Kick-off meeting of DETI. 2 project, $12^{\text {th }}-14^{\text {th }}$ September 2012, Rossendorf

Synchrotron radiation

in studies of structures \& magnetism

Dr. A. Smekhova

W.C.Roentgen:

in 1895 he did his famous discovery of a shortwave ray, named X-rays, for which he received the first Nobel Prize in Physics (1901).

X-rays are actually electromagnetic waves situated between ultraviolet light and gamma rays on the wavelength scale. Their wavelengths are comparable to interatomic distances.

Although these results were remarkable, the X-ray tubes were limited: the light was emitted in all directions with no possibility of focusing it or making the rays parallel. This light was also only intense on particular wavelengths, which restricted its use, particularly in the field of spectroscopy.

The first experimental evidence of SR in laboratory:

April the 24th 1947

At the synchrotron in General Electric laboratory (USA)
by
Frank Elder,
Anatole Gurewitsch, Robert Langmuir, and Herb Pollock (PhD F. Haber)

The title "synchrotron" for the radiation is from the name of the machine, at which it was observed...

Energy losses in magnetic fields...

Letter to the Editor

P
ROMPT publication of brief reports of important discoveries in physics may be secured by addressing them to this department. The closing date for this department is the third of the month. Because of the late closing date for the section no proof can be shown to authors. The Board of Editors does not hold itself responsible for the opinions expressed by the correspondents. Communications should not in general exceed 600 words in length.

On the Maximal Energy Attainable in a Betatron

D. Imanenko and I. Pomeranchuk

Physical Institute of the Moscow State University, Moscow, and Physico-Technical Institute of the Academy of Sciences of the $U . S . S . R .$, Leningrad, U
May 18,1944

BY means of a recently constructed induction accelera-tor-betatron, Kerst succeeded in obtaining electrons up to $20 \mathrm{Mev}.{ }^{1}$ The principle of operation of the betatron is the acceleration of electrons by a tangential electric field produced by a changing magnetic flux, which is connected with the magnetic field keeping electrons on the orbit by a simple relation. In contrast to a cyclotron, whose applicability is essentially limited to the non-relativistic region on the ground of defocusing of orbits due to the change of mass at high energies, there is no such limitation for the betatron.

We may point out, however, that quite another circumstance would lead as well to the existence of a limitation for maximal energy attainable in a betatron. This is the radiation of electrons in the magnetic field. Indeed, electrons moving in a magnetic field will be accelerated and must radiate in accordance with the classical electrodynamics. One can easily see that quantum effects do not play here any important role as the dimension of the orbit is very great. As was shown by one of $u^{2}{ }^{2}$ an electron moving
in a magnetic field \mathbf{H} radiates per unit of path the energy

$$
\begin{equation*}
-(d E / d X)=2 / 3\left(e^{2} / m c^{2}\right)^{2}\left(E / m c^{2}\right)^{2}[(\mathrm{~V} / c) \mathbf{H}]^{2} \tag{1}
\end{equation*}
$$

where e is the charge, m the mass, V the velocity, and E the energy of the electron; E is assumed much greater than $m c^{2}$.

In the betatron V is normal to H and practically for the whole path equal to c. Then we have

$$
\begin{equation*}
-(d E / d X)=2 / 3\left(e^{2} / m c^{2}\right)^{2}\left(E H / m c^{2}\right)^{2} \tag{2}
\end{equation*}
$$

The limiting value of energy E_{0} is to be determined from the condition that the radiated energy (2) will be equal to energy gained by the electron in the electric field produced by magnetic flux per unit of path: ${ }^{3}$

$$
\begin{gather*}
\frac{2}{3} r_{0}{ }^{2}\left(\frac{E_{0} H}{m c^{2}}\right)^{2}=\frac{e|d \phi / d t|}{2 \pi R_{0} c}=\frac{e}{c} R_{0}|\dot{H}| \tag{3}\\
\dot{H}=d H / d t \quad r_{0}=e^{2} / m c^{2} .
\end{gather*}
$$

