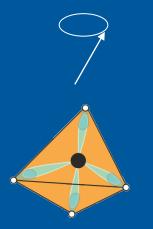


Tool to investigate Paramagnets

Jürgen Lindner Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf

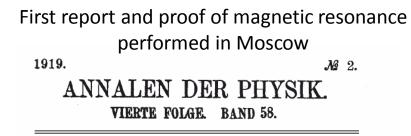


Electron Spin Resonance (ESR) – Basic Idea, Theory, Detection

ESR of ions in crystal - crystal fields

Ferromagnetic Resonance (FMR)

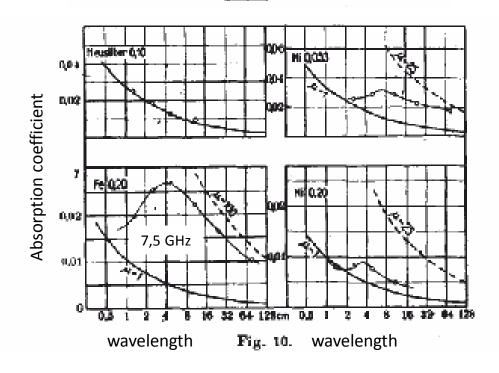
Magnetic Resonance - a Russian Discovery



1. Über die Absorption elektromagnetischer Wellen an nwei parallelen Drähten; von W. Arkadiew. Key paper:

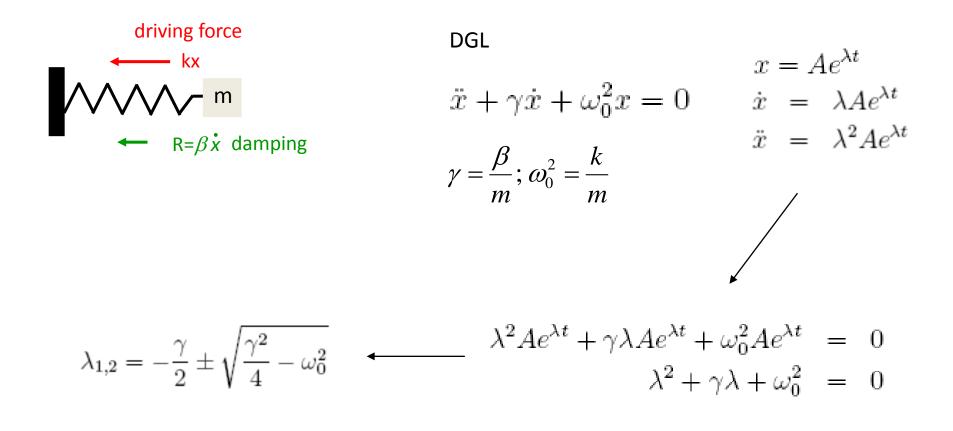
Quantitative theory: Landau-Lifshitz-equation

L. Landau, E. Lifshitz, Physik. Zeits. Sowjetunion 8, 153 (1935)



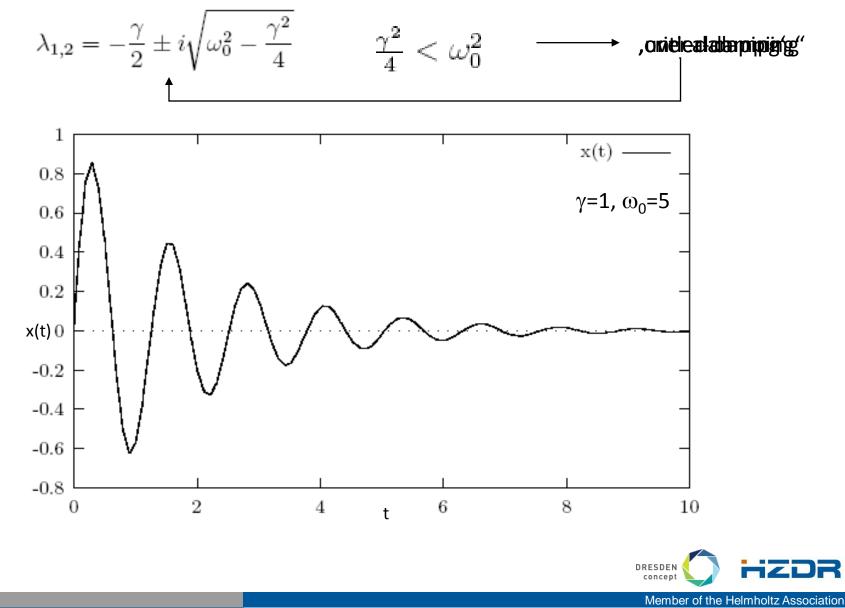
Member of the Helmholtz Association

Recapitulation: Damped harmonic oscillator I



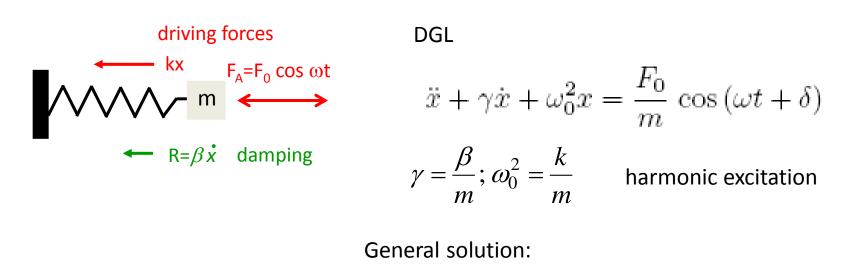
Member of the Helmholtz Association

Recapitulation: Damped harmonic oscillator II



Page 4

Recapitulation: Externally excited damped harmonic oscillator I



$$x = x_{\rm H} + x_{\rm S}$$

 $\ddot{z} + \gamma \dot{z} + \omega_0^2 z = \frac{F_0}{m} e^{i(\omega t + \delta)}$ Real part of solution of komplex DGL is solution of original DGL Solution of homogeneous DGL Plus particular solution of inhomogeneous DGL \downarrow $F_{\rm A} = F_0(\cos(\omega t + \delta) + i\sin(\omega t + \delta)) = F_0 e^{i(\omega t + \delta)}$

