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INTRODUCTION & MOTIVATION

= Solid foams are promising novel reactor Internals for chemical
multiphase processes - high porosity, large specific surface areas, low
pressure drop.

* Investigation of liquid distribution/saturation under variation of pore
density, liquid and gas flow rates.

= SISIC foam packings of 0.8 m length and 0.1 m diameter investigated by
dual-plane ultrafast X-ray computed tomography recorded with 1000 Hz.
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LIQUID FLOW DISTRIBUTION

Single liquid inlet point

= Single liquid inlet point invokes
centered liquid flow and wall-
side gas flow.

= Ligquid self-distribution increases
with higher pore density.

= Liquid backwater on top of
45 ppi foams.
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= Multipoint  liquid  distributor

Initlates channeled shamrock
pattern of liquid.

= |n 20 ppi foams, pattern prevails
even after first foam element.

= With Increasing pore density,
pattern blurs along column axis.

.........
< Lt PR RS TRl
. Sd L SRR 8-

-----

‘ - o S Da P/ ’ 5

4 7 - - - -
- 337 1 g Ay 2

b) c)

point distributor

LIQUID SATURATION
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= Liguid saturation increases with
higher pore density due to
capillary forces.

= In trickle flow, saturation Is
increased by higher liquid flow
rate and lower gas flow rate.

= Saturation fluctuations up to
300% in pulse flow.

= Proposed correlation
static saturation:

+ 20 ppi +30 ppi  + 45 ppi

Correlation

iIncluding

1.0

0.2 04 06 0.8
0.52 0.28 0.74

g = 1 [ Rey, N 1 Measurement

L 4365 - dpore ReG 4365 - dpore

Johannes Zalucky | Institute of Fluid Dynamics | FWDF | j.zalucky@hzdr.de | www.hzdr.de

PULSE FLOW REGIME

= Pulse flow = fast passage of gas and liquid rich zones moving through
nacked bed.

= Liguid rich zones increase heat and mass transfer and alter preferred
flow channels.

= Pulse properties depend on mode of pulsing.
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= Global pulse frequencies behave similar to conventional packings.
» Global pulse velocities exceed conventional packings dramatically.

= Liguid saturation is mostly function of pore density and flow rates.
= Pulse properties depend on mode of pulsing.

= Global pulse frequency and velocity are attributed to similar effects like
In conventional packings.
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