Here R_{0} is the radius of the orbit, ϕ is the induction flux. ${ }^{1}$ Hence:

$$
\begin{equation*}
\frac{E_{0}}{m c^{2}}=\left(\frac{3 e R_{0}}{2 r_{0}{ }^{2} c} \frac{\dot{H}}{H^{2}}\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

Taking for H and E the values now being in use we get $E_{0} \approx 5 \times 10^{8} \mathrm{ev}$, which is only five times as great as the energy which one expects to obtain in the betatron now under construction. From (4) one sees that E_{0} is inversely proportional to the magnetic field applied and proportional to the square root of energy gained in the rotation electric field per unit of path. All this requires the using of smaller H or of higher frequencies with the purpose of getting higher limiting values of E_{0}.

The radiative dissipation of energy of electrons moving in a magnetic field must be also of importance for the discussion of the focusing of the electronic beam, as the energy of particles being accelerated will grow more slowly with the growth of H if the radiation is taken into account. This latter question may deserve a separate discussion.
${ }_{2}^{1}$ D. W. Kerst, Phys. Rev. 61, 93 (1942).
${ }_{3}^{2}$ D. Pomeranchuk, J. Phys. 2, 65 (1940). 6 . 53 (1941).

D.D. Iwanenko, I.Ya. Pomeranchuk, Phys Rev 1944

Energy loss on synchrotron radiation is like:

When a charged particle is accelerated, it radiates...

ELECTROMAGNETIC RADIATION
and the mechanical reactions
ARISING FROM IT
being an adams prize essay in the UNIVERSITY OF CAMBRIDGE

In 1912 George Schott published his article, where the polarization properties and angular distribution of radiation from electrons on circular orbit are described.

Before this, in 1898, Alfred-Marie Liénard predicted that charged particles undergoing acceleration would emit energy.

La théorie de Lorentz EEclairage électrique, t. XIV, 1898).

The Scottish physicist and mathematician James Clerk Maxwell published his paper "On Physical Lines of Force" between 1861 and 1862.

$$
\begin{aligned}
& \nabla \times \vec{E}+\frac{1}{c} \frac{\delta \vec{B}}{\delta t}=0, \text { antu } \\
& \nabla \times \vec{H}-\frac{1}{c} \frac{\delta \vec{D}}{\delta t}=\frac{4 \pi}{c} \vec{J}^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \vec{B}=0 \\
& \nabla \cdot \vec{D}=4 \pi \rho
\end{aligned}
$$

When a charged particle is accelerated, it radiates...

the case of non-relativistic particles:

cyclotron radiation
the case of relativistic particles:

synchrotron radiation

Синхротронное излучение - это магнитотормозное электромагнитное излучение, испускаемое релятивистскими зараженными частицами, когда постоянное магнитное поле заставляет их двигаться по круговым орбитам

The synchrotron radiation in nature:

The supernova was observed by ancient astronomers

- Relativistic electrons passing through the magnetic fields of the nebula, give rise to Synchrotron radiation
> This is confirmed by the polarization properties of radiation from the Crab Nebula

Broad Spectrum (which covers from microwaves to hard X-rays): the users can select the wavelength required for their experiment and tune it with a high accuracy before: only several characteristic wavelengths in X-ray tubes
> High Flux: high intensity of photon beam allows rapid experiments or use of weakly scattering crystals before: low intensities

- High Brilliance: highly collimated photon beam generated by a small divergence and small size source (spatial coherence)
before: scattering in 4π solid angle
- High Stability: submicron source stability
- Polarization: both linear and circular (up to 100\%)
before: non-
polarized radiation
$>$ Pulsed Time Structure: pulsed length down to tens of picoseconds $\left[10^{-12} \mathrm{c}\right]$ allows the resolution of process on the same time scale.
before: no any time

How it is possible to produce SR?

[ESRF]

High vacuum: $\mathbf{1 0}^{-9}$ Torr !!!

