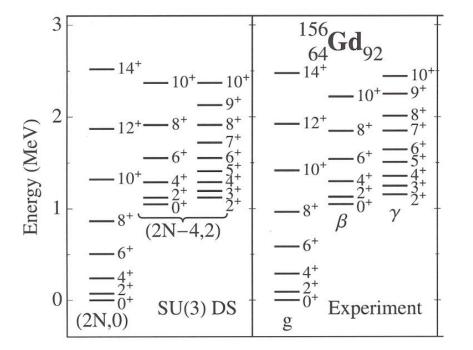
Partial Dynamical Symmetry and Odd-Even Staggering in Deformed Nuclei

A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel

Leviatan, Garcia-Ramos, Van Isacker, PRC 87, 021302(R) (2013)

15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Dresden, Germany, August 25 – 29, 2014



Exp	DS
0.933 25	0.933
$1.312 \ 25$	1.313
$1.472 \ 40$	1.405
$1.596 \ 85$	1.409
$1.566\ 70$	1.364
0.26 11	0.679
$1.40\ 75$	0.951
$0.04 \ 2$	0.034
0.0031 3	0.0055
$0.0165 \ 15$	0.0084
0.0204 20	0.020
0.0065 35	0.0067
0.0105 55	0.021
	$\begin{array}{c} 0.933 \ 25 \\ 1.312 \ 25 \\ 1.472 \ 40 \\ 1.596 \ 85 \\ 1.566 \ 70 \\ 0.26 \ 11 \\ 1.40 \ 75 \\ 0.04 \ 2 \\ 0.0031 \ 3 \\ 0.0165 \ 15 \\ 0.0204 \ 20 \\ 0.0065 \ 35 \end{array}$

SU(3) Dynamical Symmetry

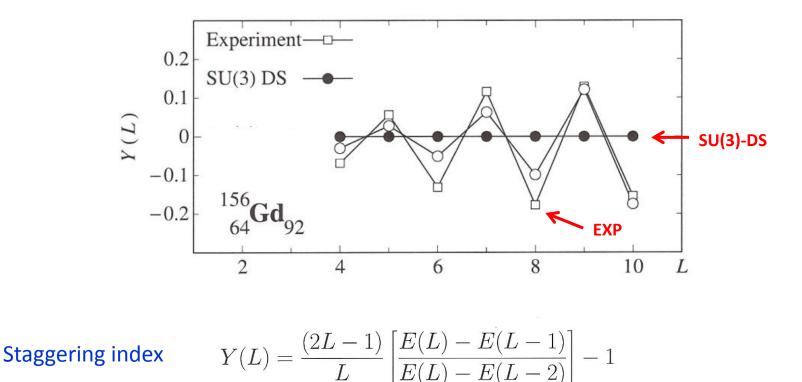
 $U(6) \supset SU(3) \supset SO(3)$ $[N] \quad (\lambda,\mu) \quad K \quad L$ $\hat{H}_{DS} = A \hat{C}_{SU(3)} + B \hat{C}_{SO(3)}$ $E_{DS} = A f(\lambda,\mu) + B L(L+1)$ • Vib. bands: $(\lambda,\mu) = (2N,0) \quad g(K=0_1)$ $(\lambda,\mu) = (2N-4,2) \quad \beta(K=0_2)$ $\gamma(K=2_1)$

• Rot. splitting: L(L+1) rigid rotor

• 156Gd a good example of SU(3)-DS

 SU(3)-DS provides a good description of ground (2N,0) and β (2N-4,2) bands

Odd-even staggering in the γ -band



rigid rotor: Y(L)=0 independent of L

• SU(3)-DS: **poor** description of odd-even staggering in the γ -band

- SU(3)-DS: good description of states in the ground (2N,0) and beta (2N-4,2) bands poor description of odd-even staggering in the gamma band
- IBM: signature splitting in the γ-band can be incorporated by the inclusion of at least cubic terms

