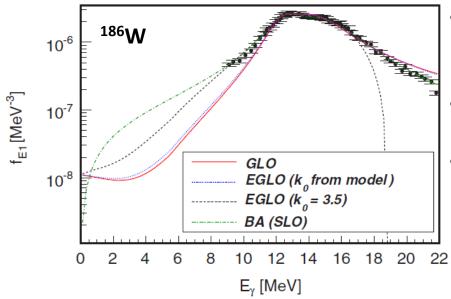

#### Failure of the Gross Theory of Beta Decay in Neutron Deficient Nuclei

**Richard B. Firestone** 

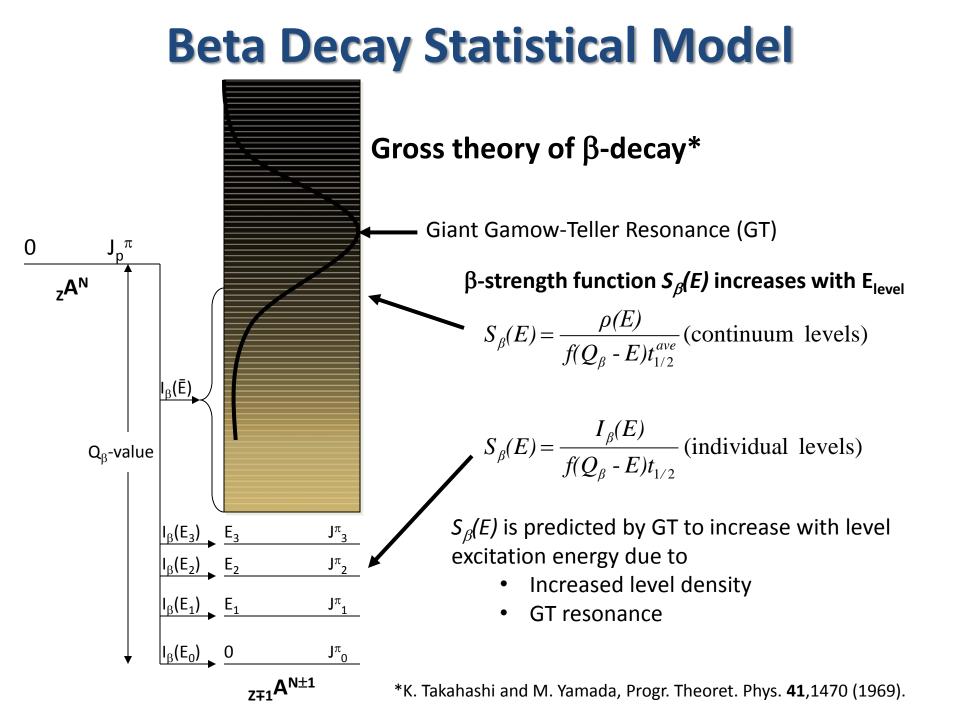
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA



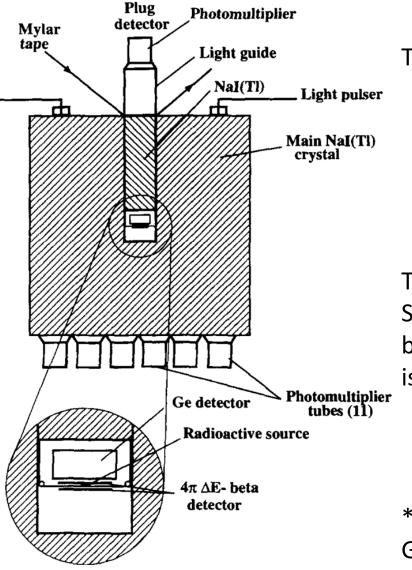

Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics CGS15

## **Photon Strength Statistical Models**

#### Gamma Rays


**E1:** Brink-Axel and variations; based on the shape of the Giant Dipole Resonance (GDR).




- Verified by photonuclear data above the neutron separation energy
- Uncertain below the neutron separation energy S<sub>n</sub>
- Photon strength measured below S<sub>n</sub> cannot reliably be compared to Brink-Axel.

