Present and future research at DANCE

Marian Jandel
Nuclear and Radiochemistry Group

CGS15, Aug 25-29, 2014,Dresden,Germany

Introduction - capture and fission at DANCE

- The Detector for Advanced Neutron Capture Experiments (DANCE) was developed for studies of neutron capture:
- High precision cross sections
- Photon strengths and level densities
- Resonance J ${ }^{\pi}$ assignments
- Located at the Lujan Center at the LANSCE
- $160 \times$ BaF2 crystals in 4π geometry
- Fast (6ns), high efficiency calorimeter for γ-rays
- Digital DAQ - 324 channels
- Recently, focus on neutron-induced fission:
- Prompt fission gamma-ray (PFG) studies
- Correlations between PFG and other fission observables

DANCE - $160 \times \mathrm{BaF}_{2}$ gamma-ray calorimeter

- 20.24 m long flight path
- Water moderator
- Cross sections

Motivations

- Basic Nuclear Science
- Applications
- Nuclear Energy
- Stockpile Stewardship
- Non-proliferation
- Nuclear Forensics
- New High Precision Data on NC and NF

DANCE - $160 \times \mathrm{BaF}_{2}$ gamma-ray calorimeter

Research Programs

- A) High fidelity neutron capture measurements at DANCE
- Five year long experimental program: U-234,236,238(n,g)
- Reduce the uncertainties below 3\%
- Funded by DOE, Office of Science, Nuclear Physics
- B) Short-lived Actinide Isomers
- Three year long, major R\&D program
- New capability at DANCE - NEUANCE 4π neutron detection
- Funded by LDRD/DR (LANL)
- C) Studies of prompt fission gamma-rays correlations with FF
- Three years long experimental program: Cf-252, U-235
- Funded by NA22, Office of Detection and Non-proliferation, DOE

A) High fidelity neutron capture measurements at DANCE

Capture XS: high precision U235 and Pu239

- Ratio method developed for ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{g})$
- Precision <3\% was achieved using simultaneous rate determination;
- Rates of U5(n,g) and U5(n,f)
- The same target \rightarrow same neutron flux for both reactions
M. Jandel et al., Phys Rev Lett 109, (2012)

- Successfully implemented for ${ }^{239} \mathrm{Pu}$ (S. Mosby et al., PRC 89, 034610, see the next talk)

A) High fidelity neutron capture measurements at DANCE

A) Capture XS: u238/ U 235 from independent measurements

- Can Ratio method be applied to developed for ${ }^{236} \mathrm{U}(\mathrm{n}, \mathrm{g})$ and other isotopes?
- Results of region of two independent measurements on thick U236, U-238 and U-235 foils are promising

A) High fidelity neutron capture measurements at DANCE

Capture XS: U236 and U238 mixed targets

- Can Ratio method be applied to developed for ${ }^{236} U(n, g)$ and other isotopes ?
- Results of region of two independent measurements on thick U236, U-238 and U-235 foils are promising
- New measurements with mixed targets to cancel out n flux:
- ${ }^{236} U+{ }^{235} U$ (Nov 2013)
- ${ }^{238} U+{ }^{235} U($ Fall, 2014)

A) High fidelity neutron capture measurements at DANCE

Capture XS: U236 and U238 - applied math

- ICA analysis - work in progress by B. Baramsa
- Last year measurements
- U235+U236+U238 mixed target

UNCLASSIFIED

A) High fidelity neutron capture measurements at DANCE

Capture XS: U236 and U238 - applied math

- ICA analysis - work in progress by B. Baramsa
- Last year measurements
- U235+U236+U238 mixed target

Capture XS: uncertainties - Monte Carlo

- Many Sources:
- Detector set-up, reference nuclear data, analysis, data reduction
- Data Reduction
- What happens if 1000 people analyze the same dataset?
- Sample over all parameters of data reduction using MonteCarlo