17 possible three-body interactions

Need to select suitable higher-order terms that can
 break the SU(3)-DS in the gamma band but preserve it in the ground and beta bands

⇒ Partial Dynamical Symmetry (PDS)

Dynamical Symmetry

$$G_{\text{dyn}} \supset G \supset \dots \supset G_{\text{sym}}$$

$$\downarrow \qquad \downarrow \qquad \qquad \downarrow$$

$$[N] \quad \langle \Sigma \rangle \qquad \qquad \Lambda$$

$$\hat{H} = \sum_{G} a_{G} \hat{C}_{G}$$

• Solvability of the complete spectrum

• Quantum numbers for **all** eigenstates

$$E = E_{[N]\langle \Sigma \rangle \dots \Lambda}$$

eigenstates
$$|[N]\langle \Sigma \rangle \Lambda \rangle$$

operators $\hat{T}_{[n]\langle \sigma \rangle \lambda}$

Partial Dynamical Symmetry

Only part of these properties are obeyed

Leviatan, Prog. Part. Nucl. Phys. 66, 93 (2011)

Partial Dynamical Symmetry

$$G_{\rm dyn} \supset G \supset \cdots \supset G_{\rm sym}$$

$$[N] \quad \langle \Sigma \rangle \qquad \Lambda$$

n-particle annihilation operator

Equivalently:

$$\hat{T}_{[n]\langle\sigma\rangle\lambda}|[\mathbf{N}]\langle\Sigma_0\rangle\Lambda\rangle=\mathbf{0}$$

$$\hat{T}_{[n]\langle\sigma\rangle\lambda}|[\mathbf{N}]\langle\Sigma_{\mathbf{0}}\rangle\rangle=\mathbf{0}$$

for **all** possible Λ contained in the irrep $\langle \Sigma_0 \rangle$ of G

Lowest weight state \rangle

• Condition is satisfied if $\langle \sigma \rangle \otimes \langle \Sigma_0 \rangle \notin [N-n]$

n-body
$$\hat{H}' = \sum_{\alpha,\beta} A_{\alpha\beta} \hat{T}^{\dagger}_{\alpha} \hat{T}_{\beta}$$

 $\hat{H}_{PDS} = \hat{H}_{DS} + \hat{H}'$

DS is **broken** but solvability of states with $\langle \Sigma \rangle = \langle \Sigma_0 \rangle$ is **preserved**

Garcia-Ramos, Leviatan, Van Isacker, PRL 102, 112502 (2009)

Construction of Hamiltonians with SU(3) PDS

 $\begin{array}{l} U(6) \supset SU(3) \supset SO(3) \\ [N] \quad (\lambda,\mu) \quad K \quad L \end{array}$

$$\hat{B}^{\dagger}_{[n](\lambda,\mu)K;\ell m}$$
 $\hat{H}_{PDS} = \sum_{\alpha\beta} u_{\alpha\beta} \hat{B}^{\dagger}_{\alpha} \hat{B}_{\beta}$

 $\hat{B}_{\alpha}|[\mathbf{N}] (\mathbf{2N,0})\mathbf{K=0,L}\rangle = \mathbf{0}$

for **all L** contained in the SU(3) irrep $(\lambda, \mu) = (2N, 0)$

 $n = 2 (\lambda, \mu) = (0, 2)$

$$P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - 2(s^{\dagger})^2 , \ P_{2,\mu}^{\dagger} = 2s^{\dagger} d_{\mu}^{\dagger} + \sqrt{7} (d^{\dagger} d^{\dagger})_{\mu}^{(2)}$$

$$\hat{\theta}_{2} \equiv P_{0}^{\dagger}P_{0} + P_{2}^{\dagger} \cdot \tilde{P}_{2} = \left[-\hat{C}_{2} + 2\hat{N}(2\hat{N}+3)\right]$$
$$\hat{C}_{2} = 2\hat{Q} \cdot \hat{Q} + \frac{3}{4}\hat{L} \cdot \hat{L}$$

n = 3 (λ, μ) = (2,2)

