

Semiconductors in high THz fields

Stephan Winnerl

Helmholtz-Zentrum Dresden-Rossendorf, Dresden - Germany

Heraeus Seminar April 10-13, 2012 Bad Honnef

Mitglied der Helmholtz-Gemeinschaft

- 1. Motivation
- 2. Population dynamics: pump-probe spectroscopy on graphene
- 3. Perturbative nonlinear interaction: sideband generation, excitons in semiconductor quantum wells

- 4. Nonperturbative regime: intraexcitonic AC Stark effect (Autler-Townes splitting)
- 5. Summary

Mitglied der Helmholtz-Gemeinschaft

different regimes of nonlinear optics:

- perturbative regime: expansion in powers of electric field E \rightarrow nonlinear susceptibilities $\chi^{(1)}$, $\chi^{(2)}$, $\chi^{(3)}$ etc.
- non-perturbative regime: finite population in excited states generated; Rabi energy $\hbar\Omega = \mu E$ larger than broadening $\gamma \rightarrow$ dressed states
- non-resonant high-field regime: electric field so strong to modify the "atomic" potential:
 - electric-field induced ionization
 - high-harmonic generation ...

Mitglied der Helmholtz-Gemeinschaft

Motivation

energies/frequencies in light-matter coupling:

- photon energy & transition energy ω also binding energy
- coupling (Rabi) energy $\hbar \Omega = \mu E$
- ponderomotive energy $U_p = \frac{1}{T} \int_0^T \left(\frac{1}{2}mv^2\right) dt = \frac{e^2 E_0^2}{4m\omega^2}$

ω

Mitglied der Helmholtz-Gemeinschaf

Free-electron laser FELBE

Tuning range FEL I $\lambda = 4 - 22 \mu m$ FEL II $\lambda = 18 - 250 \mu m$ \Rightarrow 1 - 75 THz (5 - 310 meV)

Average power:	0.1 – 20 W
Spectral width:	0.5 – 2 %
Pulse energy:	0.1 – 2 µJ
Pulse width:	1 – 25 ps
Repetition rate:	13 MHz

Only continuously pulsing FEL in Europe

See Poster FELBE facility

Mitglied der Helmholtz-Gemeinschaft

Population dynamics: carrier relaxation in graphene

Introduction graphene

Graphene: mono-atomic layer of *sp*² bonded carbon atoms

Hexagonal structure, two atoms per unit cell

Band structure with Dirac points

Images from M.I. Katsnelson, Materials Today 10, 20 (2007)

Mitglied der Helmholtz-Gemeinschaft

Why study the carrier relaxation dynamics in graphene?

- Basic interest
 - Understanding of carrier dynamics, electron-phonon interaction,...
- Applications in optoelectronics
 - Conductive transparent coatings
 - Detectors, saturable absorbers
 - Novel THz devices

Previous studies: excitation at E ≈ 1.5 eV

J.M. Dawlaty et al., APL **92**, 042116 (2008), H. Wang et al., APL **96**, 081917 (2010), D. Sun et al., PRL **104**, 136802 (2010), M. Breusing et al., PRB **83**, 153410 (2011),...

T. Mueller et al., Nature Photonics 2010

• Focus of our study: low energy excitation, E = 10 – 300 meV Optical phonons (~200 meV), Fermi energy (~10 meV)

Our graphene samples

Epitaxial growth: thermal decomposition on the carbon terminated surface of 4*H*-SiC.

Samples well characterized by Raman spectroscopy and static magneto-spectroscopy.

Mitglied der Helmholtz-Gemeinschaft Stephan Winnerl | Institute of Ion Beam Physics and Materials Research | Spectroscopy Devision

Degenerate pump-probe spectroscopy on graphene

Mitglied der Helmholtz-Gemeinschaft

Pumping above and below the optical phonon energy

Mitglied der Helmholtz-Gemeinschaft

Pumping above and below the optical phonon energy

S. Winnerl et al., Phys. Rev. Lett., 107, 237401 (2011)

Mitglied der Helmholtz-Gemeinschaf

Sign reversal of pump-probe signal: Interplay of pumpinduced transmission and absorption

Saturation of the pump-probe signal

Example for perturbative nonlinear interaction: sideband generation in semiconductor quantum wells

Resonant excitation of excitonic levels

Mitglied der Helmholtz-Gemeinschaft

Nonlinear optics in the perturbative regime

$$P_{i} = \epsilon_{0} \sum_{j} \chi_{ij}^{(1)} E_{j} + \epsilon_{0} \sum_{jk} \chi_{ijk}^{(2)} E_{j} E_{k} + \epsilon_{0} \sum_{jkl} \chi_{ijkl}^{(3)} E_{j} E_{k} E_{l} + \dots$$
$$= P_{i}^{(1)} + P_{i}^{(2)} + P_{i}^{(3)} + \dots$$

Mixing of NIR and THz waves: THz sidebands around NIR line

Mitglied der Helmholtz-Gemeinschaft

F.

Folie 16

FZD-MA1 FZD Mitarbeiter; 30.03.2012

Electrons in quantum wells, interband excitation

optical interband excitation •

Excitonic energy spectrum

• example: near-infrared absorption

 hydrogen atom like energy structure with binding energies in the THz range (1 THz = 4.1 meV)

excitons

- selection rules:
 - 2p state optically "dark"
 - intraexciton 1s-2p couples to THz

Mitglied der Helmholtz-Gemeinschaft

Sideband generation - Experiment

Mitglied der Helmholtz-Gemeinschaft

 sidebands for NIR laser resonant with hh(1s) exciton and FEL resonant with 1s-2p transition: sidebands only at temporal overlap of NIR and THz pulses

• n=+2 sideband signal dependency on THz intensity as expected from

Possible application in transfer of THz signals, optical switches, wavelength division multiplexing...

