Prof. Dr. Joachim Wosnitza
Dresden High Magnetic Field Laboratory
Phone: +49 351 260 - 3524

Julia Blöcker
Secretary/ Administration
Phone: +49 351 260 - 3527
Fax: +49 351 260 - 13527


Publication: Nuclear Magnetic Resonance Signature of the Spin-Nematic Phase in LiCuVO4 at High Magnetic Fields
A. Orlova et al., PRL 118, 247201

Publication: Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

N. Kumar et al., Phys. Rev. B. 96, 161103

Newsletter: Read the latest news from the four leading high field labs in Europe on the EMFL website.

EMFL News 2/2017

Get more information


Research Highlights

Darstellung Spinell-Verbindung

Supersolidity in bond-frustrated MnCr2S4

The high-field phase diagram of MnCr2S4 suggests the existence of extended supersolid phases, in addition to superfluid and crystalline phases. A supersolid is an ordered solid which, due to quantum phenomena, has also superfluid properties and, under some conditions, can thus behave as a liquid without viscosity. This was found together with researchers from the Center for Electronic Correlations and Magnetism at the University of Augsburg. The work shows that magnetic systems under extreme conditions are prime candidates for the emergence of coherent quantum phenomena.

This work is published in:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P. T. Cong, Y. Skourski, Z. Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl
Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4
Sci. Adv. 3, e1601982 (2017)

Observation of a Quantum Spin Liquid (Picture: Helmholtz-Zentrum Berlin)

Observation of a Quantum Spin Liquid

A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a single crystal of the compound calcium-chromium oxide by a team of Helmholtz scientists in Berlin and Dresden. What is remarkable about this discovery is that according to conventional understanding, a quantum spin liquid should not be possible in this material. A theoretical explanation for these observations has also been developed. This work deepens our knowledge of condensed matter and might also be important for future developments in quantum information.

This work is published in:

C. Balz, B. Lake, J. Reuther, H. Luetkens, R. Schönemann, T. Herrmannsdörfer, Y. Singh, A. T. M. Nazmul Islam, E. M. Wheeler, J. A. Rodriguez-Rivera, T. Guidi, G. G. Simeoni, C. Baines, H. Ryll
Physical realization of a quantum spin liquid based on a complex frustration mechanism
Nature Physics 12 (2016), 942-950

Giant magnetoresistance in niobium phosphor

With 300 Kilometers per Second to New Electronics

The material NbP exhibits an extremely large magnetoresistance that may be suitable for use in electronic components. This was discovered by a cooperation with researchers from the Max Planck Institute for Chemical Physics of Solids and from the High Magnetic Field Laboratory at the Radbound University in the Netherlands.

This work is published in:

C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, B, Yan

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Nature Physics 11(2015), 645-649

Cosmic Jets Forming from a Young Star

Cosmic Jets of Young Stars Formed by Magnetic Fields

Astrophysical jets are counted among our Universe’s most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. Now, for the first time, an international team of researchers has successfully tested a new model that explains how magnetic fields form these emissions in young stars.

This work is published in:

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, J. Fuchs
Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
Science 346 (2014), 325-328

Schematic low-temperature phase diagram of CoCr2O4Unconventional high magnetic field phase in multiferroic material CoCr2O4

Together with colleagues from the Institute of Physics, University of Augsburg and the Institute of Applied Physics, Academy of Sciences of Moldova we have discovered a novel high-field phase in the multiferroic material CoCr2O4. This material is a possible candidate for applications.

This work is published in:

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl
Unconventional Magnetostructural Transition in CoCr2O4 at High Magnetic Fields
Phys. Rev. Lett. 110, 115502 (2013)

Ein Einzeller macht es möglich: Ganz von selbst ordnen sich auf den Hüllproteinen von Sulfolobus acidocaldarius Goldatome zu magnetischen Nano-Clustern an.Strong Paramagnetism of Gold Nanoparticles Deposited on a protein Surface Layer

By means of magnetization measurements, we have observed unexpected large magnetic moments of Au nanoclusters with an average diameter of 2.6 nm which have been deposited on an organic template. This work has been done in cooperation with colleagues from Universidad de Zaragoza, the University of Granada, and the European Synchrotron Radiation Facility (ESRF) in Grenoble.

