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Magnetic Resonance - a Russian Discovery 
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First report and proof of magnetic resonance 
performed in Moscow 

Key paper: 

Quantitative theory: 
Landau-Lifshitz-equation 

 
L. Landau, E. Lifshitz,  

Physik. Zeits. Sowjetunion 8, 153 (1935) 
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Recapitulation: Damped harmonic oscillator I 
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Recapitulation: Damped harmonic oscillator II 

‚over-damping‘ 

=4, 0=1 

‚critical damping‘ 

=2, 0=1 

‚under-damping‘ 

=1, 0=5 

x(t) 
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Recapitulation: Externally excited damped harmonic oscillator I 

FA=F0 cos t kx 

driving forces 

m 

R= x damping 

DGL 
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 harmonic excitation 

General solution: 
 
 
Solution of homogeneous DGL 
Plus particular solution of inhomogeneous DGL 

Real part of solution of 
komplex DGL  
is solution of original DGL 
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Recapitulation: Externally excited damped harmonic oscillator II 

complex amplitude 

 

 
‚amplitude‘ 
that neglects 
excitation 
Phase‘  

amplitude of response 



                               Dr. Jürgen Lindner  I Institute of Ion Beam Physics and Materials Research  I  www.hzdr.de 

           Member of the Helmholtz Association Page 7 

Recapitulation: Externally excited damped harmonic oscillator III 
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Recapitulation: Externally excited damped harmonic oscillator IV 

stationary solution 

oscillation with driving frequency plus phase shift  
that changes sign depending on whether  < 0 or > 0  

 || || 



                               Dr. Jürgen Lindner  I Institute of Ion Beam Physics and Materials Research  I  www.hzdr.de 

           Member of the Helmholtz Association Page 9 

Recapitulation: Externally excited damped harmonic oscillator V 

0=3 
F0/m=1 
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Comparison: Mechanical Oscillator vs. 

Electron Spin Resonance (ESR) 

driving torque damping 

F0 cos t 
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Spin in magnetic field – Quantum mechanical treatment I 
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magnetic 
moment 

electron spin 

Classical physics (spin          leads to magnetic moment µB) 

gyromagnetic ratio 

Energy of magnetic moment in external magnetic field: 

0BµE



Quantum mechanics 

Schrödinger Equation 
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Spin in magnetic field – Quantum mechanical treatment II 
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Spin in magnetic field – Quantum mechanical treatment III -  

time dependent behavior 
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Larmor precession 

field along z-direction (0,0,B0) 



                               Dr. Jürgen Lindner  I Institute of Ion Beam Physics and Materials Research  I  www.hzdr.de 

           Member of the Helmholtz Association Page 14 

Spin in magnetic field – Classical treatment 
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Influence of rf-field on magnetization precession I 
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Laboratory system            system that      
    rotates with rf-field 

pulls magnetization into 
plane (most effectively 
for ω=ω0) on average no effect 
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Influence of rf-field on magnetization precession II 
=0 =20 

=0.50 

rf-field opens precession cone  
for =0 

Bo 
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Conventional ESR detection III 
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Experimental detection of ESR (conventional method)  
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Reference arm

Attenuator

1
2

3
4

Signal arm

Signal-
diode

Detector
Klystron

Magnet with

Resonator Lock-in

amplifier

Modulation (100kHz)

PC

Hall-

probe

S
ig

n
a
l (M

a
g

n
etic field

)

S
ig

n
a
l (F

M
R

)

Bias for detector diode
(operation of diode in linear regime)

Phase shifter

Reference arm

Attenuator

1
2

3
4

Signal arm

Signal-
diode

Detector
Klystron

Magnet with

resonator

PC

Hall-

probe

S
ig

n
a
l (m

a
g
n

etic field
)

S
ig

n
a
l (F

M
R

)

Bias for detector diode
(operation of diode in linear regime)

Phase shifter

Conventional ESR detection I 

2
rf

''

02
bP 






Reflected microwave  
           power 



                               Dr. Jürgen Lindner  I Institute of Ion Beam Physics and Materials Research  I  www.hzdr.de 

           Member of the Helmholtz Association Page 20 

Paramagnetic ion in a crystal 

Hamilton-Operator for electrons of paramagnetic ion (no external field): 

( ) ( ) ( ) ( ) iciiiiiijijii reIjaslrerZempH


 ˆˆˆ//2/ˆˆ 222 

Kinetic energy  
of ion 

Coulomb attraction  
between electrons 

and nucleus 

Crystal field 
Interaction 

Coulomb repulsion 
between electron  

pairs 

Spin-orbit  
interaction 
between 
electrons 

Magnetic  
interaction 

between electrons 
and nucleus with 

nuclear spin I 
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Reminder: Cubic Harmonics I 

Hydrogen wavefunctions 

Radial part Angular dependent part 

Solution of Schrödinger Equation for H-Atom 

0 

1 

2 
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Reminder: Cubic Harmonics II 

 

Schrödinger Equation is a linear equation 
If 1 and 2 are solutions, then 
3 = a1 + b2 is solution, too. 