Member of the Helmholtz Association

Recapitulation: Externally excited damped harmonic oscillator II

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = \frac{F_0}{m} e^{i(\omega t + \delta)} \rightarrow F' = \frac{F_0}{m} e^{i\delta} \rightarrow \ddot{z} + \gamma \dot{z} + \omega_0^2 z = F' e^{i\omega t}$$

$$z_{\rm S} = A' e^{i\omega t}$$

$$z_{\rm S} = A' e^{i\omega t}$$

$$\dot{z}_{\rm S} = i\omega A' e^{i\omega t}$$

$$\dot{z}_{\rm S} = -\omega^2 A' e^{i\omega t}$$

Page 6

Member of the Helmholtz Association

Recapitulation: Externally excited damped harmonic oscillator III



Member of the Helmholtz Association

Recapitulation: Externally excited damped harmonic oscillator IV

 $x = x_{\rm H} + x_{\rm S}$

stationary solution

Page 8

$$z_{\rm S} = A'e^{i\omega t} = \chi e^{i\delta}e^{i\omega t} = |\chi|e^{i\varphi}e^{i\delta}e^{i\omega t} = |\chi|e^{i(\omega t + \varphi + \delta)}$$

$$z_{\rm S} = \frac{\frac{F_0}{m}}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}} e^{i(\omega t + \arctan\left(\frac{-\omega\gamma}{\omega_0^2 - \omega^2}\right) + \delta)}$$

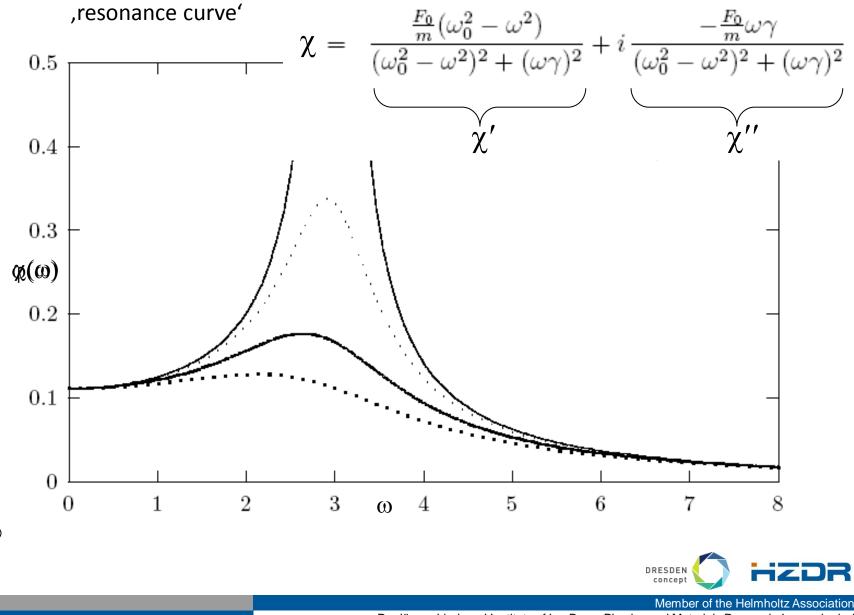
$$|x_{\rm S} = \operatorname{Re}[z_{\rm S}]$$

$$= \frac{\frac{F_0}{m}}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\omega\gamma)^2}} \cos\left(\omega t + \arctan\left(\frac{-\omega\gamma}{\omega_0^2 - \omega^2}\right) + \delta\right)$$

oscillation with driving frequency plus phase shift that changes sign depending on whether $\omega < \omega_0 \text{ or } > \omega_0$

Member of the Helmholtz Association

Recapitulation: Externally excited damped harmonic oscillator V

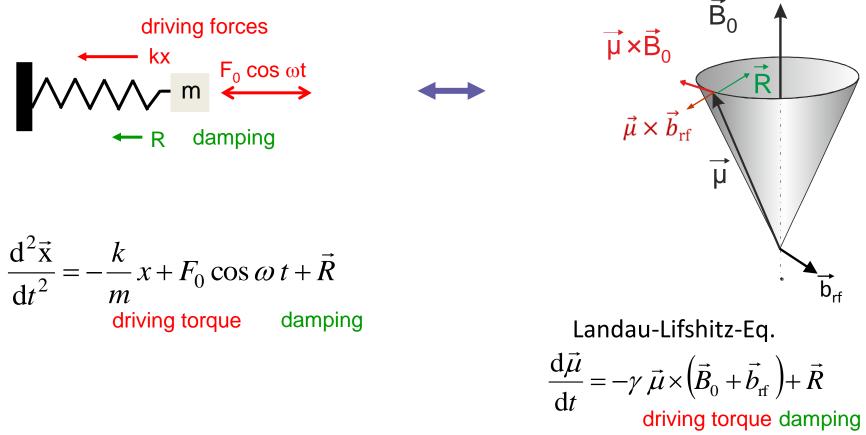


Page 9

Comparison: Mechanical Oscillator vs. Electron Spin Resonance (ESR)

Mechanical system

Magnetic moment



Member of the Helmholtz Association

Spin in magnetic field – Quantum mechanical treatment I

Classical physics (spin $\frac{\hbar}{2}$ leads to magnetic moment $\mu_{\rm B}$)

$$\vec{\mu} = -\gamma \, \vec{s} \qquad \qquad \gamma = g_{\rm e} \, \frac{\mu_{\rm B}}{\hbar}$$

magnetic moment

electron spin gyromagnetic ratio

Energy of magnetic moment in external magnetic field:

