Parallelisation of an algorithm for the projection data reassignment

Background:

With the spatial high resolution gamma-ray computed tomography measurement system for high energy gamma radiation (662 keV) dense objects with up to a diameter of 700 mm can be non-destructively analysed with an in-plane resolution of approximately 2 mm. For a CT scan so called projections are acquired from various angular positons p in an interval of $0 < \varphi \leq 2\pi$ with a radiation detector containing $d = [1 \dots N_{det}]$ single detectors. With the help of standard reconstruction algorithms the non-superimposed cross-sectional image can be obtained. For the sharp visualisation of fast rotating objects f_{object} , the detector is sampled with $f_{detector}$. The number of projections N_{proj} per rotation is than defined as:

$$N_{\rm proj} = \frac{f_{\rm detector}}{f_{\rm object}}$$

Because for one rotation of the object the signal to noise ratio is worse, over a certain number of rotations *N* must be measured. Subsequently, projections for the same angular position of the object α are averaged. Therefore, a so called zero-crossing signal from the rotating object S_{object} is used to synchronise the projection data set. If such time-averaged and rotation-synchronised CT data sets are acquired from different gamma-ray CT system positions φ (synchronisation by another positioning signal device $S_{CTSystem}$), new projection data set can be resorted in which the static as well as rotating parts can be sharply mapped in the reconstructed image.

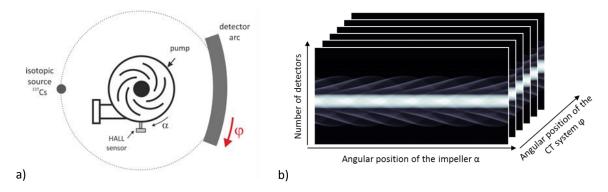


Figure 1: a) sketch of the measuring principle and b) obtained data sets of the rotation synchronized GammaCT.

Task:

The available single core C++ program (32-bit compiler) has to be analysed and optimised concerning parallelisation, i.e. multi core CPU and/or many core GPU application. Subsequently, the following data processing steps must be performance-optimised executed:

- Data conversion (from serial data stream to a "Byte" data stream)
- Projection data subtraction
- Projection data averaging
- Searching for trigger signals S_{object} and S_{CTSystem} within the projection data stream
- Projection data interpolation to a constant projection number N_{proj} per rotation (due to fluctuations)
- Generation of averaged projection data sets depended on the CT system positon
- Saving the data

Contact:

André Bieberle (HZDR) | <u>a.bieberle@hzdr.de</u> | +49 351 260 2913