One obtains REAL solutions for: 
 

d-orbitals 
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Crystal field interaction I 

( ) ( ) ( ) ( ) iciiiiiijijii reIjaslrerZempH


 ˆˆˆ//2/ˆˆ 222 

Weak crystal field:  Crystal field weaker than spin-orbit interaction 
   Rare earth ions with low lying f-shell 
 
Intermediate crystal field: Crystal field stronger than spin-orbit interaction 
   3d group ions with outer shell 3d electrons 
 
Strong crystal field:  Covalent bonding to neighbored ions or atoms 
   Crystal field theory not applicable, since 
   sources of crystal field are not outside of ion 
   under consideration 

Assumption: Crystal field creates electrostatic potential at the site of the ion 
       Symmetry of this field is determined by symmetry of the crystal  
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Crystal field interaction II –  

Instructive example: d-orbitals in cubic/tetragonal crystal field 
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Zero-field splitting (influence of spin-orbit coupling) 

Removal spin microstate degeneracy for systems with S > 1/2 in absence of an applied field. 
 
Reason are spin-spin interactions like dipolar interaction  
                                                               or spin-orbit interaction between different electrons 

Example: 4S3/2 

3/2 
 
 
 
1/2 
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Example I: Fe3+- and Mn2+-impurities in ZnO 

m     2      1     0      -1     -2          
 
 
      S=5/2; L=0; J=S=5/2 

6S5/2 

No effect of crystal field, 
 due to spherical charge 

distribution 

T. Kammermeier, PhD thesis Uni Duisburg-Essen (2010) 

DmI=0, DmS=1 

En
er

gy
 

mJ= 

mJ= 

Without spin-orbit coupling 

With spin-orbit coupling 

Electronic configuration of free Fe3+/Mn2+ion Zero-field splitting 

Hyperfine- 
splitting 
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Example II: Co2+ in ZnO 

m     2      1     0      -1     -2          
 
 
      S=3/2; L=3; J=L+S=9/2 

Tetrahedral 
crystal field 

4F9/2 

mS 

 ½ 
-½ 

B0-field 

Trigonal  
distortion 

T. Kammermeier, PhD thesis Uni Duisburg-Essen (2010) 

Hyperfine- 
splitting 
 
Co has 
isotope with 
I=7/2 
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Magnetic Resonance in Ferromagnets (coupled spin system) 

Beff: Anisotropy field,     

          dipolar fields  
          exchange fields 
                    etc. 

µi 
M 

Macrospin model 
 
 
 
 
 
 
 
 
Magnetisation in  
   effective field 
              + 
        damping 

Ensemble of coupled spins 
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FMR: Uniform mode - Influence of magnetic anisotropy  
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Picture: Kh. Zakeri 

Picture: Kh. Zakeri 
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FMR: Spinwave excitations due to coupling of spins (non-uniform modes) I 

Spins coupled mainly by 

Elementary excitation of coupled spins 

Magnetostatic modes 

control magneto-dynamics 

 

ground state excitations  

at small energies <1meV 

(e.g. by microwaves) 

Thermal modes 

control thermo-dynamics 

Excitations at high energies >1meV 

(e.g. by temperature) 
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FMR: Spinwave excitations due to coupling of spins (non-uniform modes) II 
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Exchange dominated spinwaves in thin films 

LaMnO , 9GHz 
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X-Band 

K-Band 

Uniform FMR-Mode 

Dipolar spinwave modes in ferromagnetic stripe 

stripe (length  ): 

w=1.8 µm 
M=0.8 kG 
B0||,M || long axis 
 

w 

n
 (

G
H

z)
 

w=500nm-5000nm 
(parameter) 
d=30nm 
 

B0|| (kG) 

Spinwave modes (thickness of stripe d=30nm) 
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Summary 

Magnetic Resonance in Paramagnets 
 
 
 
Identification of species and environment (crystal symmetry) 
 
Indirect way of investigating lattice sites that are occupied 

Ferromagnets 
 
 
Measurement of magnetic anisotropy, internal fields (dipolar, exchange) 
 
Investigating spindynanics in nanostructures 
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