Undulators

III generation

Small deviation; Coherent radiation from each period; "Narrow" spectra; $\mathrm{I}_{\text {undulator }} \sim \mathrm{N}^{2}$

Synchrotrons in the world:

Synchrotrons in the world:

Asia-Oceania: 26, Europe: 25, US: 18 , Russia: $2 \div 4$
The wind Syichrotron Community

The three largest and most powefulu synchroforons:

ESRF, France

6Gev, 844m
since 1994

APS, USA

7Gev, 1436m
since 1996

Spring8, Japan

8Gev, 1104m
since 1997

Methods, that are exploited the X-rays from synchrotrons:

XFray spectrococopy

X-ray diffraction

crystal structure

Visulatiation with Xrays

X-ray microscopy
1.X-ray spectroscopy
$>$ Absorption spectroscopy XAFS: XANES + EXAFS
\Rightarrow Polarization-depended absorption spectroscopy XMCD, XLD, XMLD, XND, etc...
$>$ Emission spectroscopy X-ray fluorescence analysis

Photoelectron spectroscopy

- Inelastic scattering of X-Rays Compton profiles, phonon structure, RIXS
$>\gamma$-resonance spectroscopy NFS
$>$ X-ray resonance magnetic scattering XRMR

2.X-ray diffraction

$>$ Monocrystal diffraction

Laue diffraction
Protein crystallography (Multi-wavelength Anomalous Dispersion metho

Powder diffraction

Diffuse scattering
(Roentgen-radiometry analysis)
$>$ X-ray small angle scattering, X-ray wide angle scattering

X-ray reflectometry

3.) Visualization with Xrays

> X-ray microscopy
Scanning microscopy Spectro-microscopy (PEEM, etc.)
$>$ Tomography
$>$ Diffraction topography (defectoscopy)

Methods of medical diagnostics Fluorography, differentional angiography,

 mammography, etc...
$>$ Methods of coherent visualization
Coherent diffraction, holography with X-rays, photon-correlation spectroscopy

Why all of this is possible?

X-ray absorption:

$$
\mu_{m}=\frac{\mu}{\rho}\left[\mathrm{cm}^{2} / \Gamma\right],
$$

X-ray refraction:

Visible light: $n>1$
X-rays: $n \leq 1, n=1+X$,

total internal reflection
total external reflection

Xray suscepibibiliy near the absorpion edges:

$$
x=\operatorname{Re}(x)+i^{*} \operatorname{lm}(x),
$$

Near absorption edges the susceptibility X isn't more a scalar: it becomes a tensor!

The possibility to observe magneto-optical properties!!!

Recapitulation of SR min feadures:

> wide spectra + the possibility to tune energies across the absorption edges of every element with high accuracy \rightarrow element-selective studies of complex systems

- high brilliance \rightarrow studies of weak effects or studies diluted samples
> high collimation \rightarrow small beam size + possibilities of nanofocusing
$>$ polarization (linear or circular) \rightarrow access to magnetism and anisotropy
- pulsed time structure \rightarrow studies of dynamical processes

Absoppion elgess:

K -edge corresponds to transitions from 1s core level to unoccupied 4d states

$\mathbf{L}_{2,3}$-edges correspond to transitions from $2 p_{1 / 2}$ and $2 p_{3 / 2}$ core levels to unoccupied nd states near Fermi energy in valence band

Spectroscopy:

- absorption spectroscopy:

XAS \equiv XANES + EXAFS

- polarization-dependent absorption spectroscopy:

XMCD $=$ XANES ${ }^{(+)}-$XANES $^{(-) ;}$
XLD $=$ XANES ${ }^{(I I)}-$ XANES $\left.{ }^{(}{ }^{(}\right)$
$>$ magnetic reffectivity from periodic
multilayers \& X-ray diffraction-

