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Intention

It is the purpose of these notes to present a short displdne physical issues and the main results
presented in the lecture "Fundamentals of-3oamface Interaction”. It is not meant to replace a
textbook. For details, extended discussions and mathematical derivations, the reader is referred to the
literature.
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1. Binary Elastic Collisions in a Spherically Symmetric Potential

1.1 Kinematics

Both ionratom and iorelectron collisions are treated as binary collisions. This sets a lower energy
limit for the treatment of iofatom collisions of 10...30 eV. Otherwise, mardy interactions would

have to be taken onto account [16].

171 projectile, 2i target atom (at resh laboratory frame)

1 A

1 20\W 1 .

Fig. 1.1

Laboratory System (LS) Centtenass System (CMS)

Transformation into CMS vyields singfmrticle scattering kinematics
d2R C c) cC CcC C
mFLE)V(R, R=R - R, (1.1)

for a spherically symmetric interaction potential V and with the reduced mass

m= m,m,
m, +m, 1.2)
The energy in the CMS system, being available for the collision, is given by
m
E.=—2—E
° m, +m, 1.3)

with ET projectile energy in LS.

Momentum and energy conservation yield the transformatiortheofasymptotic scattering angles
between CMS and LS for an elastic collision

—L +cos]
m2
and the reverse transformation

. am, . @
= + 1
J=Q arcsmé%n—zstg (1.5)
The energy transferred to the target atom ("recoil”) (in LS) is given by
.5 J
T =¢E sin 5 (1.6)
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with the energy transfer factor

- 4m,m,
ey &0

From this, the LS projectile engy after the collision becomes

a o]
Ei=E-T=EX- MM, gnzJQ (1.8)
(m, +m,) 29
or after transformation according to (1.4)
~l
a m, ("J2é 8
Ei=E 0sQ° - sin? (1.9)
om0 g %78 %
Both (1.5) and (1.9) indicate the existence of a maximum scattering angle in LS
Q,... = arcsi n%:—zg if m2m, (1.10)
¢+

For this case, both signs are valid in (1.9), so that two different energies correspamg L&
scattering angle below the maximum one.

Trivially, the recoil energy is
Ej=T=E- Ej (1.11)

Kinematical curves from (1.9) and (1.11) are shown in Fig. 1.2 for different ions, indicating a
maximum LS scattering angle ofd@r the equamass case, and below foravéer projectiles.

0 D/? (@)
. | Fig. 1.2:
EO
- Kinematics of elastic scattering
E for the scattered projectile
05 (different ions incident on
' siliconT top) and theecoil
atom (different ions incident or
boroni bottom)
0
1 T T T
E-0 [ Zsi 12 X*— B
E “He
05 . 7]
Recoil Atom
- 84Kr |
% | 0/ |
F



1.2 Cross Section

Fig. 1.3:

Scattering trajectory. Incidence
within a differential ring at a
given impact parameter results
in a scatténg into a

differential solid angle

In cylindrical coordinates, the CMS trajectory is described by the distance R and thea ésegeFig.
1.3). Energy and angular momentum conservation, and integration yield for the asymptotic scattering
angle at a given impact parameter p thealted "classical trajectory integral”

alg
Rrih daiﬁ‘?
J=p-2p R ¢+ (1.12)
0 V(R) p?
1- -
E. R?
with the minimum distance of approach given by
2
\/1_V(R)_ P _o (1.13)
Ec Rr121in

The differential cross section is given by the differential area at p and the scattering into the
differential solid angle around the scattering angle

ds _| 2ppdp |_ p
dw \2psianJ\ sind

dp
dJ

(1.14)

and can now be calculated from (1.12).

From (1.4), the transformation into the laboratory system is accomglatcording to

3

2o ~l A2
%r:l+cos.]§ +sin2Jg
ds _ds dw _ds ¢t ' - +
Os _Gsaw_ds _ (1.15)
1+—1cos]
m

1.3 Example: Rutherford Scattering

For a Coulomb potential between two interacting chargen@ Q

V(R)=Q4’10Q;6R (1.16)
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(1.12) yields
tan‘]E = 23 (2.17)
p

with the "collision diameter", i.e. the distance of minimum approach feicioiscattering at 180

2
b= fplQ;; (1.18)
From ths, the Rutherford cross section becomes
d_s L . (1.19)
== = '
dw 16 sin® J E

1.4 Momentum Approximation

Due to the cylindrical symmetry of the scattering problem, large impact parameters and
correspondingly small deflection angles occur largely preferentially. Therefore, it is oftemiemrve
to describe the scattering in a sratigle approximation.

z
— Fig. 1.4:
i T y Momentum approximation for
smallangle scattering
P R

In the limit of forward scattering, the projectile trajectory is approximated by a straight line (see Fig.
1.4). A force integral leads to a small transverse momeBfyrand thereby a small deflection angle

3=y 2py (Jz2 + pz)dz (1.20)

(1.4) reads in smalingle approximation

Q=—"T2_; (1.21)
m1+m2

yielding directly (see (1.3)) the LS deflection which is independent on the mass of the target

+a )d (1.22)



2. Atomic Potentials

For the ioni target atom interaction wita sufficiently large minimum distance,R the interatomic
potential V(R) is influenced by the presence of the electrons, so that a screened Coulomb potential has
to be employed. Naturally, the development of proper interatomic potentials V(R) iy cledagdd to

the choice of the atomic potentials of the collision partners.

The treatment of atomic potentials here will not cover quamhavhanical calculations of the

HartreeFockSlater type, but be restricted to statistical models and analyticabxamgations for
practical uses.

2.1 Thomad-ermi Statistical Model

From simple quantum statistics in the free electron gas of densttyenmean kinetic energy density
(i.e. the mean kinetic energy per unit volume) results as

2
10 4p ¢
with a; = 0.053 nm dnoting the radius of the first Bohr orbit.

Treating the atom with atomic nhumber Z as the nucleus and an assembly of local free electron gases,
its electrostatic potential given by

ri (2.2)

A calculus of variation of the total energy

c ze® n.() .C. e n(On () .c.C
E = d3r_ e d3r+ e £ d3rd3r.
tot r?k 4p §ﬁl’_ 8p é'ﬁ r- ﬁ‘ ' (2.3)
with respect to thelectron density yields
5
ke, (2 - 1l () 1.)=0 2.4)

with an additive constarfi. Seltconsistency is provided by the Poisson equation

qb(f (r)- 1 o)=L°: n.(r) (2.5)

Combining (2.4) and (2.5) in spherical coordinates and writing the potential as a screened Coulomb
potential according to

fr=-2°_j &8 (2.6)
¢a+

4"y

the substitutin r = ax yields for the screening distance

[} ~23
_18308° 8 _(gocad @)
2¢4+ 2% 77
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and the ThomaBermi equation

(2.8)

Eq. (2.8) is solved numerically with the boundary conditions
j0=1 j(=)=ji=)=0 (2.9)

as the Coulomb potential holds at small distance to the nucleus, and due to the neutrality of the whole
atom.

The screening functi on i s of ten approxi mated
approximation to the TF function is valid for about x < 5:

i w(x)=& C e =0.35e"* +0.55e°% +0.1e"* (2.10)

2.2 Exchange and Correlation

Quantummechanical exchange and correlation have also been described witfranmibevork of the
statistical model, resulting in the following energy densities as function of the electron density:

=0 e (2.11)
_ e’ s _. 5
€ 046 " n,7% = K,,,N, > (2.12)

2.3 Other Screening Functions

The variation problem mentioned above has been solved by Lenz and Jensen using a proper ansatz for
the electron density with appropriate boundary conditions. The resulting screening function is

i b (x)=(1+y+0.3344y? +0.0485y° +0.002647y*)e’¥;  y=9.67x (2.13)

The most simple screening function is a pure exponential according to Bohr:

i e(x)=e” (2.14)
Lindhard has given an approximative;s@a | | ed fAstandardo potenti al
. X
] s\x)=1-
(=1 —— (2.15)

Finaly, powerlaw approximations are used for different regions of x, of the form

s-1

) K
in ()=

(2.16)

o
- OO

corresponding té(r)~r'"s.



Al though the following AUniversal o screening f
potential (see 3.), itis included here for comteness:

j L (X)=0.182€>**+0.51e %> +0.28e**°* +0.028% **°* (2.17)

in this case with the screening distance

a, =0.8853_% _ (2.18)

Z 0.23

Fig. 2.1

Different atomic screening
functions

Lindhard

Lenz-
.Jensen

0 10 20 30
X

104

3. Interatomic Potentials

The interaction potential of two fast atoms, each of which is individually represented by a screened
Coulomb potential, can now be treatecimapproximate way.

Fig. 3.1

Interatomic Coordinates

3.1 Linear Superposition of Atomic Electron Densities

A simple approach is the linear superposition of the individual electron densities to obtain the total
electron density n(r), i.e. neglecting any aimnearrangements during the collision

ne(r\-')znel(r\})-'-neZ(rP) (31)

1C

u

n



Expressing the total energy (including Coulomb, kinetic, exchange and correlation terms according to
sect. 2) as function of the distance R, and subtracting the total energies of the individual atoms yields
the irteraction potential

2 2 ~
V(R)= leze - © é?nez(ré)-'-énel(rl)gdsr
¢T *

4pgR  4p g >
2 :x 2 s (3.2)
eZ nel (rl)nezéﬁzl §+ nelé%ll gleZ (r2) 3 3
+ N A 66 - d’rd°ri +
8p gI'I n s ra-i

Eqg. (3.2) has to be solved numerically for all R, from which the scattering cross section can be
obtained according to egs. (2:2214). This is clearly a lengthy procedure and has to be repeated for
each pair of atoms.

3.2 Universal Approximation by Lindhard, Nielsen and Scharff (LNS)

With the aim to obtain a simple and universal description of the interatomic potential and the
scattering cross section of two fast atoms, LNS start from the atomic screened Coulonial ietent

sect. 2). In the limiting cases ofi<&Z, or Z;>>7,, the interatomic potential would be correctly
described by the screened Coulomb potential of one atom (eq. (2.6)), since the problem can be
approximated by a point charge in the potential ohimvier atom, so that

Z.Z.e*. 4R®
B jge—o

V(R)= 0
4p eR " ca+

(3.3)

with a properly chosen screening distance a. For the ThBeras screening function, the following
choice represents the limits correctly:

0.885
= P 32a°~ 7 (3.4)
feiseziog)
For the "Universal" potential (see sect. 2), the screening distance reads corresponding
_ 0.88533, (3.5)

Z;).ZS + Zg.23

The other extreme is obviously the case @tZZ. For this situation, LNS evaluated (3.2) for a number
of atoms and found a reasonable agreement with egs. (3.3+3.4). Therefore, they assumed (3.3+3.4) to
represent a good approximation of a univeirsgratomic interaction potential.
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For the derivation of a universal scattering cross section, LNS consider the limit of small scattering
angles given by the momentum approximation (1.19), which is evaluated for a screened Coulomb
potential yielding

1=243P8
P ga+
with b from eq. (1.17) and (3.6)
PP &AVEH V. AV ®@
= fyroshg - j i ndh
g(V) Orp gés:oshg cosh] I?Eosh?d
Further, a reduced energy is introduced according to
a_ 4p ga
e=—= E
b z,z,e* ° 3.7)
so that
ed =Eg§a|98 (3.8)
P ca+

represents the universal classical scattering integral in the-angddl approximation. In order to
extrapolate this to wide angles, LNS substitute

e@vY 2esin% (3.9)

and ntroduce a reduced scattering angle by

t2 =esin‘]E (3.10)

Therefore,

a o
2t =2 g3P8 (3.11)

becomes a universal scattering integral being valid for all angles. The inverse function of (3.11),
p(t?), yields the differential cross section according $0=dd(pp®), which, according to LNS, is
written as

ds f%%g
= = paZ LB (3.12)
dt 2'[4

with f to be calculated numerically from g.'f} is defined in such a way that it becomes constant for
a power law potential (see eq. (2.16)) with s = 2. Fig. 3.2 shows the scattering function f for different
screening functions.

12



0.5

f(t2),,

Fig. 3.2

Universal scattering function
according to Lindhard, Nielsen
and Scharff, as function dfi¢
_P_L‘ reduced scattering angle for
pure Rutherford scattering (R),
ThomasFermi (T-F), Lenz
Jensen (LJ), and powelaw
(PL; s=2, k=0.8) screening,
and a lowt approximation to
T-F screening according to

\ f(t¥?) = 1.43%¥3°3 (dotted
line)

1 102 10°
%

0.3

From (3.12) and the transformation to the CMS scattering angle, the differential cross section becomes

| 1828
S_p_¢ * (3.13)

5 d

8esin 5

The evaluation of f{f) for the pure Coulomb potential yields

51
ng&% §=¥ (3.14)

which, inserted into (3.13) and in comparisonthw{1.18), confirms that the LNS smalhgle
approximation holds exactly for all scattering angles in the limit of Rutherford scattering. Fig. 3.2
demonstrates that the scattering in the screened Coulomb potentials converges towards Rutherford

scattering hove #2° 10.

In order to test the validity of the LNS smalhgle approximation, the classical trajectory integral
(1.12) can be evaluated for differemtfrom which individual ffunctions can be calculated. Fig. 3.3
shows that the error being introzkd by the small angle approximation is rather small, except for very
low energies.

E A ! N ' Fig. 3.3:
ft's | 5/7/]’ N < ' LNS scattering function f as
0 ’/ . ,4\ ‘: - .
P R VA . /\\ : function of t for Thomag-ermi
A fet % : screening (continuous solid line)
0k // F \ ’ exact scattering functions for
5" ' ' My \ individual e (solid lines), and
b ; £\ i several approximations (broken
i 1’ o lines): Lowt approximation,
1T T AN Moliere approximation (M; eqg.
Io?n* 1 ”;g-' 1t 1|7321’1 i u;-"; | 'xu; ) !';'0' L) “;0“’ (210)), and Rutherford limit (R)
: : £1/2 ’



3.3 Individual Scattering Cross Sections

As compared to the LNS universal approximation, more precise interatomic scattering cross sections
can, e.g., bebtained by evaluating eq. (3.2) for an individual pair of atoms. The example of Fig. 3.4,
shows examples for the scattering of energetic argon ions in xenon gas. The scattering cross section
has been evaluated both for two Lelensen atoms (see eql@) and for electron densities from
Dirac-HartreeFockSlater quantuamechanical calculations. The results are compared to the LNS
universal formula for the Thomdsermi and the Lendensen potentials, and to experimental results.