 $W_0^{\dagger} = 5P_0^{\dagger}s^{\dagger} - P_2^{\dagger} \cdot d^{\dagger} , \quad W_{2,\mu}^{\dagger} = P_0^{\dagger}d_{2,\mu}^{\dagger} + 2P_{2,\mu}^{\dagger}s^{\dagger}$ $V_{2,\mu}^{\dagger} = 6P_0^{\dagger}d_{2,\mu}^{\dagger} - P_{2,\mu}^{\dagger}s^{\dagger} , \quad W_{\ell,\mu}^{\dagger} = (P_2^{\dagger}d^{\dagger})_{\mu}^{(\ell)} \quad \ell = 3, 4$

n = 3 $(\lambda,\mu) = (0,0)$ $\Delta^{\dagger} = P_0^{\dagger} s^{\dagger} + P_2^{\dagger} \cdot d^{\dagger}$ $\hat{C}_3 = -4\sqrt{7} \hat{Q} \cdot (\hat{Q} \times \hat{Q})^{(2)} - \frac{9}{2}\sqrt{3} \hat{Q} \cdot (\hat{L} \times \hat{L})^{(2)}$

$$\hat{H}_{DS} = \xi_1 \hat{\theta}_2 + \xi_2 \Lambda^{\dagger} \Lambda + \rho \hat{L} \cdot \hat{L}$$

full DS $|[N](\lambda,\mu)K,L\rangle$ $(\lambda,\mu) = (2N - 4k - 6m, 2k)$ solvable

$$\hat{H}_{PDS} = \sum\limits_{lphaeta} u_{lphaeta} \hat{B}^{\dagger}_{lpha} \hat{B}_{eta}$$

PDS $\hat{B}_{\alpha}|[N](2N,0), K = 0, L\rangle = 0$ **g(K=0)** solvable, other bands mixed

$$\hat{H}_{PDS-1} = \hat{H}_{DS} + \xi_3 P_0^{\dagger} P_0 + \xi_4 P_0^{\dagger} s^{\dagger} s P_0 + \xi_5 \left(\Lambda^{\dagger} s P_0 + P_0^{\dagger} s^{\dagger} \Lambda \right)$$

$$\textbf{PDS-1} \qquad P_0 | [N] (2N - 4k, 2k), K = 2k, L \rangle = 0$$

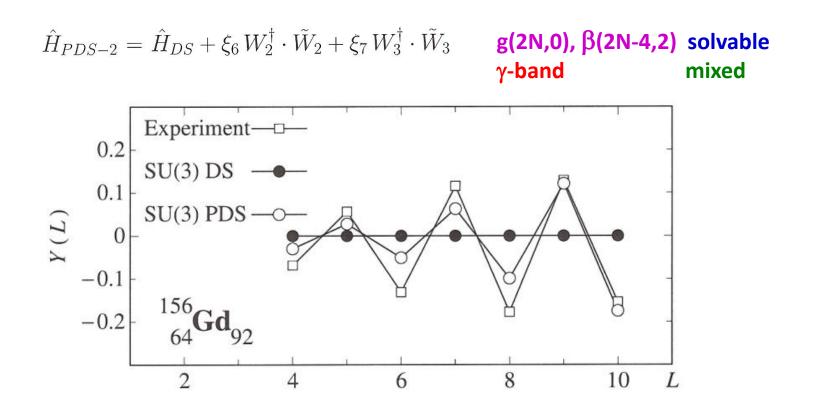
$$\Lambda | [N] (2N - 4k, 2k), K, L \rangle = 0$$

$$\hat{H}_{PDS-2} = \hat{H}_{DS} + \xi_6 W_2^{\dagger} \cdot \tilde{W}_2 + \xi_7 W_3^{\dagger} \cdot \tilde{W}_3$$

