Studies of ^{54,56}Fe Neutron Scattering Cross Sections S. F. Hicks¹, J. R. Vanhoy², A. J. French¹, S. L. Henderson¹, T. J. Howard¹, R. L. Pecha¹, Z. C. Santonil¹, B.P. Crider³, S. Liu³, M.T. McEllistrem³, E.E. Peters³, F.M. Prados-Estévez³, T. J. Ross³, S.W. Yates³ ¹University of Dallas, 75062 Irving, TX USA ²United States Naval Academy, 21402 Annapolis, MD USA ³University of Kentucky, 40506-0055 Lexington, KY USA Funded by DOE NEUP Grant NU-12-KY-UK-0201-05, the Cowan Physics Fund at the University of Dallas, and the National Science Foundation. # Advanced Elastic and Inelastic Nuclear Data Development Project #### **Evolution of Nuclear Power** http://www.gen-4.org/Technology/evolution.htm http://nuclearpowertraining.tpub.com/h 1019v1/css/h1019v1_69.htm.> #### **Goals of AFCI Gen IV:** - i) Safer - ii) Sustainable - iii) Economical - iv) Physically Secure #### **Data Modeling** - i) Data needed over a large energy range. - ii) Better understanding of the nuclear force properties. - iii) Needed for reactor design. One of the Six Generation IV Nuclear Energy Systems [&]quot;A Technology Roadmap for Generation IV Nuclear Energy Systems," Generation IV International Forum, December 2002. Inelastic Neutron Scattering off coolant and structural materials Existing 54,56 Fe(n, elastic) data: - Sparse data above 2 MeV, especially for inelastic scattering - Uncertainties missing or not well defined. - Finite sample corrections? Existing ^{54,56} Fe(*n,n'*) data: •Inelastic neutron scattering cross sections are less well known and have higher uncertainties. # Modified Model CN VDG. University of Kentucky Accelerator Laboratory (UKAL) - Neutron production and detection facility. - ☐ 7 MV maximum terminal voltage - \square p, d, ³He, and α beams - ☐ pulsed and DC beams , repetition rate of 1.875 MHz. - **□** Bunch beam pulses with FWHM $\Delta t \approx 1$ ns pulse width. - ☐ Pulsed beams necessary for neutron time-of-flight measurements. CGS15 - 8/26/2014 CGS15 - 8/26/2014 Small polyethylene sample - Neutron TOF techniques - Neutrons detected in a C₆D₆ detector. PSD used to eliminate unwanted γ-ray events. - Additional scintillation detector used for normalization $Y_{monitor}$. - Detector carriage rotated about the center of sample - 30° to 150°. Neutron Time-of-Flight Spectra at E_n =3.5 MeV (NatFe) and 4.0 MeV (54Fe) [time \leftarrow] E_n = 1.75 MeV, 3.19 MeV, 3.4 MeV, 3.5 MeV, 3.6 MeV, 3.7 MeV, 3.9 MeV ### **Cross Section Determination** $$\frac{d\sigma}{d\Omega}(\theta) = \frac{N_{abs}Y_{main}}{Y_{monitor}Eff(E_n)}$$ - Y_{main} is the main detector yield, - Y_{monitor} is the monitor detector yield, - θ is the scattering angle, - $Eff(E_n)$ is the neutron detection efficiency at E_n - N_{abs} is the absolute normalization factor. #### **Finite Sample Corrections:** - Multiple scattering - Attenuation - MULCAT #### **Absolutely Normalization:** - np scattering - · carbon elastic scattering ## **Relative Detector Efficiency** - Efficiency $Eff(E_n)$ measured in situ by measuring the angular distribution of source neutrons. - Largest single contributor to the uncertainty is the T(p,n)³He cross sections. U.S. Department of Energy Comparison of UKAL neutron elastic scattering data from ^{nat}Fe at E_n =1.75 MeV to previous measurements by Smith *et al.* 1980. One might wonder if these new measurements are necessary? Neutron inelastic scattering from the 56 Fe 847-keV level at E_n =1.75 MeV. - Few existing data - Large discrepancies between evaluations. - Uncertainties **University of Dallas** ### Nat Fe elastic at $E_n = 3.50 \text{ MeV} - \text{Comparison to CSISRS (left)}$ and ENDF (right) - Agreement with existing data very good forward of 120 degrees. - Significant deviations between existing data and ENDF at 3.50 MeV # $E_{n} = 3.50 \text{ MeV}$ Neutron inelastic scattering from the 847-keV level in ⁵⁶Fe. - First minimum not well described relative to second maximum. - Very forward angles difficult to fit confidently. - Experimental first minimum appears forward of model calculations. **Experiments have been** performed on 54Fe and are in progress on ⁵⁶Fe enriched samples. | Sample | Isotopic
Abundance | Mass (g) | Diameter
(cm) | Height (cm) | |------------------|-----------------------|----------|------------------|-------------| | ⁵⁴ Fe | 97.6000 | 18.046 | 1.45 | 1.50 | http://www.nndc.bnl.gov/chart/r eplotband.jsp **University of Dallas** 54 Fe + n at E_n =3.0 MeV ### **Challenges** in determining neutron scattering inelastic cross sections: - Fitting uncertainties— especially at forward angles where the elastic cross section is very large. Tails Tails Tails - Finite Sample Corrections multiple-scattering and attenuation - Length of experiments to get reasonable statistics For details attend Jeff Vanhoy's talk Wednesday at 11:00, Session 18, Room 028. Neutron inelastic scattering cross sections can be deduced from γ -ray production cross sections. F. G. Perey et al., # γ-ray Production Cross Sections Used to Deduce (n,n') Cross Sections $$\frac{d\sigma}{d\Omega} \approx A_o \left[1 + a_2 P_2(x) + a_4 P_4(x) \right]$$ \triangleright a_4 values are usually very small. $$P_2 = 0.00$$ at 125° $$\succ$$ $\sigma_{n,n'_k} = \sum \sigma_{de-excitation} - \sum \sigma_{feeding\ transitions}$ Data taken on ^{54,56}Fe and ^{nat}Al, ^{Nat}Ti, and ^{nat}V, but not yet analyzed completely. - > Deduce neutron production cross sections - Consider Al, Ti, and V as absolute normalization sources. - $E_n = 1.5 4.7$ MeV in 200 keV steps HpGe detector – BGO Compton Suppression annulus ## Example excitation function from nat Fe(n,n' γ) - Evaluate γ-ray branching ratios - For ⁵⁴Fe finding A_0 , a_2 , and a_4 from γ -ray angular distribution at 4.5 MeV And the very preliminary results are in! Data analyzed by UD undergraduate Thaddeus Howard compared to measurements by R. Beyer et al., Nucl. Phys. A 927, 41 (2014). # **Conclusions** ☐ Elastic and inelastic neutron scattering angular distributions have been measured at 6-8 incident neutron energies on ^{nat}Fe and five incident-neutron energies on ⁵⁴Fe . ☐ Comparisons to evaluated cross sections show reasonably good agreement between measured and model calculations for neutron elastic scattering cross sections. The agreement is mixed for neutron inelastic scattering cross sections. \square Neutron cross sections deduced from γ-ray production cross sections are in excellent agreement with values recently published by Beyer et al. and appear to offer a good way to get $\sigma(n,n')$ total inelastic cross sections. #### 6-C-0(N,EL),DA Ei1.75E+6 Carbon elastic normalized to its own total cross section at 1.75 MeV. Carbon elastic normalized to its own total cross section at 3.50 MeV.