The quantummechanical pediction reproduces the position of shell oscillations as function of the
scattering parameter, but underestimates their amplitude considerably.

r,/a, .
3 ? 1. 3 Fig. 3.4
C . ; : :
Art—X ) Scattering cross sections,
ok rmxe . * 25keV | normalized to the universal
Y T e LNS formula for the Lenz
. . e TN . om - Jensen (LJ) potential, versus
- o o \ _ x 75 - the scattering parameter t.
TS L4l ) \ ©200 - | Experimental data for
TI= 18 % . @ v \ $ 400 - different ion energies and
> o & % SN \\ A scattering angles are compar:
3l ~2e % N . to the Thomad-ermi (TF)
\3 e universal LNS formula as wel
12k ogedd G L00Ke] as to individual results for the
2 superpogion of two Lenz
1 TokeV ~3 Jensen (2LJ) and two DHFS
T T T atoms (2DHFS).
10" 10° 107 107
€ sinY¥/2

4. Classical and QuanturaAMechanical Scattering

The interaction of fast ions witmatter may occur via atomic collisions, or by direct interaction with
the bound electrons or the interstitial electrons of a solid. For the former, the scattering in an
interatomic potential has to be treated as described in sects. 2 and 3, wheragrdbton with
individual electrons is governed by the Coulomb potential. So far, classical trajectories have been
assumed.

4.1 The Bohr Criterion

The validity of the classical scattering problem (sect. 1) is limited by the principle of uncertainty. In
the quanturrmechanical picture, the incident particle with reduced maissthe CMS is represented
by a plane wave with the wavelength

0=— 4.1)

with v denoting the ion velocity. (For a target at rest, the relative velocity in CMS is equal to the LS
velocity). First considering the textbook example of slit interaction at a slit with width d, a classical
trajectory calculation is feasible provided

14



0< < (4.2)

i.e. at sufficiently high velocity of the incident particle.

According to Bohr, a classical calculation caa performed provided the quantumechanical
uncertainty of the scattering angl&], is small compared to the scattering angle itself:

DI < <J (4.3)

The uncertainty of the direction of a wave packet after scattering is composed from the uncertainty of
the initial directiona and the impact parameter p (see Fig. 4.1). The uncertainty relation for the
direction normal to the propagation reads

Fig. 4.1
Wave
__—@\  Packet 4 Quantummechanical
—— 3 scattering geometry
D
| N
N\
Scattering
Center
" >
2 __
dp Qi 2 - (4.4)
with the uncertainty of the perpendicular momentum
dg. =mu ¢ (4.5)

The uncertainty in p results in a partial uncertaiotyd. With independent contributions from the
uncertainties in p and g, the total uncertainty becomes

2

(dp)? (4.6)

(D3)* =(d & +

w
Mp

Using the fi=06 sign in eq. (4.4) in ordmyasto cal
function of @p)?, the following conditiorfor a classical trajectory calculation is obtained according to
eq. (4.3):

oP&l a <<1 4.7)
HP¢I\P)=

For a Coulomb potential, (4.7) can conveniently be evaluated for small scattering anglés-viith
according to (1.17), resulting in

0 <<b (4.8)

15



or the condition forthesoal | edr HKBppao

2 e’
=M=2‘Q1Q2‘u_0 >>1 (4.9)

4p gu u
with vy denoting the velocity of the first Bohr orbit.
Eq. (4.8) demonstrates that the <collision diam
However, as b ~ \#, the velocity dependence is just inverted: Classical trajecalpulations are
feasible in the limit of low ion velocities.

For the interaction of an ion with an electron, the Bohr criterion reads

u
ke=2z,~> >>1 (4.10)
For the scattering in a screened Coul omb poten

approximation, be waluated for the Lindhard standard potential, eq. (2.15), in a -smgié
approximation for distances large compared to a, resulting in

K, =22,2, -0 >
n = 2122? > > l+¥ (4.11)

that is, the Bohr criterion becomes dependent on the impact parameter.

4.2 QuanturrMechanical Scattering Cross@@ien

In the quantummechanical picture, elastic ion scattering is described by the transition from an initial
state |i> to a final state |f>, both being represented by the particle at which the scattering occurs, and a
plane wave for the incident anditgoing ion. In first Born approximation, the differential cross
section results as

ds
aw

\( Vi (4.12)

m%e—p
¢~

IOOx
C|C

For elastic scattering, the scattering in a spherically symmetric potential results as

2
ds _nf0* 1 | .42 .
—= rev (r)singe-r sin—
aw > Sianoﬁj (r) ) 23 (4.13)
2

For a screened Coulomb potential with a Bohr screening function (eq. (2(24)3) can be
conveniently evaluated resulting in

ds _b° 1

dw 163 2 G (4.14)
a%in2£+éa£8 Q
{:e 2 928.— 0

which reproduces the Rutherford cross section in the limit of high velocity. In contrast to the
Rutherford cross section, (4.14) can be integrated to obtain a total cross section
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Stot -

=———°pa’k’ (4.15)

as the second term ihe denominator is negligible except for very low energies (around 1leV and
less).

The validity of the first Born approximation requires a total cross section which is small compared to
the characteristic atomic dimension, i.e.p&’. Therefore, accordi to (4.15), the first Born
approximation would become questionable for low velocities witse 1. Therefore, the quantum
mechanical calculations are not feasible in this regime, and classical trajectory calculations are
necessary. The Bohr criterion (3&elivers a unique limit between quantumechanical and classical
calculations.

E E- DE Fig. 5.1

v

Energy Loss

5. Stopping of lons

When travelling along a path s through matter, an ion will continuously loose energy due to the
interaction with electrons and screenattlei. The energy loss per unit pathlength is denoted as
Astopping power 0:

__UE (5.1)
ds
Oof t en, the stopping is normalised to the atomic
cross sectionbo
_ 1dE
“ s 52)

where 18 is the number of atoms per unit area for a tsmepathlength s.

Although a correlation can be expected between the collisions with screened nuclei and the collisions

wi t h t he el ectrons, as t he | ocal el ectron dens
fel asticdod interadtfoomwthe Bel eepronai co or Ainel
for simplicity. (It will turn out that the individual interactions are dominant in distinct ranges of

energy, so that the approximation can be justified to some extent by the resulgpGodingly, the
total stopping is composed linearly from nuclear and electronic stopping:

St =S, + S, (5.3)

The stopping cross section can generally be written as
S=fds(T) (5.4)
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for an interaction with the differential cross sectienashd the energy transfer T.

5.1 Effective Chrge

In addition to stopping, the electronic interaction of an ion passing through matter results in charge
changing collisions, so that the actual charge state of a fast ion in matter is continuously fluctuating
and determined by a balance between aladwss and electron attachment. The average charge of the

i on, which depends on its vel,8 andtisyuickly establisked ot e d
(typically within some nm) when an ion of arbitrary charge state impinges onto a soliwesimfthe

limit of very low energy, the ion becomes neutral with a vanishing effective charge, so that atomic
electrons interact with the electrons of the solid. Towards high velocities, electron loss dominates, so
that the ions becomes a naked nucleub &"" = 7, at sufficiently high energy.

More quantitatively, electron attachment is effective if the ion velocity is lower than the characteristic
orbital velocity of its atomic electrons. Under this conditions, electrons from the electron gas of the
solid have sufficient time to accommodate adiabatically with the moving ion. Taking the average
velocity of electrons in a free electron gas witlelectrons

U, U, ZP"? (5.5)
as the characteristic velocity, Bohr has estimated the effective charge of the ion by

. a a
zet o oz 4o Hgus oy zl%-ex@uiz;%?é (5.6)
(o) (o 0 -

ue,l uO

with a highvelocity extrapolation that ascertains that'£annot exceed.Z

5.2 Electronic Stopping High Velocity

2/3 4/3

For v >> wZ,”°, corresponding to E >> 25 ké&\,Z,*” where A denotes the atomic mass of the
projectile, the ion is deprived of aits electrons. Then, the evaluation of (4.10) yields for the
interaction with electrons ({>1):

k, < @z!3 (5.7)

which does in general not fulfil the Bohr condition for classical trajectory calculations. Therefore,
quanturamechanical calculations have to be appliedyémeral. For very heavy ions, however, an
approximation by classical mechanics might become more feasible.

Both therefore and in order to discuss some physical concepts which will enter the classical
calculation, we will start here with the latter, thbugeing aware of the fact that it is not justified in
principle.

The evaluation of (5.4) for Rutherford scattering of the ion free electrons yields

4pe* 771z, &2

S - 2 | pmax
° (4p g)* m.u? og? b,

(5.8)

|-OOO

with m. denoting the electron mass andh®e electronic collision diameter (eq. (1.18)). A difficuilty
evaluating the stopping cross section arises from the fact shat B according to egs. (1.6) and
(1.19), so that the integral diverges with a lower limit D. Therefore, a lower limit ., has to be
introduced corresponding to a maximum impachpaater pay Which appears in (5.8).
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An estimation of p.yis obtained bythesoal | ed fAadi abatic cutoff i . As
intervalt of the interaction, the electrons of a target atom contribute to energy loss only if their mean
orbital frequencyw is small compared to the inverse of the characteristic collision time. Otherwise, at

large orbital frequencies, the electron would attach adiabatically to the moving ion.

Using the momentum approximation (eq. (1.21)), the characteristici@ollisne can be estimated
from the transverse momentum transfer and its associated force integral to be

(o 4P (5.9)
u

so that the integration is limited to a maximum impact parameter

utnax up u
o __ Maxo —~ 7" o —
P ® == 20w (5.10)
Then, the result becomes (the classical ABohro f
4 ziz adp [0
s, = 2P Zi ggz m”g (5.11)
(496)”1“ ¢ *

In the classicapicture, the energy dependence of the electronic stopping reads'iag(€E"?), C
being a constant.

Now we will turn to the quanturmechanical derivation of higénergy electronic stopping, which is
imposed by the Bohr criterion.

The ion is represéad by an initial and a final plane wave (see Fig. 5.2). The total initial and final
states are

\i>=\ni>(2p)'gexr(- |k('|;rC) f)=|n) (2p gexp( ik C) (5.12)

where h;> and > denote the initial and final state of the target atom, respectively,; @mad # the
wave vector of the ingoing and outgoing plane wasspectively.

N Wave =

K, IFI)HICII(TTI i Fig. 5.2

A - IR Quantummechanical
N scattering coordinates

—————

S.=a ﬁmif(ef - ei)dW (5.13)



Into (5.13), eq. (4.12) has to be inserted with m, and the interaction potential

2 &z, 0
V(F%rcf, I )=- j;eg% R-llﬂ- Z_Rzg (5.14)
c i

With the momentum transfer

a=K - K (5.15)
the intermediate result is
8pe* Z?7 .. "dq ’

S =(4p o >u? Q. q:;lq—s( -€ )<"f “i> (5.16)

From energy conservation, maximum and minimum momentum transfer for a given final state are

e -e 4. = 2m_u
max

u >

qmin = (517)

for a maximum energy transfer large compared to the binding energy of the electron.

For simplicity, Hartree wave functions
51,6 619
i=1

with the individual orbital wave functiong; shall be employed intermediately. (However, the
following finding also hold for more realistic total wave functions.) Then, the matrix element of (5.17)
becomes

W

Due to the orthonormality of thg , (5.19 is only different from zero if exactly one electronic state
(e.g., numbered j) is altered during the collision: Within the first Born approximation, multiple
electronic excitation or ionisation is excluded. The matrix element is reduced to

;

to be intgrated over the atomic volume. For a characteristic radius a of the atom, the evaluation of
(5.20) can be discriminated. If the momentum transfer is large compared to the inverse of the atomic
radius, the exponential term oscillates quickly, and the melgiment only vanishes if

> 4 1] lfl 1i ﬂ ﬂ r ] |f] ii eXF(H%B)T[ ﬂ Z2 ] *szj Z,i (519)

> i1, o) (5.20)

: . 1
iy (77)~exel- i) for g>~ (5.21)

i.e., the final state of the electron j is a plane wave. This situation stands for the ionisation of the atom,
with
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2m (5.22)

The contributions to the summation owgrand the integration over q in eq. (5.16) are indicated
schematically in the twedimensional plot of Fig. 5.3. For g < 1/a, the individual energy levels of the
atoms are involved in electronic excitation. (5.16) can now be evaluated individually for the different
regimes of g. For q > 1/a, the integrand can be@ded into generalised oscillator strengths, which

A

lonisation Fig. 5.3

e -e
Omin = Contributions to
u the stopping power
o 2 integral
Excitation

_ e
qmax -

drop out due to their normalisation. For g < 1/a, the exponential of (5.20) is expanded to first order,
which leads to dipole oscillator strengthsAdding the expressions for batbgimes, the final result
is the Bethe formula

4pe* Zz2z, &2m.u’@
S, = lo £
Tlp g mu E 1 8 (529
with the fAmean ionisation potential d given by
logl =4 f, log>e, - ) (5.24)
f

Due to the summation over all possible final states of the excited atom, | cannot readily be calculated.
A reasonable approximation is according to Bloch

| °10evV(, (5.25)

It should be noted that the quantunechanical result (5.23) differs from the classical one (5.11) only
in the logarithmic terms which varies slowly with energy, anyway.

Two examples are given in Figs. 5.4a and 5.4b. In the limit of very high eetiythe classical and

the quanturmechanical formula are in good agreement with the experimental data. In thieright
case, the Bethe formula works well for>> 1. However, also the classical result is a rather good
approximation even for the unsuitablenergy regime. For heavy ions, quamuechanical
calculations are only feasible for extremely high energy, and the classical picture holds well at
sufficiently high energy.
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For completeness, it should briefly be mentioned the-tébcity electronic energy loss can also be
derived from the dynamic polarisation of a free electron gas, and the corresponding retarding drag on
the ion (Lindhard and Winter). Again a resulingar to (5.23) is obtained. The comparison yields in

this case

| =Ziﬁo,przdrne(r)log(x/5>Wo(r )) (5.26)

Thus, the mean ionisation potential can be calculated more easily from realistic local radial electron
densities pand the corresponding plasma frequenaigs

5.3 Electronic Stoppinfj Low Velocity

2/3

At low velocity with v < \Z,, the combination with the effective charge (eq. (5.6)) yields

k,02z1/3>1 (5.27)

22



so that classical trajectory calculations are feasible. In the following, we consider the interaction of the
ion with the target electrons meited as a free electron gas. By the scattering events with its electrons,
momentum is transferred to the ion. The stopping cross section can be written in terms of the change
of the longitudinal momentum,pper time unit:

1 d(p?)_ 1dn
2m;n udt " onodt

(5.28)

e

Fig. 5.4

Fermi sphere of the target free
electron gas with Fermi velocity
Vs, in the frame of an ion
movingwith small velocity v.
The dashed trajectory indicates
an electronic scattering event
which is not forbidden by the
Pauli principle.

