$$
(7.61)

$$=\frac{\sin^2[\pi(b/\lambda)\sin\theta]}{[\pi(b/\lambda)\sin\theta]^2}\cdot\frac{\sin^2[N\pi(d/\lambda)\sin\theta]}{\sin^2[\pi(d/\lambda)\sin\theta]}$$
(7.62)

Hauptmaxima: $d \sin \theta = m\lambda$ Minima: $Nz = m'\pi \Rightarrow \sin \theta = \frac{m'}{N}\frac{\lambda}{d}$

7.2.5 Röntgenbeugung am Kristallgitter

Kristalline Festkörper: Atome befinden sich an periodischen Plätzen mit bestimmten interatomaren Abständen.

Abbildung 7.34: (a) Atome im Kristallgitter bilden die Netzebenen. (b) Konstruktion des Gangunterschieds.

Gangunterschied: $\Delta s = 2d \sin \theta$

 \rightarrow Konstruktive Interferenz wenn der Gangunterschied benachbarter reflektierter Strahlen ein ganzzahliges Vielfaches der Wellenlänge λ ist.

Braggsche Bedingung:

$$2d\sin\theta = m\lambda\tag{7.63}$$

$$m = 0, 1, 2, \dots \tag{7.64}$$