$$g(\textbf{K=0}), \gamma^{\textbf{k}}(\textbf{K=2k}) \text{ solvable}$$

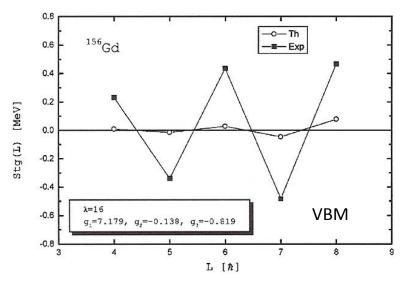
PDS-2 $W_{\ell,\mu}|[N](2N-4,2), K=0, L\rangle = 0$ $\ell = 2, 3$ g(K=0), β (K=0) solvable

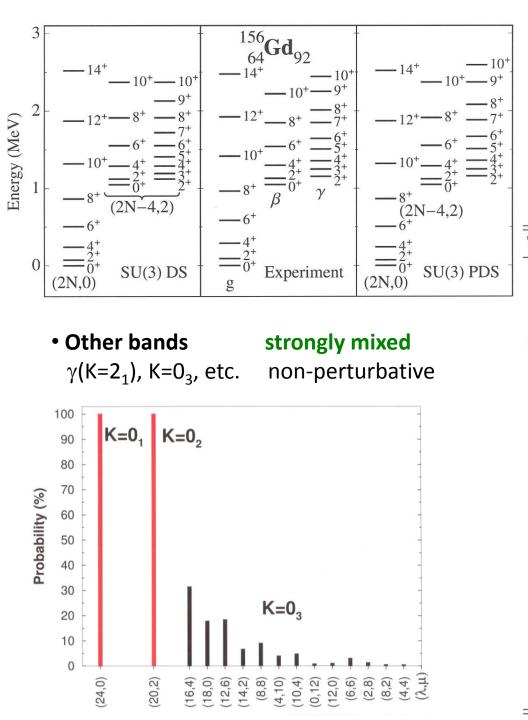
 $\hat{\Omega} = -4\sqrt{3}\,\hat{Q}\cdot(\hat{L}\times\hat{L})^{(2)}$ solvable, diagonal in (λ , μ), lifts K-degeneracy! can be expressed in terms of \hat{H}_{PDS-1} and \hat{H}_{PDS-2}



odd even staggering (OES) in terms of band mixing

- SU(3) conserving: $\hat{H} = \hat{H}_{DS} + \hat{\Omega} = (2N-4,2)$ (Bonatsos, 1988) cannot describe OES in nuclei for which $E_{\beta} < E_{\gamma}$ (e.g. ¹⁵⁶Gd)
- VBM: $g, \gamma \in (\lambda, 2)$ cannot reproduce OES in ¹⁵⁶Gd (Minkov et al., 2000)
- SU(3)-PDS: γ band mixed with higher bands (Leviatan, Garcia-Ramos, Van Isacker, 2013)





$$\hat{H}_{PDS-2} = \hat{H}_{DS} + \xi_6 W_2^{\dagger} \cdot \tilde{W}_2 + \xi_7 W_3^{\dagger} \cdot \tilde{W}_3$$

• g(2N,0), β (2N-4,2) solvable same energy E=E_{DS} and same w.f. \Rightarrow same B(E2)

