

Present and future research at DANCE

Marian Jandel

Nuclear and Radiochemistry Group

CGS15, Aug 25-29, 2014, Dresden, Germany

Introduction - capture and fission at DANCE

- The Detector for Advanced Neutron Capture Experiments (DANCE) was developed for studies of neutron capture:
 - High precision cross sections
 - Photon strengths and level densities
 - Resonance J^{π} assignments
- Located at the Lujan Center at the LANSCE
- 160 x BaF2 crystals in 4π geometry
- Fast (6ns), high efficiency calorimeter for γ-rays
- Digital DAQ 324 channels
- Recently, focus on neutron-induced fission:
 - Prompt fission gamma-ray (PFG) studies
 - Correlations between PFG and other fission observables
 - Cross sections

DANCE - 160 x BaF₂ gamma-ray calorimeter

- 20.24 m long flight path
- Water moderator

Motivations

- Basic Nuclear Science
- Applications
- Nuclear Energy
- Stockpile Stewardship
- Non-proliferation
- Nuclear Forensics
- New High Precision Data on NC and NF

DANCE - 160 x BaF₂ gamma-ray calorimeter

Research Programs

- A) High fidelity neutron capture measurements at DANCE
 - Five year long experimental program: U-234,236,238(n,g)
 - Reduce the uncertainties below 3%
 - Funded by DOE, Office of Science, Nuclear Physics
- B) Short-lived Actinide Isomers
 - Three year long, major R&D program
 - New capability at DANCE NEUANCE 4π neutron detection
 - Funded by LDRD/DR (LANL)
- C) Studies of prompt fission gamma-rays correlations with FF
 - Three years long experimental program: Cf-252, U-235
 - Funded by NA22, Office of Detection and Non-proliferation, DOE

Capture XS: high precision U235 and Pu239

- Ratio method developed for ²³⁵U(n,g)
- Precision <3% was achieved using simultaneous rate determination;
 - Rates of U5(n,g) and U5(n,f)
 - The same target → same neutron flux for both reactions

M. Jandel et al., Phys Rev Lett 109, (2012)

Successfully implemented for ²³⁹Pu (S. Mosby et al., PRC 89, 034610, see the next talk)

A) Capture XS: U238 / U235 from independent measurements

- Can Ratio method be applied to developed for ²³⁶U(n,g) and other isotopes?
- Results of region of two independent measurements on thick U236, U-238 and U-235 foils are promising

Capture XS: U236 and U238 mixed targets

- Can Ratio method be applied to developed for ²³⁶U(n,g) and other isotopes?
- Results of region of two independent measurements on thick U236,
 U-238 and U-235 foils are promising

- New measurements with mixed targets to cancel out n flux:
 - ²³⁶U+²³⁵U (Nov 2013)
 - 238U+235U (Fall, 2014)

Capture XS: U236 and U238 – applied math

- ICA analysis work in progress by B. Baramsa
- Last year measurements
 - U235+U236+<u>U238</u> mixed target

Capture XS: U236 and U238 – applied math

- ICA analysis work in progress by B. Baramsa
- Last year measurements
 - U235+U236+<u>U238</u> mixed target

Capture XS: uncertainties – Monte Carlo

- Many Sources:
 - Detector set-up, reference nuclear data, analysis, data reduction
- Data Reduction
 - What happens if 1000 people analyze the same dataset?
 - Sample over all parameters of data reduction using Monte-Carlo

Capture XS: U238 - uncertainties - Monte Carlo

- Gates:
 M=(p(M1),p(M2)),
 E1=(p(Q1),p(Q2)),
 E2=(p(B1),p(B2))
- P is a distribution to sample from (Gaussian, uniform)
- U238 En=1 keV
- 1.745 (0.05) barns
- Average statistical error ~ 0.066
- Systematical/analysis error ~ 0.05

Capture Gamma-rays

- Studies of photon strengths and level densities in actinides
- De-excitation codes: DICEBOX (M. Krticka), CGM (T. Kawano)
- Detector Response: DANCE-Geant4
- We will use forward methods: trial & error approach
- Under development is also multidimensional decomposition
 - See G. Rusev talk
 - Very promising results on this new technique