Pauli spin matrices

 $E = -\vec{\mu} \cdot \vec{B}_0$ Quantum mechanics Schrödinger Equation

$$\gamma \vec{B}_0 \cdot \hat{\mathbf{s}} \varphi_i = \gamma \left(B_x \hat{\mathbf{s}}_x + B_y \hat{\mathbf{s}}_y + B_z \hat{\mathbf{s}}_z \right) \varphi_i = E \varphi_i$$

$$\hat{s}_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\hat{s}_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\hat{s}_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Member of the Helmholtz Association

Spin in magnetic field – Quantum mechanical treatment II

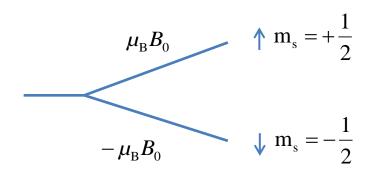
$$\gamma \vec{B}_0 \cdot \hat{\mathbf{s}} \,\varphi_i = \gamma \left(B_x \hat{\mathbf{s}}_x + B_y \hat{\mathbf{s}}_y + B_z \hat{\mathbf{s}}_z \right) \varphi_i = E \varphi_i$$

field along z-direction $(0,0,B_0)$

$$\gamma B_0 \hat{s}_z \varphi_i = E \varphi_i = \pm g_e \frac{\mu_B}{\hbar} B_0 \frac{\hbar}{2} \varphi_i = \pm \mu_B B_0 \varphi_i$$

$$\longrightarrow E = \pm \mu_{\rm B} B_0 \left(+ \operatorname{für} \varphi_{\uparrow}, - \operatorname{für} \varphi_{\downarrow} \right)$$

expectation values of Hamilton-Operator



$$\hat{s}_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\varphi_{\uparrow} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \varphi_{\downarrow} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\hat{s}_{z} \varphi_{i} = \hbar m_{s} \varphi_{i}$$
$$m_{s} = \pm 1/2$$

Member of the Helmholtz Association

Spin in magnetic field – Quantum mechanical treatment III -

time dependent behavior

Time dependent Schrödinger Equation

field along z-direction $(0,0,B_0)$

$$\gamma B_0 \hat{s}_z \ \varphi = i\hbar \frac{d\varphi}{dt}$$

solution:

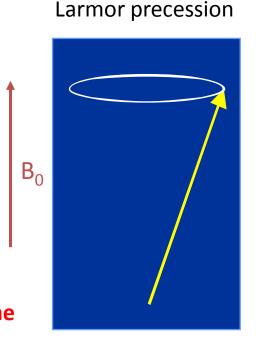
$$\varphi(t) = a \mathrm{e}^{-i\omega_0 t/2} \varphi_{\uparrow} + b \mathrm{e}^{i\omega_0 t/2} \varphi_{\downarrow} = \alpha \varphi_{\uparrow} + \beta \varphi_{\downarrow}$$

with $\omega_0 = \gamma B_0$

Interpretation (expectation value of \hat{s}_i , *i.e.* $\langle \phi^* \hat{s}_i \phi \rangle$):

$$\hat{\mathbf{s}}_{z} \varphi = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} \alpha \\ -\beta \end{pmatrix}$$
$$< \hat{\mathbf{s}}_{z} >= \varphi^{*} \hat{\mathbf{s}}_{z} \varphi = \begin{pmatrix} \alpha^{*} \\ \beta^{*} \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} \alpha \\ -\beta \end{pmatrix} = \frac{\hbar}{2} \left(|\alpha|^{2} - |\beta|^{2} \right) = \frac{\hbar}{2} \left(a^{2} - b^{2} \right)$$
$$\xrightarrow{\text{constant in time}}$$

. .



 $\langle \hat{s}_x \rangle = ab\hbar \cos \omega_0 t$ $\langle \hat{s}_y \rangle = ab\hbar \sin \omega_0 t$ rotating with ω_0 in x/y-plane

Member of the Helmholtz Association

Spin in magnetic field – Classical treatment

Landau-Lifshitz-Eq.
$$\frac{d\vec{\mu}}{dt} = -\gamma \vec{\mu} \times \vec{B}_0$$

Time dep. Torque
of angular in external
momentum magnetic
field

Ansatz(harmonic oscillator):

Page '

$$\vec{\mu} = \begin{pmatrix} \mu_x \vec{e}_x + \mu_y \vec{e}_y + \mu_z \vec{e}_z \end{pmatrix} e^{i\omega t} + |\mu| \vec{e}_z \text{ und } \vec{B}_0 = B_0 \vec{e}_z$$
time dep. constant
$$i\omega\mu_x = -\gamma B_0\mu_y$$

$$\Rightarrow \quad i\omega\mu_y = \gamma B_0\mu_x$$

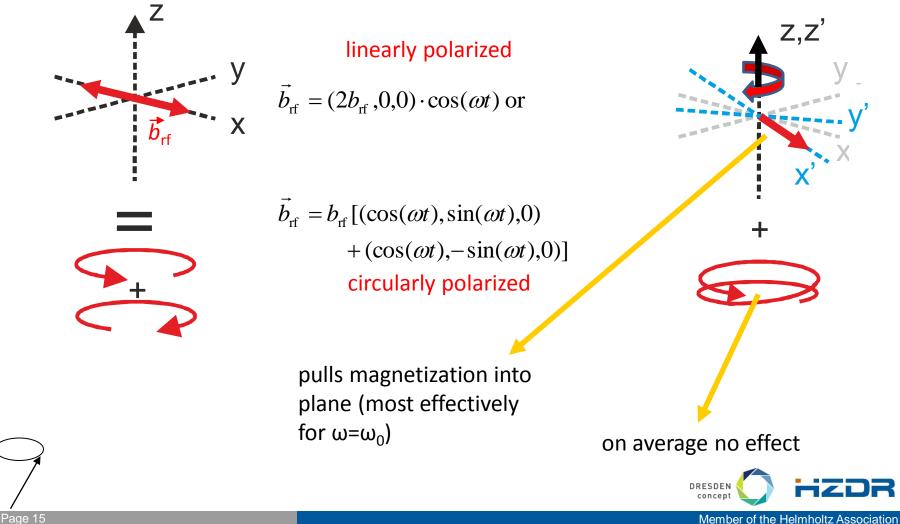
$$i\omega\mu_z = 0$$

$$\Rightarrow \quad \mu(t) = (\mu_x \vec{e}_x - i\mu_x \vec{e}_y) e^{i\omega_0 t} + |\mu| \vec{e}_z$$
with $\omega_0 = \gamma B_0$ (Larmor frequency)