A) High fidelity neutron capture measurements at DANCE

Capture XS: U238 - uncertainties - Monte Carlo

- Gates:
$\mathrm{M}=(\mathrm{p}(\mathrm{M} 1), \mathrm{p}(\mathrm{M} 2))$, E1=(p(Q1),p(Q2)), $\mathrm{E} 2=(\mathrm{p}(\mathrm{B} 1), \mathrm{p}(\mathrm{B} 2))$
- P is a distribution to sample from
(Gaussian, uniform)
- U238 - En=1 keV
- 1.745 (0.05) barns
- Average statistical error ~ 0.066
- Systematical/analysis error ~ 0.05

A) High fidelity neutron capture measurements at DANCE

Capture Gamma-rays

- Studies of photon strengths and level densities in actinides
- De-excitation codes: DICEBOX (M. Krticka), CGM (T. Kawano)
- Detector Response: DANCE-Geant4
- We will use forward methods: trial \& error approach
- Under development is also multidimensional decomposition
- See G. Rusev talk
- Very promising results on this new technique

Research Programs

- A) High fidelity neutron capture measurements at DANCE
- Five year long experimental program: U-234,236,238(n,g)
- Reduce the uncertainties below 3\%
- Funded by DOE, Office of Science, Nuclear Physics
B) Short-lived Actinide Isomers - NEUANCE
- Three year long, major R\&D program
- New capability at DANCE -4π neutron detection
- Funded by LDRD/DR (LANL)
- C) Studies of prompt fission gamma-rays correlations with FF
- Three years long experimental program: Cf-252, U-235
- Funded by NA22, Office of Detection and Non-proliferation, DOE

B) Short-lived Actinide Isomers - NEUANCE

Isomeric states after U235+n

- During analysis of ${ }^{235} \mathrm{U}(\mathrm{n}, \gamma)$ cross section we have found structure in the total gamma-ray energy $E_{\text {tot }}$ spectra
M. Jandel et al., Phys Rev Lett 109, (2012)
- $E_{\text {tot }}$ variations with ΔT and number of gamma-rays detected in a $\Delta \mathrm{T}$ window

UNCLASSIFIED

time (ns)

B) Short-lived Actinide Isomers - NEUANCE

Isomeric states after U235+n

- In high neutron fluence the secondary reactions can occur
- ${ }^{236} \mathrm{U}^{*}: 1024 \mathrm{keV}$ (4-) $\mathrm{T}_{1 / 2}=100 \mathrm{~ns}$
- ${ }^{236} \mathrm{U}^{*}: 678 \mathrm{keV}(1-) \mathrm{T}_{1 / 2}=3.7 \mathrm{~ns}$

What is the population of these states after ${ }^{235} \mathrm{U}+\mathrm{n}$?
What are the n-reaction cross sections on these states ?

B) Short-lived Actinide Isomers - NEUANCE

Isomeric states after U235+n

- In high neutron fluence the secondary reactions can occur
- ${ }^{236} \mathrm{U}^{*}: 1052.5 \mathrm{keV}$ (4-) $\mathrm{T}_{1 / 2}=100 \mathrm{~ns}$
- ${ }^{236} \mathrm{U}^{*}: 687.59 \mathrm{keV}(1-) \mathrm{T}_{1 / 2}=3.78 \mathrm{~ns}$

What are the n-reaction cross sections on these states ?

- Preliminary calculations show 50-100 x larger cross section for (n, f) reactions on isomers compared to ground state - T. Kawano et al.

B) Short-lived Actinide Isomers - NEUANCE

NEUANCE - NEUtron Array at daNCE

- We need to improve counting statistics on fission and capture of U235
- For all gamma multiplicities !

- This is very difficult with FF detectors because of thin targets

What is the population of these states after ${ }^{235} \mathrm{U}+\mathrm{n}$?