For low ion velocities being small compared to the Fermi velocity of the electron gas, which is given
by
>
u =m—(3pzne)% (5.29)

e

for a free electron gas, the Fermi sphere of the target electrons is slightly shifted in the frame of the ion
(see Fig. 5.4). According to the Pauli mipple, electrons can only transfer momentum to the ion when
their final state lies in a previously unoccupied position beyond the original Fermi sphere. This is
possible for electrons being positioned outside of a sphere with radiug,vas indicated byhe

shaded area in Fig. 5.4. Its volume is abqut&. The velocity of the contributing electrons can be
approximated by and the momentum transfer per scattering event is in the ordew;ofAnsimple
estimation then shows according to (5.28)

S.°m,Z,u L,ls(uf) (5.30)

with the ionelectron scattering cross sectionAs an important result, the stopping cross section is
proportional to the ion velocity, due to the Pauli principle.

A more rigorous treatment of the scattering geometry yields, still in the limity << v
S.=m.Z,u ys,(u;) (5.31)

wheres, denotes the soalled transport cross section given by

(u) ow (532)

p
s, (u)=f{1- cosJ )3—;
0
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The evaluation of the differential cross section is rather complex and has to be performed for realistic
local electron densities(n,Z:,Z,). Lindhard and Scharff arrive at

2 7/6
S =8pe a, 2,77, u_ ke\/E

—= 5.33
4p e (le/s "'222/3)3/2 u, ( )

where kis a constant defined by eq. (5.33). The result implicitly assumes that the electronic stopping
acts nonlocally, i.e. independent of the actual position of the ion trajectory with respect to the position
of the atoms which are passed by. Therefore,dhaltris independent of the actual impact parameter
for a specific collision.

Fig. 5.5

Electronic energy loss in
the Firsov picture

A different approach has been described by Firsov. During the interaction of two atoms, the electron
clouds penetrate each other. Electrons transversetdisecting plane between the two atoms, and, as

vV <<\, accommodate their original directed kinetic energy (for both atoms moving in the CM
system) to the dynamic electronic configuration of the interatomic system. For a free electron gas and
a Thomad-ermi interaction potential Firsov obtains for the electronic energy transfer per atomic
collision

035 (z,+2,)7>u
e7 3 x5 (5.34)
° &+016(z, +zz)”3;’§

T

'O?ﬂm“

which offers the possibility to compute the energy loss as function of the impact parameter, with a
very steep decrease as function of p for p ¥he ntegration over p yields in good approximation

S, =515005(2, +Z,)— eVcm? (5.35)
uO
Fig. 5.6 gives an example of leenergy electronic cross sections according to (5.33) and (5.35), in
comparison to experimental values. The average agreement is good, however there are clear shell

oscillations which cause significant deviations from the-gksztron gas pictures.

For practical purposes in particular in connection with computer simulation, Oen and Robinson
proposed an alternative expression for the local energy transfer (see eq. (5.34)):
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Fig. 5.6

Low-energy electronic
stopping according to
Lindhard and Scharff
(solid lines) and Firsov
(dashed lines) for
different ions athree
different velocities in a

Lyttt

L L Lij
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2pa c a =+

where ¢ is the decay constant of the leading term of the exponential series approximation of the
screening function (see egs. (2.10) and (2.17)) apdtRe minimum distance of approach (see eq.
(1.13)). Integration of (5.36) yietdthe LindhareScharff electronic stopping cross section (eq. (5.33))

in good approximation.

5.4 Electronic Stopping Empirical Concepts

As seen above, the electronic stopping can be reasonably well described in the limits of high and low
energies. Ta intermediate regime around v sZy° is very complex, in particular due to electron loss

and attachment (see sect. 5.2). A formal approximation for this regime can be obtained by inverse
interpolation

11 . 1
s.  S.(highu) s, (lowu) (5.37)

with a suitable lowvelocity extrapolation (towals infinity as v- 0) of the monotonically decreasing
part of the above highelocity results. Then, (5.37) reproduces the limiting-l@locity and high
velocity regimes correctly. Fig. 5.7 demonstrates a reasonable agreement with experimental data.

Interpolation formulas similar to (5.37) with proper parameterisation of the am highenergy
formulas have been fitted to experimental data and are available in stopping tabulations (Ziegler,
Andersen et. al.). A more elaborate concept (Ziegler etralkes additionally use of an effective
charge concept (see sect. 5.2) for a-l@locity extrapolation of the highelocity electronic stopping.

From this and the fit to many experimental data, universal-eemirical electronic stopping power

data are waailable from the SRIM package[19]. Specific data are shown in Figs. 5.4, 5.7 and 5.9.

5.5 Nuclear Stopping

The definition of a reduced, dimensionless pathlength according to LNS,

4mm, .

= 2 G
r=pan (m1 N m2)2 (5.38)
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yields directly a universal formufar the nuclear stopping power in reduced LNS units, making use of
the universal scattering function for a screened Coulomb potential:

de

gﬁ —rg =%E~lf (t+2)a(2) (5.39)

n

For the Thoma$ermi screening function, Matsunami has given a good analytical approximation:

% ded _ 344/elogle+2718) (5.40)
¢ a2 1+635/e+e(6.882/e- 1.708)
0.5 Fig. 5.8
aded 0.4 /'-\ Reduced nuclear stopping
%?g power as function of the
Q M o3 redu@d energy for Thomas
' b Fermi screening according
/ to (5.39) (solid line) and the
0.2 L Matsunami approximation
,f N (5.40) (dotted line), with
0.1% (Y high- and lowenergy limits
' M (dasheetlotted and dashed
y line, respectively)
010'3 107 10" 1 10 10?

Eqg. (5.40) shows that nuclear stopping, like electronic stopping, is proportional to the ion velocity in
the limit of low velocity. At very high energy, it is proportionalgdbg(e), which is just the energy
scaling of electronic stopping. Fig. 5.808¥s the universal nuclear stopping together with these limits.
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Fig. 5.9a

Nuclear (eq.(5.40),
dotted line), electronic
(SRIM package, solid
line, and eq.(5.33),

corrected by fitting factor

of 1.2, dashe line) and

total stopping (thin solid
line) cross section versus

ion energy, for

germanium in silicon.

Fig. 5.9b

As Fig. 5.9a, but for

hydrogen in nickel. The

LindhardScharff

electronic stopping has
been corrected by a fitting

factor of 1.3. Note the

different scales.

Figs. 5.9a+b show the nuclear stopping cross sectiowt8ch is transformed from (5.40) to nron
reduced energy and pathlength, in compariso the electronic cross section. For heavier ions,
nuclear stopping dominates at low energy and becomes negligible in the limit of high energy. This is a

further justification of the independent treatment of electronic and nuclear interaction. Ftghery

ions, nuclear stopping can be neglected in a broad range of energies.

5.6 Stopping in Compound Materials

The simplest approximation to the stopping in compound materials is the summation of the pure
element stopping cross sections. Thus, forwa-domponent material 8, with the elemental
stopping cross section,@nd g,

t he

S

A,B,

stopping

_=NS, +mSg

Cross

sect

i on

(5.41)

S

acc

By the simple linear superposition, chemical interaction of the elements are neglected. Nevertheless,

Br a g g 6 sormally hokds rather well. With increasing amount of covalent bonding in the

compound, deviation of up to about 40% are observed, as, e.g., for oxides and hydrocarbons. For a
number of compounds, stopping data are available in the SRIM package[19].
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6. Energy Loss Fluctuations

In addition to the mean energy loss which is described by the stopping power, the energy distribution
of an ion beam is broadened after traversing a sheet of thickmesee Fig. 5.1)). This is shown
schematically in Fig. 6.1There are various reasons for energy loss fluctuations, which are partly
fii mmanent o0, i . e. connected to the statistical
However, in an experiment, additional contributions are observed and may obscunerthnent
mechanisms, such as thickness variations of a foil or the influence of target crystallinity and/or texture.
Here, we will remain in the frame of a random substance, and address the most important mechanisms.

E E- DE Fig. 6.1

> >

Schematic showing the
fe fel ‘ ] broadening of the energy
»> Ds « distribution of an ion beam
B 7 L 2 N after passing through a thi
sheet of matter
0 E O EDE E

6.1 Thickness Flucation

When a thin film of thickness x with a mean square variatiors traversed, the resulting variance of
the ion energy distribution is
2

we =5 9EQ g2 6.1)
%

o

X =

that is, the width of the resulting energy distribution is proportional to the stopping power.

6.2 Charge tte Fluctuation

As discussed in sect. 5.1, ions with intermediate energies undergo charge change collisions, so that
they exhibit different charge states during their transport through matter. In the energy range of
interest, the cross sections of @@changing collisions are smaller than those of the atomic collision
which determine the energy loss. Thus, as shown in Fig. 6.2 for the simplified case of only two
different charge states, a fractianof the total pathlength would be spent with onethed charge

states, and the remaining fraction with the other charge state.

A
Charge .
State Fig. 6.2
I_I Charge state
1 il fluctuation of an
indvidualion

Pathlength
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The resulting energy loss is

DE =aSlnDs+(l- a)SanS (6.2)

where $ and S denote the stopping cross sections associated to the respective charge states. From
this, the variance of the energy lakistribution becomes

W= <(DE- <DE>)'> =(nDs)(s, - S,)[<a?>- <a>?) 6.3)

a can be expressed by the charge exchange cross sextjoffiom 1 to 2) ands,; (vice versa)
yielding

2s ,S
W, = (nDs)’(s, - S,) — =2
ce (n ) ( 1 2) (Slz+821)3 (64)

The resulting width of the energy distribution is proportional to the pathlength and the difference of
the stopping powers

6.3 Energy Transfer Fluctuation

The conventional treatment of energy straggling covers the statistical nature of the atomic collisions.
With k; denoting the number of collisions with energy transfertie energy loss becomes for a
specific tragctory

DE=4 kT, (6.5)

The variance of the energy loss, assuming Poisson statistics of the collision numbets;<le>¥¢
= <k;>, results in

_ 2 _ 2
W = <(DE- <DE>) > _ai<ki >T, (6.6)
In continuous notation witk; => nDs@s, this becomes

W =nDsfy *ds (6.7)

so that the width of the energy distribution scales wittsth&re root of the thickness.

Eq. (6) can easily be evaluated for Rutherford scattering, as first shown by Bohr. (In contrast to
stoppingi see sect. 5.B the integral converges for a zero minimum energy transfer.) For sufficiently
many independent cadlions, i.e. when neglecting energy loss, a Gaussian energy distribution results
with a variance

4pe* ., m?
W =nDs-———Q/Q} —+— (6.8)
"Elap o 2% (m, +m,)

Energy straggling is thus independent of the ion energy in the limit of high energy. Evaluating (6.8)
for scattering at free eIectronsf@l, m=me, M<<my, N=N2Z,) yields the Bohr formula

W2 4pe*z?z,

e

nDs  (4p g)

(6.9)
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For lower ion energy, Lindhard and Scharff calculated the electronic straggling in a local free electron
gas approximation with the result

L(x) .
—7 if x¢3
w_ 2 (6.10)
We .
1 if x23

with an analytical function and its variable

3
L(x)=1.36x"2 - 0.016x%? X = Zi%ig (6.11)
2 ¢

[l
Nuclear straggling cargain easily be written in reduced LNS units
e
w: =5 1 (2)a(?) 612)
0

which reproduces (6.8) for the scattering of totally stripped nuclei in the limit of high energy.
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Figs. 6.3a+b show the energy straggling as function of the ion energwdodifferent iontarget
combinations. For very light ions, the nuclear straggling can roughly be neglected, whereas it is
dominant for heavy ions (note that the total straggling results from the linear addition of the nuclear
and electronic variances vdhi are shown in the figures.)

It should, however, be noted that only simplified results have been presented, assuming sufficiently
thick layers and neglecting energy loss, which is a contradiction in general. Very thin films, in

particular at high ion emgy, may yield strongly asymmetric energy distributions, whereas for thick
films the energy loss has to be taken into account.

Fig. 7.1

— > Multiple scattering
< T of an ion beam

> X <«

7. Multiple Scattering

As discussed in chapter 5, the stopping of ions results fractr@té collisions and the interaction of

the screened nuclei, with the electronic interaction often dominating the total stopping. The
geometrical trajectory of each ion, however, results essentially from nuclear collisions only, as the
electronic scattémg is not associated with significant deflections. The statistical nature of the nuclear

collisions leads to a broadening of the angular distribution of an ion beam, as indicated in Fig. 7.1,
when traversing through a slab of matter with thickness xanhalar distribution of the ions depends

on the depth and can be described by a distribution fungifm/aj, with the normalisation condition

1= fifw(x.a)dw= 2p;“-ifw(x,a)sinada 0 2p;“-ifw(x,a)ada (7.1)
0 0

where the latter equality holds for small angles. More precisgly.al) represent the distribution over
the solid angle. Alternatively, the polar angle distributigfix,) can be employed with the
normalisation

P
1= ﬁfa(x,a)da (7.2)
0

In comparison with (7.1), both distribution functions can be transformed by
fa(x,a)=2p afw(x,a) (7.3)

for small angles. This is shown schematically in Fig. 7.2.
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' ' ' Fig. 7.2

Angular distribution in solid
angle (left) and polar angle
(right) representation. The
polar angle distbution
vanishes aa=0.

