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Co-currently downward flow regime transition in 

solid SiSiC foams:  

Flow regime prediction and measurement 

 Solid foams are promising novel reactor internals for chemical 

multiphase processes 

 SiSiC (silicon-infiltrated silicon carbide) foams combine high porosity, 

large specific surface areas and low pressure drop 

 

 

 

 

 Prediction of occurring flow regimes crucial for multiphase applications 

 Regime transitions in foam packing of 0.8 m packing length investigated 

under co-current ambient downflows of water/aqueous liquids and air  

 Pore density, packing diameter, liquid injector and liquid properties varied 
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CONCLUSION 

 Various parameters affect flow regime transition 

 Qualitatively, model predicts most variation effects correctly 

 Inadequate model assumptions prevent more accurate prediction  
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Pore density Packing diameter Porosity Surface area 

20 ppi 50 mm; 100 mm 0.90 ~1000 m²/m³S 

30 ppi 50 mm; 100 mm 0.89 ~1600 m²/m³S 

45 ppi 50 mm; 100 mm 0.86 ~ 2000 m²/m³S 

EXPERIMENTAL & MODELLING RESULTS 

 Regime transition acquired by visual observation 

 Onset of flow instabilities = regime transition between gas continuous 

flow (GCF) and pulse flow (PF)  

 

(1) 20 and 30 ppi foam show similar behavior, 45 ppi foams differ clearly 

(2) Packing diameter affects transition due to liquid barrier probability 

(3) Due to liquid pre-channeling multipoint distributor (MPD) shifts 

transition to higher fluid fluxes than more homogeneously distributing 

spray nozzle (SN) 

(4)  Lowered surface tension (Ter) and increased viscosity (Gly) provoke 

blocking barriers at lower fluxes due to improved wetting 

homogeneity and thicker liquid films 

TRANSITION MODEL ADAPTION 

 Adaption of predictive relative permeability model of Grosser et al., 

1988 [1] to foam specific parameters 

 Model requires dry pressure drop, static liquid holdup and permeability 

coefficients for force balances 
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Lacking of permeability coefficients, estimated transition curves fitted to 

experimental data 

(5)  Qualitative acceptable prediction of transition shifts 

(6) Model not capable of more accurate transition prediction due to  

 Inadequate model assumptions 

 Insufficient flow and packing homogeneity 

 Different flow physics in foams and random fixed beds 

Fluid Surface tension 

 in N·m-1 

Density 

 in kg·m-3 

Viscosity 

in mPa·s 

Air   1.2 0.02 

Deionate 0.0724 1000 1.0 

Tergitol 1 µL/L 0.0502 1000 1.0 

Glycerin 51w% 0.0686 1130 6.5 
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E2 

20 ppi 672  2.1 524 2.2 

30 ppi 695 2.2 571 2.8 

45 ppi 738 2.7 697 3.7 

Ø50 mm Ø100 mm 

(1) 

(1) Pressure drop and static liquid holdup vary with pore density and 

packing diameter 

(2) Static liquid holdup increases with lowered surface tension and 

increased viscosity  

(1) (2) 
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Superficial liquid velocity in ms-1 
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