

The Facility for Rare Isotope Beams

Chris Wrede Michigan State University & NSCL CGS15, Dresden, August 26th, 2014

Outline

 Facility for Rare Isotope Beams Science and Overview

FRIB Project and Design Status

Civil construction started

 Technical Construction to start soon

- NSCL and Integration
 - Beam stopping & reacceleration
 - Experimental areas and equipment
- FRIB Users
- Summary

FRIB – Four Science Themes

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

FRIB - Facility for Rare Isotope Beams

World-leading Next-generation Rare Isotope Beam Facility

Rare isotope production via in-flight technique with primary beams up to

400 kW, 200 MeV/u uranium

 Fast, stopped, and reaccelerated beam capability

- Upgrade options
 - 400 MeV/u for uranium
 - ISOL production multi-user capability

FRIB project start 6/2009 Civil construction started 3/2014 Technical construction to start 10/2014 Managed to early completion 12/2020 CD-4 (project completion) 6/2022

Total project cost \$730 million

NSCL enables pre-FRIB science

FRIB Beams Will Enable New Discoveries

FRIB Rare Isotope Beam Rates High Beam Rates to Maximize Science Reach

Rates are available at http://groups.nscl.msu.edu/frib/rates/

FRIB Civil Construction Underway Began 3 March 2014

FRIB construction site on 13 August 2014 -- Web cameras at www.frib.msu.edu

First Big Concrete Pour July 23

140 concrete trucks, 1400 cubic yards

FRIB Construction Underway

FRIB Accelerator Systems Superconducting RF Driver Linac

- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules

FRIB Accelerator Systems

- Cavity preproduction and cryomodule prototyping underway
- Cavities exceed FRIB performance goals
- Liquid lithium charge stripping scheme validated

FRIB Production Target & Fragment Separator

Three stage magnetic fragment separator • High acceptance, high resolution to maximize science Provisions for isotope harvesting incorporated in the design Challenges Reconfigured High power densities A-1900 High radiation Vertical Preseparator Multi-slice rotating graphite target Hot-Cell Preseparator Radiation resistant magnets; example HTS Water-filled rotating

beam dump

quad

Early Science Opportunities at NSCL with Fast, Stopped, Reaccelerated Beams

Stopped Beams at NSCL and FRIB

- Multifaceted approach
 - Linear gas stopper (heavier ion beams)
 - Cyclotron gas stopper (lighter ion beams)
 - Solid stopper (certain elements, highest intensity)
- Beam Stopping developments
 - Linear gas catcher (ANL) operational
 - Cyclotron gas stopper construction advanced (NSF + MSU funded)
 - Advanced Cryogenic Gas Stopper underway (NSF funding imminent)

Reaccelerated Beams at NSCL and FRIB with ReA Facility

AT-TPC,

First radioactive beam experiment with ReA3 August 2013

ANASEN, SUN,

LENDA.

SeGA/CAESAR

Stopped beam

EBIT CB

JENSA

JENSA

EBIT/S charge breeder

SRF linac

ReA3 - 3 MeV/u for ²³⁸U

Expandable to >12 MeV/u for ²³⁸U

FRIB

ReA6

(development)

Experimental Area Expansion and New Experimental Equipment

- 47,000 sq ft operational when FRIB starts, upgrade space of more than 60,000 sq ft
- Experimental Equipment
 - Equipment at NSCL (existing or under development): S800, SeGA, MoNA, MoNA-LISA, LENDA, NSCL-BCS, LEBIT, BECOLA, AT-TPC, CAESAR, SUN, ...
 - Equipment available in the community and movable (existing, under development, or planned): GRETINA, ANASEN, CHICO, Nanoball, ORRUBA, JANUS, ...
 - Science driven new equipment developed by FRIB user community: SECAR, GRETA, HRS, ISLA, ...

