futureSAX Nominierten-Porträt über Prof. (em.) Jörg Steinbach vom HZDR und Jens Junker von ROTOP

Workbook Alumni in KTT

Die Broschüre liefert Praxisbeispiele zum Technologie- und Wissenstransfer am HZDR.

Partner im Technologietransfer

Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild
Vorschau-Bild

Minischeiben für Datenspeicher - Abgeschrägte Kanten ermöglichen kleinste Magnetwirbel

Pressemitteilung aus dem Helmholtz-Zentrum Dresden-Rossendorf vom 09.03.2011

Schräge Außenkanten an winzigen Magnetscheiben könnten zu einem Durchbruch in der Datenverarbeitung führen. „Dadurch entstehen Strukturen, die man anders bisher gar nicht erhalten konnte“, erklärt der Materialforscher Jeffrey McCord vom Helmholtz-Zentrum Dresden-Rossendorf. Der Doktorand Norbert Martin verwirklichte die schrägen Kanten im Laborexperiment. So entstehen Magnetwirbel mit dem Durchmesser von einem Drittel eines Tausendstel Millimeters. Diese könnten helfen, große Datenmengen auf immer kleineren Flächen zu speichern und mit möglichst wenig Energie zu bearbeiten.

In den Mini-Scheiben der Forscher ordnen sich winzige Magnete in Wirbeln an. Dabei können die einzelnen Magnete im oder gegen den Uhrzeigersinn um die Scheibe führen. Diese beiden unterschiedlichen Zustände können von der Datenverarbeitung genauso wie in herkömmlichen Computern die Schaltungen „elektrischer Strom an“ oder „aus“ genutzt werden. Im Unterschied zu herkömmlichen Arbeitsspeichern aber lassen sich die Magnetwirbel mit einer Spin genannten Eigenschaft der Elektronen und einem viel geringeren Stromverbrauch umschalten.

Im äußeren Bereich des Wirbels liegen die Magnetteilchen zweier benachbarter Kreise parallel zueinander, während in der Mitte der Scheibe der Platz für dieses parallele Liegen nicht reicht. Da jede andere Anordnung aber viel Energie kosten würde, drehen sich die Magnetteilchen in der Mitte aus der Ebene der Scheibe heraus und können so wieder energiesparend nebeneinander liegen.

Das Ganze funktioniert nur gut, wenn die einzelnen Magnetwirbel ein gutes Stück Abstand voneinander halten oder relativ groß sind. Computerhersteller und die Benutzer aber wollen möglichst kleine Datenverarbeitungseinheiten, bei denen konsequenterweise auch die Magnetwirbel klein sind und eng nebeneinander liegen. Dann aber beeinflussen sich die Magnetkreise gegenseitig, weil sich die Mini-Scheiben gegenseitig magnetisch anziehen. Für einen Arbeitsspeicher wären das kaum gute Voraussetzungen.

Norbert Martin und Jeffrey McCord lassen daher die äußeren Kanten der kleinen Magnetscheiben nicht senkrecht zur Ebene der Scheibe, sondern schräg verlaufen. Dadurch werden am Rand die winzigen Magnetteilchen ein wenig in Richtung der Schräge abgelenkt. Diese Orientierung wiederum lässt das senkrecht auf der Ebene der Scheibe entstehende Magnetfeld bevorzugt in die Richtung der Schräge entstehen. Das aber kostet viel weniger Energie als die zufällige Orientierung dieses Magnetfeldes bei senkrechten Außenkanten der Scheibe. Deshalb entstehen die Magnetwirbel bei schrägen Kanten einfacher.

Um diese herzustellen, gibt Norbert Martin winzige Glaskügelchen mit einem Durchmesser von 0,30 Tausendstel Millimeter (300 Nanometer) auf eine dünne Magnetschicht. Unter bestimmten Bedingungen liegen diese Glaskugeln alle nebeneinander und bilden winzige Sechsecke mit kleinen Lücken dazwischen. Feuern die Wissenschaftler mit Argon-Ionen auf diese Schicht, schlagen diese atomaren und elektrisch geladenen Geschosse durch die Lücken zwischen den Glaskugeln aus der darunter liegenden Magnetschicht Partikel heraus. Die Anordnung der Glaskugeln wirkt so als Schablone: Unter jeder einzelnen Glaskugel bleibt eine magnetische Scheibe stehen, während unter den Lücken die Magnetschicht verschwindet. Im Laufe des Beschusses aber splittern die Argon-Ionen auch Teile von den Glaskugeln ab, die so immer kleiner werden und am Ende der Prozedur statt 300 nur noch 260 Nanometer Durchmesser haben. Dadurch erreichen die Argon-Ionen unter den Glaskugeln auch etwas weiter innen liegende Bereiche der darunter gerade entstehenden Magnetscheiben. Weil dort der Beschuss kürzer dauert, splittert innen auch weniger Material ab. Wie von selbst entsteht so die gewünschte schräge Kante.

Die Originalarbeit ist in Advanced Functional Materials, Band 21, Seite 891 veröffentlicht (DOI: 10.1002/adfm.201002140). Die Ergebnisse entstanden zu großen Teilen am Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, wo die beiden Wissenschaftler vor ihrem Wechsel an das HZDR arbeiteten. Beide Institute kooperieren seit langem auf dem Gebiet der Magnetismus-Forschung.

(Autor: Roland Knauer)

Medienkontakt
Dr. Christine Bohnet
Pressesprecherin
Tel. +49 351 260-2450
Fax +49 351 260-2700