- NEUANCE: 8-12 segments of liquid scintillators in the center of DANCE
- NEUANCE will be sensitive only to neutrons above 200 keV --> only from fission

B) Short-lived Actinide Isomers - NEUANCE

NEUANCE - NEUtron Array at daNCE

- Challanges in NEUANCE design
- Small cavity (17 cm diameter) - need small PMTs or alternative SiPM
- Loss of 6LiH shell - larger backgrounds
- Close geometry - pileups, pulse shape discrimination efficiency

- NEUANCE - 12 or 8 segments of liquid scintillators
- Geant4 and MCNPPolimi simulations

B) Short-lived Actinide Isomers - NEUANCE

NEUANCE - NEUtron Array at daNCE

- MCNP-Polimi: NEUANCE - 12 or 8 segments of liquid scintillators
- thanks to T. Taddeucci

MNCPX-PoliMi was used to calculate the efficiency of a square detector array

B) Short-lived Actinide Isomers - NEUANCE

NEUANCE - NEUtron Array at daNCE

- MCNP-Polimi: NEUANCE - 12 or 8 segments of liquid scintillators
- thanks to T. Taddeucci

Detection efficiency for fission events is much higher

Yet to do: TOF windowing and pileup corrections

B) Short-lived Actinide Isomers - NEUANCE

NEUANCE - NEUtron Array at daNCE

- Detector tests are under way - prototype cells
- Hammamatsu PMT vs SiPM - PSD efficiency tests

Stilbene + SiPM (6x6mm)

B) Short-lived Actinide Isomers - NEUANCE

Fission fragment detectors R\&D

- A) Multifoil PPACs
- B) Thin scintillator foils - multifoil design allows to put many foils per $1 \mathrm{mg} / \mathrm{cm} 2$ in beam
- Thin sc foils $10 x$ between the rings
- Acrylic rings are painted from inside by sc paint
- Light collected at the end by SiPM ring
- Initial tests with Cf-252 are promising
- design/work by G. Rusev

B) Short-lived Actinide Isomers - NEUANCE

New data acquisition for DANCE

- 14 bit 500 MHz digitizers
- FPGA onboard zero suppression processing
- Significant investment
- New hardware will arrive in Sep 2014
- Next beam cycle will be used to implement it
- See talk by A. Couture

Research Programs

- A) High fidelity neutron capture measurements at DANCE
- Five year long experimental program: U-234,236,238(n,g)
- Reduce the uncertainties below 3\%
- Funded by DOE, Office of Science, Nuclear Physics
- B) Short-lived Actinide Isomers - NEUANCE
- Three year long, major R\&D program
- New capability at DANCE -4π neutron detection
- Funded by LDRD/DR (LANL)
C) Studies of prompt fission gamma-rays correlations with FF
- Three years long experimental program: Cf-252, U-235
- Funded by NA22, Office of Detection and Non-proliferation, DOE

C) Correlations of prompt-fission gamma-rays and fission fragments

DANCE - efficient gamma-ray calorimeter

- With high efficiency and $4 p$ solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of $\mathrm{M} \gamma, \mathrm{E} \gamma$ and $\mathrm{E}_{\gamma \text { tot }}$
- So far we have studied integral properties
- M. Jandel et al., to be published in Physics Procedia, conf. proceedings of GAMMA-2, Sremski Karlovci, Serbia, 2013

$$
\begin{array}{ll}
p\left(M_{1,2}\right)=\left(2 \mathrm{M}_{1,2}+1\right) e^{-M_{12}\left(M_{1,2}+1\right) / 2 \varrho_{1,2}^{0}} \\
p_{1}\left(E_{\gamma}\right) \propto E_{\gamma}^{2} e^{-t_{1} E_{\gamma}} & \\
p_{2}\left(E_{\gamma}\right) \propto E_{\gamma}^{3} e^{-t_{2} E_{\gamma}} & M_{\gamma}=M_{1}+M_{2} \\
t_{1,2}=a_{1,2}+b_{1,2} M_{\gamma}
\end{array}
$$