M1: No statistical model is available.

- Single particle and scissors models may be applicable at low energies
- Success of Brink-Axel above S<sub>n</sub>, where E1 is dominant, suggests that M1 strength is very weak at high energies.

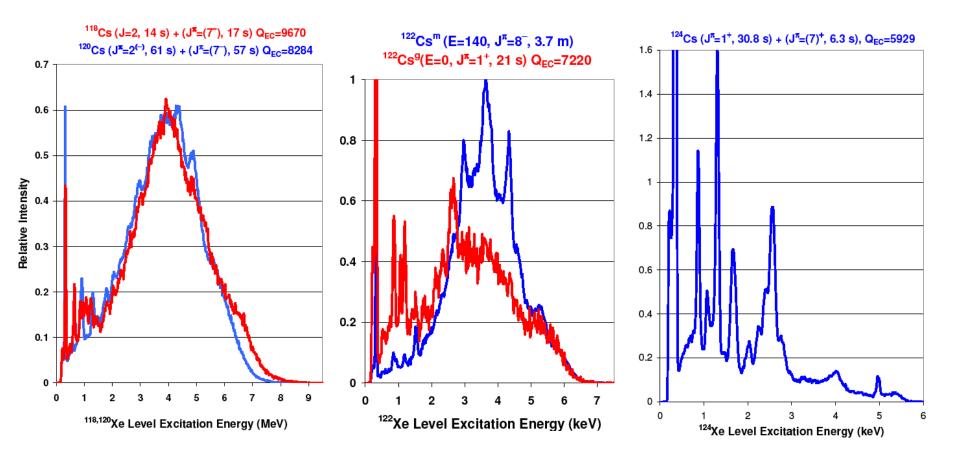


#### LBNL Total Absorption Spectrometer (TAS)\*



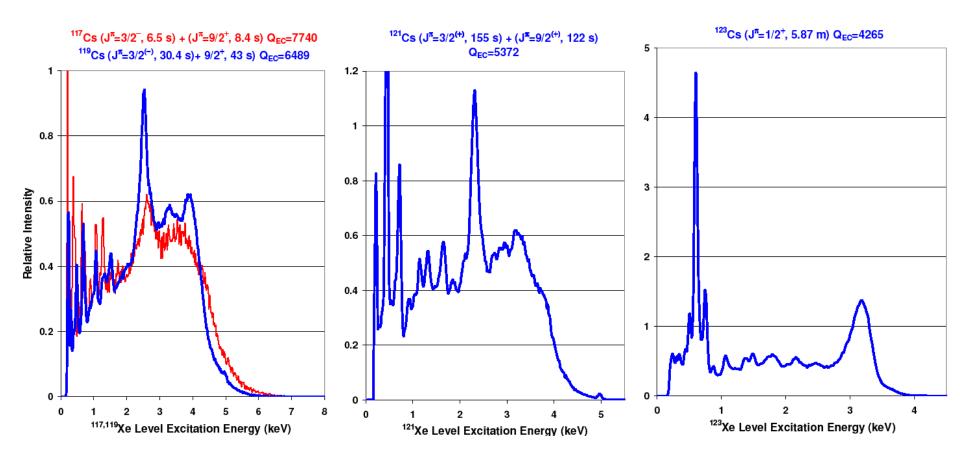
#### <u>Measurement of $\beta$ -strength with TAS</u>

The TAS detector consisted if


- 36×36 cm NaI(Tl) well detector with a 4×15 cm plug detector for measuring the sum γ-ray energy following decay.
- 1.6×1 cm Ge x-ray detector
- Two 1.8×0.1 Si beta detectors