0 a

In order to study the evolution of the distribution function at increasing penetration depth, a thin
incremental slatix is considered as shown in Fig. 7.3, which describes an examplecaflexa
"forward" transport. Within this slab, dadon can either change its direction due to a nuclear
collision, or it may just penetrate without any nuclear collision (any energy losses are neglected). In
the former case, for an ensemble of ions described by the angular distribution function, the new
distribution function, §(x+dx,a), results from scattering events which transform fractions of the
original function, §(x,a6 ) , i nt o d. Ahe prdbahiliy ¢stgivem rby the scattering cross
sections for all directional changa® a. In the lattercase, the distribution function is reproduced
with a probability of one minus the total cross section. Therefore:

/:/v Fig. 7.3
I
: "Forward" transport by

/ nuclear collisions

y__
F---

dx

fulx+dx,a) = ndxfis (ai- a)fy(x.ai)+(L- naxfjs, )fu(x.a) (7.4)
Although the resulting angle distribution is axially symmetric, the flight direction of individual ions
has both a polaand an azimuthal component. Therefore, in the detailed treatmerdjm&asional

angles and angular distribution have to be considered, which is not explicitly indicated here for
simplicity. The Taylor expansion of the ldfand side results in the Battann type transport equation

l‘fwif))((’a) - nﬁisn(ai- a)(fw(x,ai)- fw(x,a)) (7.5)

By suitable mathematical techniques, the intatjfferential equation can be solved for an initially
sharp angular distribution, f@)=d(a), resulting in the Bothe equation

fw(x,a)=2—1ph<koo(ka)exp(- s (k)
° (7.6)

with so(k)=;"1(jjs—Q”dQ(1' J,(kQ))
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where J denotes the zerorder Bessel funimn. Following Sigmund, the Bothe equation will now be

turned into reduced units. The (small) laboratory scattering aQgban be transformed into the
reduced scattering angle, eq. (3.10), by

4p gaE
tr=—— > 7.7
2Z2,Z2,¢€° Q (7.7)
Correspondingly, the directional angle is transformed &nteduced angle
~_ 4 E
g= P EE 7.8)
22,7,e
Further, a reduced thickness is introduced for the purpose of multiple scattering
t =pa’nx (7.9)
Then, (7.6) can be rewritten as
ot ,5)=2—1pﬁzdzJ0(z§)exp(- tD{(2))
0 (7.10)

with D(2)= ;ﬁdr :~(|:) (1- 3,(7))

Multiple scattering distributions are tabulated for a large range of reduced angles and thickness in ref.
[10]. An example is given in Fig. 7.4.

1000 T 4 T
+ )
f(x.a) B — 100 nm Si fa(x,a) 1 MeV
100 .
20 -
10 _ 500 keV
100 keV
1 0
0 5 10 0 5 10

a (degree)

Fig. 7.4 Multiple scattering distributions for boron in silicon. Note the different presentations: (left)
solid angle distribution, logarithmic; (right) polar angle distribution, linear.
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8. lon Ranges

As a consequence of stopping and scattering, each individual incident ion forms a random trajectory as
shown in Fig. 8.1. Stopping alone defines the total pathlengthr&n the endpoint dahe trajectory
projected ranges can be defined (longitudingf,, Rnd lateral, R). For practical purposes, the
(normal) projected range,Rs mostly of interest, since it characterises the implantation depth with
respect to the surface. Obviously, iR equal to B for normal incidence. As in most implantation
processes the extension of the implanted area is very large compared to the ionyliangesty also

the only range quantity which is accessible to measurement.

Fig. 8.2

Schematic of range
distribution at normal
incidence

pull
o

i

For many incident ions, the range distribution is smeared out parallel to the surface (see Fig. 8.2), with
a mean projected rangeg.Rf the range distribution peaks sufficiently far from the surface, the mean
projected range at an angle of incideacs related to the mean projected range at normal incidence

by
R,(a)=R;(a)@os(a)=R,(a=0)&osa (8.1)
at given energy of incidence.

The mean total pathlength is easily calculated from the total stopping cross section by integration
along the path s, according to

ooy 1% dE

Simple analytical solutions nabe obtained for certain energy regimes for a giventdoget
combination. When electronic stopping is proportional to the ion velocity (eq. (5.33)) and nuclear
stopping can be neglected (see Fig. 5.9), the result is
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R(E)=%\/E if S, <<, and u<u,z?? (8.3)

e

that is, stopping and range gm®@portional to the ion velocity. When nuclear stopping dominates, only
approximate analytical solutions are feasible. Using the ptamerapproximation (2.16) for the
interatomic screening function, the universal result is in reduced units

r_t(e)=sl'—1e% if s << (8.4)

S

with a consantl 5 to be determined fromskFor the approximation% 2 (see Fig. 3.2) the mean total
pathlength becomes proportional to the ion energy according to

r.(e,s=2)=306C (8.5)
which is frequently used as an approximation to "nuclear” ranges.
For certain regimes of paratees, analytical transformations are available to calculate the mean
projected range from the mean total pathlength (in view of (8.1), we restrict ourselves to normal
incidence). Generally, for > m, it can be anticipated that angular scattering is lsrealthat the

total pathlength is a good approximation also for the projected range.

For the nuclear stopping regime, Lindhard et al. found from transport theory, again inlgower
approximation

if S.<<5 (8.6

I G)Ol

R,(E)= R(E)@+__(ﬂ8 R(E)c%

where the latter approximation holds again for s = 2.

For the opposite case of high ion energy, where electronic stopping dominates, Schigtt obtained

R,(E)=R(E)d(1- 21) if S,<S, and | <05

with 1 =Mz Se(E) e
m. SniEi

which is applicable only in a narrow regime of parameters, in particular for light ions.

For more precise data of projected ranges, transport theonyat&lns have to be performed (see sect.

10). Alternatively, computer simulations of the binary collision approximation (BCA) type can be
employed (see sect. 11). Both are available in the SRIM computer package [19]. Fig. 8.3 shows the
range of nitrogen ios in iron for a broad energy range. The nuclear stopping approximation (8.5)
yields a rough approximation to the mean total pathlength at sufficiently low energy. The ratio of the
mean projected range to the mean total pathlength is about 50% at thiedpergges and 75% at the
highest energies for the present case. For this ratio, eq. (8.6) gives a good result in the nuclear stopping
regime, whereas the ligitn approximation (8.7) fails. The predictions from transport theory and
computer simulation lyeg available in the SRIM package [19] are in excellent agreement.

Further, as a "rulef-thumb", it is seen that the mean projected ion range, measured in nm, is

approximately equal to the incident energy, measured in keV, which can be used as adgsbgu
many iontarget combinations.
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9. The Collision Cascade

Nuclear collision do not only contribute to the energy loss of fast ions and determine their angular
distributions, but also transfer energy to the atomshef material, thus creating "primary" recoil
atoms. If the transferred energy is sufficiently large, these primary recoils will move along a trajectory
similar to that of the incident ion, and may again undergo nuclear collisions, thus creating further
generations of recoils and a "collision cascade". Each individual recoil, according to its initial energy,
may come to rest at some distance from its original site. This is shown schematically in Fig. 9.1

Fig. 9.1

Schematic of an ion
trajectory and the
associated recoil at@n
with their individual
trajectories.

In Fig. 9.1, the "final" positins of the ion and the cascade atoms are indicated. Strictly speaking, both
come to "rest" after their kinetic energy has fallen down to the thermal energy of the target substance.
However, the residual ranges already at eV energies become extremelpramnatimparable to the
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lattice spacing in a solid (see Fig. 8.3). Therefore, if details like the final position in a lattice cell are
not of interest, it is reasonable to define a cutoff energy in the order of a few eV to determine the final
position of anion or a recoil atom.

In this "collisional" picture, recoil atoms with an initial energy of less than a few eV (which is also in
the order of the binding energy of a lattice atom) are meaningless. Therefore, the generation of cascade
atoms is limited. Imphysical reality, however, the cascade will continue to dissipate its energy and
finally thermalise with the surrounding medium.

Depending on the amount of deposited energy per unit volume, the collision cascade may be more or
less dense. For low primarenergy transfers and an ion range which is large compared to the
extension of individual subcascades (see Fig. 9.2), i.e. typically in the case of light ions at high energy,
the complete cascade is split into many subcascades, whereas in the oppestie eatension of the
subscascades may be in the order of the ion range. Nevertheless, for many incident ions the collision
cascades will also fill the complete space around the ion trajectory also in the former case, so that in
average the two situatierof Fig. 9.2 are not entirely different.

Fig. 9.2

Schematic of the cascade formation
for an individual ion trajectory,
depending on the average primary
initial energy transfer T: Small
subscascades for light ions at high
energy (top), and one largascade
for heavy ions at sufficiently low
energy (bottom).

The density of deposited energy does not only influence the spatial development of the cascade, but
also its internal dynamics. Conventionaltiyee regimes are defined (see Fig. 9.3). In the single
collision regime (Fig. 9.3a), which is typical for light ions at low energy, a cascade does not really
develop and the atomic motion is stopped after a few collision events.

-—
8 \
(a) (b) (c)

Fig. 9.3

Cascade regimes (schematically): (a) Single collision regime; (b) Linear cascade; (c) Thermal
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The "Linear Cascade" regime (Fig. 9.3b) is defined by the requirement that collisions take place
essentially only between fast particles and atoms being at rest (in the collisional sense as discussed
above, i.e. neglecting ¢éhmal motion). This regime is the standard regime in the range of ion energies
which are covered by the present lecture, and will be the subject of most of the discussions below. As
the single collision regime, it allows to treat the cascade as a seqfameebody collisions, which

have been described in chapte. 1

In contrast, in the "Thermal Spike" regime (Fig. 9.3c) the cascade becomes so dense that collisions
between fast particles play an essential role. In the limit, all lattice atoms vhighoascade become a
thermal ensemble with a high temperature, which may exceed the melting temperature of the solid and
even its evaporation temperature on a short time scale.

Finally, it is worth wile to address the charactistic time scales of aioallsascade. The slowing
down time of a fast atom in a target substance is according to the definition of the stopping cross
section (see eq. (5.2)) with ds = vdt

EE~/ dEi 9.1
ne n SiEi O3

where m and E denote the mass and the initial energy of the atom, respectively, tedchtoff

energy. With the stopping being proportional to the velocity, which holds for the electronic stopping
except for very high energy and for the nuclear stopping at very low energy (see ch. 5), that is for most
ions and the lovenergy cascade aton{9,1) becomes with the stopping constant k

E o ~
0

t=— |- f—t=—" ||
nk\V 2 DE. nk\ 2 029% 8 (9.2)

For the iontarget combination of Fig. 8.3, a slowidgwn time of about®0"®s is obtained, which is

in the order of the lattice vibration period. The slowdwyvn time depends only weakly on the initial
erergy and on the ion and target species. Thus, the lifetime of a collisional cascade is in the order of
10"to 10%s.

The lateral extension of a cascade depends both on the characteristic primary energy transfer and the
trajectory of the ion. In the psent range of energies, some nm are a good estimate. From this, a
typical area of a cascade, projected onto the surface plane, is in the ordét tof 10" cn?. For an

ion flux of 10°° cmi®s™, which is typical for conventional higturrent ion implatation, this area is hit

by 10 to 10" ions per second. In comparison with the cascade lifetime as given above, this indicates
an extremely small possibility of overlap of collision cascades initiated by subsequently implanted
ions in the order of 18 Thus, cascade overlap by different ions can be excluded.

10. Transport Equations Governing the Deposition of Particles and Energy

10.1 Primary Distributions

Eq. (7.4) represents a special form of acabled "forward" transport equation, which delis a
distribution function of a beam property (deflection angle, particle energy), with the depth x as
parameter. In turn, distributions of particle or energy deposition are defined as functions of the depth
X, with the properties of the incident beamc{dent energy E and incident angle, represented by its
directional cosinda) as parameters.
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An incident ion can interact with the substance in a differential element of de@hthe surface,
which, according to the scattering probabilities, results in a modified energy and/or direation at
These new inidl conditions contribute to the deposition function f atd+each with their
corresponding distribution functions as function of x due to the translational invariance of the medium,
which is assumed to be homogeneousixirthe ion may undergo a nucleadllision ((3) in Fig. 10.1),
changing the directioh to h' and the energy E to E', an electronic collision ((2)), changing the energy
E to EDE but not the direction, or no collision. Correspondingly, the following ansatz results, which is
given in Xdimensional form for simplicity:

f(x+dx,E,h) = nu tfps (E.h- Eihi)f(x,Eihi)
+nZ,u tfpis (E.h- E- DE,h)f(x,E- DE,h) (10.1)
+(1- nu gffs,, - nZ,u Cﬁjse)f (x,E,h)
Here, v denotes the incident velocity ardl the traversed pathlength througiy such that

dx =h utc (10.2)

Taylor expansion on the leffitand side yields

h%(x,E,h) = nfgs (E.h- Eihi)f(x,Eihi)- f(x,Eh)) (103)
+nfps (E,h- E- DE,h)(f(x,E- DE,h)- f(x,E,h))
Further expanding
nffs_(f (x.E - DE.h)- f(x,E,h))=-n%(x,E,h)f’pseDE

uf (10.4)
=- nSe(E)u—E(x, E ,h)

yields the Boltzmann type transport equation
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pf _ Hf
h&(x,E,h) —-nSe(E)E(x,E,h)

(10.5)
+nffls (E.h- Eihi)ff(x,Eihi)- f(x,E,h))
For the distributiond of ion ranges, the normalisation conditions reads
fif < (x,E.h)dx =1 (10.6)

-o

so that g(x,Eh)dx denotes the probability to find an implanted ion deposited in the depth interval dx
at the depth x.

As already indicated by the integration limits op €10.6), the transport equation is normally solved in
an infinite medium, so that a fraction of f may extend to x < 0. The identification of this fraction with
the ion reflection coefficient R, according to

fif=(x,E.h)dx=R (10.7)

holds only approximately, since the trangdormalism allows a multiple crossing of an ion trajectory
through the "surface" at x = 0, whereas in reality the ion is lost at the first transmission through the
surface.

Different mathematical procedures to solve eq. (10.5) analytically for iomsazan be found in the
literature, such as in refs. [3,20,21]. In ref. [21], the angular dependence is separated by means of a
Legendre expansion

fR(x,E,h)=§(z|+1)a (h)f, (x.E) (10.8)

so that the transport equation can be written down in an recursive form of the Legendre components
fr. Far these, the-th moments are defined according to

fo(E)= fix" fr(x, E)dx (10.9)

-o

The transformation of the transport equation then allows a stepwise calculation of the moments with a
proper screene@oulomb scattering cross section and for a properly chosen electronic stopping cross
section With the moments of any distribution functiol(x), given, the distribution function itself can

be reconstructed, e.g., by using the Edgeworth expansion

_C &\ G. 5G, . G. (3, @
f(X)——<DX2 =4 o()- i 3(X)+ge2711 S+ e(X)g+ -4 (10.10)

where C is a normalisation constant and

<Dx">=<(x- <x>)"> (10.11)

with the moments
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<x" >=ﬁf (x)C")(”dx (10.12)

j «(X) denote the Gaussian fttion and its derivatives,
W= S ey X—g X=— 1013
k \/2_p dxk g 2 4 ( . )

Finally, the shape parameter "skewness" and "excess" are given by

<Dx°> <Dx*>

Gl <DX2 /2 GZ:—<DX2>2-

(10.14)

respectively. For a pure symmetric Gaussian function, 8otimdG, vanish.

