Kosmologie und Astroteilchenphysik

Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer

- Einführung in die Kosmologie
- Weltmodelle und kosmologische Inflation
- Thermische Geschichte des Universums
- Urknall-Nukleosynthese
- Dunkle Energie, dunkle Materie und die beschleunigte Expansion des Universums
- Kosmische Mikrowellen-Hintergrundstrahlung
- Supernovae als kosmische Standardkerzen (heute)
- Neutronensterne
- Entstehung und Nachweis kosmischer Strahlung
- Altersbestimmung des Universums (heute)
- Fundamentale Physik und die Sonne

10. Vorlesung, 17.06.2014

History of the Universe

Entfernungsmessung und Kosmologie (2)

Mitglied der Helmholtz-Gemeinschaft

THE RADIOACTIVE AEON GLASSES

Nukleokosmochronologie (1)

232 _{Th}	238 _U	235 _U
	Ţ	T
$T_{\rm c} = 14.05 \times 10^{9} {\rm y}$	T - 1 42 - 10 ⁹	
		¹ ₃ = 0.70 × 10 ⁻ γ
$\langle \downarrow \rangle$	$\langle A \rangle$	and the second s
Laurenter	at the state	
208 _{Pb}	206 _{Pb}	207 _{Pb}

COMPLICATIONS I	NUCLEOCOSMO	CHRONOLOGY
-----------------	-------------	------------

	233U 1.592E+5 Υ α: 100.00% sF < 6.0E-9%	234U 2.455E+5 Υ 0.0054% α: 100.00% sF: 1.6E-9%	235U 7.04E+8 Y 0.7204% a: 100.00% sF: 7.0E-9%	236U 2.342E7 Y a: 100.00% sF: 9.4E-8%	237Ŭ 6.75 D β-: 100.00%	238U 4.468E9 Y 99.2742% a: 100.00% sF: 5.5E-5%
-	232Pa 1.32 D	233Pa 26.975 D	234Pa 6.70 H	235Pa 24.44 M	236Pa 9.1 M	237Pa 8.7 M
6	β-: 100.00% ε: 3.0E-3%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
	231Th 25.52 H	232Th 1.40E10 Y	233Th 21.83 M	234Th 24.10 D	235Th 7.2 M	236Th 37.3 M
%	β-: 100.00% απ 4E-11%	100% α: 100.00% sF: 1.1E-9%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
	230Ac 122 S	231Ac 7.5 M	232Ac 119 S	233Ac 145 S	234Ac 44 S	235A c 60 S
s	β-: 100.00% β-: 1.2E-6%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
	141	142	143	144	145	146

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft Daniel Bemmerer | 10. Vorlesung 17.06.2014 | Kosmologie und Astroteilchenphysik | http://www.hzdr.de

Nuklidkarte

Mitglied der Helmholtz-Gemeinschaft

Wasserstoffbrennen:

- Flaschenhals: ¹⁴N(p,γ)¹⁵O ٠
- 0.8% der Energieproduktion der • Sonne
- Bestimmung des Alters von ٠ Kugelsternhaufen

Mitglied der Helmholtz-Gemeinschaft

¹⁴N(p,γ)¹⁵O, wie sieht es im Detail aus?

Mitglied der Helmholtz-Gemeinschaft

LUNA halbierte den ¹⁴N(p,γ)¹⁵O-Wirkungsquerschnitt!

Mitglied der Helmholtz-Gemeinschaft

¹⁴N(p, γ)¹⁵O, Messung aller Übergänge mit einem Summendetektor

Mitglied der Helmholtz-Gemeinschaft

Schröder et al. 1987 10 🗍 ¥ LUNA 2004-2006-2008 3 **TUNL 2005** total S factor [keV barn] 0.3 0.1 only ¹⁵O(GS) 0.03 **Astrophysical** energy range 0.01 -100 200 300 400 0 E_{CM} [keV]

Daniel Bemmerer | 10. Vorlesung 17.06.2014 | Kosmologie und Astroteilchenphysik | http://www.hzdr.de

DRESDEN

TECHNISCHE UNIVERSITÄT DRESDEN

Gesamter S-Faktor von ${}^{14}N(p,\gamma){}^{15}O$, über einen weiten Energiebereich

Mitglied der Helmholtz-Gemeinschaft

Versuchsaufbau am HZDR Tandetron, Dresden

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Resonanzstärken $\omega\gamma$ in den ¹⁴N(p, γ)¹⁵O- und ¹⁵N(p, $\alpha\gamma$)¹²C-Reaktionen

278 keV Normierungspunkt: $\omega \gamma = (13.1 \pm 0.6) \text{ meV}$ $Y = \frac{\lambda^2}{2} \frac{1}{SP_{\text{eff}}} \omega \gamma$				$\left \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ $			
	Reaction	Literatu	re $[23, 52]$	52] Present		Literature	
		$E_{\rm p} \; [\rm keV]$	$\Gamma_{\rm lab} \ [{\rm keV}]$	$\omega\gamma_n/\omega\gamma_{278}$	$\omega\gamma \; [{ m eV}]$	$\omega\gamma~[{ m eV}]$	
	$^{14}\mathrm{N}(\mathrm{p},\gamma)^{15}\mathrm{O}$	278	1.12^{a}	$\stackrel{\mathrm{Def}}{=} 1$		$0.0131 {\pm} 0.0006^{b}$	_
	$^{14}\mathrm{N}(\mathrm{p}{,}\gamma)^{15}\mathrm{O}$	1058	3.8^{c}	27.8 ± 0.9	$0.364 {\pm} 0.020$	$0.31{\pm}0.04~[25]$	
	$^{15}\mathrm{N}(\mathrm{p}{,}lpha\gamma)^{12}\mathrm{C}$	430	0.1	$(1.73 \pm 0.07) \cdot 10^3$	$22.7{\pm}1.4$	21.1±1.4 [46]	
	$^{15}\mathrm{N}(\mathrm{p},\alpha\gamma)^{12}\mathrm{C}$	897	1.57	$(2.77 \pm 0.08) \cdot 10^4$	362 ± 20	293 ± 38 [63]	

 \rightarrow M. Marta et al., Phys. Rev. C (2010)

Auswirkungen des niedrigeren ${}^{14}N(p,\gamma){}^{15}O$ -Wirkungsquerschnitts

- 1. Unabhängige untere Schranke für das Alter des Universums: 14±2 Ga.
- 2. Bessere Reproduktion der Kohlenstoffhäufigkeiten in Roten Riesen.
- 3. Es ist möglich, den Stickstoffgehalt im Kern der Sonne über die emittierten CNO-Neutrinos zu bestimmen.

Altersbestimmung sehr alter Sterne (in Kugelsternhaufen)

Krauss & Chaboyer (2003)

Mitglied der Helmholtz-Gemeinschaft

Altersbestimmung sehr alter Sterne (in Kugelsternhaufen)

→ Hertzsprung-Russel-Diagramm, Abzweigen von der Hauptreihe

Krauss & Chaboyer (2003)

Mitglied der Helmholtz-Gemeinschaft

Altersbestimmung sehr alter Sterne (in Kugelsternhaufen)

→ Hertzsprung-Russel-Diagramm, Abzweigen von der Hauptreihe

Zusammenfassung

- Nukleokosmochronologie mithilfe von Uran und Thorium
- Bestimmung des Alters von Kugelsternhaufen mittels des CNO-Zyklus