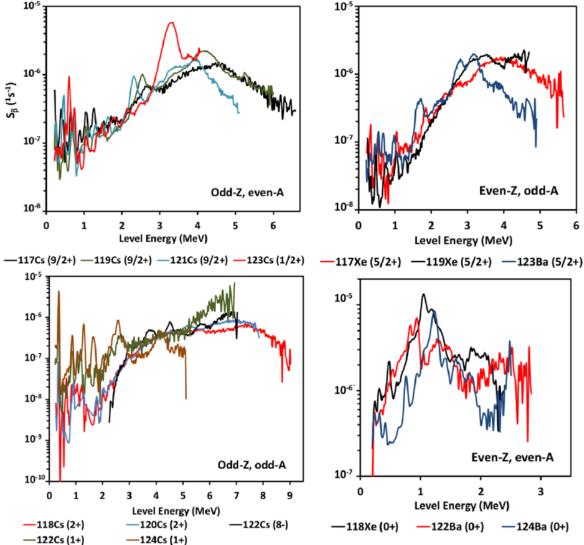
The only TAS experiment at the LBNL SuperHILAC was performed in 1990. A <sup>28</sup>Si beam bombarded a <sup>nat</sup>Mo target to produce the isotopes <sup>117-121</sup>Xe, <sup>117-124</sup>Cs, and <sup>122-124</sup>Ba.

- A identification by OASIS mass separator
- Z identification by coincident EC x-rays


\* Designed by J.M. Nitschke, TAS was moved to GSI shortly after this experiment and now lies in pieces in Berkeley.

#### **TAS Spectra Even-A Cs Isotopes**




Typical spectra for <sup>118-124</sup>Cs decays. The TAS  $\gamma$ -ray spectra correspond to  $\beta$ -decay feeding intensities after correction for the detector response and EC/EC+ $\beta$ <sup>+</sup> ratio. Total detection efficiency ranged from 95% (0.3 MeV) to 55% (5 MeV).

#### **TAS Spectra Odd-A Cs Isotopes**

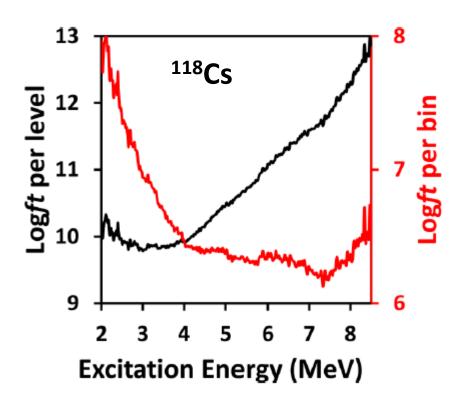


Typical spectra for <sup>117-123</sup>Cs decays.

## **Photon Strength Functions**



The 19 keV binned experimental strengths are comparable for each group of nuclides.

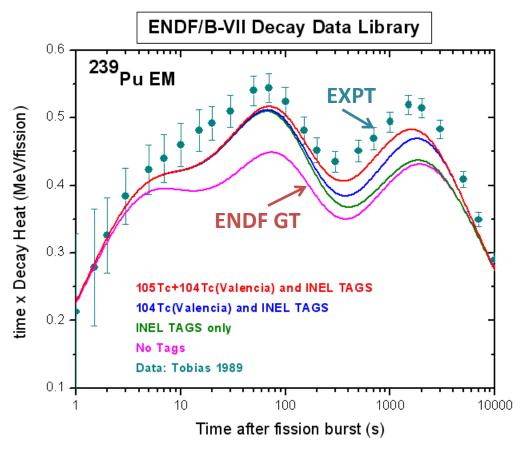

$$S_{\beta}(E) = \frac{1}{ft_{1/2}(E)}$$

↓ Note that the strength falls off <sup>6</sup> dramatically above

- 1 MeV: even-Z, even-N
- 3-4 MeV: even-Z, odd-N
- 4-5 MeV: odd-Z, even-N
- 7-8 MeV: odd-Z, odd-N

These results contradict the simple predictions of Gross Theory.

## Logft Variation




The average log*ft* per 19 keV energy bin increases rapidly above 7 MeV to log*ft* $\approx$ 6.5 at 8.5 MeV.

Correcting for the level density, the average log*ft* per level increases rapidly above 3 MeV to log*ft*≈13 at 8.5 MeV.