X-ray absorption spectra:

$$
\mathbf{I}_{\text {trans }}=\mathbf{I}_{\mathbf{0}} \mathbf{e}^{-\mu \mathrm{d}}
$$

$$
\boldsymbol{\mu}(E) \propto I_{f} / I_{0}
$$

XANES

X-ray Absorption Near Edge Structure

Studies of electronic structures:
$>$ Valence (oxidation) states;
$>$ Local enviroment (+ crystal structure)

EXAFS

Extended X-ray Absorption Fine Structure
distances between atoms in the system

Why we have such oscillations?

constructive interference absorption maximum

XANES

Multuple scattering on neighbor atoms; Large free lengh
destructive interference absorption minimum

EXAFS

Singlele scattering on neighbor atoms; Small free lengh

Theoretical descripioion:

Fermi's Golden Rule in one-electron approximation:

$$
\left.\mu(E) \propto \sum_{f}^{\mathbf{E}_{f}>\mathbf{E}_{F}}|\langle f| T| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-E\right)
$$

$|i\rangle$ is an initial deep core state (e.g. 1s),
$\langle f|$ is an unoccupied state in the presence of a core hole.
T is the electron transition operator.
For deep-core excitations, the dipole approximation is valid.

None of the calculation methods can give multiple-electron effects. The shift due to core-hole involves many assumptions.

Good x-ray absorption theory is still a challenge.

K edges

XANES: Qualitative analysis

Dipole selection rule (only in central-symmetric case!): $\Delta I= \pm 1$ Consider K-absorption for transition metals:

- initial state $=1 s(l=0)$
- states near E_{F} are formed by nd electrons ($l=2$)

central-symmetry	non-central symmetry
no any peaks	There is a pre-edge peak

K edges

XANES: Qualitative analysis

TiO2

TiK Kedge
 XANES: Qualitative analysis

XANES spectra recorded at the Ti K edge for TiO2:V(3\%) thin film [experiment has been done at the Kurchatov Institut (Russia)]

valence states:
 XANES: Qualitative analysis

Why does it shift?
$>$ Electrostatic: it is harder for the photoelectron to leave an oxidized atom
$>$ Shorter bonds at higher oxidation states \Rightarrow Fermi energy is higher

Environ. Sci. Technol., 41(21): 7417-7423 (2007)

A. Smekhova et al. Solid State Phenomena, 190, pp.421-424 (2012)

White line intensity

XANES: Qualitative analysis

L_{3} absorption edges for $5 d$ metals:
(transition $2 p_{3 / 2} \rightarrow 5 d$)

[^0]J. Phys. Chem. 96 (1992) 4960

White line shape

XANES: Qualitative analysis

EsRF

Rh@Fe and Fe@Rh

A. Smekhova et al., J. of Physics.: Conference Series, 200, p. 072091 (2010)

EXAFS: Data analysis

$$
\mu=\mu_{0}(1+\chi),
$$

photoelectron wave number $\left(\AA^{-1}\right)$

Unpleasant things:
FT positions are shifted towards small distances.
 More unpleasant: Each FT peak has its own shift.

San or es:

- General requirements
- uniform on a scale of the absorption length of the material (typ. $\sim 10 \mu \mathrm{~m}$)
- Shape, aggregative state
- Solids: powders, foils etc.; single crystals and thin foils can utilize polarization properties of SR.
- Liquids
- Gases
- Concentrations
- for transmission: typ. >1 wt\%
- for fluorescence: typ. >100 ppm

TiO2 : V (?\%)

When you have a complex object...

XAS for magnetism:

Zeitschrift fur Physik, 39, 886-900 (1926)

Zur Frage nach der magnetischen Drehung der Polarisationsebene primärer Röntgenstrahlen.

