Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration

> CGS15, Dresden August 2014

2 Beamline and experimental technique

Motivation

Dedicated beamline for laser-induced nuclear orientation \Leftrightarrow Combine different expertise at ISOLDE.

Laser-induced nuclear orientation $+\beta$ -NMR

→introduced at ISOLDE [E. Arnold et al. Phys. Lett. B 197, 311 (1987)]

Worldwide there is only one dedicated beamline for laser-induced nuclear orientation (TRIUMF)

VITO at ISOLDE

VITO at ISOLDE

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration

Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

VITO = ASPIC + Laser-induced nuclear orientation + β -NMR +...

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

VITO = ASPIC + Laser-induced nuclear orientation + β -NMR +...

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

$VITO = ASPIC + Laser-induced nuclear orientation + \beta-NMR$

VITO = ASPIC + Laser-induced nuclear orientation + β -NMR +...

VITO Beamline: Final Design

If V_{zz} and B are known:

 $P = \frac{I_z}{I_z} \rightarrow \text{Nuclear polarization}$

 $A_{\beta} \rightarrow \beta$ -asymmetry

1A																	8A
-																	2
н																	He
100104	2A										1	34	4A	5A	6A	7A	4 09 29 62
ů.	P.											D D	(°)	(ii)	(a)	(-)	Ma
5341	BC											10.811	$\mathbf{\nabla}$	\smile	$\mathbf{\bigcirc}$	<u> </u>	20 1207
	12											12	14	3			18
Na)	Ma											AL	Si	(P)	(s)	(CI)	Ar
TWIN IS	20.00	38	48	58	6B	7B	_	- 88		18	2B	25 59 15364	29.085	20 8 2 10 2	1000	1700	19 948
TR	20	21	22	25	28	25	28	25	28	20	300	31	32	33	34	35	36
K)	(Ca)	SC	TI	(V)	Cr	Mn	Fe	(Co)	(NI)	(Cu)	Zn	Ga	Ge	As	(Se)	Br	Kr
La caba	47.009	44 955012	47.857	50 JA 15	51,9961	54303345	53.045	58 203 195	50,0004	\$2.945	52.50	69.735	72.64	74 12 153	7656	79.304	13.798
37	38	39	40	-41	42	43	44	45	46	47	48	49	50	51	62	037	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	(1)	Xe
81.601	17.03	1010515	91.224	12,00618	21.92	(1995	181.02	10230663	106.62	127.6892	112.111	116.818	110.710	121.N0	121.00	1.50 \$19.47	191.298
55	56	57-71	12	73	74	75	76	11	78	73	80	81	52	83	26	65	86
CS	ва		нг	Ia	w	Re	Os	Ir	Pt	AU	нg		PD	BI	PO	AL	RU
07	60	19,103	634	105	106	107	104	100	110	111	112	113	114	115	114	117	1.13
Er.	P.	00 100	Df	Db	C.a	Ph	He	MI	De	Pa	Co	Hut	Hua	Hun	Hub	line	Iluo
12218	1200	Length .	12671	044	1220	201	1220	-01140	12010	12101	1280	2141	1289	CRAD	12111	12941	1281
3007	940		10.1		10-1	10.1	0.00	10.1	10.1	- period	1000		(real)	- Jerry	(1.1)	940.1	100.1
			67	58	59	60	61	62	63	64	65	65	67	65	60	70	71
	Lanthan	ides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	TD	Dy	Ho	Er	Tm	Yb	Lu
			138 10547	143.116	140.56765	144.542	(545)	953.88	151.964	19235	153.00533	162.500	16433832	90 298	198 85421	123.054	114 9668
			69	90	91	92	93	34	\$5	35	97	95	99	100	991	102	100
	Actinide	8	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			[227]	21212008	201.04500	201-02891	(29.7)	(244)	[263]	201	(247)	264	1252	(37)	[298]	62690	12450

Human body:

- 99% 4 major elements: O (43 kg), C (16 kg), H (7 kg), N (1.8 kg)
- 1% 21 other elements: Ca, Mg, Fe, Zn, Cu ...