#### These results disagree with predictions from Gross Theory

#### Decay Heat and Total Absorption γ-ray data



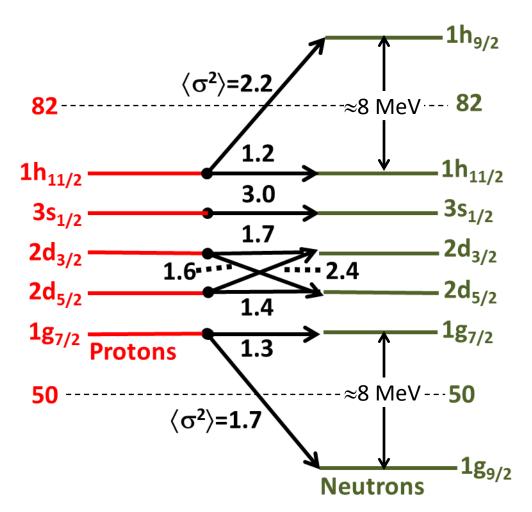
Decay heat calculations are dramatically improved by replacing ENDF Gross Theory based data with TAGS measurements from INEL (Greenwood *et al\**) and Valencia (Algora *et al\**). \* NIM A, 317 (1992) # J. Korean Phys. Soc. 59,1479 (2011).

## Poor agreement of the Gross Theory of $\beta$ -decay with TAS and decay heat data cast doubt on the validity of this theory!

#### A Shell Model Approach to β-decay

The  $ft_{1/2}$  value is defined as

$$ft_{1/2} = \frac{6144}{|M|^2}$$


where

$$|M|^{2} = \left| \int 1 \right|^{2} + \left( \frac{C_{A}}{C_{V}} \right)^{2} \left| \int \sigma \right|^{2}$$

For mirror transitions,  $|\int 1|^2 = 1$ , and for  $0^+ \rightarrow 0^+$  transitions,  $|\int 1|^2 = 2$ , From the Shell Model

$$\left| \int \sigma \right|^2 = \left[ \frac{j+1}{j} \right]^{\pm 1} j_i = j_f = l \pm 1/2$$
$$\left| \int \sigma \right|^2 = \left[ \frac{l+1/2 \mp 1/2}{2l+1} \right]^{\pm 1} j_i = l \mp \frac{1}{2}, \qquad j_f = l \pm 1/2$$

#### Shell Model .....



Fast Shell Model transitions available in the  $4\pi\hbar$  oscillator shell to Xe, Cs, and Ba.

For light isotopes  $|C_A/C_v|=1.24$  and the superallowed  $\beta$ -decays give

> 0<sup>+</sup>→0<sup>+</sup>, T=1:  $ft_{1/2}$  = 3072 Mirror, T=1/2:  $ft_{1/2} \approx$  4000-6000

**Hypothesis:** If the superallowed  $\beta$ decay to low-lying levels dominates the  $\beta$ -decay of light isotopes, then similar strength should be observed to low-lying levels in heavier isotopes.

