

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

Overview of Photoinjectors

→ Part tutorial
 → Part recent progress

John Power Argonne Wakefield Accelerator Group Argonne National Laboratory

Advanced Accelerator Workshop 2010 Annapolis, MD June 13-19, 2010

The ideal electron source...

... depends on your application

SASE FEL \rightarrow High peak current & low emittance

Argonne

The ideal electron source...

... depends on your application

High Pulsed Current → Wakefield Acceleration

The Argonne Wakefield Accelerator (AWA) Facility Beamline

Single bunch operation

- 1. Q=100 nC
- 2. Current = 10 kAmp
- 3. Energy=15 MeV

Bunch train operation

- 1. 4 bunches x 25 nC (3 ns, present)
- 2. 16 bunches x 5 nC (12 ns, present)
- 3. 32 bunches x 40 nC (25 ns, future)

(Typical) Photoinjector Facility The Argonne Wakefield Accelerator (Upgrade)

John Power, AAC 2010

AWA facility upgrade (Conde) WG3 Application to linear colliders (Gai) WG3

Anatomy of an rf photoinjector

Argonne

John Power, AAC 2010

Adopt a standard for comparing cathodes

John Power, AAC 2010

D.H. Dowell, et al., Nucl. Instr. and Meth. A (2010) doi:10.1016/j.nima.2010.03.104

How to get the electrons out of the box?

- free electrons are trapped in a potential well
- electrons must overcome the work function = $(q\Phi)$

thermionic emission

 \rightarrow for this example: CeB6 (W=2.39 eV); F=20MV/m; σ_x =0.2 mm; T=1743 K

photoemission theory

Spicer's 3 step model

- 1. A photon is absorbed and an electron is excited
- 2. Electron migrates to the surface
- 3. Escape through the barrier

Spicer does not do emittance

3 step model applied to photoinjectors...

- **1.** Dowell and Schmerge¹
 - 1. metals (zero field and temp)
 - 2. predicts $\epsilon_{\text{INTRINSIC}}$ and QE
- 2. Jensen²
 - 1. metal and semiconductors
 - 2. predicts $\epsilon_{\text{INTRINSIC}}$ and QE
 - 3. thermionic, photo, and field emission

photoemission in metals [Dowell and Schmerge]

- Theory predicts 'Quantum Efficiency' and 'Normalized intrinsic emittance of cathode per unit beam size'
- is in good agreement with experiment

photoemission in semiconductors [e.g. CsTe]

Properties of Photocathodes

Arg

	Metal cathodes	Wavelength & energy: λ _{opt} (nm) ħω (eV)	QE	Vacuum for 1000 h operation (Torr)	Work functie ϕ_W (eV)	Normalize emittance per unit	ed intrinsic of cathode beam size
	Bare metal Cu	250, 4.96	$1.4 imes 10^{-4}$	10 ⁻⁹	4.6 [34]	0.5	1.0 ± 0.1 [39] 1.2 ± 0.2 [40] 0.9 ± 0.05 [3]
	Mg Pb Nb Coated metal	266, 4.66 250, 4.96 250, 4.96	$\begin{array}{c} 6.4 \times 10^{-4} \\ 6.9 \times 10^{-4} \\ \sim \! 2 \times 10^{-5} \end{array}$	10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰	3.6 [41] 4.0 [34] 4.38 [34]	0.8 0.8 0.6	0.3 ± 0.05 [3] 0.4 ± 0.1 [41] ? ?
	CsBr:Cu CsBr:Nb	250, 4.96 250, 4.96	7×10^{-3} 7×10^{-3}	10 ⁻⁹ 10 ⁻⁹	~2.5 ~2.5	? ?	? ?
Cathode type	Cathode	Typical wavelength & energy, Arry	Quantum efficiency (electrons	Vacuum for 1000 h (Torr)	Gap energy+ electron affinity, Ec+Et (eV)	Thermal emittance (microns/ mm(rms))	
		(nm), (eV)	per photon)		26.24(00)	Eq. (7)	Expt.
PEA:	Cs ₂ Te	211, 5.88	0.1	10 ⁻⁹	3.5 [42]	1.2	0.5 ± 0.1 [35]
mono-arkan	Crash	262, 4.73	0.15	2	" 1.6+0.45 [42]	0.9	1.2 ± 0.1 [43]
	K ₃ Sb Na ₃ Sb	400, 3.10 330, 3.76	0.07 0.02	? ?	1.1+1.6 [42] 1.1+2.44 [42]	0.5 0.4	? ? ?
PEA:	Li ₃ Sb Na ₂ KSb	295, 4.20 330, 3.76	0.0001 0.1	? 10 ⁻¹⁰	? 1+1 [42]	? 1.1	? ?
multi-alkali	(Cs)Na3KSb K2CsSb K-CsSb(O)	390, 3.18 543, 2.28 543, 2.28	0.2 0.1 0.1	10^{-10} 10^{-10} 10^{-10}	1+0.55 [42] 1+1.1 [42] 1+<11 [42]	1.5 0.4	? ?
NEA	GaAs(Cs,F)	532, 2.33 860, 1.44	0.1 0.1 0.1	?	$1.4 \pm 0.1[42]$	0.8 0.2	$0.44 \pm 0.01[44]$ $0.22 \pm 0.01[44]$
	GaN(Cs) GaAs(1-x)Px	260, 4.77 532, 2.33	0.1 0.1	? ?	1.96+?[44] 1.96+?[44]	1.35 0.49	$1.35 \pm 0.1[45]$ $0.44 \pm 0.1[44]$
S-1	x~0.45 (Cs,r) Ag−0–Cs	900, 1.38	0.01	?	0.7[42]	0.7	?
	John Pow	er, AAC 201	0 D.H. I doi:10	Dowell, et al., Nu).1016/j.nima.201	cl. Instr. and 0.03.104	Meth. A (2010)	20

