

Nuclear Safety Research

Measuring nuclear data to reduce radioactive waste Roland Beyer, E. Birgersson, E. Grosse^a, A. R. Junghans, A. Matić, R. Nolte^b, A. Wagner, et al.

a: also Technische Universität Dresden; b: Physikalisch Technische Bundesanstalt Braunschweig

Transmutation of long-lived radio-nuclides

• Transmutation of radioactive waste = convert long-lived radio-nuclides into short-lived ones -> simplification of nuclear waste final disposal

• Without transmutation: Radio-toxicity of untreated nuclear waste from conventional nuclear reactors reaches level of original Uranium after several 100 000 years (----)

• With transmutation (*,+,o): Within less than 1000 years level of original Uranium is reached (- -)

The nELBE neutron time-of-flight facility

- Neutrons are produced by the ELBE electron beam impinging on a liquid lead target
- Repetition rate: 101-202 kHz
- Flight path: 5-7 m
- Neutron intensity: 1.5-10⁷ cm⁻² s⁻¹
- Neutron energy range: $100 \text{ keV} < E_n < 10 \text{ MeV}$ (energy range compare-able with fast reactors)
- Neutron energy resolution: $\Delta E/E < 1 \%$

- Possible sites for transmutation will be **Geration IV nuclear reactors** and Accelerator Driven Systems (ADS) \rightarrow using fast neutrons
- Fast, non moderated **neutrons can both**:
 - **1. transmute** long-live fission fragments
 - **2. fission** transuranic elements: Plutonium (and other minor actinides) will be energetically used, too. Existing quantities can be burned up.
- Fundamental processes of inelastic neutron-scattering, neutroncapture and neutron induced fission have to be well understood to design transmutation facilities.

➔

the neutron can loose a

The nELBE detector setup: - plastic scintillation detectors to detect the neutrons - an array of BaF₂ crystals for photon detection

The nELBE neutron time-of-flight facility

Transmission (n,tot)

Inelastic scattering (n,n'\gamma)

→ includes every type of interaction, that can happen

Forschungszentrum Dresden Rossendorf

Member of the Leibniz-Association • POB 51 01 19 • 01324 Dresden/Germany • http://www.fzd.de

Contact: Roland Beyer • Institute of Radiation Physics • Email: roland.beyer@fzd.de • Tel.: +49 351 260 – 3281