GRETA The Gamma Ray Energy Tracking Array

www.physics.fsu.edu/GRETINA.org/

www.lecmeeting.org/whitepapers.html

GRETA

Efficiency (~40%) - 30 HPGe quad-modules

Summing of scattered gamma rays: no solid angle lost to suppressors. 4π coverage. Angular distributions/correlations. High-energy efficiency.

Position resolution (2 mm)

Position of 1st interaction. Excellent Doppler reconstruction. Effective energy resolution.

Peak-to-background (~ 55%)

Tracking.
Rejection of Compton events, maintaining good spectral quality.

Polarization

Angular distribution of the 1st scattering.

Counting rate

Many segments.

Gretina / GRETA quad detectors

4 crystals per module36 segments per crystal148 signal channels per module

Gretina: 1π predecessor to GRETA
Commissioned at Berkeley
Successful campaign at NSCL (2012/13)
Currently running at ANL/ATLAS

HRS High-Rigidity Spectrometer

Spectrometer Dipoles Large-Gap Sweeper Dipole 30° sweeper, 2.1 T neutron-cone, ±8° 30° dipole, 2.1 T 30° dipole, 2.1 T 8.000m (min) **Charged Particle Detectors Neutron Detector Array**

Primary design parameters	
Maximum Magnetic Rigidity	8 Tm
Acceptance	10 msr
Momentum acceptance	10%
Momentum resolution	1 in 5000
Ion-optical features	Image after sweeper stage for removing beam
Dispersion	7 cm/%
Sweeper	30° bending angle, B _{max} = 2.1 T, gap size: 60 cm
Spectrometer Dipoles	$2x30^{\circ}$ bending angle, $B_{max} = 2.1 \text{ T}$, gap size: 12 cm
Quadrupoles	based on FSQ7/8 design for FRIB separator, ~50cm maximum bore

- •For fast RIBs (~170-200 MeV/u)
- Detectors surrounding target for: γ rays (eg. GRETA) charged-particles (eg. HiRA) neutrons (eg. LENDA, VANDLE)

ISLA

Isochronous Separator with Large Acceptance

- For ReA12 RIBs: ~10 MeV/u
- Selected design (July 2014)
- •M/Q resolving power > 1000
- Large acceptance
 - 64 msr
 - +/-10% momentum

- Flexible M/Q spectrometer
 - Space about target for GRETA
 - Incoming beam swinger allows operation off zero degrees
 - Small focal plane (implantation)
 - Low energy RF kicker allows physical separation of products by M/Q
 - First half could be used in a VAMOS-like mode
 - Could be operated in gas-filled mode

SECARSEparator for CApture Reactions

Over 1300 Users Engaged and Ready for Science

- Users are organized as part of the independent FRIB Users Organization (FRIBUO) www.fribusers.org
- Users Organization FRIBUO has 1386 members (92 U.S. colleges and
- FRIBUO has 19 working groups on experimental equipment

universities, 10 national laboratories, 55 countries) as of April 2014

 21-23 August 2014, Low Energy Nuclear Physics and Nuclear Astrophysics Town Meetings, Texas A&M University

August 2013 Low-Energy Community Meeting 274 participants

Summary

 FRIB to become a world-leading nextgeneration facility for rare isotope science

- Highest-power heavy ion linac worldwide
- High-performance fragment separator
- Fast, stopped, and reaccelerated beams
- Provisions for isotope harvesting

FRIB project is making excellent progress

- Civil construction started
- Technical construction starts this fall
- NSCL enables pre-FRIB science
 - Well tested and optimized experimental equipment when FRIB starts
- Several major new-equipment initiatives
 - GRETA, HRS, ISLA, SECAR, ...
- Strong and growing FRIB user group in place

Thank you for your attention!

Thanks for providing material:
 Matt Amthor, Georg Bollen, Thomas Glasmacher, Augusto Machiavelli,
 Wolfgang Mittig, Hendrik Schatz, Michael Smith, Remco Zegers