(...

Inearize all forces and apply emittance compensation [B. E. Carlsten, NIM, A285, 313 (1989)]

nonlinear forces (rf mutlipole fields, rf curvature, solenoidal aberrations, nonlinear space charge, etc.) dilute slice emittance

Emittance compensation \rightarrow

reduces projected emittance due to slice-dependent linear focusing forces

Examples...

Projected Phase Space

Note \rightarrow most guns operate in the space charge dominated regime since we are interested in high charge applications

John Power, AAC 2010

Beam envelope theories for photoinjectors for the optimized AWA drive beamline

Emittance compensation in space-charge regime [Carlsten 1989], General envelope theory with newly found criteria [Wang et al. 2007]

simulations for photoinjectors

Simulations are the workhorse of the photoinjector field

John Power, AAC 2010 Bazarov & Sinclair Phys. Rev. ST Accel. Beams 8, 034202 (2005) 26

Realistic Laser Profiles

• More accurate simulations \rightarrow better understanding \rightarrow improved beams

Parallel Sims 1:1 particle rep

simulations with billions of particles are now achievable

large numbers needed to control the numerical shot noise and avoid overestimating the microbunching instability

The trade-off: cathodes and lasers

John Power, AAC 2010

D.H. Dowell, et al., Nucl. Instr. and Meth. A (2010) 30 doi:10.1016/j.nima.2010.03.104

Ti:Sa CPA x3 + excimer + shaping The AWA Drive Laser

NATIONAL LABORATORY

Deformable Mirror/ Microlens array

- complex (computer genetic algorithm, \$\$)
- flexible
- low loss

H. TOMIZAWA, SPring-8

Longitudinal Pulse Shaping (frequency domain)

How it works:

- 1. The stretcher generates the Fourier Transform of the input pulse
- 2. A mask is used to modulate the amplitude and phase

- IR Dazzler (Acousto-optic Programmable Dispersive filter) adopted by many photoinjector projects: LCLS, TESLA X-FEL, SPARC:
 - limited rise time in UV ~3 ps (finite bandwidth of the non-linear crystals)
- IR Dazzler + UV Stretcher
 - Fastest Rise time in UV ~1.4 ps

C. Vicario, SPARC-LS-09/001

Longitudinal Pulse Shaping (Time Domain)

A series of <u>short discs</u> can be stacked together to make a <u>long cylinder</u>

Rise time limited by the "seed", typically very short

Pulse Stacking with birefringent crystals

Flat-top for low emittance at the Argonne Wakefield Accelerator

streak camera measurement

John Power, AAC 2010

Gun dynamics → Modern guns realize nearly perfect rf and magnetic fields

Excleing seil gittofo satitoels main selenoid

- Eliminates the dipole and quadrupole rf fields (Dual RF feed and racetrack shape)
- 2. Eliminated beating between 0 and π modes during rf fill
- 3. Eliminated quadrupole fields in solenoid
- PITZ
 - 1. Coaxial coupler: a fully symmetric design of cavity and RF coupling
 - 2. a careful **laser pulse shaping** (transversely and temporally)

CW guns

Challenge for CW NCRF gun: cooling (wall losses)

VHF gun (LBNL)

