# First evidence of low energy upbend in germanium isotopes

Therese Renstrøm Oslo Cyclotron Laboratory, University of Oslo







UiO **Department of Physics** University of Oslo



CGS15 - August 25 to August 29, 2014





(...about multipolarity and electromagnetic character)

Evidence for the dipole nature of the low energy enhancement in <sup>56</sup>Fe, A. C. Larsen et al., Phys. Rev. Lett. 111, 242504 (2013)

#### &

Two theoretical explanations:

Argues for E1

E. Litvinova and N. Belov, Phys. Rev. C 88, 031302(R) (2013)

#### Argues for M1

R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys. Rev. Lett. 111, 23504 (2013)

# Many people measuring the same property...?



Need for some common case?

#### The <sup>74</sup>Ge experimental campaign



#### **OCL & NewSUBARU**



(γ*,* n)



(<sup>3</sup>He,<sup>3</sup>He') (<sup>3</sup>He, α)



 $\gamma$  strength function above  $\boldsymbol{S}_n$ 



 $\gamma$  strength function below  $\boldsymbol{S}_n$ 

## <sup>74</sup>Ge & bonus nucleus <sup>73</sup>Ge

E(Nal) : E(Si) strip 4



## The Oslo method



(i) Unfolding of the  $\boldsymbol{\gamma}$  spectra for each excitation energy

(ii) Isolation of primary  $\boldsymbol{\gamma}$  rays

(iii) Extraction of the functional form of the level density and y ray transmission coefficient

(iiii) Normalization of the level density and  $\gamma$  strength functions

## Startpoint of the Oslo method: particle-γ coincidence matrix



OBS! Any γ in the cascade

Next step: separate first emitted  $\gamma$  in each cascade

### Generations of gammas





#### First generation method



#### First generation matrix



# Extraction of level density and γ-ray transmission coefficient

Here we assume that:  $P(E, E_{\gamma}) \propto \rho(E - E_{\gamma})\tau(E_{\gamma})$ 

This ansatz is based on Fermi's Golden Rule and the Brink (Axel) hypothesis

## The factorization:

- Normalize  $P(E, E_{\gamma})$  so that  $\sum_{E_{\gamma}=E_{\gamma}^{\min}}^{E} P(E, E_{\gamma}) = 1.$
- Theoretical estimate of experimental primary γ matrix:

$$P_{th} = \frac{\tau(E_{\gamma})\rho(E - E_{\gamma})}{\sum_{E_{\gamma} = E_{\gamma}^{\min}}^{E} \tau(E_{\gamma})\rho(E - E_{\gamma})}$$

• First trial function:

$$\rho^{(0)} = 1,$$

$$P(E, E_{\gamma}) = \frac{\tau^{(0)}(E_{\gamma})}{\sum_{E_{\gamma} = E_{\gamma}^{\min}}^{E} \tau^{(0)}(E_{\gamma})}$$

• Higher-order estimates through least chi-square minimization:  $\chi^{2} = \frac{1}{N_{free}} \sum_{E=E_{min}}^{E_{max}} \sum_{E_{\gamma}=E_{\gamma}}^{E} \left[ \frac{P_{th}(E,E_{\gamma}) - P(E,E_{\gamma})}{\Delta P(E,E_{\gamma})} \right]^{2}$ 

# Normalization is needed...

The Oslo method provides functional form of level density and gamma transmission coefficient, but not the slope or absolute value...

$$\tilde{\rho}(E - E_{\gamma}) = \rho(E - E_{\gamma})A\exp[\alpha(E - E_{\gamma})]$$
  
$$\tilde{\tau}(E_{\gamma}) = \tau(E_{\gamma})B\exp(\alpha E_{\gamma})$$



Level density: known discrete levels at low E<sub>x</sub> information from neutron-resonance experiments at S<sub>n</sub>

Gamma strength function: average, total radiative width

 $\gamma$ -decay in this area is dominated by dipole radiation, so  $\gamma$ SF is dominated by dipole radiation, so we have:  $f(E_{\gamma}) \approx \tau(E_{\gamma})/2\pi E_{\gamma}^{3}$ 

#### Preliminary results:



## Upbend?



Similar to existing data, good agreement in strength between the two isotopes.

#### The campaign???

(p,p') data : Clear signs of upbend ( $\alpha$ ,  $\alpha$ ') data : Not yet resolved ( $\gamma$ ,  $\gamma$ ') data: Under analysis

## The photo-neutron experiment





#### NewSUBARU synchrotron radiation facility





- Experimental collaboration: several Sm, Nd, Dy isotopes investigated.
- And <sup>74</sup>Ge<sup>(2)</sup>

# Relativistic electrons vs eV photons

Laser Compton backscattered -ray beams are ideal because:

- Almost monochromatic
- Tuneable energies





Efficiencies!!!



Solve integral using Taylor expansion method

Counting!

# $(\gamma, n)$ cross sections



$$f(E_{\gamma}) = \frac{1}{3\pi^2 \hbar^2 c^2} \frac{\sigma(E_{\gamma})}{E_{\gamma}}$$

#### **Detailed balance**





# Modeling the upbend:



Calculate  $(n,\gamma)$  astrophysical reaction rates using TALYS.

Input: Level density:E1 QRPA Strength function: Combinatorial + Hartree-Fock-Bogoliubov (with Skyrme force)

M1, Lorentzian upbend

This enhancement may have a large effect for extremly neutronrich nuclei!

#### Effect on (n,γ) reaction rates



# Same upbend for all isotopes???

- We use the same strength on upbend for all isotopes.
- Best we can do for the moment, but we now have data from MSU for <sup>76</sup>Ge, show similar upbend to that of in <sup>73,74</sup>Ge.
- Preparing proposal for measuring <sup>78,80</sup>Ge to see if the upbend is still there and looks the same.

THANK YOU FOR LISTENING

#### M. Guttormsen et al., PRL 109, 162503 (2012)

