Detector-response correction of two-dimensional γ-ray spectra from neutron capture

G. Rusev, M. Jandel, C. W. Arnold, T. A. Bredeweg, A. Couture, S. M. Mosby, J. L. Ullmann

Los Alamos National Laboratory

Motivation to study the γ-ray cascades from the ${ }^{113} \mathrm{Cd}(n, \gamma)$ reaction

${ }^{-113} \mathrm{Cd}$ has one of the largest (n, γ) cross sections and is frequently used as a structural material for shielding or detectors.

- A good model for the intensity distribution of the neutron-capture γ rays is required for application of cadmium.
- Correlated data on M_{γ} vs. E_{γ} are desired for Monte Carlo transport simulations.

ENDF/B-VIII 1 data for the (n, γ) cross section for ${ }^{111} \mathrm{Cd}$ (blue) and ${ }^{113} \mathrm{Cd}$ (green) target nuclei.

Detector for Advanced Neutron Capture Experiments

Characteristics of DANCE:

- 4π calorimeter \rightarrow Q-value cut
- High granularity $\rightarrow I_{\gamma}\left(E_{\gamma}, M_{\gamma}\right)$ measurement
- TOF $\rightarrow \gamma$-ray cascades from a given (n, γ) resonance

Our goal is to deduce the γ-ray cascades emitted by the nucleus at a given excitation energy (neutron-capture resonance).

Detector-response simulations for DANCE:
M. Jandel et al., Nucl. Instr. and Methods B 261, 1117 (2007).

Trial and error approach

We produce a predicted spectrum by convolutions of cascades simulated with Dicebox for ${ }^{114} \mathrm{Cd}$ with the simulated DANCE response to γ-rays.

Dicebox: F. Bečvář, Nucl. Instr. and Methods A 417, 434 (1998).

NATIONAL LABORATORY
DANCE response: M. Jandel et al., Nucl. Instr. and Methods B 261, 1117 (2007).

Simulation of the γ-ray cascades

G. Rusev et al., Phys. Rev C 87, 054603 (2013).

Dicebox: F. Bečvář, Nucl. Instr. and Methods A 417, 434 (1998).

Time-of-flight and $E^{\text {total }}$ spectra from ${ }^{113} \mathrm{Cd}$

The data were collected in two TOF windows of $250 \mu \mathrm{~s}$ each. The γ rays in the second window were considered as background.

Further reduction of the background was achieved by applying Q-value gate to the $E^{\text {total }}$ spectrum.

Gamma-ray spectra for different multiplicities

The best agreement of 10000 realizations is shown in red.

I_{γ} vs. E_{x} Vs. E_{γ} distribution

- Fully M_{γ} vs. E_{γ} correlated cascades
-Los Alamos - We can build a new library for (n, γ) intensities

Decomposition of (n, γ) spectra

Linearization of the measured 2D spectrum:

$\boldsymbol{y}=\boldsymbol{R} \cdot \boldsymbol{x} \quad \boldsymbol{y}$ - measured spectrum
\boldsymbol{R} - response matrix
\boldsymbol{x} - source spectrum
$z=A \cdot x \quad A=R^{T} R$
$z=R^{T} y$
iterative solution:

$$
x_{i}{ }^{(k+1)}=\frac{z_{i}}{\sum_{m=1}^{N} A_{i m} x_{m}{ }^{(k)}} x_{i}{ }^{(k)}
$$

R. Gold, ANL-6984, 1964.
F. Sha et al., Neural Computation 19, 2004 (2007).

Gammasphere application:
M. Jandel et al., NIM A 516 (2004) 172.

Decomposition of (n, γ) spectra

Building the response matrix:

Simulated γ-ray spectrum

Capture level $=Q$ value

Ground state

$$
M_{\gamma}=1
$$

$M_{\gamma}=2$
$M_{\gamma}=3$
The IDs of the incident γ-rays define the energies of the γ rays emitted from the target: $E_{1}, E_{2}, \ldots, E_{M}$:

- $E_{1}+E_{2}+\ldots+E_{M}=Q$
- $E_{1}>E_{2}>\ldots>E_{M}$
- $E_{1}, E_{2}, \ldots, E_{\mathrm{M}}$ are discretized using a bin size ΔE

Decomposition of ${ }^{88} \mathrm{Y}$ spectra (a two-step cascade)

Decomposition of ${ }^{60} \mathrm{Co}$ spectra (a two-step cascade)

Decomposition of ${ }^{22} \mathrm{Na}$ spectra (a three-step cascade)

Decomposition of ${ }^{10} \mathrm{~B}(n, \gamma)$ spectra

Cascades:

intensity	$E_{\gamma}(\mathrm{MeV})$
4.7%	11.447
55.3%	$7.007+4.444$
17.9%	$4.711+6.740$
13.4%	$2.533+8.917$
7.7%	$4.711+2.297+4.444$
1.0%	$2.533+4.475+4.444$

Competing reaction: ${ }^{10} \mathrm{~B}(n, \alpha \gamma)^{7} \mathrm{Li}, E_{\gamma}=477 \mathrm{keV}$

Decomposition of ${ }^{10} \mathrm{~B}(n, \gamma)$ spectra

Decomposition of ${ }^{113} \mathrm{Cd}(n, \gamma)$ spectra

Summary

- Trial and error approach: need to know the level density and gamma-ray strength functions accurately, very time consuming. The ${ }^{113} \mathrm{Cd}$ work was published in Phys. Rev. C 88, 057602 (2013).
- Decomposition approach: the applicability of the method has been tested against source measurements and ${ }^{10} \mathrm{~B}(n, \gamma)$ spectra. Future work: reducing the bin size and parallelization of the decomposition procedure.

The work on the DANCE-spectra decomposition was supported by the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