An example of range distribution in LSS reduced quantities for the depklthe energy is given in
Fig. 10.2. At low energy where the electronic stopping scales with velocity, the depth scale scales with
the product of the electronic stopping constant and the reduced depth.

4 .

fo(r &h =1) Fig. 10.2
Range distributions atVoenergy
for normal incidenceh(= 1) in
reduced LSS units, as obtained
from a transport theory calculatior
with two moments (dotted line)
yielding a Gaussian function, and
three moments (solid line). k
denotes the electronic stopping
constant in reducechits, (c&/dr ),

= k@' tf. eq. (5.33).

Depth distributions of the depited energy can be obtained in the same way as range distributions, as
long as only primary collisions between the incident ion and the target atoms are considered. These
"primary" distributions of the deposited energy are a reasonable approximationhsherension of

any collision cascade between the target atoms, which is triggered by a primary collision, is small
compared to the ion range, as for light ions in heavy substances where the primary energy transfer is
small, or for high energy where tfen range is large.

Transport equations like (10.5) can be formulated both for the energy which is dissipated into nuclear
collisions, and the energy which is dissipated into electronic collisions. The corresponding depositions
functions are often dered as "damage" deposition functiop, &nd "ionisation” deposition function,

f|, respectively. For each of these, normalisation conditions hold according to

+ o

ﬁfD(x, E,h)dx=n(E) (10.15)
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and

+ o

fif, (x.E.h)dx=i(E) (10.16)

with n(E) andi (E) denoting the total fractions of the incident energy which arépdiesl into nuclear
and electronic collisions, respectively, with

n(e)+i(E)=E (10.17)

The nuclear fraction can be determined from the integrated transport equation. As the distribution
function vanishes at infinity, (10.5) yields

5.(E) ™)+ iy, (n(E) - nlE)=0 (10.18)

Setting E' = ET with the nuclear engy transfer T and expanding for T << E results in

n(E)= dE (10.19)

’O

Fig. 10.3

_ Schematic representation of high
energy range, damage, and ionisatic
distributions. (a) density contour, (b)
cI
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and (c) projections of the distribati
functions onto a plane parallel and
normal to the direction of incidence,
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Corresponding evaluations and tabulations can be found in the literature. Fig. 10.3 shows a schematic
representation of higanergy range, damage and ionisation distiiims in three dimensions. At small

depth, the nuclear energy deposition is small due to the low scattering cross section at high energy.
Towards the end of the ion trajectories, the ion energy and thereby the nuclear energy dissipation
becomes low, so #t the damage distribution normally peaks at slightly lower depth than the range
distribution. However, it has to be taken into account that multiple large angle deflections, which
occur with increasing probability towards the end of the range, may resultultiple energy
deposition events at the same depth for only one incident ion. This also explains the peak of the
ionisation distribution function at large depth. Otherwise, it reflects the dependence of electron
stopping on energy.

10.2 Distributons of Energy Deposition Including Collision Cascades

In the general case, secondary collision cascades of the target atoms have to be taken into account for
the calculation of the energy deposition. This is mandatory fotaiget combinations with ahbb
equal masses, and for sufficiently low energies.

>
Fig. 10.4
Schematic of the transport

mechanism when including
secondary recoil atoms

—

E,h

\
\ |
®

0o X X+dx

The validity of the linear cascade regime is assumed. The secondary recoil atoms have to be taken into
account which are generated in nuclear collisions (see Fig. 10.4, case (3)).tremtthent of nuclear

energy deposition, the threémensional "damage" distribution function is defined in such a way that

the differential amount of energy

dE, =F, (E.Kr)d°r (10.20)

is dissipated into the volume elemerit dround r, at given incident energy E and directioAdding
to the nuclear collision term of eq. (10.1) a term for the recoil atom, with an initial energy equal to the
nuclear energy transfer T and an initial directidnresults in

I:D(E’r(f‘-"g:j'"d'gj =“|drtrﬁj3n(E' E- T)(FD(E - T'ﬁ"sj"' I:D(-I_’}Si-jii"&)-)
+nz,|drffs ,(E- E- DE)F,(E - DE, 1) (1021)

(1 g, - nz, o, )F, (€K
Similarly as above and with

G_ d (10.22)

the transport equation results as
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NORMALIZED DAMAGE

CHymycic Wo e £
_%FD(E,hﬁ_nSe(E)uE (s (10.23)

+nfps, (E. TN (E.RF)- Fo(E- T.RLA- FoT Wi T))

Evaluations for the damage function, and for the ionisation functigeeE 10.1) are again found in
the literature. Examples in comparison to experimental results are given in Fig. 10.5.
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Fig. 10.5: Normalised damage profiles foreHbombardment of Si and GaAs. The experimental

data have been obtained by higiergy ion channeling analysis.

It is not straightforward to measure a damage or ionisation function. Only therpdiition effects

are accessible to experiments, as,, ¢lgg amount of remaining lattice damage. In the case of nuclear
energy deposition, the creation of lattice damage is subject to a threshold energy of a recoil atom (see
ch. 12), so that low energy transfer events will contribute to the deposition fynitiomot to
physical lattice damage. This might partly explain the difference of the experimental and theoretical
data in Fig. 9.5. Moreover, the survival of lattice defects depends strongly on the type of material and
the temperature. Most semiconductexrbibit stable defects still at room temperature, whereas metals
have to be kept typically below 5...30 K.

10.3 Cascade Enerqgy Distribution

In 10.1 and 10.2, transport formalisms have been described which cover the deposition of the incident
ions andhe energy which is carried into the target substance. In the following, the energy distribution
of the cascade atoms will be discussed. Assuming that the cascade is initiated by a primary recoil atom
with initial energy E, a distribution functionzFof initial energies of all cascade atoms, which are
subsequently generated by nuclear collisions, can be defined in such a way that

dN, =F(E,E,)dE, (10.24)

denotes the average number of cascade atoms which are generated in the interval of starting energies
Eo...E+dE. F is called'recoil density", with the condition

Fe(E.E,)=0 if E,>E (10.25)

Similarly as above, the ansatz for the corresponding transport equation is
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Fc(E.E,)dE, =ndxds,(E- E,)

+nZ,dx E- E-DE)F.\E- DE,E;)dE
gt )Fe (- 0 £)cE, -

+ndxfis ,(E- E- T)(Fe(E- T.E)+F.(T.E,))dE,

+(1- ndxfgis, - nZ,axfis , JFe (E,E,)dE,

Formally compared to eq. (10.21), an additional nuclear collision term has to be taken which describes
the direct conversion ahe primary atom to an atom with energy. Ehis is not contained in the
second term as a starting energy il not contribute by further collision according to (10.25). The
Taylor expansions, as formerly, yield

ds
dE

SeI(E)%FE(E’EO) Z (E' Eo)

(10.27)
+fps.(E- E-T)(F(E- T.E,)+Fc(T.E))- Fc(E.E,))

If electronic stopping is neglected wew of the rather low energy of most of the cascade atoms, and
the nuclear scattering cross section is evaluated for the gpawescreening function (2.16), (10.27)
can be solved analytically by using Laplace transforms and the convolution theoredingyiel

m E
Y(1)- v(1- m) 2

Fe(E.E,) if E,< <€ (10.28)

where m = 8 denotes the inverse of the power index of the screening function (see (2.16)) and
d
Y(y)= dy logQ(y) (10.29)

with Gly) denoting the Gamma function, and

FE(E’EO) = ° iaE -1

if E,<E
0)- di- m)E, &, 0 < (10.30)

|-CDOr

According to (10.28), the number of cascade atoms scales with the inverse square of rtihgir sta
energy (secalled "Coulomb" spectrum), so that (10.28) describes the vast amount of all cascade
atoms. The cascade density diverges wigh & which is a contradiction with the assumption of a
linear cascade. However, the lattice atoms are bouriodriginal sites which has been neglected so
far. With a binding energy U, an approximate solution is, replacing (10.28)

m E

Fe(B.E) = Y(1)- Y(@- m)(g, +u)mELS™

if E,sU< £ (10.31)

Taking electronic stopping rigorously into account would be rather complicated. Therefore, the total
available energy E is simplyeplaced by the fraction which is dissipated in nuclear rather than
electronic collisions, resulting in (if the binding is neglected again)

m n(E)

10.32
Y- Y- m) £ (10-32)

F.(E.E,) =
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Note thatn(E) in this context is different from the nuclear energy dissipation as defined for the
primary damage distribution (see (10-%)D.19)), as secondary recoils are included. Here, the
corresponding transport equation is

)

s.(E) e ffs.(E- E-T)((E)- n(E- T)- n(T))=0 (10.33)

(10.33) can only be solved merically. Fig. 10.6 shows the result as function of the primary energy
for different materials. Often,

n(E)° 0.9¢ (10.34)
is taken as a good approximation.
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Typical starting energies of most of the cascade atoms are in the order of 10...100 eVruting4po
minimum distances of approach of about 1 nm. Here, the "hard core" approximationos m- 0 is
reasonable. Then, (10.32) becomes

1 n(E)= 6 n(E)

REE) V0 e e

(10.35)

10.4 Spatial Cascade Enerqgy Distribution

In order to fully describe the energetic and spatial developmeheafdilision cascade, the results of

10.2 and 10.3 have to be combined now. The angular distribution of the direction of motion of the
cascade particles is assumed to be isotropic, since a full momentum relaxation can be expected for
most of the cascadetomns with sufficiently low energy. Therefore, the angular distribution is
neglected here.

Defining a spatial recoil density F such that
dN(E, . r)=F (E.K.E,.r)dE,d%" (10.36)
is the number of atoms starting in the volume elem@namund r and at an energy betwegrafd

EqtdE, in a @scade which is initiated by a primary recoil of energy E and with direbtidhe
transport ansatz becomes

46



F(E,h’, E, ,rU+ er) = n|dﬁ’dsn(E - Eo)dm

+ridifps, (E- E- TF(E- T.5LE,.+F(T . KiE,.1)

+nz,|drffps ,(E- E- DE)F(E - DE.FE,.1) (10.37)
+(1- n|d#"j|"’~plsn - nZJdF‘ff‘psel)FD(E,r(ﬁ EO,H
with the resulting transport equation
G G ds(E- E,) W~ G
- fBF E,h,E,,r) +n————24d(r)- nS,(E)—(E.h,E,,r
€ Refen=E . ns @) (e Re, w03
=nﬁ:|sn(F(E,|‘Llj,Eo,rLj- F(E' T’}gﬁ’Eo’H' FD(T’I%&"’EO"S‘))
with the conditions
F(E.RE,,r)=0 if E,>E (10.39)
and
fiF (E.RE,.1)d* P =F (E.E,) (10.40)

The solution of eq. (10.38) proceeds via moment equationsdgfoparison, see eq. (10.9)). For the
higher moments, the cutoff condition, eq. (10.39), is neglected, as the few additionahigi
atoms, which are artificially included, will little influence the main fraction of the cascade atoms.
Then, the solutiois straightforward. With the correct normalisation, the result is

G 6 F.(E,K
F(E,h,Eoﬁ = F% (10.41)
0

which is plausible as it simply combines the damage function (see eq. (10.20)) with the recoil density
(eq. (10.35)).

11. Binary Collision Approximation Computer Simulation of lon and Energy Deposition

As demonstrated in the preceding chapter, transport theory calculations of ion slowing down and the
associated recoils atoms, in the linear cascade regime, can provide valuable analytical expressions
which describe the important phgal mechanisms and dependencies. However, the solutions are
often complicated and require simplifying assumptions. A major obstacle, e.g., is the treatment of the
surface, as the transport equations can, without considerable additional effort, be shviedaan

infinite medium, thus describing the physical situation of an internally starting beam. The treatment of
an infinite medium in the transport calculations allows for multiple crossing of a given recoil
trajectory through an arbitrary plane in thédstance, whereas in reality the particle is lost when first
crossing the surface. Therefore, also the formation of collision cascades near the surface is
overestimated in infinite medium calculations. This problem arises in particular for low energies
andor heavy ions with a significant fraction of the total energy being deposited very close to the
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surface. Consequently, also the treatment of the single collision regime becomes doubtful when it is
applied to neasurface phenomena.

An alternative solutin, which also covers the linear cascade regime, is the application of computer
simulations in the soalled binarycollision approximation (BCA). In the following, only the main
issues of BCA will be described. As in the preceding chapters, a randorbutistriof atoms in the
substance will be assumed, and any effects of crystallinity will be neglected, although "crystalline”
BCA codes are available. The features described below are consistent with the TRIM (TRansport of
lons in Matter) family of BCA code Also the BCA simulation code of the SRIM package[13,16,19]
belongs to this group.

Z A
Fig. 11.1

Section of an ion or
recoil trajectory with
subsequent nuclear
collisions with atoms
denoted by i, i+1 and
i+2.

The physical model of the BCA simulation is depicted by the ion sledawgn and cascade
formation schematic of Fig. 9.1. The trajectory of an iectdon or an recoil atom is approximated

by a polygon track given by subsequent nuclear collisions. A section is shown in Fig. 11.1. Directly
after a nuclear collision with atom i (or when entering the substance), the moving atoms is
characterised by aate given by its energy;,Eand its directional polar and azimuthal angleandb;,
respectively. The atom is allowed to move along a free lpath TRIM, | is defined by the mean
atomic distance of the substance

| =n%® (11.1)

rather than choosing it randomly. Thilse TRIM model is more valid for an amorphous solid than for

a random medium, which would be modelled by an analytical transport calculation. However, the
impact parameter of the subsequent nuclear collision (i+1) is chosen randomly (see Fig. 11.2).
According to the cylindrical symmetry, the actual impact parameter p is calculated from a random
number r, which is equally distributed in [0...1]

P= PraT (11.2)
with a maximum impact parametefpwhich satisfies
pp;ad =n" (11.3)

so that one collision takes place per atomic volwhehe substance. With a proper interatomic
potential (recent versions of TRIM use the universal potential given by egs. (2.17) and (3.5)), the polar
scattering anglel is calculated from the classical trajectory integral, eq. (1.12). The numerical
integrdion for each nuclear collision would be rather tinmmsuming. Therefore, TRIM makes use of

an approximate analytical formula, thealed "magic” scattering formula.
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Fig. 11.2

Scattering geometryf
binary collisions in the
centerof-mass system,
with the asymptotic
trajectories

«— T —»

For a complete definition of the scattering process, the aziinddikection anglg is calculated
according to the axial symmetry from an additional random number r by

i =2pr (11.4)

Due to the random choice of the impact parameter (or the polar deflection angle) and the azimuthal
deflection angle, BCA codes are often referreds6Monte Carlo" simulations.