- Strength mixed to lower levels
- No strength to higher levels

For heavier nuclei we can define

$$\overline{ft_{1/2}} = \sum_{E=0}^{Q_{EC}} \left[ S_{\beta}(E) \right]^{-1}$$

#### **Results from LBNL TAS Data**

|                     |                    | +         |                         |               | Taaman <sup>b</sup>                   | $[\sum Q_{-}(E)] = 1$                             |
|---------------------|--------------------|-----------|-------------------------|---------------|---------------------------------------|---------------------------------------------------|
| $^{A}\mathbf{Z}$    | $\mathbf{J}^{\pi}$ | $t_{1/2}$ | $\mathbf{Q}_{EC}{}^{a}$ | $\mathbf{GS}$ | $\operatorname{Isomer}^{b}$           | $\left[\sum S_{\beta}(\underline{E})\right]^{-1}$ |
|                     |                    | (s)       | (keV)                   | Feeding       | $\mathbf{J}^{\pi},\!\mathbf{t}_{1/2}$ | $(\equiv ft)$                                     |
| $^{117}$ Xe         | $5/2^{+}$          | 61        | 6251                    | $10\%^{c}$    |                                       | 5900                                              |
| $^{117}Cs$          |                    | 8.4       | 7690                    |               | $3/2^+, 6.5 \text{ s}$                | 5800                                              |
| $^{118}$ Xe         | $0^{+}$            | 216       | 2892                    | $12\%^{c}$    | -                                     | 2800                                              |
| $^{118}Cs$          |                    | 14        | 9670                    |               | $7^{-},\!17 { m \ s}$                 | 10000                                             |
| $^{119}$ Xe         | $5/2^{+}$          | 348       | 4971                    | $16\%^d$      |                                       | 6200                                              |
| $^{119}Cs$          | $9/2^+$            | 43        | 6489                    |               | $3/2^+, 30.4 \text{ s}$               | 5300                                              |
| $^{120}$ Xe         | $0^{+}$            | 2400      | 1581                    | 38%           |                                       | 7100                                              |
| $^{120}Cs$          | $2^{+}$            | 61.3      | 8284                    |               | $7^{-},57 \text{ s}$                  | 9700                                              |
| $^{121}\mathrm{Xe}$ | $5/2^{+}$          | 2400      | 3771                    | 28%           |                                       | 10800                                             |
| $^{121}Cs$          | $9/2^+$            | 122       | 5445                    |               | $3/2^+,155 \text{ s}$                 | 7600                                              |
| $^{122}Cs$          | 1+                 | 21.2      | $7070^{e}$              | 37%           |                                       | 5400                                              |
| $^{122}Cs$          | 8-                 | 222       | $7210^{e}$              |               |                                       | 9900                                              |
| $^{122}Ba$          | $0^{+}$            | 117       | 3540                    | $13\%^{f}$    |                                       | 3400                                              |
| $^{123}Cs$          | $1/2^{+}$          | 353       | 4205                    | 33%           |                                       | 5500                                              |
| $^{123}$ Ba         | $5/2^+$            | 162       | 5389                    | $12\%^{c}$    |                                       | 9100                                              |
| $^{124}Cs$          | $1^{+}$            | 30.9      | 5930                    | 34%           |                                       | 12800                                             |
| $^{124}Ba$          | $0^{+}$            | 660       | 2642                    | $17\%^f$      |                                       | 5900                                              |

## Comparison of Xe, Cs, and Ba decays with superallowed/mirror decays

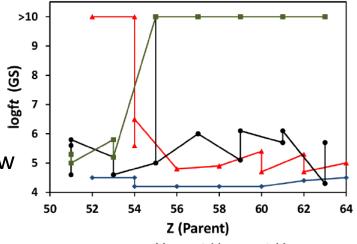
For isotopes with the largest  $Q_{EC}$  values, where most of the shell model  $\beta$ -strength is energetically accessible we find

Odd-Z, even-N Cs isotopes: $\overline{ft_{1/2}} = 5300 - 5800$ ,  $|M|^2 = 1.1 - 1.2$ Odd-Z, odd-N Cs isotopes: $\overline{ft_{1/2}} = 5400 - 10000$ ,  $|M|^2 = 0.6 - 1.1$ Even-Z, odd-N Xe isotopes: $\overline{ft_{1/2}} = 5900 - 6200$ ,  $|M|^2 = 1.0$ 

For mirror  $\beta$ -decays,  $|M|^2 = 1.0 - 1.5$ 

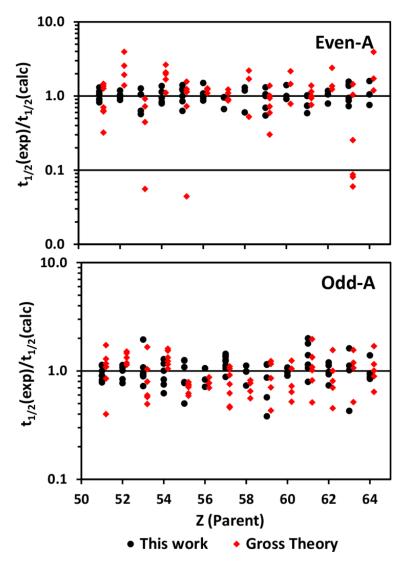
Even-Z, even-N Xe,Ba isotopes:  $\overline{ft_{1/2}} = 2800 - 3400$ ,  $|M|^2 = 1.8 - 2.2$ For 0+ $\rightarrow$ 0+ $\beta$ -decays,  $|M|^2 = 2.0$ 