Influence of rf-field on magnetization precession I

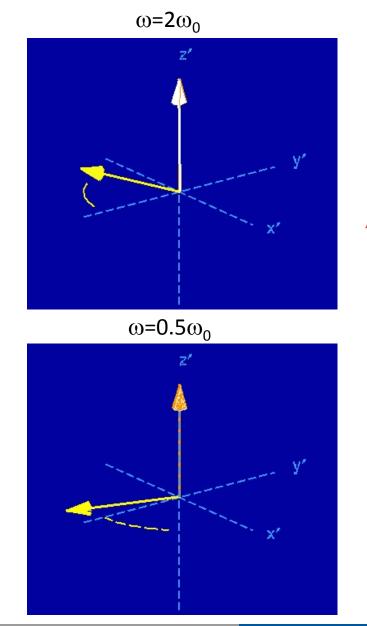
Laboratory system

system that rotates with rf-field

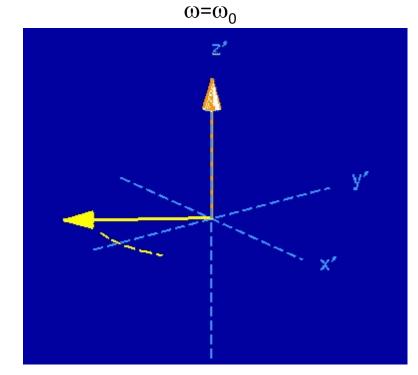


Influence of rf-field on magnetization precession II

B_o



Page 16



rf-field opens precession cone for $\omega{=}\omega_{0}$

Member of the Helmholtz Association

Conventional ESR detection III

$$\widetilde{m} = \widetilde{\chi} \cdot \widetilde{h}$$

$$= (\chi' - i\chi'') \cdot \widetilde{h}$$

$$\widetilde{h}(t) = ae^{i\omega t} = a(\cos \omega t + i\sin \omega t) \longrightarrow m(t) = \operatorname{Re}(\widetilde{m}(t)) = a\left[\chi' \cos \omega t + \chi'' \sin \omega t\right]$$

$$\operatorname{Re}(\widetilde{h}(t)) = a\cos \omega t$$

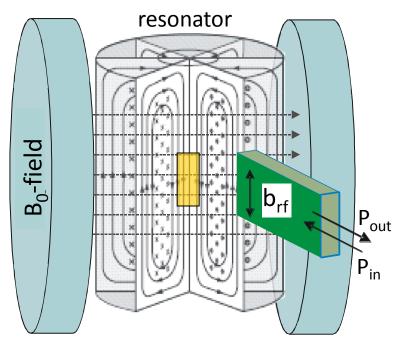
$$P(t) = \mu_0 h \cdot \frac{\mathrm{d}m}{\mathrm{d}t} = \mu_0 a^2 \omega \cos \omega t \left(-\chi' \sin \omega t + \chi'' \cos \omega t\right)$$

$$\begin{split} \langle P \rangle_T &= \frac{\langle w \rangle_T}{T} = \frac{\mu_0 \omega}{2\pi} \int h \cdot \frac{\mathrm{d}m}{\mathrm{d}t} \\ &= \frac{\mu_0 \omega}{2\pi} \int_0^{2\pi/\omega} a^2 \omega \chi'' \cos^2 \omega t \mathrm{d}t \\ &= \frac{\mu_0 \omega^2}{2\pi} a^2 \chi'' \left[\frac{1}{2} t + \frac{1}{4\omega} \sin 2\omega t \right]_0^{2\pi/\omega} = \frac{1}{2} \mu_0 \omega \chi'' a^2 \end{split}$$

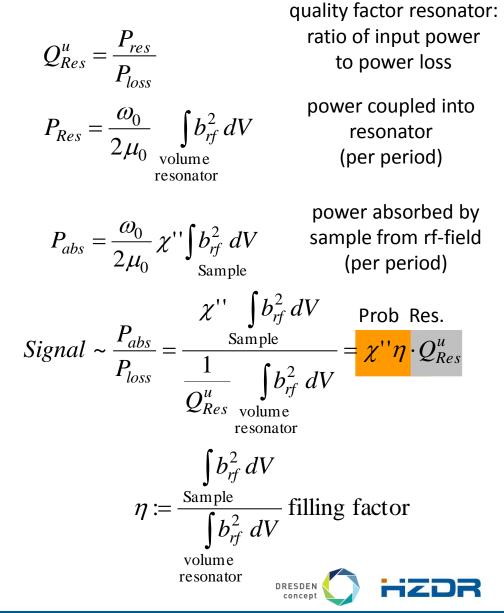
Page 17

Member of the Helmholtz Association

Experimental detection of ESR (conventional method)