J is transformed into the laboratory system deflection aQg(see Fig. 11.1) according to eq. (1.4).
Simultaneously, a recoil atom is generated if desired with an initial polar diréctiehative to the
original directionof the projectile, according to eq. (1.4), and an azimuthal recoil arglaccording
to (11.4).

The idealised trajectories of Fig. 9.1 are represented by the asymptotic trajectories before and after
each collision. As shown in Fig. 9.2, the asymptbtigectories after scattering originate from an axial
position which is displaced from the original position of the recoil atom. In TRIM, tivalted "time
integrals" are approximated by the hapmhere approximation

t = ptan‘]z (11.5)

for the projectile and
t, =0 (11.6)

for therecoil atom.

Electronic energy loss is taken into account either in a "nonlocal” mode along the trajectory, resulting

n
DE, =nS.( - t) (11.7)

nl

with S, according to ch. 5, or in a "local" mode in correlation with the nuclear collisions, using the
convenient "OefRobinson'formula

0045 & R 0
=——-expee 0.3—"005, (11.8)

DEl
pa ¢ a =

with R, denoting the minimum distance of approach (see eq. (1.13)) and a the screening length.
(11.8) has been derived in a similar way as the Firsov formula, eq. (5.34). Often, an equipartition

DE =%(DEn, +DE, ) (11.9)
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is chosen rather arbitrarily.

Including thenuclear energy transfer T (eq. (1.6)), the transformation of the state of the projectile is

now given by

E..=E-T-DE
and

where TR denotes the geometrical transformation to the new directional angles. When recoils are

included, the initial state of the generatedail is given by
E,=T-U,

and

aa, 0 ] 3a. o
'a=TR(F.j +p)T1&"
X X

In (11.12), Y denotes the bulk binding energy of the lattice atoms (a few eV, often it is set to zero due

to the lack of better knowledge).

(@) 7 (b) 1

20t - 1 1

| i
oo ] 20keVN > Fe_ ||

e

(nm)

© 1

Depth (nm)

(11.10)

(11.11)
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Fig. 11.3

lon only (a,c) and ion
plus recoil (b,d)
trajectories for 20 keV
nitrogen ions iniclent on
iron, for 5 (a,b) and 100
(c,d) incident ions, as
obtained from a TRIM
computer simulation.
The threedimensional
trajectories are projectec
onto a plane. Note that
the pairs (a,b) and (c,d)
each represent different
runs with different ion
trajedories.

The trajectories of each incident iondaif included in the simulation, all associated recoil atoms are
traced in this way until the kinetic energy has fallen below the cutoff engggwtiich again is chosen

to several eV (see remark at the beginning of ch. 9).
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Fig. 11.3 shows the spatiakttibutions of ion and recoil trajectories for 10 keV nitrogen ions in iron,

as obtained from SRIM (Version 2000.39). In Fig. 11.3(a), it is evident that one of the 5 ions is
backscattered. Fig. 11.3(b) indicates that, for the preserttiigat combinatin, an individual ion
creates several smaller subcascades with little overlap, in agreement with the qualitative picture of Fig.
9.2(top). The overlap of many incident ions (Fig. 11.3(d)) forms a cascade region which is similar to
the region of the ion tks (Fig. 11.3 (c)).

It should further be noted that the presentations of Fig. 11.3 assume that each ion enters the substance
at exactly the same point. With this respect, the lateral extension of the ion deposition and cascade
formation zone is artificiasince the beam spot of an ion beam on the surface extends over mm or cm
dimensions in conventional ion implantation, and a few ten nm even in most advanced focused ion
beam devices. The real lateral distribution is smeared out along the surface wheimsaare
implanted. Nevertheless, the lateral extension of the ion deposition and cascade formation can be
physically meaningful and important for practical application, such as for masked ion implantation
into microstructures.

Sr 100 keV Au — Ta T
Lateral
Spread g
(nm)

Depth (nm)

Fig. 11.4 Two different cascades triggered by one incident iahefr 100 keV
gold ions incident on tantalum.

For very high nuclear energy deposition, the space filling of the cascade is much more efficient
already for one incident ion, as shown in Fig. 11.4. Although the result gets close to the schematic of
Fig. 9.2 (bottom), still some subcascade formatiorbseoved. (It has to be mentioned, however, that

the linear cascade treatment becomes doubtful for the ion energy ataglgencombination of Fig.

11.4.)

For sufficiently many events of ion incidence, the distribution functions of , e.g., projecteshigs

of energy deposition can be obtained directly with sufficient statistical quality (see Fig. 11.5). Each
incident ion in the computer (often called "pseudoprojectile") represents an increment of ion fluence
(i.e. the number of incident ions per umiéa)

D F=F ot (11.14)
N,

whereF , denotes the total experimental fluence which shall be simulated atie: Xotal number of
pseudoprojectile histories chosen for the computer simulation. Each deposition or, e.g., recoil
generation event is subject to the same pseutidpanormalization, eq. (11.14). When a depth
interval Dx is chosen for the sorting of these events ag@)Mf such events fall into the local depth
interval, the resulting local atomic concentration, normalised to the host atomic density, is
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DX N, (11.15)

20 keV N = Fe || Fig. 11.5

Concentration

lon Fluence Projected range distribution
of 20keV nitrogen ions
5 implanted into iron, from a
(10. atoms lzcma) 2 TRIM simulation with 20000
ions/cm

pseudoprojectiles (see Fig.
11.3). The mean projected
range is B= 24.5 nm, the
standard deviatios = 12 nm,
the skewnes&, = 0.19, and
the kurtosiss, = 2.4.

0 20 40 60
Depth (nm)

In this way, the ordinate of Fig. 11.5 is defined by &)/ Nevertheless, it should be pointed out that
standard TRIM computer simulations are only valid for theflonce limit, so that the results cannot
readily be extrapolated to high fluences with, e.g., resulting implant concentrations close to
stoichiometry or even above, which would be meaningless. In the BCA simulations discussed here,
each incident projectile finds the same, unmodified substance that artg effee.g., ion deposition

or surface erosion (see ch. 13) are neglected.

In a similar way, distribution functions of deposited energy can be obtained (Fig. 11.6). The electronic
energy dissipation is sometimes called "ionisation" (such as in £2R0), although the latter
contributes only a fraction (see ch. 5). Also in SRABDO, the nuclear energy dissipation is called
"energy to recoils". Note that the definition of nuclear energy dissipation is only meaningful for
primary collisions of the incidenbns with target atoms. For the complete cascade, the nuclear energy
deposition vanishes as the nuclear collisions are elastic (or results from the lattice binding only). For
the present iotarget combination, the total fractions of the ion energy whiehdissipated into
electronic and nuclear collisions are about equal, in agreement with the fact that electronic and nuclear
stopping in the present energy range are about equal. The mean depth of electronic energy dissipation
is somewhat lower than that the nuclear counterpart, as electronic stopping decreases more rapidly
with decreasing energy. Although the number of recoils exceeds the number of incident ions by orders
of magnitude, the electronic contribution of the recoils to the energy distrkigtamall, due to their

small average energy.

Finally a general comment related to BCA computer simulation shall be given. Obviously, the results
depend critically on the choice of certain input parameters, such as the cutoff energy, but they depend
alsoto a certain extent on "hidden" parameters such as the choice of the interatomic potential or the
choice of the electronic stopping (see eqs. (B))7 By varying these "hidden" inputs within
reasonable limits, variations of the results for, e.g. rangesergy deposition function, up to several

10% can be obtained. This depends, however, very much on the given problem and the energy range.
lon ranges obtained from TRIM are normally reliable within 10%.
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12. Radiation Damage

12.1 Analytical Treatment

The term "radiation damage of materials" covers a wide area of effects which can be observed after
irradiation of a solid with energetic particles. In the present "collisional" picture in t&rtinscade

regime (see beginning of ch. 9) only the initial stage of damage is considered, which is caused by the
permanent displacement of lattice atoms from their original sites by the energy transfer received in
nuclear collisions. It should be mentash that, in particular in certain oxides but also in other
materials at extremely high energy density which is deposited into electronic collisions, electronic
energy dissipation can be converted into atomic displacement. Further, the restriction tbathe in
stage of damage applies only to selected physical situations. It representffuztme approximation

since any interaction of the resulting defects is neglected. It is also-@rigverature approximation

since any thermal migration or recombinatiof the defects is neglected. However, the definition of

low temperature in this context depends critically on the choice of the material. In metals, simple point
defects may become mobile already at a few K, whereas they are stable around roomuniperat
common semiconductors.

Fig. 12.1 depicts the elementary event of radiation damage schematically. In order to produce a
"stable" Frenkel pair consisting of a vacancy at the original site of the recoil and an interstitial atom at
its final position,the distance between the interstitiacancy has to be sufficiently large so that an
immediate recombination due to elastic forces in the lattice and/or due to directed atomic bonds is
prevented. Therefore, the initial energy transfer to the recoil hias swifficiently large. This critical
energy transfer depends on the crystalline direction into which the recoil is set into motion. Therefore,
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the "displacement threshold" energy tdust be understood as an average over different directions.
Thus, for anyrecoil starting with an initial energy transfer T below the threshold energy, the number

of generated Frenkel pairs is close to zero, even if secondary recoils in a subsequent collision cascade
are taken into account.

Fig. 12.1
Elementary radiation damage event i
- a collision cascade. A recoil atom

generated by a nuclear collision is
moved from its original site into an
interstitial position, thus forming a
vacancy interstitial or "Frenkel" pair.

After terminatingthe collision cascade, a stable Frenkel pair is characterised by its formation energy
Uy, i.e. the gain of potential energy with respect to the undisturbed lattice, with a contribution from the
vacancy and the interstitial atom:

U; =U, +U; (12.1)

Apparently, the bulk lmiding energy Yis smaller than the Frenkel pair formation energy. On the other
hand, the displacement threshold energy must be larger than the Frenkel pair formation energy since
kinetic energy is dissipated during the slowing down of the recoil. Thus

U,< U;< Uy (12.2)

Typical bulk binding energies are a few eV, compared to Frenkel pair formation energies of 5 to 10 eV
and displacement threshold energies of 20 to 80 eV.

Fig. 12.2

Ve Ve W Schematic of a replacement
ot 0 s collision sequence.

There are other mechanisms than the simple transfer of a recoil depicted in Fig. AW fezolil
energies, saalled "replacement” collision sequences become increasingly important (Fig. 12.2),
which travel in particular in lovindexed directions of a crystal being "focussed" by the potential
resulting from the surrounding atoms, but cilmite significantly even in amorphous materials. In
headon sequences, the nuclear energy loss is effectively switched off in homonuclear materials, so
that the range can become rather large (up to a few hundred atomic distances).

With these considations, a displacement probability can be defined for each recoil starting with an
energy k&, according to

0 if E,< U,
E,-U .
P,(E,) = Ou ¢ if U,< E,< 2U, (12.3)
d
1 if E,> 2U,
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which is depicted in Fig. 12.3. The middle expression of eq. (12.3) shall, in a rather handwaving way,
take into account the reduction of Frenkslir production per recoil atom due to replacement
collisions at low energy transfers, as many correlatedthwveshold recoils generate only one Frenkel
pair.

The total number of Frenkel pairs for one recoil atom starting with energy T, inclidirgpinplete
associated cascade, is then given by

i
N (T)= P (Eo) e (T.E, ) dE, (12.4)
Ug
A .
Pda(Eo) Fig. 12.3
i Displacement probability

model employed for the
modified KinchinPease
model.

Eo/ Ud

with Fz denoting the recoil density (see sect. 10.3). Inserting egs. (10.35) and (12.3) results in

6log2 n(T) =042 n(T)

(12.5)
p?> U, U,

N (T)=

This is the secalled "modified KinchiAPease" formula. It has to be noted that thié binding energy

is implicitly neglected (see sect. 10.3). Originally, Kinchin and Pease had treated the problem using
hard spheres rather than a screened Coulomb potential, and consequently neglecting inelastic energy
loss, resulting in

T

N, (T)=F (12.6)

which, comparedo (12.4), makes hardly a difference in view of the theoretical approximations and
the experimental uncertainties in determining. Wormally, eq. (12.4) allows for subthreshold
damage, too. Therefore, a corrected formula is often employed, where &#) (fd. the nuclear
deposited energy has already been used:

0 if T< U,

N, (T) = 1 if U,<T<2630, (12.7)

0.38l else
d

The energy range of the middle contribution guarantees a continuous transition to the modified
Kinchin-Pease formula.

The total number of Frenkel pairs generated by an incident ienesfjy E is obtained by integrating
Ng(T) according to the cross section of nuclear collisions and along the ion path:
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NE(E) = ﬁ%ﬁ'\' (r) = (ET) gy (129)

tOt

whereg denotes the energy transfer factor (eq. (1.7)). Inserting the simple KiRehse result, eq.
(12.6), for simplicity, andassuming an average energy trangferwhich is large compared to the
displacement threshold, the inner integral in (12.8) can, in reasonable approximation, be replaced by
the nuclear stopping cross section Bor such a "dense cascade", which occurdai@e nuclear

energy deposition, electronic stopping is small, so that°SS,. Thus, in the dense cascade
approximation, the total damage is given by the simple KinBli@ise expression with the incident
energy:

E

12.9
2U, ( )

NE(E) -

All above results for the Frenkel pajeneration represent an upper limit since a certain amount of
"dynamic annealing" will take place already in the collisional phase, given by the probability of
recombination of interstitial atoms with vacancies. This probability of dynamic recombination
increases with increasing cascade density. In this sense, a "cascade effiiEhey/'tefined so that

the effective number of Frenkel pairs is given by

N (T) =x(T)N, (T) (12.10)

The cascade efficiency is between 1 in the-tmsity limit (e.g., light ions) and about 0.3 faery
dense cascades for heavy ions with large nuclear stopping.