	c_{1}	c_{2}	a_{1}	$\mathrm{~b}_{1}$	a_{2}	$\mathrm{~b}_{2}$
${ }^{235} \mathrm{U}$	6.2	2.06	3.610	0.0453	1.620	0.0458
${ }^{233} \mathrm{U}$	6.53	2.22	3.376	0.0449	1.575	0.0461
${ }^{239} \mathrm{Pu}$	7.11	2.14	3.618	0.0454	1.403	0.0438
${ }^{242 \mathrm{~m}} \mathrm{Am}$	$7.17(5)$	$2.02(2)$	$3.80(3)$	$0.0467(3)$	$1.371(5)$	$0.0450(7)$
${ }^{252} \mathrm{Cf}$	$7.73(8)$	$2.57(3)$	$5.03(6)$	$0.0098(2)$	$1.65(2)$	$0.0406(7)$

$$
{ }^{235} \mathbf{U}(\mathbf{n}, \mathbf{f}): \mathbf{E}_{\gamma}^{\prime}-\mathbf{M}_{\gamma}^{\prime}
$$

C) Correlations of prompt-fission gamma-rays and fission fragments

DANCE - efficient gamma-ray calorimeter

- With high efficiency and $4 p$ solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of $\mathrm{M} \gamma, \mathrm{E} \gamma$ and $\mathrm{E}_{\gamma \text { tot }}$
- So far we have studied integral properties
- M. Jandel et al., to be published in Physics Procedia,

C) Correlations of prompt-fission gamma-rays and fission fragments

DANCE - efficient gamma-ray

calorimeter

- With high efficiency and $4 p$ solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of $M \gamma$, E_{γ} and $\mathrm{E}_{\gamma \text { tot }}$
- So far we have studied integral

	Mg	s ig	E g	s ig	E g,tot	s ig
${ }^{235} \mathrm{U}$	6.31	3.02	1.025	0.8100	6.480	3.0700
${ }^{233} \mathrm{U}$	6.76	3.15	1.077	0.8300	7.240	3.3200
${ }^{239} \mathrm{Pu}$	7.21	3.42	1.036	0.8800	7.430	3.4300
${ }^{242 \mathrm{~m}} \mathrm{Am}$	$7.14(5)$	$3.45(4)$	$0.999(5)$	$0.88(1)$	$7.13(6)$	$3.32(3)$
${ }^{252} \mathrm{Cf}$	$8.11(7)$	$3.77(4)$	$0.891(9)$	$0.807(9)$	$7.22(6)$	$3.33(3)$

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

- Los Alamos

C) Correlations of prompt-fission gamma-rays and fission fragments

DANCE - efficient gamma-ray

calorimeter

- Next step - adding measurements of kinetic energies and masses of fission fragments with PFG
- Benchmarking the evaporation and fission codes - CGMF (P. Talou, I. Stetcu, T. Kawano)
- MCNP6 development - de-excitation modules (gamma/neutrons in correlation)

Summary

- Very exciting times for DANCE research
- Well funded for next five years and new opportunities will open up with all upgrades and new detection capabilities
- Cross sections: U, Pu isotopes, ...
- Fission properties: complete measurements of prompt neutrons and gammas and fission fragments in full correlation CoFIE (complete fission experiments)
- Fundamental studies, de-excitation physics
- Applied physics: reactor heat, delayed gamma-rays

Acknowledgements

- C-division: B. Baramsai, G. Rusev, T. A. Bredeweg, R. S. Rundberg, C. Walker, J. B. Wilhelmy, D. J. Vieira
- LANSCE-NS (P-27) - A. Couture, S. Mosby, J. L. Ullmann, T. N. Taddeucci, J. O'Donnell
- T-division: A. Hayes, P. Talou, T. Kawano, I. Stetcu
- X-division

