Neutron capture cross section and capture gamma-ray spectra of ¹³⁸Ba in the keV-neutron energy region

T. Katabuchi¹, S. Yanagida¹, K. Terada^{1,2}, N. Iwamoto², M. Igashira¹

1. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2. Japan Atomic Energy Agency

Introduction

s-process nucleosynthesis

- Slow neutron capture process (s-process)
 - $A \ge 90$ (Zr to Pb,Bi), Main component, in AGB stars
 - $56 \le A \le 90$ (Fe to Sr, Zr), Weak component, in Massive stars
- Main component

He shell burning in low mass AGB stars

- ${}^{13}C(\alpha,n){}^{16}O$, KT = 8 keV, 95%
- ${}^{22}Ne(\alpha,n) {}^{25}Mg$, KT = 23 keV, 5%
- Neutron magic nuclides

Most of nuclides: Reaction flow is in equilibrium: $\sigma N_s = \text{constant}$ Neutron magic nuclides: not equilibrium due to small σ . σN_s gives important information on neutron exposure.

¹³⁸Ba in *s*-process

Bottleneck nuclide

- ¹³⁸Ba: N=82, neutron magic, small (n,γ) cross section
- All s-process paths go through ¹³⁸Ba.
- Reliable data of the (n,γ) cross section of ¹³⁸Ba is very important in sprocess nucleosynthesis models.

¹³⁸Ba(n,γ) cross section in keV region

- ¹³⁸Ba(n,γ) reaction in the keV energy region is dominated by resolved resonances.
- Evaluated cross sections of ¹³⁸Ba in keV region are based on resonance analysis measurements.

Previous measurements in keV region

Resonance parameters

	Year	Facility	Туре	Energy	
Beer et al.	1997	Geel	Capture	0.65 – 200 keV	
Brusegan et al.	1994	Geel	Transmission	0.65 – 195 keV	
Mizumoto et al.	1988	JAEA	Transmission	0.65 – 63 keV	
Musgrove et al.	1978	Oak Ridge	Capture	4.7 – 91 keV	
Bilpuch et al.	1961	Duke	Transmission	31.7 – 192 keV	

Average cross section

	Year	Facility	
Heil et al	2005	Karlsruhe	KT = 5 keV Maxwellian
Beer et al.	1980	Karlsruhe	KT = 23 keV Maxwellian

Neutron Facility at Tokyo Tech

- 3-MV Pelletron accelerator
- Neutron source : ⁷Li(p,n)⁷Be reaction
- Pulsed beam : 1.5 ns width × 4 MHz repetition, flight path L = 12 cm
- Detector: Anti-Compton Nal(TI) spectrometer (crystal size: 6" diam. × 12" long)

Present measurement

- The present method has less energy resolution but more sensitive to smaller cross section than resonance analysis.
- Resonance analysis cannot measure a contribution of the direct capture process.
- **The gamma-ray spectra can be measured.**

	Present	Beer (1997)	Musgrove (1978)	
Source	Van de Graaf ⁷ Li(<i>p,n</i>) ⁷ Be reaction	Electron LINAC (γ, <i>n</i>) reaction	Electron LINAC (γ, <i>n</i>) reaction	
Energy	15 – 80 keV	0.65 – 200 keV	0.65 – 91 keV	
Flight length	12 cm	28.4 m, 58.6 m	40 m	
Time resolution	3 ns	1 ns	2 ns	
Energy resolution	12% @ 30 keV	0.02% @ 30 keV	0.02% @ 30 keV	
Detector	Nal(TI)	C_6D_6	C_6F_6	
Quantity	Average cross section	Resonance area	Resonance area	
γ-ray spectrum	0	×	×	

Sample

Ba-138 sampleChemical formBaCO3Deviational formDeviation

Physical form	Powder			
Chemical purity	99.995 %			
Net weight (Ba-138)	29.84 g			
Diameter	56.2 mm			
Thickness	12.7 mm			

Isotopic composition

Ba-130	Ba-132	Ba-134	Ba-135	Ba-136	Ba-137	Ba-138
<0.01%	<0.01%	<0.01%	0.02%	0.02%	<0.16%	99.80%

Measurement time

Ba-138	Au	Blank			
63 h	2 h	6 h			

Incident Neutron Spectrum

Gamma-Ray TOF Spectrum

2D spectrum of TOF vs. PH

Background subtraction (23 - 33 keV)

12

Net pulse-height spectra

	Gate	E _n (keV)	EN	DF/B-V	II.1	JENDL-4.0			Mughabghab (2006)				Capture State		
		L	0		1	0	1		0	1		?			
		J	1/2+	1/2 ⁻	3/2-	1/2+	1/2-	3/2-	1/2+	1/2 ⁻	3/2-	?			
	1	15 - 19	0	0	0	0	1	0	0	0	0	0			
	2	19 - 23	0	0	0	0	1	1	0	0	0	2			
ſ	3	23 - 33	1	1	1	1	2	3	1	1	1	6	3/2-	0 6 2 7	
	4	33 - 40	0	0	0	0	2	2	0	0	0	1			
	5	40 - 65	2	1	5	6	0	6	2	1	5	9	7/2 -		
	6	65 - 80	1	1	1	3	0	3	1	1	1	6	130	- 13	
													135 B	d	

Analysis for capture cross section

Comparison

- Spectrum averaged cross sections were calculated for ENDF/B-VII.1, JENDL-4.0.
- The Beer's experiments give only capture kernels. Average cross sections were calculated from resonance capture areas.

Evaluation cross sections

Instead of adopting resonance parameters, ENDF/B-VII.1 used background cross sections to reproduce the previous activation measurements.

Energy (keV)

16

Summary

- The capture cross section of ¹³⁸Ba was determined by TOF method in the energy region of 15 – 80 keV. The cross section supports the ENDF/B-VII.1 evaluation.
- The shape of the capture gamma-ray spectrum depends on the incident neutron energy. It suggests that D-wave resonances exist in some energy regions.

Future

- Measurement at a higher energy (550 keV)
- Theoretical analysis
- Estimation of Maxwellian averaged cross sections using the present experimental results

Thank you for your attention