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Qualitative and quantitative analysis of liquid flow 

distribution in SiSiC foams using ultrafast X-ray 

computed tomography 

 Solid foams are promising novel reactor internals for chemical 

multiphase processes  high porosity, large specific surface areas, low 

pressure drop. 

 Investigation of liquid distribution/saturation under variation of pore 

density, liquid and gas flow rates. 

 SiSiC foam packings of 0.8 m length and 0.1 m diameter investigated by 

dual-plane ultrafast X-ray computed tomography recorded with 1000 Hz. 
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CONCLUSION 

 Liquid saturation is mostly function of pore density and flow rates. 

 Pulse properties depend on mode of pulsing. 

 Global pulse frequency and velocity are attributed to similar effects like 

in conventional packings. 
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Pore density Porosity Pore diameter 

20 ppi 0.87 2800 µm 

30 ppi 0.89 2070 µm 

45 ppi 0.85 1480 µm 

LIQUID SATURATION 

 Study by visual observation & fast excess pressure transducer 

 Visual observation more accurate 

 Regime transition between gas continuous  flow (GCF) and pulse 

flow (PF) = onset of flow instabilities 

 

(1) Coarser foams show comparable, finer foams deviating behavior 

(2) Packing diameter affects transition due to liquid barrier probability 

(3) Pre-channeling multipoint distributor (MPD) shifts transition to 

higher fluid fluxes; homogeneous initial distribution by spray nozzle 

(SN) provokes early instability onset 

(4)  Lowered surface tension (Ter) and increased viscosity (Gly) lower 

critical fluid fluxes as wetting homogeneity and thicker liquid films 

provoke blocking barriers  

 

(5) Lacking of permeability coefficients, estimated flow stability loss 

curves fitted to experimental data 

(6)  Qualitative correct prediction of transition shift to lower fluid fluxes 

(7) Model not capable of accurate transition prediction due to  

 Inadequate model assumptions 

 Insufficient packing homogeneity 

different flow physics in foams and random fixed beds 

 

LIQUID FLOW DISTRIBUTION 

 Single liquid inlet point invokes 

centered liquid flow and wall-

side gas flow. 

 Liquid self-distribution increases 

with higher pore density. 

 Liquid backwater on top of  

45 ppi foams. 
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 Multipoint liquid distributor 

initiates channeled shamrock 

pattern of liquid. 

 In 20 ppi foams, pattern prevails 

even after first foam element. 

 With increasing pore density, 

pattern blurs along column axis. 

Single liquid inlet point 

Multipoint distributor 

 Liquid saturation increases with 

higher pore density due to 

capillary forces. 

 In trickle flow, saturation is 

increased by higher liquid flow 

rate and lower gas flow rate. 

 Saturation fluctuations up to 

300% in pulse flow. 

 Proposed correlation including 

static saturation: 

20 ppi 30 ppi 45 ppi 

 Pulse flow = fast passage of gas and liquid rich zones moving through 

packed bed. 

 Liquid rich zones increase heat and mass transfer and alter preferred 

flow channels. 

 Pulse properties depend on mode of pulsing. 
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PULSE FLOW REGIME 
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Ultrafast X-ray CT system 

(1)…Electron gun 

(2)…Measurement object 

(3)…Dual-plane detector system 

(4)…Target 

(5)…X-ray fan beam 

                                                                    

                                                                

                                                                    

                                                                
Superficial liquid velocity in ms-1 
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base pulse base 

Pulse volume 

base saturation 

upper  

CT plane 

 
lower  

CT plane 

400 ms average 

 High average 

saturation with low 

fluctuation 

 Highly frequent 

 Rather slow 

 Low liquid volume 

  

Flow  

condition 

 

Liquid 

 

Gas 

A 0.03 ms-1 1.0 ms-1 

B 0.04 ms-1 0.8 ms-1 

C 0.04 ms-1 1.0 ms-1 

Superficial velocity 

Local pulsing 

 Moderate average 

saturation with high 

fluctuations 

 Moderately frequent 

 Fast moving 

 High liquid volume  

Global pulsing 

 Higher liquid 

saturation 

 Higher frequencies 

 Limited velocity 

 Smaller liquid 

volume 

Higher pore density 

General 

 Pulses merge and 

accelerate along 

column axis 

 Gas flow strongly 

affects pulse velocity  

 Liquid flow affects 

pulse frequency 

 

Mode of 

pulsing 

 

Average 

 

Fluctuation 

Pulse 

frequency 

Pulse 

Velocity 

Pulse 

volume 

Local High Small High Small Small 

Global Moderate High Moderate High High 

Superficial velocity 
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Axial length 

Effect of 

increasing 

Pulse 

frequency 

Pulse 

Velocity 

Pulse 

volume 

Liquid flow rate  Higher Neutral Neutral / Lower 

Gas flow rate Neutral Higher Neutral / Higher 

Pore density Higher Neutral Neutral / Lower 
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  Foams (this work)

  20 ppi

  30 ppi

  45 ppi

  Glass spheres

 2 mm (Wang, 2014)

 3 mm (Rao, 1983)

 3 mm (Boelhouwer, 2002)

 6 mm (Tschochatzidis, 1995)

  Raschig rings

 2.5 mm (Rao, 1983)

 4.0 mm (Blok, 1982)

 6.0 mm (Rao, 1983)

 

 Global pulse frequencies behave similar to conventional packings. 

 Global pulse velocities exceed conventional packings dramatically. 

Main 

effects 