Von W. Kartschagin und E. Tschetwerikowa in Moskan.
Mit 3 Abbildungen. (Eingegangen am 16. September 1926.)
In der vorliegenden Arbeit wurde eine Wirkung des magnetischen Feldes auf die Polarisationsebene der Röntgenstrahlen bei ihrem Durchgang durch Paraffin und Eisen untersucht. Auf Grand der Resultate der Arbeit und der Versuche bei einigen Annahmen. die Folgerungen der Elektronentheorie der Dispersion auf die zu behandelnde Frage anzuwenden, ziehen wir folgenden Schluß: Beim Durchgang primärer Röntgenstrahlen durch Paraffin kann die magnetische Drehung der Polarisationsebene wegen der Kleinheit des Drehungswinkels nicht beobachtet werden. Beim Durchgang der primären Strahlen durch Eisen kann man eine Drehung der Polarisationsebene erwarten, aber eine genauc Messung des Drehungswinkels ist sehir schwierig.
In this work, an effect of a magnetic field on plane polarised X-rays scattered by Paraffin and Iron is studied. Far from the absorption edge the rotation can not be observed due the weakness of the rotation

Fig. 3. angle. Whereas at an absorption edge of ferromagnetic materials one can expect to measure the magnetic rotation eventhough precise measurements are very difficult.

The first serious theoretical approach to the problem

Calculation of the $M_{\mathbf{2 3}}$ magneto-optical absorption spectrum of ferromagnetic nickel

J. L. Erskine*

Department of Physics, University of Illinois, Urbana, Illinois 61801
E. A. Stern ${ }^{\dagger}$

Department of Physics, University of Washington, Seattle, Washington 98195
(Received 28 April 1975)
The M_{23} magneto-optical absorption spectrum of ferromagnetic nickel is calculated using an approach similar to the component state-density method that has been successfully used in obtaining valence-band emission and absorption x-ray spectra of metals. The M_{23} magneto-optical effects result predominantly from spin-orbit splitting of the $3 p$ core state in conjunction with the final d-state spin polarization. The calculated spectrum exhibits features that are directly related to electronic structure parameters including the $3 p$ core spin-orbit splitting, and the unfilled d-band spin polarization. Temperature variations in the magneto-optical structure can be used to determine separately the exchange-splitting variation and spin-wave excitation contributions to the decrease in the magnetization. Experimental verification of these predictions should provide insight into the applicability of the Stoner model to ferromagnetic nickel and may be helpful in resolving some of the apparently conflicting results of other experimental probes of the spin polarization near the Fermi level in nickel.

XAS for magnetism: XMCD technique

First experimental evidence

XMCD is a major discovery in magnetism during the last 20 years

Volume 58, Number 7

PHYSICAL REVIEW LETTERS
16 February 1987

Absorption of Circularly Polarized X Rays in Iron

G. Schütz, W. Wagner, W. Wilhelm, and P. Kienle ${ }^{(\mathrm{a})}$

Physik Department, Technische Universität München, D-8046 Garching, West Germany

R. Zeller

Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5175 Jülich, West Germany and
R. Frahm and G. Materlik

Hamburger Synchrotronstrahlungslabor am Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, West Germany (Received 22 September 1986)

The transmission of synchrotron radiation through magnetized iron at energies above the K-absorption edge shows relative differences for right and left circular polarization of several times 10^{-4}. The ob-
served spin dependence of the near-edge photoabsorption is proportional to the difference of the spin densities of the unoccupied bands. In the extended absorption region up to 200 eV above the Fermi level a small spin-dependent absorption is observed and thus is expected to give information on the magnetic neighborhood of the absorbing atom.
PACS numbers: $75.50 . \mathrm{Bb}, 75.10 . \mathrm{Lp}, 75.25 .+\mathrm{z}, 78.70 . \mathrm{Dm}$

FIG. 1. (a) Absorption I_{0} / I of x rays as function of the energy E above the K edge of iron and (b) the difference of the transmission $\Delta I / I$ of x rays circularly polarized in and opposite to the direction of the spin of the magnetized d electrons.