12.2 TRIM Computer Simulation

There are two different possibilities to treat damage in TRIM computer simulations. In-caéesb

"quick" calculation of damage just the ion trajectorytriaced rather than the complete collision
cascade. For each primary collision with energy transfer T to the primary recoil, &).iglapplied

for the generation of Frenkel pair at each primary nuclear collision. In addition to the approximations
implied in the KinchiAPease formula, this simplified simulation neglects the spatial extension of the
individual subcascades. If the latter is small compared to the ion range, such as for light ions or at
sufficiently high energy, the error with respect to degth distribution remains small.

10

Fig. 12.4

20 keV N = Fe

Frenkel Pair
Distribution
(nm™)

Depth distribution of Frenkel
pairs generated by one 20 keV
nitrogen ion incident on iron, as
obtained from a full cascade
TRIM computer simulation with
2000 pseudoprojectiles, with a
displacement threshold energy «
25 eV. The average total numbe
of Frenkel pairs per ion is 240.

0 20 40 60
Depth (nm)
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The more timeconsuming "detailed calculation with full cascades" generates all recoils with initial
energies exceeding the thresholg Bo that all events can simply be counted. Fig. 12.4 shiosvs t
depth distribution of Frenkel pairs for nitrogen ions incident on iron obtained from a "full cascade"
simulation. The depth distribution follows the distribution of nuclear energy deposition (see Fig. 11.6),
with a total number of Frenkel pairs whichcerds the number of implanted ions by more than two
orders of magnitude. Compared to 240 Frenkel pairs per incident ion obtained from the computer
simulation, the simple KinchiPease densgascade approximation (eq. (12.9)) vyields an
overestimated, but tlaer close number of 400. In a demsescade situation, for 100 keV gold ions
incident on tantalum (see Fig. 11.4), the number obtained from TRIM (2075) compares well with the
prediction of eq. (12.9) (2000). By definition of the binary collision appnaxion, any dynamic
annealing in the cascade (see eq. (12.10)) is not taken into account.

Note that the Frenkel pairs are often called "vacancies" in TRIM. Quite formally, the middle regimes
of egs. (12.3) and (12.7) can be used in TRIM, as available thhenSRIM package, to count the
contributions of replacement collisions in falhscade and quick simulations, respectively. The
contribution is generally minor (in the order of 10% of the Frenkel pairs). The different regimes of
(12.3) and (12.7) can aldme used to discriminate the energetics of the cascade. The energy which
goes into subthreshold recoils is called the "phonon" fraction. (Clearly, the final energy will be
transferred into heat, i.e. phonons, even if the BCA simulation is far from trestyngecoilphonon
coupling in a solid.) On the other hand, ctlereshold recoils form the energy which is dissipated into
"damage".

13. Sputtering

13.1 Analytical Treatment

When a collision cascade intersects the surface, sufficient energy tamdferred to a surface atom
to overcome its binding to the surface, so that it will be ejected from the solid. A schematic
presentation of sputtering in the linear cascade regime is given in Fig. 13.1.

The sputtering yield is defined as the numbegroitted target atoms per incident ion:

= % (13.1)

where jand f, denote the flux of incident ions and sputtered atoms, respectively.

-— < Fig. 13.1

Schematic presentation of a
sputtering event in the linear

/’/\/ cascade regime.
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Applying cascade transport theory, nem contrast to the treatment of radiation damatjes spatial
developmat of the cascade has to be taken into account in addition to the energetics, as the surface
introduces a local character. Further, the ejection of a surface atorm acagrding to the surface
binding model which will described belowdepend on its ejeicin angle with respect to the surface
normal, i.e. on its starting direction within the cascade. Therefore, an isotropic angular distribution of
cascade atoms is added to the spatial cascade energy function, eq. (10.41),

G_ G ﬁ‘ 6 Fo(E.Nr)
"0 B (13.2)

The number of cascade atomar gnergy interval starting into the directibpis then obtained by
integrating over the volume (geometry is indicated in Fig. 13.2):

z 4 _

| Fig. 13.2

|

|
Geometry of a neasurface
collision cascade (idealized
by a cylindrical volume)
formed by an ion of energy
E and angle of incidenag
with a subsurface cascade
atom of energy gand at an
angleq, with respect to the
surface normal.

d% _ 6 1

> G, GG.G
dE,dw, 4p° E? P CFD(E’hﬁO'oCP(Eo,qo) (13.3)
0~""0 0 0

where df denotes the surface elemdd. is a shallow depth element from whichcoil atoms
contribute to sputtering, and P denotes the probability that a recoil at engayyd Eangleq, is
transmitted through the surface. The surface integral yields theimeamsional damage function
which is assumed to be constant obrwith its value at the very surface, resulting in

dzy _ 6 F(E.F

dE,dw, 4p® E2

0) ®x @osq, c"P(Eo ’qo) (13.4)

Dx, which may depend ongEcan be estimated in the following way: At maximum those recoils can
contribute to sputtering which loose all their energy within Then, with E/Dx ° |dE/dx|, where
the latter @notes the stopping power of the recoils

d%y _ 6 F,(E,R0). o

= Q@osqg, (P\E,,, .
dE, W,  4p° E,[dE,jdx 0 -0 %) (13.5)

It should be noted that eq. (13.5) can also be obtained from a more rigorous treatment of the recoill
fluxes for a stationary incident beam, without the simple assumptiobxofMhe sputtering yield
results as
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_ 6 o dE, ~ " N N G
= 07 nEO|dEO/dx| ff(cosa, ) &osa, &°(E, .q,) &, (E.F0) (13.6)

Y

For the surface penetration probability, a planar surface model is employed with a threshold being
equal to the surface binding energy Which has to be overcome by the normal fraction of the recoil
energy:

1 if E,cos’q,>U,
P(Eo 1q0) ={ 0 olse (13.7)

The stopping of the recoils is regsented by their nuclear stopping in an approximation using the
power law potential, eq. (2.16), yielding for n®

s, (E,) =g| a%E, (13.8)

wherel ( denotes a power law constant and a the screening distance. Then, integration of (13.6) results
in

3 2 £(END)

Y\E.q) =
(E.q) 4p® p l,a’n U,

(13.9)

The damage function is appraxated by the nuclear energy deposition of the incident ion. However,

it has to be recalled that the transport theory is valid for the cascade evolution in an infinite medium
with an internally starting ion, with an artificial surface plane to calculatsgh#ering yield, so that

the sputtering yield will be overestimated the more as a significant fraction of the cascade forms
beyond the "surface" in the infinite medium. This will mainly depend on the masses of the incident ion
and the target material: Ftarge incident ion mass, the real cascade will mainly develop in forward
direction, so that the error remains small, whereas for light ions the probability of momentum reversal
increases. Therefore, a correction fa@ads applied. The theoretical calation of a is complicated

and only successful for high idgn-target mass ratios. Therefore, a numerical fit obtained from
comparisons of experimental results to eq. (13.10) is employed, which is shown in Fig. 13.3.
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The sputtering yield theresults according to

3 S“(E)C'h(ml,mz)(")L (13.10)

-3 1
Y(E.q) = 2p® U, | ,a? cosq



where the last factor describes the simple geometrical dependence of the deposited energy in the
surface layer as function of the angle of incidence.

For the evaluation of (13.10), the sublimation enthalpy is normally insertaafase binding energy
for onecomponent materials, which amounts to about 2 ... 8 eV. For the very low energies of most of
the recoils] o © 24 and & 0.022 nm are reasonable values with universal validity.

Due to the approximations involved in itsrigation, the final sputtering yield formula (13.10)
neglects the fact that at very low ion energy the maximum energy transfer to target recoils can be
lower than the surface binding energy so that sputtering is excluded. A particular situation arises for
light ions, where also the singt®llision regime (see Fig. 9.3a) is more appropriate which is difficult

to be treated by transport theory. For light ions, the characteristic -swigon-regime sputtering

event occurs after backscattering of the ia®,depicted in Fig. 13.4. For this situation with single
backscattering of the ion, the maximum energy is received by the surface atom’foadi&@attering

of the ion and a heaoh collision with the surface atom:

Er> =g(1- gE (13.11)

Fig. 134
Light-ion sputtering event in the
singlecollision regime.

from which a sputterigthreshold energy of the incident ion can derived according to

U

En = > 13.12
v o1- g (13.12)

However, the ion could also be backscattered by two subsequent collisions at dpanic@Owould

result in a larger final energy at the surface compared to orflediion when eletronic energy loss

is neglected, or by a series of sraligle scattering events with even higher final energy, which
becomes increasingly improbable and which would finally be influenced by significant electronic
energy loss. Thus, it is not readily fdds to define an exact threshold energy for sputtering.
Semiempirical formulas have been proposed to include threshold effects, partly based on fits to
experimental results, such as (for normal incidence)

AE 0§
v () =Y(E) &y @E—g (13.13)
g —
with the correction function
()= (1- x*?)(1- x)* (13.14)

and a modifiecexpression for the threshold energy

(13.15)
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The sputtering yield for nitrogen ions incident on iron, according to egs. (13.10) and (13.15), is shown
in Fig. 13.5. The threshold correction reduces the sputtering yield at low energies significantly. As
linear @ascade sputtering scales with the nuclear stopping, the maximum sputtering yields are between
about 0.01 for light ions and 50 for the heaviest ions, corresponding to energies between about 100 eV
and 100 keV.

1.5

Fig. 13.5

Sputtering yield versus ion energy for
nitrogen ion at iron at normal incidence,
from the Sigmund formula (solid line, ec
(13.10)), theBohdansky formula (dashec
line, egs. (13.135)) and different TRIM
simulations, from SRIM vs. 2000.39
(dots), and TRIDYN vs. 4.0 (see ch. 15
(circles).
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An early comparison to egpimental data is shown in Fig.13.6 for different rare gases incident on
copper. There is a very good agreement between experiment and the prediction of eq. (13.10), except
for the highest energy densities around the nuclear stopping power maximum fbeatiest
projectile, xenon. This inconsistency is attributed to a significant influence of thermal spikes on
sputtering.
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Fig. 13.6 Experimental data and theoretical predictions of sputtering yields vs. ion enerc
the bombardma of copper with different rare gases at normal incidence. Differ:
symbols correspond to different data sets. Solid lines are from eq. (13.10), das
lines from a lowenerav anproximation to nuclear stobpina.
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In the planar surface model, a recoil arriving at the surface is emitted if its energyciestlflarge
and its directional angle sufficiently small (see Fig. 13.7). The planar surface potential reduces the
energy of the sputtered atoms and deflects their trajectories. With the parallel velocity component

conserved and the normal velocity canpnt reduced, the energy &d the ejection anglg of a
sputtered atom are given by the equation set

E,cos’q, =E,cos’q, - U,

(13.16)
E, sin®q, = E, sin’q,
d.
Fig. 13.7
! /\ Schematic of a sputtered (left) and a
backreflected recoil, in the model of a
do Vo planar surface threshold.

Eqg. (13.5) then yields the energy and angular distribution of sputtered atoms (for normal ion
incidence)

d?y 6 G 2 E
= F,(E,h, L
dE,dw, 4p° o )p La® (E, +U.)

~(@osq, (13.17)

The cosine dependencetbe angular distribution is a consequence of the assumption of an isotropic
cascade. The functional shape of the energy distribution ("Thompson" distribution) is shown in Fig.
13.8 in logarithmic presentation. The distribution peaks at half the surfagmdpienergy, but has a
rather broad tail towards higher energies.

1 T T T T T
Fig. 13.8
fe(E1,Us) - *
(arb. units) Energy distribution of
= - sputtered particles, normalisec
to the surface binding energy.
L 0.5 _
; PN
10° 1 10°
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Integration with the upper limit of the incident energy yields the mean energy of sputtered particles

(13.18)

_ a E Q
E °U.&log—=>-3
1 séﬁ gU g

S

For an incident energy of 1 keV, which is typical for thin filnpdsition by sputtering, a typical
surface binding energy of about 4 eV results in a meaggoésputtered atoms of about 0.
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13.2 TRIM Computer Simulation

Naturally, BCA computer simulations can also be applied to predict sputtering yields aaswell
angular and energy distributions, after including the planar surface threshold model as shown in Fig.
13.17, and applying egs. (13.7) and (13.16). Special results of sputtering yields calculated by TRIM
are included in Fig. 13.5 and found in reasonalgieeement with the analytical predictions. As stated

in ch. 11, the results depend on the choice of hidden parameters. For sputtering simulations, the choice
of the interatomic potential and the bulk binding energy are of particular importance, inratiditie

surface binding energy. Further, the treatment of electronic stopping can be of significant influence.
Therefore, different versions of TRIM do not necessarily deliver identical sputtering yields, as seen in
Fig. 3.17. Nevertheless, the differeacare normally small in view of other uncertainties. It can be
concluded that, provided that all parameters are chosen within reasonable limits, sputtering yields of
all elemental targets can be simulated with a precision of about 50%.

With respect to aadytical sputtering calculations, a real advantage of the computer simulations is their
ability to cover the sputtering by light ions, where the transport theory for the infinite medium is in
large error due to the neglect of the surface, and which is afieociated with the singt®llision

regime. Fig. 13.9 demonstrates an excellent agreement with experimental data for the sputtering of
nickel with different gaseous ions over a large range of energies and for widely different sputtering
yields, in parttular also for the lightest ions.
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14. Thermal Spikes

The treatment of thermal spikes (see ch. 9) in literature is much less rigorous than for the linear
cascade regime, as a complicated situation arises in the transiticmebatense linear cascades and

an effective thermalisation of the atoms in a cascade. However, more recent molecular dynamics
computer simulation, which are not the subject of the present presentation, have gained increased
information on this regime.
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It should be noted that here we still cover "collisional" spikes, i.e. at energies above about 1 eV which
are of interest for the formation of defects and for sputtering. Thermal spikes in a more general sense
will result from any cascade which finally wihérmalise towards the temperature of the surrounding
material. Atomic rearrangements with low activation energies may still occur at such low energies, but
will not be the matter of the present discussion.