Natural elements

1.4																	AB
3																	2
9	24											3A	4A	5A	64	7A	4 10 202
3	4	1									- 1	5					10
Li	Be											в	(c)	(N)	(\circ)	(F)	Ne
5.941	\$112102											10.011	12234	1	1000	10/2009/012	21.1797
	12											13	14	(15)	(13)		18
Na	Mg	20	/0	60	60	70	_			10	20	AI	SI	U	S	G	Ar
Th		21	22									31	32	33		35	34
K)	(ca)	Sc	п	(\mathbf{v})	(Cr)	(Mn)	(Fe)	(Co)	(NI)	(Cu)	(z_n)	Ga	Ge	As	(se)	Br	Kr
\checkmark	-	84.955912	47.867	Carmin .	ST MAD	(4 mm)#	-	\smile	\smile	62.080	60 20	65721	72.84	34 52 182	0	19.004	13.750
37	30	30	40	41	9	40	44	45	40	47	40	49	50	51	52	3	54
Rb	Sr	Y	Zr	Nb	(Mo)	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	(1)	Xe
15.46%	17.62	0190505	91.228	22.60618	No.	090	101.67	112.00551	106.42	107.0632	112.411	116.8-8	118,712	121.781	127.60	Constant.	101.293
00	06	07-71	72	13	74	75	76	n	78	79	80	81	82	63	84	85	89
US	ва		нт	Ta	w	Re	Us	u.	Pt	AU	нg		PD	в	PO	Ar	Rn
87	88	85,185	104	135	108	100.231	108	109	110	111	112	113	114	115	116	117	118
Er	Ra		Df	Dh	Sa	Bh	He	0.00	De	Ra	Cn	that	Ilua	Hun	Hub	Hue	Iluo
12211	228	A01995	12071	12810	12111	12221	12120	1270	201	010	515	12041	12016	12101	12101	12981	12941
									-								-
			\$7	68	69	60	61	62	63	64	95	66	67	68	69	76	71
	Lanthan	ides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	Tb	Dy	Ho	Er	Tm	YD	Lu
			133 30547	140.115	565,30795	164.292	(145)	15036	151.954	157.25	150-92555	953.543	154 93012	167.255	181 56421	173.154	174 9960
			35	10	21	52	93	24	00	50	97	50	50	100	101	102	103
	Amnide	8	AC	in	Pa	0	NP	Pu	Am	Cm	BK	Cf	ES	Fm	Md	NO	Lr
			(127)	21212030	201.00548	210.02001	(207)	[240]	[20]	049	(247)	[201]	(202)	[217]	(29)	(200)	[261]

Human body:

- 99% 4 major elements: O (43 kg), C (16 kg), H (7 kg), N (1.8 kg)
- 1% 21 other elements: Ca, Mg, Fe, Zn, Cu ...

Natural elements

Ion accessible in established techniques

												He
									В			
0241		1										
Na	Mg²⁺								AL			
\sim		38				_			29.0615246			
	7-00					0	A	7	-01			
						C N	Cu	ZU-	Ga			
						100			09.725			
							- 57	-10				
									In			
							Au				At	
							Rg					
			La									
			Ac									

Human body:

- 99% 4 major elements: O (43 kg), C (16 kg), H (7 kg), N (1.8 kg)
- 1% 21 other elements: Ca, Mg, Fe, Zn, Cu ...

 Mg^{2+} , Cu^+ and Zn^{2+}

(+) Some of the most abundant ions in human body

(+) Closed shell ions \rightarrow silent in most spectroscopic tech-

niques

Human body:

 99% 4 major elements: O (43 kg), C (16 kg), H (7 kg), N (1.8 kg)

1% 21 other elements: Ca, Mg, Fe, Zn, Cu ... Mg^{2+} , Cu^+ and Zn^{2+}

(+) Some of the most abundant ions in human body

(+) Closed shell ions \rightarrow silent in most spectroscopic tech-

niques

Human body:

1% 21 other elements: Ca, Mg, Fe, Zn, Cu ...

Mg^{2+} , Cu^+ and Zn^{2+}

(+) Some of the most abundant ions in human body

(+) Closed shell ions \rightarrow silent in most spectroscopic tech-

niques

	2A 4 Be						3A 4A 5A 8A 7A Perform B C N O F Ne </th <th></th> <th></th>		
	Ga 34 Sr	30 21 SC 41 20041 30 Y	4B 22 Ti 40 7r	58 V			Maximum All sets		
S			72 Hf	73 Ta	78 Vi	Property # molecules	NMR 10 ¹⁸	β -NMR 10^5	
	88 Ra		104 Rf (207)	105 Db	10 S(Nuclear polarization	External field $(\ll 1\%)$	Optical pumping, tilted foils, et up to 100%	С
			57 La 101 10547 80	58 Ce 10.115 90	50 P1 50, 11	Isotopes Detection	Mostly stable Magnetic response	Radioactive β asymmetry	
	Actinide		AC (127)		Pa 211000	1 216 2261 [223] [244] [243] [243] [247]	[251] [252] [257] [266] [257]		

Human body:

 99% 4 major elements: O (43 kg), C (16 kg), H (7 kg), N (1.8 kg)

1% 21 other elements: Ca, Mg, Fe, Zn, Cu ...