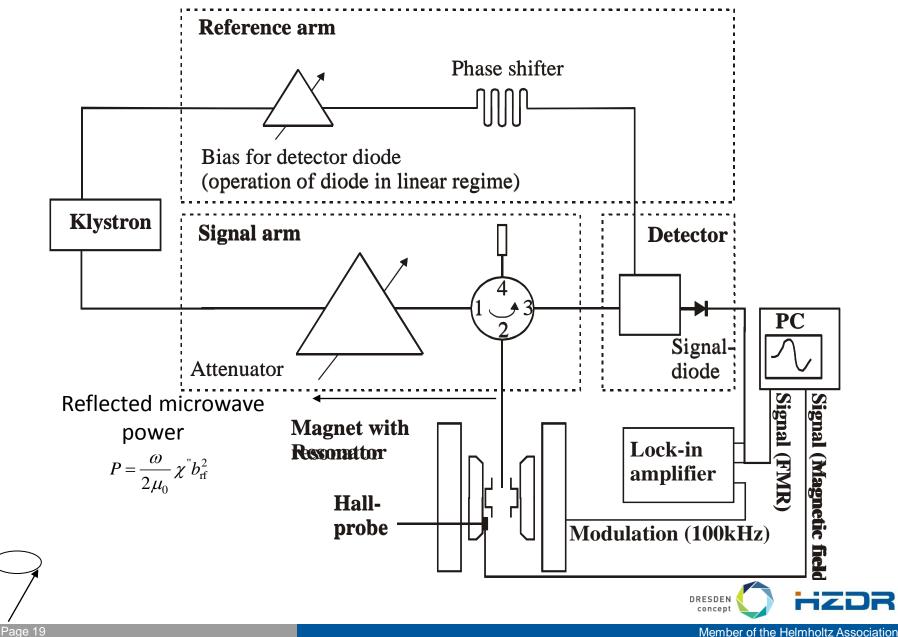


Page 18



Member of the Helmholtz Association

Conventional ESR detection I



Paramagnetic ion in a crystal

Hamilton-Operator for electrons of paramagnetic ion (no external field):

$$\hat{H} = \left\{ \left(\hat{p}_i^2 / 2m \right) - \left(Ze^2 / r_i \right) + \left(e^2 / r_{ij} \right) + \lambda_{ij} \hat{l}_i \cdot \hat{s}_i + a_i \hat{j}_i \cdot \hat{I} - e_i \Phi_c(\vec{r}_i) \right\}$$

Kinetic energy of ion

ergy Coulomb repulsion between electron pairs Coulomb attraction between electrons

and nucleus

Magnetic Crystal field interaction Interaction between electrons and nucleus with nuclear spin *I*

Spin-orbit interaction between electrons

Member of the Helmholtz Association

Reminder: Cubic Harmonics I

Solution of Schrödinger Equation for H-Atom

 $\Psi_{n,l,m}(r,\vartheta,\varphi) = R_{n,l}(r) Y_{l,m}(\vartheta,\varphi)$ Hydrogen wavefunctions

Radial part

Angular dependent part

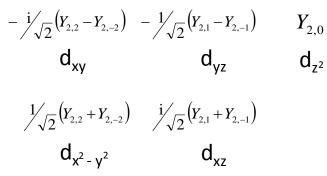
n = 1	l = 0	$R_{1,0}(r) = 2\left(\frac{Z}{a}\right)^{\frac{3}{2}}e^{-\frac{Zr}{a}}$	l = 0		$Y_{0,0}(\vartheta,\varphi) = \frac{1}{\sqrt{4\pi}}$
<i>n</i> = 2	l = 0	$R_{2,0}(r) = \frac{1}{2\sqrt{2}} \left(\frac{Z}{a}\right)^{\frac{3}{2}} \left(2 - \frac{Zr}{a}\right) e^{-\frac{Zr}{2a}}$	<i>l</i> = 1	m = 0	$Y_{1,0}(\vartheta,\varphi) = \sqrt{\frac{3}{4\pi}\cos\vartheta}$
		$R_{2,1}(r) = \frac{1}{2\sqrt{6}} \left(\frac{Z}{a}\right)^{\frac{3}{2}} \frac{Zr}{a} e^{-\frac{Zr}{2a}}$		$m = \pm 1$	$Y_{1,\pm 1}(\vartheta,\varphi) = \mp \sqrt{\frac{3}{8\pi}} \sin \vartheta \ e^{\pm i\varphi}$
<i>n</i> = 3	l = 0	$R_{3,0}(r) = \frac{2}{81\sqrt{3}} \left(\frac{Z}{a}\right)^{\frac{3}{2}} \left(27 - 18\frac{Zr}{a} + 2\left(\frac{Zr}{a}\right)^{2}\right) e^{-\frac{Zr}{3a}}$	<i>l</i> = 2	m = 0	$Y_{2,0}(\vartheta,\varphi) = \sqrt{\frac{5}{16\pi}} (3\cos^2\vartheta - 1)$
	l = 1	$R_{3,1}(r) = \frac{2}{81\sqrt{6}} \left(\frac{Z}{a}\right)^{\frac{3}{2}} \left(6\frac{Zr}{a} - \left(\frac{Zr}{a}\right)^{2}\right) e^{-\frac{Zr}{3a}}$			$Y_{2,\pm 1}(\vartheta,\varphi) = \mp \sqrt{\frac{15}{8\pi}} \sin \vartheta \cos \vartheta \ e^{\pm i\varphi}$
	l = 2	$R_{3,3}(r) = \frac{2}{81\sqrt{30}} \left(\frac{Z}{a}\right)^{\frac{3}{2}} \left(\frac{Zr}{a}\right)^2 e^{-\frac{Zr}{3a}}$			$Y_{2,\pm 2}(\vartheta,\varphi) = \sqrt{\frac{15}{8\pi} \cdot \frac{1}{2} \sin^2 \vartheta} e^{\pm 2i\varphi}$

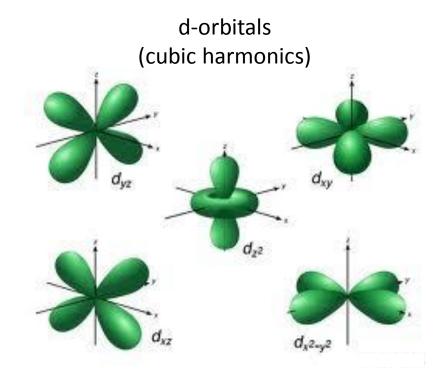
Member of the Helmholtz Association

Reminder: Cubic Harmonics II

Schrödinger Equation is a linear equation If $\Psi 1$ and $\Psi 2$ are solutions, then $\Psi 3 = a\Psi 1 + b\Psi 2$ is solution, too.