Transition	Exp	DS	PDS
$2^+_1 \to 0^+_1$	0.933 25	0.933	0.933
$4^{\bar{+}}_1 \rightarrow 2^{\bar{+}}_1$	$1.312\ 25$	1.313	1.313
$6_1^+ \rightarrow 4_1^+$	$1.472 \ 40$	1.405	1.405
$8^+_1 \rightarrow 6^+_1$	1.596 85	1.409	1.409
$10^+_1 \rightarrow 8^+_1$	1.566 70	1.364	1.364
$2^{+}_{\beta} \rightarrow 0^{+}_{\beta}$	$0.26 \ 11$	0.679	0.679
$4^{\not+}_{\beta} \rightarrow 2^{\not+}_{\beta}$	$1.40\ 75$	0.951	0.951
$0^{\mu}_{\beta} \rightarrow 2^{\mu}_{1}$	$0.04 \ 2$	0.034	0.034
$2^{\mu}_{\beta} \rightarrow 0^{+}_{1}$	0.0031 3	0.0055	0.0055
$2^{\mu}_{\beta} \rightarrow 2^{+}_{1}$	0.0165 15	0.0084	0.0084
$2^{p}_{\beta} \rightarrow 4^{+}_{1}$	0.0204 20	0.020	0.020
$4^{\mu}_{\beta} \rightarrow 2^{1}_{1}$	0.0065 35	0.0067	0.0067
$4^p_\beta \rightarrow 4^+_1$		0.0067	0.0067
$4^{\mu}_{\beta} \rightarrow 6^{+}_{1}$	0.0105 55	0.021	0.021
$2^{\mu}_{\gamma} \rightarrow 0^{+}_{1}$	0.0233 8	0.035	0.030
$2^+_{\gamma} \rightarrow 2^+_1$	$0.0361 \ 12$	0.056	0.048
$2^+_{\gamma} \rightarrow 4^+_1$	0.0038 2	0.0037	0.0031
$3^+_{\gamma} \rightarrow 2^+_1$	0.0364 70	0.062	0.053
$3^+_{\gamma} \rightarrow 4^+_1$	0.0254 50	0.032	0.028
$4^+_\gamma \rightarrow 2^+_1$	$0.0090 \ 25$	0.017	0.015
$4^+_{\gamma} \rightarrow 4^+_1$	$0.050\ 15$	0.067	0.057
$4^+_{\gamma} \rightarrow 6^{\tilde{+}}_1$		0.0089	0.0076
$4^+_{\gamma} \to 2^{\bar{+}}_{\beta}$	0.0214 80	0.0033	0.0096

SU(3) PDS and n-body terms

a) Solvable g(K=0) (2N,0) and β (K=0) (2N-4,2) [n=3]

b) Solvable g(K=0) (2N,0) and γ^{k} (K=2k) (2N-4k,2k) [n=2, 3]

c) Solvable, diagonal in (λ , μ), lifts K-degeneracy [n=3] $\hat{\Omega} = -4\sqrt{3}\hat{Q}\cdot(\hat{L}\times\hat{L})^{(2)}$

• PDS as a selection criterion for higher-order terms

More than half of all possible IBM interactions have SU(3) PDS

Order	Number of interactions		
	General	SU(3) DS	SU(3) PDS
1	$2\mapsto 1$	$1\mapsto 0$	$1 \mapsto 0$
2	$7\mapsto 5$	$3\mapsto 2$	$4\mapsto 3$
3	$17 \mapsto 10$	$4\mapsto 1$	$10 \mapsto 6$
1 + 2 + 3	$26 \mapsto 16$	$8\mapsto 3$	$15 \mapsto 9$

Summary and Outlook

- Systematic procedure for identifying and selecting interactions of a given order with PDS
- PDS breaks the DS but retains selected subsets of solvable states with good symmetry, while other states are strongly mixed
- Higher-order terms with a PDS can be introduced **without destroying** results previously obtained with a DS for a segment of the spectrum

Several classes of SU(3)-PDS

a) Solvable g(K=0), β (K=0) bands (A.L. et al. PRC 2013; **this talk**) b) Solvable g(K=0) and γ^{k} (K=2k) bands (A.L. PRL 1996; Casten et al. PRL 2014) c) Integrity basis term Ω (Draayer et al. NPA 1985, Bonatsos PLB 1988)

PDS as a selection criterion for higher-order terms SU(3)-PDS: odd-even staggering ¹⁵⁶Gd SO(6)-PDS: band anharmonicities ¹⁹⁶Pt (Ramos et al., PRL 2009) Relevance to extension of beyond MF methods to heavy nuclei

Thank you