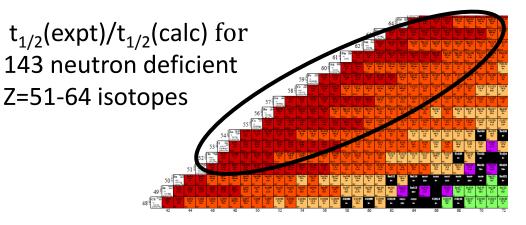
The LBNL TAS measurements yield total beta strengths consistent with the strengths of superallowed/mirror decays in lighter isotopes.


# Calculation of half-lives near the proton drip line

Gross Theory is often used to calculate the half-lives of nuclei far from stability. Can the TAS  $\beta$ -strength data obtain similar results?

**Assumption 1:** The measured  $\beta$ -strengths from <sup>117</sup>Xe, <sup>117</sup>Cs, <sup>118</sup>Cs, and <sup>122</sup>Ba can be used as standard b-strength templates for all odd-even, odd-odd, and even-even neutron deficient isotopes with N<82 and Z=50-64.


**Assumption 2:** An additional parameter is needed for the strong  $\beta$ -strength to low lying levels. (note that this feeding is also needed for the Gross Theory model).


For odd-N or odd-Z isotopes the  $ft_{1/2}$  to low lying levels varies with the Shell Model configuration of the GS.



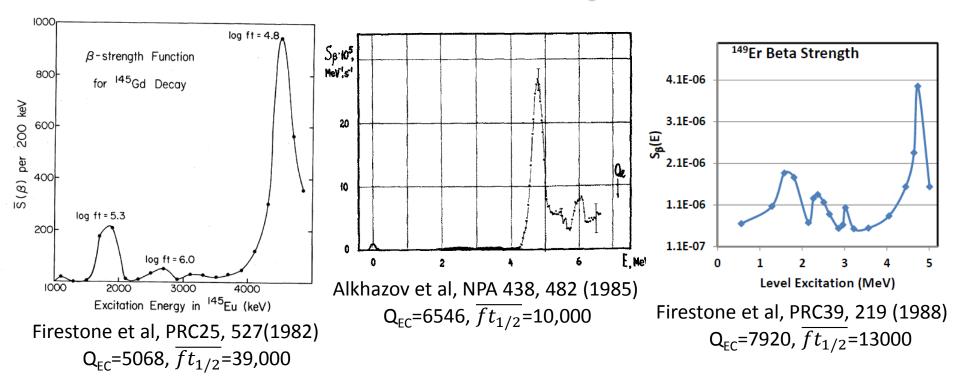
-- Even Z,N -- Even Z, odd-N -- Odd-Z,N -- Odd-Z,Even-N

## **Comparison of TAS Strength and Gross Theory Half-life Calculations**





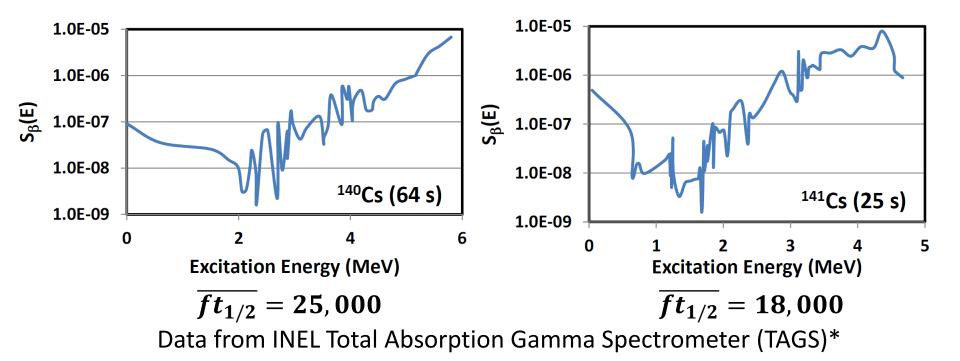
#### <u>TAS $\beta$ -strength</u>


 $\chi^2$ /f=1.0 assuming a theoretical uncertainty of **20%** for all isotopes.