Research Programs

- A) High fidelity neutron capture measurements at DANCE
 - Five year long experimental program: U-234,236,238(n,g)
 - Reduce the uncertainties below 3%
 - Funded by DOE, Office of Science, Nuclear Physics
- B) Short-lived Actinide Isomers NEUANCE
 - Three year long, major R&D program
 - New capability at DANCE 4π neutron detection
 - Funded by LDRD/DR (LANL)
- C) Studies of prompt fission gamma-rays correlations with FF
 - Three years long experimental program: Cf-252, U-235
 - Funded by NA22, Office of Detection and Non-proliferation, DOE

Isomeric states after U235+n

During analysis of $^{235}U(n,\gamma)$ cross section we have found structure in the total gamma-ray energy E_{tot} spectra

M. Jandel et al., Phys Rev Lett 109, (2012)

• E_{tot} variations with ΔT and number of gamma-rays detected in a ΔT window

Isomeric states after U235+n

- In high neutron fluence the secondary reactions can occur
- 236 U*: 1024 keV (4-) $T_{1/2}$ = 100 ns
- 236 U*: 678 keV (1-) $T_{1/2}$ = 3.7 ns

- What is the population of these states after ²³⁵U+n?
- What are the n-reaction cross sections on these states?

Isomeric states after U235+n

- In high neutron fluence the secondary reactions can occur
- 236 U*: 1052.5 keV (4-) $T_{1/2}$ = 100 ns

 236 U*: 687.59 keV (1-) $T_{1/2}$ = 3.78 ns

- What are the n-reaction cross sections on these states?
- Preliminary calculations show 50-100 x larger cross section for (n,f) reactions on isomers compared to ground state - T. Kawano et al.

0.1

Neutron Incident Energy [MeV]

0.01

Slide 160

236

236 U*(ms)

UNC

10⁰

0.001

NEUANCE - NEUtron Array at daNCE

- We need to improve counting statistics on fission and capture of U235
- For all gamma multiplicities!

This is very difficult with FF detectors because of thin targets

- What is the population of these states after ²³⁵U+n?
- NEUANCE: 8-12 segments of liquid scintillators in the center of DANCE
- NEUANCE will be sensitive only to neutrons above 200 keV --> only from fission

UNCLASSIFIED

236

U*(ms)

NEUANCE - NEUtron Array at daNCE

- Challanges in NEUANCE design
 - Small cavity (17 cm diameter) need small PMTs or alternative SiPM
 - Loss of 6LiH shell larger backgrounds
 - Close geometry pileups, pulse shape discrimination efficiency

- NEUANCE 12 or 8 segments of liquid scintillators
 - Geant4 and MCNP-Polimi simulations

NEUANCE - NEUtron Array at daNCE

- MCNP-Polimi: NEUANCE 12 or 8 segments of liquid scintillators
- thanks to T. Taddeucci

MNCPX-PoliMi was used to calculate the efficiency of a square detector array

NEUANCE - NEUtron Array at daNCE

- MCNP-Polimi: NEUANCE 12 or 8 segments of liquid scintillators
- thanks to T. Taddeucci

Detection efficiency for fission events is much higher

Yet to do: TOF windowing and pileup corrections

NEUANCE - NEUtron Array at daNCE

- Detector tests are under way prototype cells
- Hammamatsu PMT vs SiPM PSD efficiency tests

Liquid Scintillator + PMT

Stilbene + SiPM(6x6mm)

Phototube + Scintilator: PSD (Full scale = 2 X 60Co)

Fission fragment detectors R&D

- A) Multifoil PPACs
- B) Thin scintillator foils multifoil design allows to put many foils per 1mg/cm2 in beam
 - Thin sc foils 10x between the rings
 - Acrylic rings are painted from inside by sc paint
 - Light collected at the end by SiPM ring
 - Initial tests with Cf-252 are promising
 - design/work by G. Rusev

New data acquisition for DANCE

- 14 bit 500 MHz digitizers
- FPGA onboard zero suppression processing
- Significant investment
- New hardware will arrive in Sep 2014
- Next beam cycle will be used to implement it
- See talk by A. Couture