One obtains REAL solutions for:





Example:

$$Y_{2,\pm 2} = \sqrt{\frac{15}{8\pi} \frac{1}{2} \sin^2 \mathcal{G} \cdot e^{\pm 2i\varphi}} \longrightarrow \frac{1}{\sqrt{2}} (Y_{2,2} + Y_{2,-2}) \sim \sin^2 \mathcal{G} \cos 2\varphi = (\sin \mathcal{G} \cos \varphi)^2 - (\sin \mathcal{G} \sin \varphi)^2$$

With (unit sphere, i.e. r=1) $\sin \vartheta \sin \varphi = x$, $\sin \vartheta \sin \varphi = y$, $\cos \vartheta = z$

$$\longrightarrow \frac{1}{\sqrt{2}} (Y_{2,2} + Y_{2,-2}) \sim x^2 - y^2$$

Member of the Helmholtz Association

Crystal field interaction I

$$\hat{H} = \left\{ \left(\hat{p}_i^2 / 2m \right) - \left(Ze^2 / r_i \right) + \left(e^2 / r_{ij} \right) + \lambda_{ij} \hat{l}_i \cdot \hat{s}_i + a_i \hat{j}_i \cdot \hat{l} - e_i \Phi_c(\vec{r}_i) \right\}$$

Assumption: Crystal field creates electrostatic potential at the site of the ion Symmetry of this field is determined by symmetry of the crystal

Weak crystal field:	Crystal field weaker than spin-orbit interaction
	Rare earth ions with low lying f-shell

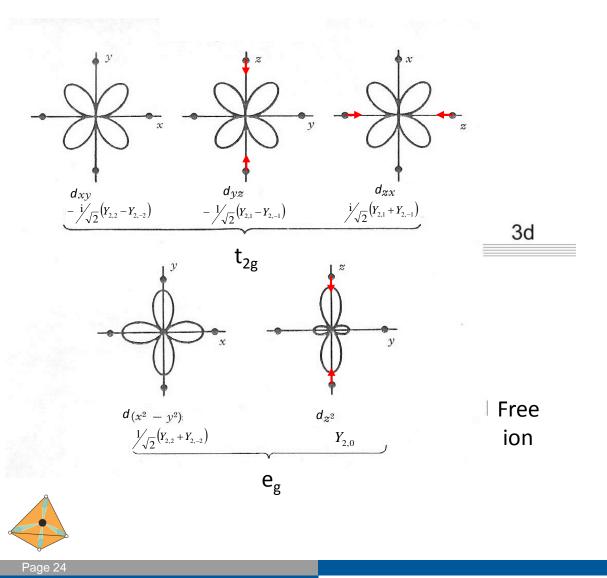
Intermediate crystal field:Crystal field stronger than spin-orbit interaction3d group ions with outer shell 3d electrons

Strong crystal field:Covalent bonding to neighbored ions or atoms
Crystal field theory not applicable, since
sources of crystal field are not outside of ion
under consideration

Member of the Helmholtz Association

Crystal field interaction II -

Instructive example: d-orbitals in cubic/tetragonal crystal field

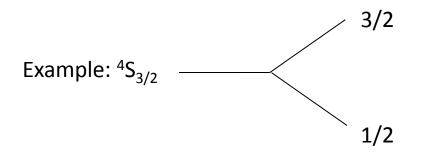


Member of the Helmholtz Association

Zero-field splitting (influence of spin-orbit coupling)

Removal spin microstate degeneracy for systems with S > 1/2 in absence of an applied field.

Reason are spin-spin interactions like dipolar interaction or spin-orbit interaction between different electrons



Member of the Helmholtz Association

Example I: Fe³⁺- and Mn²⁺-impurities in ZnO

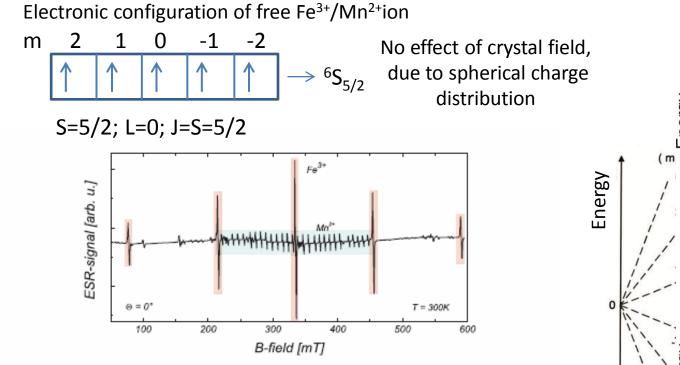
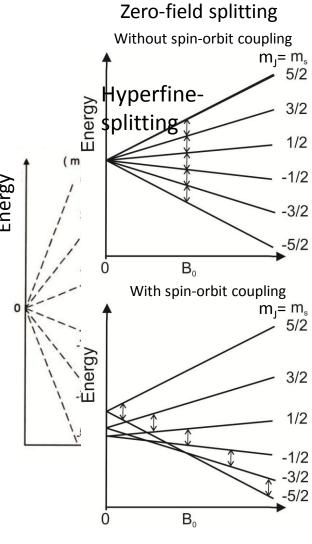


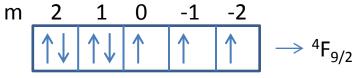
Figure 3.3: Fe³⁺(red bars) and Mn²⁺(blue bar) impurities in ZnO measured by ESR at $\nu = 9.3$ GHz. The magnetic field is oriented parallel to the crystal c-axis (0001). Both ions have a fivefold fine structure due to S = $\frac{5}{2}$. Contrary to the Fe lines the Mn resonances are sixfold hyperfine split by the nuclear moment $I_{Mn} = \frac{5}{2}$ leading to a spectrum of in total 30 lines.