This work is published in:

J. Bartolomé, F. Bartolomé, L. M. García, A. I. Figueroa, A. Repollés, M. J. Martínez, F. Luis, C. Magén, S. Selenska-Pobell, F. Pobell, T. Reitz, R. Schönemann, T. Herrmannsdörfer, A. Geissler, M. Merroun, F. Wilhelm and A. Rogalev
Strong paramagnetism of Gold nanoparticles deposited on a Sulfolobus acidocaldarius S-layer
Phys. Rev. Lett. 109, 247203 (2012)

Die Kristallstruktur des Materials SrMnBi2 ist ähnlich aufgebaut wie die einiger Eisen-Pniktide.Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2

In cooperation with the Pohang University of Science and Technology, Korea we have determined the band structure of SrMnBi2. We have observed interesting features including linear dispersion (analogy to graphene) and possibilities for chemical tuning.

This work is published in:

J. Park; G. Lee; F. Wolff-Fabris; Y. Y. Koh; M. J. Eom; Y. K. Kim; M. A. Farhan; Y. J. Jo; C. Kim; J. H. Shim; J. S. Kim
Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2
Phys. Rev. Lett. 107, 126402 (2011)

Here you will find the Press Release.

(a) Optical images of a typical device before top-gate deposition.Stacking-order dependent transport properties of trilayer graphene

We have observed novel transport properties in trilayer graphene. In our joint experiments with the university of Regensburg we observed the strong dependency of the emerge of an energy gap or band overlap on the mutual orientation of the graphene layers.

This work is published in:

S. H. Jhang; M. F. Craciun; S. Schmidmeier; S. Tokumitsu; S. Russo; M. Yamamoto; Y. Skourski; J. Wosnitza; S. Tarucha; J. Eroms; C. Strunk
Stacking-order dependent transport properties of trilayer graphene
Phys. Rev. B 84, 161408(R) (2011)

Crystal structure of Li2CuO2 with twoCuO2 chains per unit cell along the b-axis.Saturation field of frustrated chain cuprates: broad regions of predominant interchain coupling

Using high magnetic fields up to 70 T we have determined the strength of interchain coupling of frustrated chain cuprates. In cooperation with colleagues from the Leibniz Institute for Solid State and Materials Research (IFW) Dresden both an experimental and theoretical access to competing magnetic interactions in frustrated chain cuprates have been found.

This work is published in:

S. Nishimoto; S.-L. Drechsler; R. O. Kuzian; J. van den Brink; J. Richter; W. E. A. Lorenz; Y. Skourski; R. Klingeler; B. Büchner
Saturation Field of Frustrated Chain Cuprates: Broad Regions of Predominant Interchain Coupling
Phys. Rev. Lett. 107, 097201 (2011)

H-T phase diagram of ZnCr2S4Magnetostructural Transitions in a Frustrated Magnet at High Fields

By means of ultrasound and magnetization studies in high magnetic fields we have analyzed the magnetostructural properties of bond-frustrated ZnCr2S4 spinel. These experiments made in cooperation with colleagues from the University of Augsburg provided access to the magnetic phase diagram of ZnCr2S4.

This work is published in:

V. Tsurkan; S. Zherlitsyn; V. Felea; S. Yasin; Yu. Skourski; J. Deisenhofer; H.-A. Krug Von Nidda; P. Lemmens; J. Wosnitza; A. Loidl
Magnetostructural Transitions in a Frustrated Magnet at High Fields
Phys. Rev. Lett. 106, 247202 (2011)