Example for nonperturbative nonlinear interaction: Intraexcitonic Autler-Townes splitting

Mitglied der Helmholtz-Gemeinschaft

Nonlinear optics experiments - AC Stark effect

 simplest system to study light-matter interaction: two levels driven by intense light

Mitglied der Helmholtz-Gemeinschaft Stephan Winnerl | Institute of Ion Beam Physics and Materials Research | Spectroscopy Devision

Nonlinear optics experiments – Autler-Townes effect

 simplest system to study light-matter interaction: two levels driven by intense light

→ mixed light-matter states or "dressed" states
 → Autler-Townes* or AC Stark effect

*S. H. Autler & C. H. Townes, *Phys. Rev.* **100**, 703 (1955)

Mitglied der Helmholtz-Gemeinschaft

Nonlinear optics experiments - AC Stark effect

 simplest system to study light-matter interaction: two levels driven by intense light

• solution for two-levels:

$$\begin{split} \hbar\omega_1' &= \hbar \left[\omega_1 - \frac{\Delta}{2} \pm \frac{1}{2}\sqrt{\Delta^2 + \Omega^2} \right] \\ \hbar\omega_2' &= \hbar \left[\omega_2 + \frac{\Delta}{2} \pm \frac{1}{2}\sqrt{\Delta^2 + \Omega^2} \right] \end{split}$$

with $\Delta = \omega \cdot \omega_{21}$ and based on the **rotating-wave approximation**, i.e. $\Omega << \omega$

*S. H. Autler & C. H. Townes, Phys. Rev. 100, 703 (1955)

dressed states related to level $|1\rangle$ $\delta_{01}^{\omega_1 + \omega_{21}}$ $= \Omega = 0.1 \omega_{21}$ $\Omega = 0.5 \omega_{21}$ $\omega_1 - \omega_{21}$ 0 ω_{21} $2\omega_{21}$ light frequency

> > Mitglied der Helmholtz-Gemeinschaft

Stephan Winnerl | Institute of Ion Beam Physics and Materials Research | Spectroscopy Devision

page 25

AC Stark effect - Experiment

• near resonance

 $\hbar\omega_{THz}$ = 10.5 meV

Mitglied der Helmholtz-Gemeinschaft

hh(1s) absorption for different THz photon energies

Splitting on resonance

- splitting increases linearly with field up to 650 kW/cm² (10 kV/cm)
- estimated splitting (from matrix element) @ 200 kW/cm², 5.4 kV/cm:
 2.4 meV compared to 3 meV measured → good agreement

Splitting on resonance

Mitglied der Helmholtz-Gemeinschaf

concer

Temperature dependence

Substantial NIR transmission change (at 200 K still threefold NIR transmission change)

→ optical modulator application with Peltier-cooling

> Poster: Martin Teich

M. Wagner et al., APL 100, 051109 (2012)

Mitglied der Helmholtz-Gemeinschaft

What happens at even higher intensities (up to 1.75 MW/cm²)

InGaAs quantum wells With narrow linewidth

Features not explained by two-level model and RWA: - relative peak intensities

- overall blueshift
- broadening of peaks

Here: extreme nonlinear optics accessible beyond rotating-wave regime, where

$$U_p \approx E_{binding} \approx h \omega_{THz} \approx \Omega$$

Mitglied der Helmholtz-Gemeinschaft

Acknowledgement

HZDR	Univ. Marburg	CNRS Grenoble	TU Berlin	
M. Wagner M. Teich D. Stehr	S. Chatterjee S. W. Koch	M. Orlita M. Potemski	T. Winzer E. Malic A. Knorr	
M. Mittendorff H. Schneider	Univ. Arizona			
M. Helm P. Michel and	H. Gibbs G. Khitrova			
ELBE Team		Thank you for yo	our attention!	
Samples:				
TU Vienna	Georgia Tech	DFG	Deutsche Forschungsgemeinschaft	
T. Roch A. M. Andrews S. Schartner	M. Sprinkle C. Berger W. A. de Hee	r	a	

G. Strasser

Mitglied der Helmholtz-Gemeinschaft

R

ΠZ

Stephan Winnerl | Institute of Ion Beam Physics and Materials Research | Spectroscopy Devision

DRESDEN concept

Motivation

energy/frequency ranges in light-matter coupling

• ponderomotive energy ~ THz photon energy

$$\frac{1}{T} \int_0^T \left(\frac{1}{2} m v^2\right) dt = \frac{e^2 E_0^2}{4m\omega^2} = U_p \sim \hbar \omega \quad \leftrightarrow$$

$$\frac{e^2 E_0^2}{m\hbar\omega^3} \sim 1$$

→ AC Stark effect, Rabi oscillations sidebands (require resonant driving)

dynamical Franz-Keldysh effect

- → conditions easily met at **THz frequencies** (1 THz = 4.1 meV) for excitons as artifical atoms with $E_{binding} \approx 10 \text{ meV}$
- even extreme nonlinear optics possible:

Rabi energy $\hbar\Omega = \mu E_{THz} \sim \hbar\omega_{THz}$

Mitglied der Helmholtz-Gemeinschaft