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3.3 Derive the thermonuclear rate for nonresonant neutron-induced reactions
when S ≡ σv depends on velocity (see Eq. (3.101)).

3.4 For an arbitrary value of !, find the γ-ray energy at which the decay con-
stant for nonresonant (γ, n) reactions (that is, the integrand in Eq. (3.109)) has
a maximum.
3.5 Consider the narrow resonances described in Example 3.6. Calculate the
reaction rates numerically for T = 0.02 GK and T = 0.08 GK and show that the
arguments based on the Gamow peak concept are valid.
3.6 Consider the 20Ne(γ,α)16O photodisintegration reaction at a tempera-
ture of T = 1.5 GK. The lowest lying narrow resonances in the forward
16O(α,γ)20Ne reaction (Q = 4730 keV) are located at Ecm

r = 891 keV, 1058 keV,
and 1995 keV, corresponding to 20Ne levels at Ex = 5621 keV, 5788 keV, and
6725 keV, respectively (Fig. 5.46). Their (ground-state) strengths amount to
ωγ = 1.9 × 10−3 eV, 2.3 × 10−2 eV, and 7.4 × 10−2 eV, respectively (Angulo
et al. 1999). Which level do you expect to dominate the stellar 20Ne(γ,α)16O
reaction rates? Calculate and compare the individual level contributions to
the total photodisintegration reaction rates. The spins of 4He, 16O, and 20Ne
are all ji = 0; the normalized partition functions for these nuclei are equal
to unity at T = 1.5 GK (see Rauscher and Thielemann 2000). Also, the first
excited state in 16O is located at a relatively high energy (Ex = 6049 keV; Tilley,
Weller and Cheves 1993) and, therefore, the (forward) capture reaction from
excited target states is negligible at this temperature.
3.7 Derive the transmission coefficient (see Eq. (3.138)) for the screened
Coulomb potential (see Eq. (3.132)). Assume that the variable x = x(E) =
Rc/RD is a small number and use the expansions ex ≈ 1 + x and

√
1 − x ≈

1 − x/2. In the derivation retain only terms that are linear in x.
3.8 Calculate the electron screening correction for the 12C + 12C reaction
under typical hydrostatic carbon burning conditions (T = 0.9 GK and ρ =
105 g/cm3; Section 5.5.1). The mass fractions of carbon, oxygen, and neon
are given by X(12C) = 0.25, X(16O) = 0.73, X(20Ne) = 0.01, and X(22Ne) =
0.01. Assume that the reaction is nonresonant and disregard the electron
degeneracy factor (θe = 1).
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row isolated resonances start to appear. For 90Zr(n,γ)91Zr (Qnγ = 7.2 MeV)
many narrow and broad resonances are apparent. The density of resonances
increases for larger neutron energies and they start to overlap strongly be-
yond an energy of ≈ 10 keV. The vastly different energy dependence of
neutron reaction cross sections compared to charged-particle-induced reac-
tions (Figs. 3.10 and 3.11) is caused by the absence of the Coulomb barrier.
The corresponding Maxwellian-averaged cross sections, 〈σv〉/vT , versus kT
are displayed in Fig. 3.31. It is apparent that neutron reaction rates are far less
temperature sensitive compared to charged-particle reaction rates.

Fig. 3.31 Maxwellian-averaged cross sections versus kT for
7Li(n,γ)8Li, 31P(n,γ)32P, and 90Zr(n,γ)91Zr. Data from Bao et al. (2000).

Problems

3.1 Consider a situation where the three species A, B and C achieve equilib-
rium at elevated temperatures via the reactions A + a ↔ B + γ and B + b ↔
C + γ (Fig. 3.7). In addition to Eqs. (3.55) and (3.56), the two conditions
λC→B > λC→C′ and λB→C > λB→B′ must be fulfilled in order for such an equi-
librium to be established. Derive an expression for λA→B→(C→C′ or B′), that is,
the decay constant of species A for consumption via the paths A → B → C →
C′ or A → B → B′.
3.2 Derive the correction factor F(τ) for nonresonant charged-particle-
induced reaction rates (see Eq. (3.90)). Start by expressing F in terms of
the new variables y ≡

√
ε − 1, β ≡

√
3/τ and ζ ≡ y/β. Then expand F(β)

into a quadratic Taylor series.
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Calculate the rate for the  reactions 14N(p,γ) and 15N(p,α) for the 

conditions in the center of the Sun (density ρ = 100 g/cm3, hydrogen 
mass fraction XH=0.7, temperature 16 MK). Derive the differential 

equation for the creation and destruction of 15N. Which isotopic ratio 
15N/14N do you expect once equilibrium has been reached? 

You may use the reaction rates from the NACRE website:
http://pntpm.ulb.ac.be/Nacre/nacre_d.htm 

Webseite der Vorlesung:
http://www.fzd.de/pls/rois/Cms?pOid=30632&pNid=2041
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than the one of direct astrophysical interest (Section 4.1). From the measured
nuclear properties (excitation energies, spins, parities, spectroscopic factors,
and so on) of the compound levels close to the particle threshold, the reso-
nance energies and strengths of astrophysically important resonances can be
estimated.

For the influence of experimental uncertainties of Er, ωγ, and C2S on the
resulting narrow-resonance reaction rates, the reader is referred to Thompson
and Iliadis (1999).

Example 3.6
Suppose that four hypothetical narrow s-wave resonances occur at low ener-
gies in the 20Ne(p,γ)21Na reaction. The resonance energies are Er = 10 keV,
30 keV, 50 keV, and 100 keV. The corresponding resonance strengths are
ωγ = 7.24 × 10−33 eV, 3.81× 10−15 eV, 1.08× 10−9 eV, and 3.27× 10−4 eV. Each
of these values has been obtained by assuming Γp # Γγ and C2S = 1. Which
resonance do you expect to dominate the total reaction rates at T = 0.02 GK
and 0.08 GK?

At T = 0.02 GK, the Gamow peak location (see Eqs. (3.74) and (3.78)) is
E0 ± ∆/2 = 40 ± 10 keV. Only the resonances at Er = 30 keV and 50 keV are
located in the Gamow peak and, therefore, these will dominate the reaction
rates. At T = 0.08 GK, we obtain E0 ± ∆/2 = 100 ± 30 keV. Only the resonance
at Er = 100 keV is located in the Gamow peak and thus will dominate the total
reactions rates. See also Problem 3.5.

We will now consider two issues that are important at elevated temper-
atures when a capture reaction, for example, (p,γ), (n,γ) or (α,γ), proceeds
through narrow resonances. The first concerns the influence of excited target
states on the reaction rates. From Eq. (3.37) we find for the stellar rate of the
capture reaction 0 + 1 → γ + 3

NA〈σv〉 = ∑
µ

P0µ NA〈σv〉µ =
∑µ g0µe−E0µ/kT NA〈σv〉µ

∑µ g0µe−E0µ/kT (3.121)

where µ sums over the levels in the target nucleus 0 including the ground
state, while excited states in the light particle 1 are neglected (a safe assump-
tion for protons, neutrons or α-particles). The subscript “01 → 23” is sup-
pressed for clarity and it is assumed that the reaction rate NA〈σv〉µ has already
been properly summed over transitions to excited final states ν in nucleus 3.
All other symbols have exactly the same meaning as in Section 3.1.5. Suppose
now that the reaction rate NA〈σv〉µ for a specific target state µ is determined
by a number of narrow resonances that are labeled by ρ. From Eq. (3.112) we
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