 Mg^{2+} , Cu^+ and Zn^{2+} (+) Some of the most abundant ions in human body (+) Closed shell ions \rightarrow silent in most spectroscopic techniques

Alzheimer

Parkinson

Prion

Wilson

[Chem. Rev. (2006) 106] [Neu. Aging (2014) 858] [Progr. Neu. (2014) 33]

Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

A. Gottberg, M. Stachura, and et al., In preparation

Bio β -NMR: First results

A. Gottberg, M. Stachura, and et al., In preparation

Bio β -NMR: First results

 β -NMR spectrum of ³¹Mg in an Ionic Liquid

ater

Nuclear Structure

Laser spectroscopy + β -NMR

$$\nu_m \propto \frac{-g_I \mu_N B}{e Q V_{zz} / h}$$

Extensively used at ISOLDE (COLLAPS) to measure nuclear ground states properties

- Nuclear moments Q, μ_N
- Nuclear spin, I

PRL 108 (2012) 042504	PRL 97 (2007) 212501
PRL 101 (2008) 132502	PRL 94 (2005) 022501
PRC 77 (2008) 034307	PLB 197 (1987) 311

Nuclear Structure

Laser spectroscopy + β -NMR

 $\nu_m \propto \frac{-g_I \mu_N B}{e Q V_{zz} / h}$

Extensively used at ISOLDE (COLLAPS) to measure nuclear ground states properties

- Nuclear moments Q, µ_N
- Nuclear spin, I

PRL 108 (2012) 042504	PRL 97 (2007) 212501
PRL 101 (2008) 132502	PRL 94 (2005) 022501
PRC 77 (2008) 034307	PLB 197 (1987) 311

 $\beta\text{-delayed spectroscopy of laser-polarized beams}$ D. T. Yordanov $et \ al$

Employed at RIKEN using tilted foil technique [PRC 67 (2003) 014306]

$$A_{\beta} = \begin{cases} \pm 1 & \text{for } I_f = I_i - 1 \\ \pm \rho^2 / (I_i + 1) - 2\rho \sqrt{I_i / (I_i + 1)} & \text{for } I_f = I_i \\ 1 + \rho^2 & \text{for } I_f = I_i \\ \mp \frac{I_i}{I_i + 1} & \text{for } I_f = I_i + 1 \end{cases}$$

 A_{β} takes well separate discrete values

 \rightarrow Unambiguous spin assigments

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

V_{ud} from the β -asymmetry of mirror transitions N. Severijns, G. Neyens, M. Bissell and et *al*

Determining the V_{ud} element of the Cabibbo-Kobayashi-Maskawa (CKM) quart mixing matrix

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1 \qquad ? \longrightarrow$$

(+) Search for new physics

(+) Sensitive test to the standard model

Weighted average of the most precise results (Fermi transitions)

 $V_{ud} = 0.97425 \pm 0.00022$

V_{ud} from the β -asymmetry of mirror transitions N. Severijns, G. Nevens, M. Bissell and et *al*

Determining the Vud element of the Cabibbo-Kobayashi-Maskawa (CKM) quart mixing matrix

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1 \qquad ? \longrightarrow$$

(+) Search for new physics

(+) Sensitive test to the standard model

Weighted average of the most precise results (Fermi transitions)

 $V_{ud} = 0.97425 \pm 0.00022$

[Figure from: Towner and Hardy. Rep. Prog. Phys. 73 (2010) 046301]

 V_{ud} from the β -asymmetry of mirror transitions N. Severijns, G. Neyens, M. Bissell and et *al*

Determining the Vud element of the Cabibbo-Kobayashi-Maskawa (CKM) quart mixing matrix

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1 \qquad ? \longrightarrow$$

(+) Search for new physics

(+) Sensitive test to the standard model

Weighted average of the most precise results (Fermi transitions)

 $V_{ud} = 0.97425 \pm 0.00022$

For
$$I_f = I_i \rightarrow A_{\beta} = \frac{\pm \rho^2/(I_i+1) - 2\rho\sqrt{I_i/(I_i+1)}}{1+\rho^2}$$

 V_{ud} can be obtained by combining Ft values with Gamow-Teller/Fermi mixing ratios, ρ

$$V_{ud}^2 = \frac{K}{FtG_F^2(1+\Delta_R^V)} \left(1 + \frac{f_A}{f_V}\rho^2\right)^{-1}$$

O. Naviliat-Cuncic and N. Severijns [PRL 102 (2009) 142302]

 V_{ud} very sensitive to ρ

 V_{ud} from the β -asymmetry of mirror transitions N. Severijns, G. Neyens, M. Bissell and et *al*

Determining the Vud element of the Cabibbo-Kobayashi-Maskawa (CKM) quart mixing matrix

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1 \qquad ? \longrightarrow$$

(+) Search for new physics

(+) Sensitive test to the standard model

Weighted average of the most precise results (Fermi transitions)