T. Kammermeier, PhD thesis Uni Duisburg-Essen (2010)

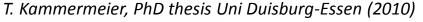


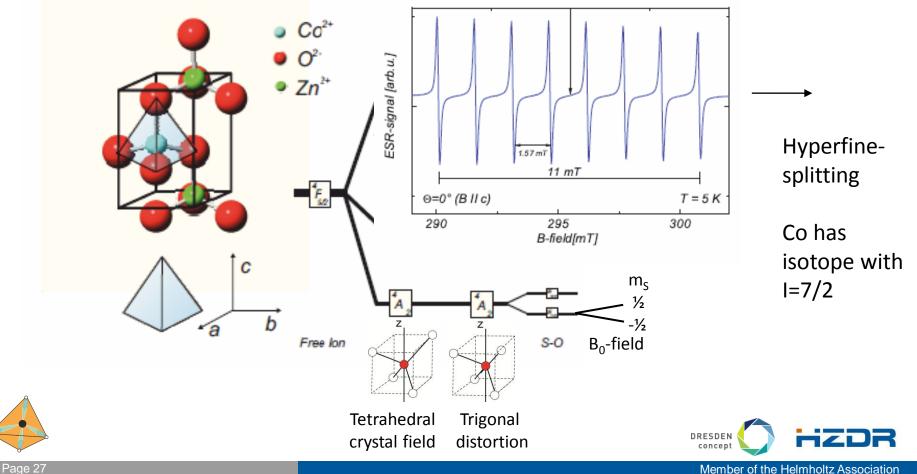
Member of the Helmholtz Association

Example II: Co²⁺ in ZnO



S=3/2; L=3; J=L+S=9/2

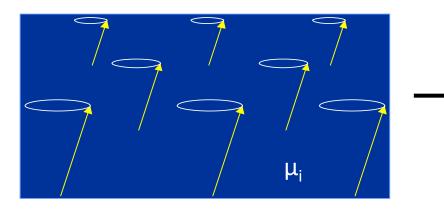




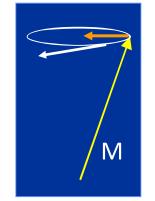
Member of the Helmholtz Association

Magnetic Resonance in Ferromagnets (coupled spin system)

Ensemble of coupled spins



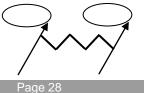
Macrospin model



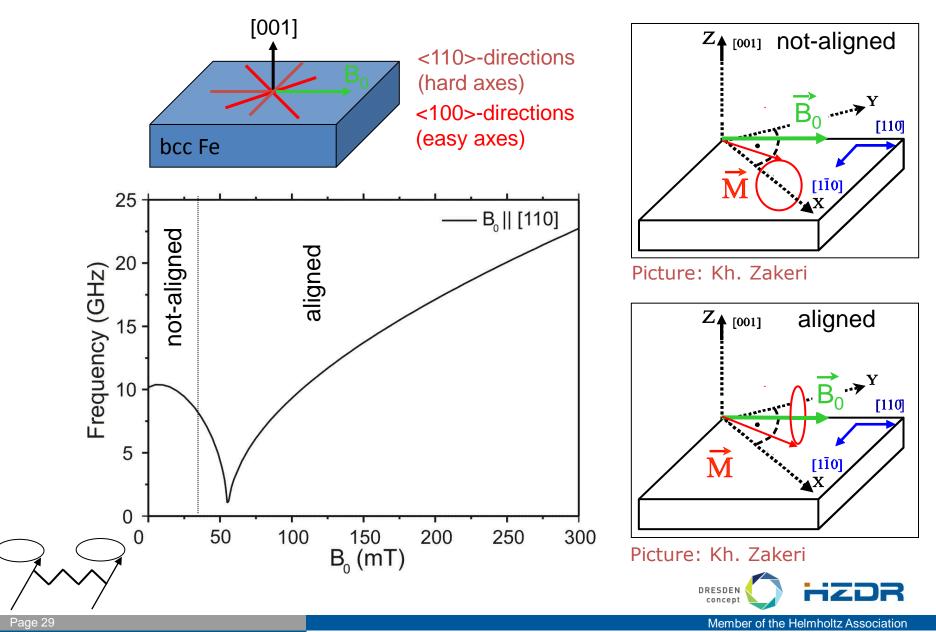
B_{eff}: Anisotropy field, dipolar fields exchange fields etc.

Magnetisation in effective field + damping

Member of the Helmholtz Association

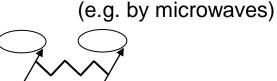


FMR: Uniform mode - Influence of magnetic anisotropy



FMR: Spinwave excitations due to coupling of spins (non-uniform modes) I



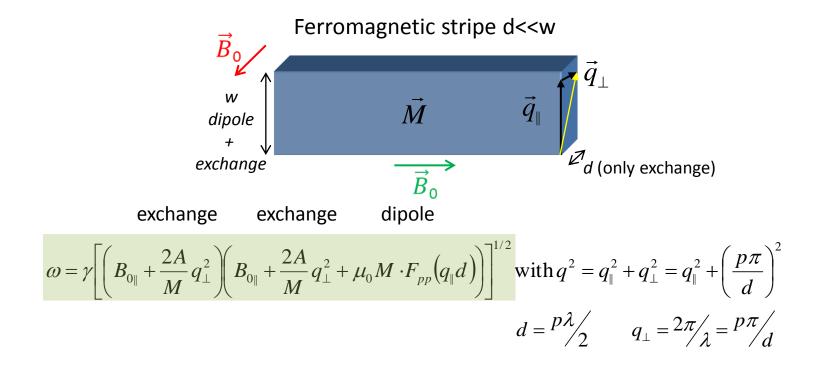


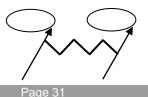
Member of the Helmholtz Association

Dr. Jürgen Lindner I Institute of Ion Beam Physics and Materials Research I www.hzdr.de