\ - Fig. 14.1
r
E_. - —— —) Simplified picture of a cylindrical
X thermal spike

For a simple picture of a thermal kei(Fig. 14.1), the evolution of a cylindrical cascade around a
linear ion track is assumed, which is justified at large ion masses and high energy. Neglecting energy
loss, the system is translationally invariant in the direction of the depth x. Forciiypdi zero
temperature of the material is assumed as initial condition. At t = O, the time of the ion incidence,
energy is deposited within a negligible time interval along the ion track, with the energy deposition
function being idealised by an arehfunction in circular symmetry, leading to an initial temperature

in the track according to

‘z—idﬁ:r cT(r,t=0) (14.1)

with the normalisation
fpr d(ﬁdr =1 (14.2)

In eq. (14.1)r and c denote the mass density and the specific heat of the material, respectively.
Around the track, a thermalave develops in radial direction according to the law of thermal diffusion

Mt rc rcrg =

with the thermal conductivity. The solution yields the temperature at radial distance r as function of
time t:

de| 1 & rcr’@
T(r t) =25 14.4
(1) ax|ap £ 4t 8 (144
which fulfills eq. (14.1) as
1 .
oE hH () (14.5)

Fig.14.2 shows a solutioroff a special case. Close to the ion track, temperatures of a fet¢ 10
(corresponding to a few eV) are predicted,tlat the material will be ligtied and probably be
evaporated. The thermal pulse dissipates quickly at larger distance from the trackaiidwteristic

time scale, however, demonstrates an inherent contradiction, as it is in the order of one lattice
vibration period only, so that the above continuum picture is hardly valid.
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It makes little sense to apply the thermal spike picture tddimation of radiation damage, since
radiation damage in a liquid is meaningless, and since excessive dynamic annealing will occur at the
very high temperature after solidification or at radii where the substance remains in the solid phase.
However, one maattempt to calculate sputtering in the thermal spike picture.

Temperature 500 keV Xe - > Ni Fig. 14.2

4
(10" K) Thermal pulse at different

radial locations for 500
keV xenon ions incident
onto nickel

Time (10 "3 s)

Sputtering is modelled by the evaporation from the thermal spike at the surface. For a Maxwellian
energy distribution of atoms with mass m, the energy of whiceeds the surface binding energy, the

outward flux is given by
[KT(r,t) ( 5 Q
J(r t) T(rs t;g aao

Thereby, the sputtering yield results according to

Y = 2pFdr ft O ,t) (14.7)
0 0

With the approximatiom@©@° 3nk for the specific heathe integration yields

_ 6(32) k1 |dEf
2442p%2 1 \Jm, U3?|dx|

(14.8)

which shows the nonlinear dependence on thestgpower in the thermal spike regime.

For the example of xenon in copper the maximum nuclear stopping power is chosen, which is about
6.5 MeVhm at an energy of about 250 keV. (At this energy, electronic stopping contributes only
about 10% to the totatopping.) With the room temperature value of the thermal conductivity, the
evaluation of eq. (14.8) yields a sputtering yield of X. However, the thermal conductivity in the
liquid might be smaller by a factor of 2 or 3. Nevertheless, the resultl isignificantly below the
difference of experimental data and linear cascade prediction in Fig. 13.6, indicating that the above
formalism might be insufficient to treat the sputtering from a thermal spike.
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15. High-Fluence Phenomena

The precedig chapters did only cover lefluence phenomena, i.e. the dynamic alteration of the
target substance due to ion implantation or the formation of defects has been neglected so far.
Sputtering yields can be extrapolated to large fluences as long as th&lmateains unchanged
during sputtering. This dose not hold for the sputtering of multicomponent substances, where the
collision cascades or preferential sputtering may change the surface composition even in a
homogeneous material, and/or modify the l@mahposition of a layered substance.

15.1 Dynamic Binary Collision Approximation Computer Simulation

The BCA computer simulation of ion bombardment and collision cascade formation can be modified
in a straightforvard manner to treat dynamic composiliarthanges of the substance. Here, the
TRIDYN code will be described which is based on TRIM.

A multicomponent material with atomic components denoted by j (j = 1,...,M) is modelled, where one
or more of these components may be attributed to specidge dhcident beam. An arbitrary local
stoichiometry can be chosen, represented by discrete depth intBrydis= 1,...,N). Each depth
interval is characterised by the fractional compositignsitp

M
ad =1 (15.1)
j=1
and a total atomic density given by
1_ X Q;
—-a 15.2
N, j=1Nj (15.2)
Surface Unaffected
: Delpth
11 i+l N |
>
-------- —rﬁ-'--. .
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where iy (j = 1,...,M) denotes the elemental atomic densities of the pure component j, i.e. the inverse
of the atomic volume of species j. The elemental atomic densities are fixed input parameters, i.e. any
atomic volume changes duedbemical effects are neglected.

The principle of the TRIDYN simulation is schematically shown in Fig. 15.1. The depth of interest is
initially subdivided into N slabs of equal thicknd®s. The slowing down of the first pseudoprojectile

and its associat collision cascades are simulated. lon implantation, sputtering and recoil relocation
result in the addition and/or the removal of "pseudoatoms"” to/from certain depth intervals. Each of
such events represents a change of the areal densities of realratbmaffected slabs according to

the pseudoprojectile normalisation, eq. (11.14). Denoting the change of the number of pseudoatoms of
species j in each layer i bPN;, the new areal densities of any species j in each layer i is given by

A, =q,n,Dx, +DN, (15.3)

Depthintervals i withDN;, O for at least one j may then be compressed or diluted with respect to their
nominal density given eqg. (15.2), and are allowed to relax according to

Dx =& 20 (15.4)

1
j=1 an

which restores the nominal density. The new relative local fractional camopssiesult as

9 =W (15.5)

By this procedure, certain slabs may become very thin or excessively thick. These are added to a
neighbouring slab or split into to slabs of half thickness, respectively. In TRIDYN, the conditions for
slab combination and splitting abx; < 0.5Dx, andDx; > 1.5Dx,, respectively.

After relaxation, the next pseudoprojectile is simulated, and the complete procedure is repeated for the
chosen total number Nof pseudoprojectiles, corresponding to a flueRggof incident ions (see eq.
(11.14)). For a given fluence, the number of pseudoprojectiles has to be chosen sufficiently large in
order to obtain a sufficient statistical quality of the result. At an excessively small total number of
pseudoprojectiles, the number of added or removeshsaper pseudoprojectile in certain slabs may
even exceed the total number of atoms in that slab, which has to be avoided. As a rule of experience,
the number of atoms in any slab should not change by more than about 5% per pseudoprojectile
throughout thevhole run in order to avoid artefacts.

15.2 Local Saturation

Towards high fluence, the relative atomic concentratipgtof an implanted species with the range
distribution &(x) increases according to

He -1 15.6
mcl(x’t) njlfR(X) ( )

where n denotes the atomic densitytlué target substance andhe incident ion flux. The simplest
approach to higfluence implantation profiles is to neglect any changes in n@mich arise from
the presence of the implanted species, and thereby just to scale the range dissibthain,

C (x,F)=% fo(x)&F (15.7)
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whereF denotes the implanted fluence. Eq. (15.7) neglects any relaxation of the target substance and
is thus strictly valid only for small relative concentrations. The relative concentration can be turned
into the fractional composition of theplanted species according to

q = (1+ Ci'l)'l (15.8)

In reality, there will often be a limitation of the concentration of the implant, such as maximum
concentrations of implanted gaseous ions which can be accommodated, or stoichiometric limits in ion
beam synthesis. Thisan be accounted for in the simple model of "local saturation”, which assumes
that any atom which is implanted into a region where the maximum concentration has already been
reached, is immediately released from the substance. In this model, the profileorvwith a
maximum concentration g.xis given by

% () if ¢ <c .
c (x,F)={ (15.9)

C else

i,max

Fig. 15.2(a) shows an example of implantation profiles calculated in the local saturation
approximation, on the basis of a range profile calculated by TRIM.
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In reality, high-fluence implantation profiles are influenced by a number of effects which cannot easily
be covered by a simple model. The presence of the implanted species influences the stopping and
scattering of the incident ions so that the range profileg Ipe changed during the implantation. This

may lead to a distortion of the implantation profiles in addition to the distortion which is caused by the
relaxation of the host matrix ("swelling" due to the implanted atoms). Both are covered by dynamic
BCA computer simulations. The model of local saturation can easily be incorporated into the
simulation, by limiting the maximum concentration of the implanted species. The result from a
TRIDYN calculation is shown in Fig. 15.2(b). In comparison with the simpkysical approach,
already the profile corresponding to the lowest fluence displayed is broadened due to swelling.
Towards the highest fluences, the profiles are further broadened and shifted towards the surface, due
to sputtering.

In TRIDYN, it is alsopossible to employ a simplistic model of "diffusion”, in which excess atoms are
deposited in the nesaturated regions at the edges of the profiles rather than being discarded.
(Actually, an atom coming to rest in a saturated region is moved to the adep#stinterval which is

not saturated.) The result is shown in Fig. 15.2(c), with considerable additional broadening towards the
surface for the highest fluences. It depends critically on the system under investigation which of the
above models can be diagl.

15.3 SputteiControlled Implantation Profiles

In the example of Fig.15.2, the ion energy has been chosen sufficiently large so that the surface layer
which is removed by sputtering is small compared to the mean projected ion range, andidicat the
saturation is not significantly influenced by sputtering. In contrast, at sufficiently small projected
range and/or sufficiently high sputter yield, the hifgtence implantation profiles can be controlled
entirely by ion deposition and sputteringgAalitative picture is shown in Fig. 15.3.
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Due to sputtering, the deposition profile is shifted towards the surface. Simultaneously, additional ions
are implanted at the deep edge of the profile, which causes a profileehirgadrinally, when a
surface layer which is thick compared to the projected range is sputtered off, a stationary profile is
established with a high concentration at the surface, with the ingoing ion flux being balanced by the
sputtered flux.

For a simpffied treatment, a Gaussian range distribution is assumed according to

2 g
folx)= T2ps expae( os? )g (15.10)

where x is the depth in the system of the moving surface. According to the transformation into the
fixed laboratory frame,

Xi=x+ut (15.11)
where ¢ denotes the surface velocity due to sputtgrthe range distributions

fi(xit) = fa(xi- u.t) (15.12)

are superposed in the laboratory frame with increasing time. The resultingdapaadent
concentration of the implant is with the ion flyxfpr x' > wt

n, (xi,t) = j, hf,;(xi,ti)dti (15.13)

According to its definition, eq. (13.1), the sputtering yield related to the surface velocity by
jo=nQu, =Y Q; (15.14)

By integration of (15.13), transformation to x and normalising to the host atomic density, the relative
time-dependent concentration of the implant becomes, with erf denoting the error function

¢, (x, t)__e Mo_ o X R @ (15.15)
& s * s 4

It has beenimplicitly assumed that the sputtering yield is independent of time, which is an
approximation since it might be significantly influenced by the presence of the implanted species.
Further, eq. (15.15) is strictly valid only for small concentrations ofitiq@ant, as eq. (15.14)
becomes invalid for large surface concentration of the implant. This requires a sputtering yield which
is significantly larger than one. From (15.15), the stationary implantation profile in the limit of long
time becomes

c(x,t- n)= —e— erfae—gi (15.16)

The resits (15.14) and (15.15) are qualitatively shown in Fig. 15.3. From (15.16), the surface
concentration results for a sufficiently narrow Gaussasx R,, as

c(x=0,t- ::)=Y1 (15.17)

7C



i.e., the relative surface concentration is given by the inverse of the sputtering yield.

More exact sputtecontrolled implantation profiles can be obtained from dynamic BCA simulations.
Fig. 15.4 shows the retained amount and a sequence of implantation profiles for sulfur ions incident on
molybdenum. The depth profile at the lowest fluence, whigftects the range profile, becomes
significantly distorted at the higher fluences. Stationarity is obtained at a fluence aro0t &rf?,

after about 20 nm, which is approximately 2.5 times the mean projected range, have been sputtered
off. Comparedo the simple errefunctional shape predicted by eq. (15.16), there is a concentration
drop at the surface due to preferential sputtering (see sect. 15.4). Nevertheless, the stationary profiles
exhibit a nearly flat top with an atomic fraction of about, @orresponding to a relative concentration

(see eq. (15.8)) of 0.67. The sputtering yield for 10 keV sulfur ions incident on molybdenum is 2
according to the Sigmund formula, eq. (13.10). Thereby, the simple analytical result of eq. (15.17) is
about 30%smaller.

The result demonstrates the impossibility to reach the concentration of the stoichiometric compound,
MoS,, under the present conditions.
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1100 % Fig. 15.4
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1 _" 10keV S —Mo | _ (top) and corresponding
implantation profiles (bottom), at
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15.4 Preferential Sputtering

According to eq(13.10), the sputter yield is inversely proportional to the surface binding energy. It
also increases with the energy transfer from the incident ion to the target atoms. Both may be different
for the different atomic species in a multicomponent targetmahtén the limit of low fluence, the

total sputtering yield can, in a first approximation, be superposed from the different components i
according to their surface concentration. For this purposeald "component" sputtering yields"Y

are defined sch that the partial sputtering yields afte given by
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Y =q7Y° (15.18)

with g° denoting the surface atomic fractions. The total sputtering yield is then
Y=aY (15.19)

The linear dependence of the partial yields of the surface concentrations neglects any composition
dependent féects on the sputtering such as due to chemical compound or phase formation. For solid
components, the component sputtering yields can be identified with the sputtering yields of the pure
material of that component;{gl in eq. (15.18)).

For differentcomponent sputtering yields, the equation

Yo oo (15.20)

Y, "

holds for at least one pair of components (i,j). In this case, one or more components are sputtered
preferentially.

Consequently, the surface concentrations are altered at increasing fluence even in admmogen
material. For simplicity, we assume a tsomponent material with the components A and B, with A
being sputtered preferentially. The surface concentration of A, and thereby the partial sputtering yield
of A, will then decrease with increasing fluenoe/ards a stationary state, which is given by

Ya _Ua
Yo g

(15.21)

where ¥* denote the stationary partial sputtering yields antlegbulk atomic fractions. Eq. (15.20)

simply states mass conservation, as in the stationary state the altered composition profiles remain
corstant but are moved into the bulk due to sputter erosion, so that atoms sputtered at the surface must
be balanced by atoms fed from the bulk into the altered layer (see Fig. (15.5)).
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By relating eq. (15.18) for bottomponents and combining with