#### **Gross Theory** β**-strength**\*

 $\chi^2$ /f=1.0 assuming a theoretical uncertainty of **33%** for odd-A nuclei and **73%** for even-A nuclei.

\*Nuclear Data Center JAEA, 2013


## Application of template method to heavier isotopes



**N=81:** The only allowed decay channel open is the  $\pi h_{11/2} \rightarrow \nu h_{9/2}$  spin flip transition. Single particle  $\overline{ft_{1/2}}$ =2900 is much lower than observed values.

Missing strength at higher excitations? Higher energy template needed?

#### **Neutron Rich Cs Isotopes**



Experimental  $\beta$ -strengths do not peak within experimental energy window. These data would be incomplete templates for extrapolation to heavier Cs isotopes.

\*R.G. Helmer et al, NIMA 339, 189 (1994).

### **Calculation of Cs Half-lives**

- 1. Extrapolate standard  $S_{\beta}(E)$  to higher energies with a broad peak at 7 MeV with  $S_{\beta}(E)_{max}$ = 2.5×10<sup>-5</sup>, 1 MeV fwhm for odd- and even-A Cs isotopes
- 2. Calculate half-life
  - $t_{1/2} = c \sum_{E=0}^{Q_{EC}} (1/s_{\beta(E)})$ : c(140Cs)=0.29, c(141Cs)=0.23

The reason for renormalization of  $S_{\beta}(E)$  is unknown.

| lsotope           | Jπ                      | t <sub>1/2</sub> (expt) | t <sub>1/</sub> 2(calc) | t <sub>1/2</sub> (GT) |
|-------------------|-------------------------|-------------------------|-------------------------|-----------------------|
| <sup>142</sup> Cs | 0-                      | 1.684(14) s             | 3.9 s                   | <b>3.3</b> s          |
| <sup>143</sup> Cs | 3/2+                    | 1.791(7) s              | 1.9 s                   | <b>3.1</b> s          |
| <sup>144</sup> Cs | <b>1</b> <sup>(-)</sup> | 0.994(6) s              | 0.97 s                  | 1.6 s                 |
| <sup>145</sup> Cs | 3/2+                    | 0.587(5) s              | 0.51 s                  | <b>1.2</b> s          |
| <sup>146</sup> Cs | 1-                      | 0.321(2) s              | 0.36 s                  | 0.68 s                |
| <sup>147</sup> Cs | (3/2+)                  | 0.230(1) s              | 0.24 s                  | 0.27 s                |
| <sup>148</sup> Cs |                         | 0.146(6) s              | 0.13 s                  | 0.16 s                |
| <sup>149</sup> Cs |                         | >50 ms                  | 101 ms                  | 94 ms                 |
| <sup>150</sup> Cs |                         | >50 ms                  | 47 ms                   | 85 ms                 |

For the <sup>144-148</sup>Cs calculations

This work:  $\chi^2/f=1$  for  $\Delta t_{1/2}=9\%$ 

Gross Theory:  $\chi^2$ /f=1 for  $\Delta t_{1/2}$ =37%

## Conclusions

- β-strength measurements with the LBNL TAS spectrometer for neutron deficient Xe, Cs, and Ba isotopes are inconsistent with predictions of the Gross Theory of β-decay
- Total β-strengths for neutron deficient isotopes are consistent with shell model predictions.
- Half-lives of neutron deficient isotopes can be calculated with good accuracy using measured TAS templates.
- Total β-strengths for neutron rich isotopes are consistent with decay across shell gaps
- Half-lives of neutron rich isotopes may be calculated with good accuracy using TAS templates that are extrapolated to higher energies
- Lessons from  $\beta$ -strength analysis should apply to M1  $\gamma$ -rays.