Jlab (C. Hernandez-Garcia) Q>7000 Coulombs with a single GaAs wafer (at 1-8.5 mA CW; 2004-07)

Cornell (I. Bazarov) lavg=20 mA DC 300 kV

JAEA/KEK

>500 kV (a segmented insulator to mitigate field emission problem)

John Power, AAC 2010

Potentially the best of both worlds

- <u>Higher gradient</u> than HVDC (~50 MV/m)
- <u>Excellent Vacuum</u> (may allow more cathode choices)

Challenges

- <u>No magnetic field near cathode</u> (emittance compensation solenoid)
- warm (LN2 temperature) <u>normal</u>
 <u>conducting photocathode</u> in an
 SRF environment
- <u>Cathode contamination</u> onto superconducting surface

SRF

 $\frac{\textbf{Rossendorf/ELBE}}{I = 1 \ \mu A \ (\textbf{demonstrated})}$ Cs2Te in SRF gun (demonstrated)

HZB/BERLinPro gun (T. Kamps) initial: Pb/Nb cathode, lavg=15 μA final: CsK2Sb cathode , lavg=100 mA

Naval Post Graduate School Prototype 500-MHz quarter-wave cavity ^(J. Lewellen) lavg=10 mA, T=1.2 MeV, Q=10 pC-1 nC

Commissioning soon??

Evolution of beam quality

High Brightness Electron Injectors for Light Sources – (USPAS) 2007

LCLS transverse emittance

Asymmetric UV beam on the cathode \rightarrow creates a tail on the e-beam in the injector \rightarrow degrades the emittance

Profile Monitor CAMR:IN20:186 16-Apr-2009 17:15:51 Emittance Scan on OTRS: IN20:571 2 16-Apr-2009 17:02:17 RMS cut area Normalized Phase Space 1.5 E = 0.135 GeV1 150 $= 0.240 \pm 0.01 \text{ pC}$ (III) 0.5 Norm. Angle 0.5 0.58±0.00 (1.00) µm Beam Size 1.24± 0.02 (1.115 m 100 0 0 ∽ _0.5 0.28±0.01 (-0.07) 1.06 ± 0.00 (1.00) 50 -0.5 -1 χ^2 /NDF = 8.49 -1.5-1-5 -2-1 0 -4-3 -1 -2 QUAD:IN20:525:BDES (kG) Norm. Position 2 -2-1 1 0 x (mm) Profile Monitor CAMR:IN20:186 16-Apr-2009 17:21:41 Emittance Scan on OTRS: IN20:571 16-Apr-2009 17:24:01 RMS cut area Normalized Phase Space E = 0.135 GeV100 $0.251 \pm 0.01 \text{ pC}$ Beam Size (µm) 0.5 Norm. Angle 80 $0.40 \pm 0.00 (1.00) \mu m$ $1.07 \pm 0.01 (1.11) \text{ m}$ 60 0 0.37±.0.01 (-0.07) 40 $1.05 \pm 0.00 (1.00)$ = -0.5 20 γ^2 /NDF = 9.94 -2-0.5 0 -5 -3-1 0.5 -4 QUAD:IN20:525:BDES (kG) Norm. Position -2-1 0 1 2

x (mm)

(mm)

2

1.5 1

0.5

0

-1

-1.5

-2

(mm)

∽ –0.5

*Measured at 135 MeV with Quad Scan technique *courtesy P. Hering & B. White

Q=250pC

 ε_x : 0.58 \rightarrow 0.4 μ m

Pepper pot phase space measurements at AWA

-Measuring the emittance directly out of injector -Single shot measurement

Longitudinal Phase Space measurements

Longitudinal phase space measurements

Where we've been...

Photoinjectors are now in use at major user facilities: LCLS, FLASH, XFEL,

Rapid improvement in all major subsystems: Cathodes, Theory and simulation, Laser technology, Gun, Diagnostics

Looking forward...

- High average current guns beginning to turn on: {SRF guns VHF guns}
- New brightness frontiers {Laser Beam shaping, New photocathodes}

acknowledgements

I. Ben-Zvi (BNL), J. Smedley (BNL), D. Dowell (LCLS), K.-J. Kim (ANL), C.-X. Wang (ANL), J. Lewellen (NPS), T. Kamps (HZB), T. Rao (BNL), F. Stephan (PITZ), F. Sannibale (LBLN), C. Garcia-Hernandez (JLab), P. Piot (NIU), D. Mihelica (FNAL), W. Gai (AWA), M. Conde (AWA), J. Schmerge (SLAC), Z. Yusof (AWA), S. Lederer (PITZ), I. Bazarov (Cornell),