Research Programs

- A) High fidelity neutron capture measurements at DANCE
 - Five year long experimental program: U-234,236,238(n,g)
 - Reduce the uncertainties below 3%
 - Funded by DOE, Office of Science, Nuclear Physics
- B) Short-lived Actinide Isomers NEUANCE
 - Three year long, major R&D program
 - New capability at DANCE 4π neutron detection
 - Funded by LDRD/DR (LANL)
- C) Studies of prompt fission gamma-rays correlations with FF
 - Three years long experimental program: Cf-252, U-235
 - Funded by NA22, Office of Detection and Non-proliferation, DOE

Operated by Lee Alamae National

DANCE – efficient gamma-ray calorimeter

- With high efficiency and 4p solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of M_γ, E_γ and E_{γtot}
- So far we have studied integral properties
- M. Jandel et al., to be published in Physics Procedia, conf. proceedings of GAMMA-2, Sremski Karlovci, Serbia, 2013

$$\begin{split} p(M_{1,2}) &= (2M_{1,2} + 1) e^{-M_{1,2}(M_{1,2} + 1)/2} c_{12}^{\mathbb{I}} \\ p_1(E_{\gamma}) &\propto E_{\gamma}^2 e^{-t_1 E_{\gamma}} \\ p_2(E_{\gamma}) &\propto E_{\gamma}^3 e^{-t_2 E_{\gamma}} \\ \end{split} \qquad \begin{aligned} M_{\gamma} &= M_1 + M_2 \\ t_{1,2} &= a_{1,2} + b_{1,2} M_{\gamma} \end{aligned}$$

	C ₁	C ₂	a ₁	b ₁	a_2	b ₂
235	6.2	2.06	3.610	0.0453	1.620	0.0458
²³³ U	6.53	2.22	3.376	0.0449	1.575	0.0461
²³⁹ Pu	7.11	2.14	3.618	0.0454	1.403	0.0438
^{242m} Am	7.17(5)	2.02(2)	3.80(3)	0.0467(3)	1.371(5)	0.0450(7)
²⁵² Cf	7.73(8)	2.57(3)	5.03(6)	0.0098(2)	1.65(2)	0.0406(7)

Slide 25

DANCE – efficient gamma-ray calorimeter

- With high efficiency and 4p solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of M_γ, E_γ and E_{γtot}
- So far we have studied integral properties
- M. Jandel et al., to be published in Physics Procedia,

DANCE – efficient gamma-ray calorimeter

- With high efficiency and 4p solid angle DANCE is ideal for prompt-fission gamma-rays studies
- We measure correlated events of M_{γ} , E_{γ} and $E_{\gamma tot}$
- So far we have studied integral properties

	Mg	s ig	Eg	s ig	Eg,tot	s ig
²³⁵ U	6.31	3.02	1.025	0.8100	6.480	3.0700
²³³ U	6.76	3.15	1.077	0.8300	7.240	3.3200
²³⁹ P u	7.21	3.42	1.036	0.8800	7.430	3.4300
^{242m} A m	7.14(5)	3.45(4)	0.999(5)	0.88(1)	7.13(6)	3.32(3)
²⁵² C f	8.11(7)	3.77(4)	0.891(9)	0.807(9)	7.22(6)	3.33(3)

DANCE – efficient gamma-ray calorimeter

 Next step – adding measurements of kinetic energies and masses of fission fragments with PFG

 Benchmarking the evaporation and fission codes – CGMF (P. Talou, I. Stetcu, T. Kawano)

MCNP6 development – de-excitation modules (gamma/neutrons in

correlation)

Summary

- Very exciting times for DANCE research
- Well funded for next five years and new opportunities will open up with all upgrades and new detection capabilities
- Cross sections: U, Pu isotopes, ...
- Fission properties: complete measurements of prompt neutrons and gammas and fission fragments in full correlation CoFIE (complete fission experiments)
- Fundamental studies, de-excitation physics
- Applied physics: reactor heat, delayed gamma-rays

Acknowledgements

- C-division: B. Baramsai, G. Rusev, T. A. Bredeweg, R.
 S. Rundberg, C. Walker, J. B. Wilhelmy, D. J. Vieira
- LANSCE-NS (P-27) A. Couture, S. Mosby, J. L.
 Ullmann, T. N. Taddeucci, J. O'Donnell
- T-division: A. Hayes, P. Talou, T. Kawano, I. Stetcu
- X-division

UNCLASSIFIED

Slide 29