XMCD is a new approach to study ferromagnetic system

RAPID COMMINICATIONS

PHYSICAL REVIEW B VOLUME 42, NUMBER 11 15 OCTOBER 1990-I

Rapid Communications

[^1]Soft-x-ray magnetic circular dichroism at the $L_{2,3}$ edges of nickel
C. T. Chen, F. Sette, Y. Ma, and S. Modesti AT\&T Bell Laboratories, Murray Hill, New Jersey 07974 (Received 2 March 1990)
Magnetic circular dichroism (MCD) has been observed at the $L_{2,3}$ absorption edges of ferromagnetic nickel by use of circular-polarized soft-x-ray synchrotron radiation. The MCD intensity ratio between the L_{2} and the L_{3} edges is found to differ appreciably from that predicted by a simple exchange-split-valence-band model. Fine MCD features, imperceptible in the absorption spectra, are also observed and a tentative interpretation is given. This work, demonstrating the feasibility of MCD measurements in the soft-x-ray region, provides a new approach to study $3 d$ and $4 f$ ferromagnetic systems with their respective dipole-permitted $2 p \rightarrow 3 d$ and $3 d \rightarrow 4 f$ transitions.

XMCD (X-Ray magnetic circular dichroism) technique:

Circular polarizations
(left \& right) from synchrotron

XMCD is the difference in absorption of right and left circular polarizations, when the wave vector of incidence radiation is collinear to sample magnetization, and allows one
to determine directly from the experimental L2.3 absorption spectra the amplitude and the direction of the spin and orbital contributions into the total magnetic moment of atoms by means of Sum Rules

Sum Rules analysis:

B.T. Thole, P. Carra, F. Sette, G. van der Laan; PRL68, 1943 (1992) P. Carra, B.T. Thole, M.Altarelly, X.Wang; PRL70, 694 (1993)
$\mathrm{L}_{2,3}$-edges correspond to transitions from $2 p_{1 / 2}$ and $2 p_{3 / 2}$ core levels to unoccupied nd states near Fermi energy in valence band nd

L-edges!!!

$$
\begin{aligned}
& M_{L}=-\frac{2}{3} C\left(\Delta L_{3}+\Delta L_{2}\right) \\
& \mathrm{Meff}_{\mathrm{S}}^{\mathrm{e}}=-\mathrm{C}\left(\Delta \mathrm{~L}_{3}-\mathbf{2 \Delta L _ { 2 }}\right) \underset{\mathbf{Z}}{\stackrel{\prime \prime}{\prime \prime} 7<\mathrm{T}_{\mathbf{Z}}^{\mathrm{d}}>" \cdots} \\
& \mathbf{C} \propto \frac{\mathbf{n}_{h}}{\mathbf{A}_{\mathbf{L}_{3}}+\mathbf{A}_{\mathbf{L}_{2}}}{ }^{\prime \prime}=\approx====" \prime \prime
\end{aligned}
$$

$\Delta \mathrm{L} \quad \sim$ difference in the integrated intensity for right and left polarisations
~ integrated intensity of transitions
in dipolar approximation $\Delta \mathrm{l}= \pm 1 ; \Delta \mathrm{s}=0 ; \Delta \mathrm{m}_{\mathrm{l}}= \pm 1 ; \Delta \mathrm{m}_{\mathrm{s}}=0$
Spin magnetic dipole operator, which is associated with an asphericity of the spin density distribution

Tz is important for low-dimensional and anisotropic samples (up to 30%)
$\mathbf{n}_{\mathrm{h}} \quad$ - number of $4 \boldsymbol{d}$ - holes

4p
\mathbf{K}-edge corresponds to transitions from 1s core level
K to unoccupied nd states
\rightarrow probe only orbital magnetism of $n p$ states

I sensitivity to the local magnetic environment !
only qualitative analysis
is possible

Sum Rules analysis:

K- edge

XMCD:

XMCD is the direct probe of unoccupied spin up and spin-down density of states

Macroscopic Susceptibility Measurements

- Diamagnetic contribution
- All electrons (s, p and d) contribute
- Contribution of magnetic impurities

XMCD

Proposed by H. Ebert et alh, Symchrotron and Magmetism, Lectures Notes in Physics (2001)