Page 30

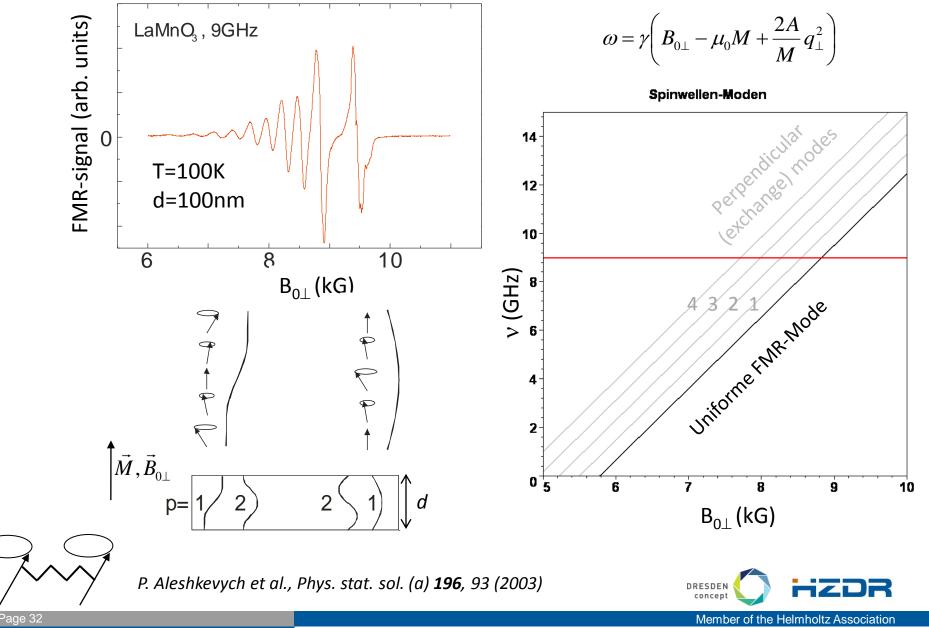
FMR: Spinwave excitations due to coupling of spins (non-uniform modes) II



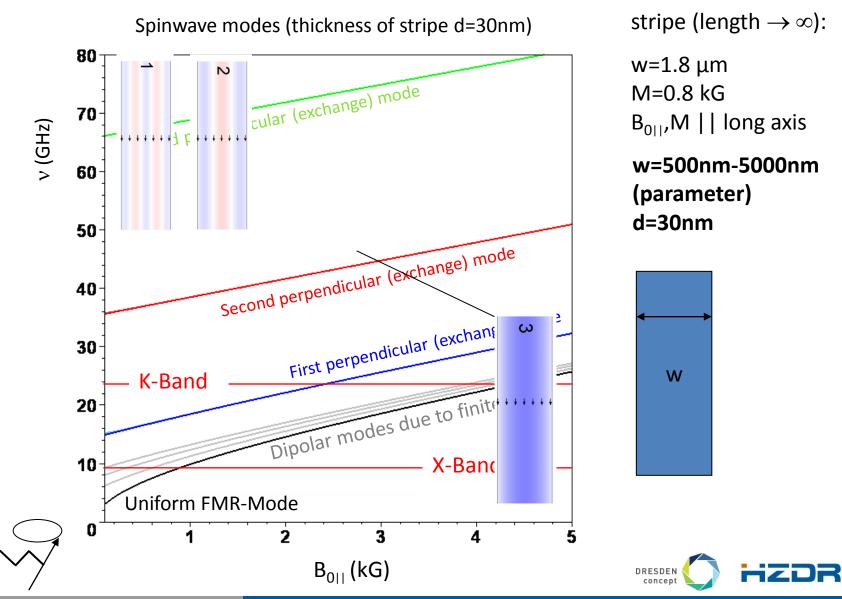


Member of the Helmholtz Association

Exchange dominated spinwaves in thin films



Dipolar spinwave modes in ferromagnetic stripe



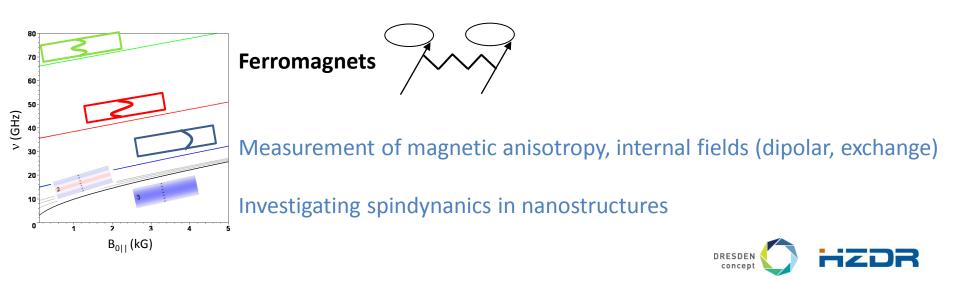
Page 33

Member of the Helmholtz Association

Summary

Identification of species and environment (crystal symmetry)

Indirect way of investigating lattice sites that are occupied



Member of the Helmholtz Association



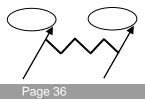
Member of the Helmholtz Association

$$\frac{\mathrm{d}\vec{\mu}}{\mathrm{d}t} = -\gamma \,\vec{\mu} \times \vec{B}_0 + \frac{\eta}{\mu} \left(\vec{\mu} \times \frac{\mathrm{d}\vec{\mu}}{\mathrm{d}t} \right) \qquad \vec{h}_{rf} = \left(h_{rf,x} \,\vec{e}_x + h_{rf,y} \,\vec{e}_y + h_{rf,z} \,\vec{e}_z \right) \cdot e^{i\omega t}$$

$$i\omega\mu_{x} = -(\gamma B_{0} + i\omega\eta)\mu_{y} - \gamma\mu b_{rf,y}$$

$$i\omega\mu_{y} = \gamma\mu b_{rf,x} + (\gamma B_{0} + i\omega\eta)\mu_{x}$$

$$i\omega\mu_{z} = 0$$



Member of the Helmholtz Association Dr. Jürgen Lindner 1 Institute of Ion Beam Physics and Materials Research 1 www.hzdr.de