 $V_{ud} = 0.97425 \pm 0.00022$

For
$$I_f = I_i \rightarrow A_{\beta} = \frac{\pm \rho^2/(I_i+1) - 2\rho\sqrt{I_i/(I_i+1)}}{1+\rho^2}$$

 V_{ud} can be obtained by combining Ft values with Gamow-Teller/Fermi mixing ratios, ρ

$$V_{ud}^2 = \frac{K}{FtG_F^2(1+\Delta_R^V)} \left(1 + \frac{f_A}{f_V}\rho^2\right)^{-1}$$

O. Naviliat-Cuncic and N. Severijns [PRL 102 (2009) 142302]

 V_{ud} very sensitive to ρ

Example: 35 Ar \rightarrow By measuring A_{β} with a precision of 0.5 % \rightarrow 0.0004 absolute precision on V_{ud}

VITO Collaboration

Biophysics:

- L. Hemmingsen University of Copenhagen, DK
- A. Jancso University of Szeged, Hungary
- P. W. Thulstrup, Kobehnhavn Universitet, Denmark

Solid State Physics:

- M. Deicher University of Saarlandes, Germany
- Z. Salman PSI, Switzerland
- V. Amaral Universitty of Aveiro, Portugal
- J. Röder Aachen University, Germany
- K. Potzger Dresden Rossendorf, Germany
- A. MacFarlane The University of British Columbia, Canada
- R. Kiefl University of British Columbia, Canada.
- L. Pereira IKS KU Leuven, Belgium

Nuclear Physics:

- G. Neyens IKS KU Leuven, Belgium
- N. Severijns IKS KU Leuven, Belgium
- D. Yordanov IPN Orsay, France

At ISOLDE:

- Alexander Gottberg EN-STI
- Joao G. Correia SSP
- Karl Johnston SSP coordinator
- Magdalena Kowalska ISOLDE PH
- Mark Bissell (KU Leuven)- COLLAPS
- Monika Stachura, ISOLDE PH
- Ronald Garcia (KU Leuven)– COLLAPS, CRIS

- A unique beam line in Europe → Several experiments can benefit from a dedicated beamline for laser-induced nuclear orientation.
- VITO \rightarrow Multidisciplinary research
 - Biophysics
 - Solid state
 - Nuclear physics ...
- For the first time β -NMR in a body-like environment
- 51 shifts approved: β -NMR (33) and ASPIC (18)

Thanks for your attention!

Pressure-dependent β -decay asymmetry

Pressure-dependent β -decay asymmetry

HFS of 31Mg in different materials

	MgO crystal	Quartz tube	EMIM-Ac
No. scans	25	40	23
1st peak [V]	7.7(2)	7.9(3)	6.9(1)
β-decay asymmetry [%]	1.9(2)	1.3(1)	2.6(2)
2nd peak [V]	17.5(3)	18.4(3)	17.1(2)
β-decay asymmetry [%]	1.9(2)	1.1(1)	2.6(2)
FWHM [V]	4.8(6)	4.9(8)	5.2(4)

R. F. Garcia Ruiz KU Leuven, Belgium On behalf of the VITO Collaboration Versatile Ion-polarized Techniques On-line (VITO) at ISOLDE, CERN

	¹⁹ Ne	²¹ Na	²⁹ P	³⁵ Ar	³⁷ K
J	1/2	3/2	1/2	3/2	3/2
$\mathcal{F}t$ [s] ^a	1720.3(30)	4085(12)	4809(19)	5688.6(72)	4562(28)
$f_A/f_V^{\rm b}$	1.0143(29)	1.0180(36)	1.0223(45)	0.9894(21)	1.0046(9)
$E_0 [\text{MeV}]^c$	2.728 31(17)	3.036 58(70)	4.431 45(60)	5.455 14(70)	5.63646(23)
$E [MeV]^d$	0.511	1.60	2.39	3.14	3.35
M [amu] ^e	19.000 141 99(9)	20.9957509(4)	28.979 147 65(30)	34.972 055 1(4)	36.970 076 11(12)
b^{f}	-148.5605(26)	82.6366(27)	89.920(15)	-8.5704(90)	-44.99(24)
$a_{\beta\nu}$		0.5502(60) ^g			
AB	$-0.0391(14)^{h}$		$0.681(86)^{i}$	0.430(22) ^j	
B_{ν}^{\prime}					$-0.755(24)^{k}$
ρ	1.5995(45)	-0.7136(72)	-0.593(104)	-0.279(16)	0.561(27)
$\mathcal{F}t_0$ [s]	6184(30)	6202(48)	6537(606)	6128(49)	6006(146)

O. Naviliat-Cuncic and N. Severijns [PRL 102 (2009) 142302]