- to measure mainly magnetism of d states
- the separation of the spin and orbital susceptibilities
- A priori is notsensitive to diamagnetism

Undulator

Element and Orbital Selectivity of XMCD:

Induced
ESRF
magnetic moments:
$\mathrm{Ni}_{2} / \mathrm{Pt}_{2}$ multilayer
$\mathrm{T} \sim 10 \mathrm{~K}$
$\mathrm{H}= \pm 5 \mathrm{~T}$

- Ni magnetic moments:

$$
\begin{gathered}
\mu_{\mathrm{S}}^{3 \mathrm{~d}}=0.35 \mu_{\mathrm{B}} \text { /atom } \\
\mu_{\mathrm{L}}^{3 \mathrm{~d}}=0.038 \mu_{\mathrm{B}} / \text { atom } \\
\mu_{\mathrm{L}}^{3 \mathrm{~d}} / \mu_{\mathrm{S}}^{3 \mathrm{~d}}=0.11
\end{gathered}
$$

- Pt induced magnetic moments:

$$
\begin{gathered}
\mu_{S}{ }^{5 d}=0.14 \mu_{\mathrm{B}} / \text { atom } \\
\mu_{\mathrm{L}}^{55}=0.03 \mu_{\mathrm{B}} / \text { atom } \\
\mu_{\mathrm{L}}^{5 d /} \mu_{\mathrm{S}}{ }^{\mathrm{Pt}}=0.21
\end{gathered}
$$

hybridization the $\operatorname{Pt}(5 d)-\mathrm{Ni}(3 d)$
F. Wilhelm et al., Phys. Rev. Lett., 85, 413 (2000)

Induced Orbital and Spin moments of W:

$$
\begin{aligned}
& M_{\text {spin }}{ }^{W}-5 d=-0.70 \mu_{\mathrm{B}} / \text { /atom } \\
& M_{\text {orbital }} \mathrm{W}-5 d=+0.03 \mu_{\mathrm{B}} / \text { atom } \\
& M_{\text {tot }}{ }^{W} 5 \mathrm{sd}=-0.67 \mu_{\mathrm{B}} / \text { /atom } \\
& M_{\text {orbital }} \mathrm{W}-5 d / M_{\text {spin }}{ }^{W}-5 d=-0.043
\end{aligned}
$$

Dimensionality might break even the well-established atomic rules (third Hund's rule)

Sensitivity of the XMCD technique:

Photon energy (eV)
$\left.\left\langle S_{z}\right\rangle=0.0353(5) m_{B}<L_{z}\right\rangle=0.0054(5) m_{B}$ (per Au atom)
(to compare with $4.15 \mathrm{~m}_{\mathrm{B}}$ per Mn atom)

XMCD \& size-effects:

Co atoms on Pt

XMCD at K-edge:

- probe of ordering

Energy, eV
$(\text { FePt })_{100-\mathrm{x}}\left(\mathrm{SiO}_{2}\right)_{\mathrm{x}}$ granular thin films:

XMCD at LЗedge for DMS:

XANES (left scale) and XMCD (right scale) spectra and corresponded element-selective hysteresis loop (inset) recorded at the Co L3 edge for TiO2:Co(8\%) thin film [experiment has been done at the ESRF (France)]

XLD (X-Ray linear dichroism)

XLD is the difference in absorption of two orthogonal polarizations

XLD (X-Ray linear dichroism) :

Element specific investigations of the structural and magnetic
APPLIED PHYSICS LETTERS 90, 252515 (2007) properties of Gd:GaN
A. Ney, ${ }^{\text {a }}$

Element-selective techniques like XANES \& XMCD could help us to study DMS...

Thanks a lot for your attention!

[^0]: G. Meitzner, G. H. Via, F. W. Lytle, and J. H. Sinfelt,

[^1]: Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treatment both in the editorial office and in production. A Rapid Communication in Physical Review B should be no longer than 4 printed pages and must be accompanied by an abstract. Page proofs are sent to authors.

