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“Nur die Idee, die unbegründete Antizipation, der kühne Gedanke ist es, mit dem wir, 

ihn immer wieder aufs Spiel setzend, die Natur einzufangen versuchen: Wer seine 

Gedanken der Widerlegung nicht aussetzt, der spielt nicht mit in dem Spiel 

Wissenschaft” 

“Bold ideas, unjustified anticipations, and speculative thought, are our only means for 

interpreting nature: our only organon, our only instrument, for grasping her. And we 

must hazard them to win our prize. Those among us who are unwilling to expose their 

ideas to the hazard of refutation do not take part in the scientific game.” 

Karl Popper – Wien, 1934 
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Abstract 

Bubbly flows can be found in many applications in chemical, biological and power 

engineering. Reliable simulation tools of such flows that allow the design of new 

processes and optimization of existing one are therefore highly desirable. CFD-

simulations applying the multi-fluid approach are very promising to provide such a 

design tool for complete facilities. In the multi-fluid approach, however, closure models 

have to be formulated to model the interaction between the continuous and dispersed 

phase. Due to the complex nature of bubbly flows, different phenomena have to be taken 

into account and for every phenomenon different closure models exist. Therefore, 

reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid 

approach. 

A strategy to overcome this problem is to define a baseline model in which the closure 

models including the model constants are fixed so that the limitations of the modeling 

can be evaluated by validating it on different experiments. Afterwards, the shortcomings 

are identified so that the baseline model can be stepwise improved without losing the 

validity for the already validated cases. This development of a baseline model is done in 

the present work by validating the baseline model developed at the Helmholtz-Zentrum 

Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble 

columns, bubble plumes and airlift reactors that are relevant in chemical and biological 

engineering applications. 

In the present work, a large variety of such setups is used for validation. The 

buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the 

facility. Since such large scales are characterized by the geometry of the facility, 

turbulence models cannot describe them. Therefore, the transient simulation of bubbly 

flows with two equation models based on the unsteady Reynolds-averaged Navier–

Stokes equations is investigated. In combination with the before mentioned baseline 

model these transient simulations can reproduce many experimental setups without 

fitting any model. Nevertheless, shortcomings are identified that need to be further 

investigated to improve the baseline model. 

For a validation of models, experiments that describe as far as possible all relevant 

phenomena of bubbly flows are needed. Since such data are rare in the literature, CFD-

grade experiments in an airlift reactor were conducted in the present work. Concepts to 

measure the bubble size distribution and liquid velocities are developed for this purpose. 

In particular, the liquid velocity measurements are difficult; a sampling bias that was not 

yet described in the literature is identified. To overcome this error, a hold processor is 

developed. 

The closure models are usually formulated based on single bubble experiments in 

simplified conditions. In particular, the lift force was not yet measured in low Morton 

number systems under turbulent conditions. A new experimental method is developed in 

the present work to determine the lift force coefficient in such flow conditions without 

the aid of moving parts so that the lift force can be measured in any chemical system 

easily. 
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Zusammenfassung 

Die Auslegung und Optimierung von Mehrphasen-Prozessen im Bereich der chemischen  

und biologischen Verfahrenstechnik sowie der Energietechnik mithilfe von verlässlichen 

Simulationswerkzeugen ist aufgrund ihrer Vielzahl wünschenswert. Im speziellen für 

Blasenströmungen sind CFD-Simulationen die auf dem multi-fluid Ansatz basieren sehr 

vielversprechend um mit Ihrer Hilfe komplette Reaktoren auszulegen. Dabei müssen 

jedoch Schließungsmodelle formuliert werden, die die Wechselwirkungen zwischen der 

dispersen und der kontinuierlichen Phase beschreiben. In Blasenströmungen müssen 

verschieden Phänomene modelliert werden, für die es wiederum verschiedene 

Schließungsmodelle gibt. Durch diese Komplexität ist es bis jetzt nicht möglich 

Blasenströmungen die nicht vorher vermessen wurden verlässlich vorherzusagen. Eine 

Möglichkeit hinzu verlässlichen Modellen ist die Definition eines baseline models in dem 

alle Modelle und Modellkonstanten festgelegt sind. Durch die Validierung von 

verschiedenen Experimenten mit solch einem Modellsatz können die Grenzen der 

Modellierung ausgelotet werden, Defizite erkannt und Schrittweise verbessert werden 

ohne die Gültigkeit für die bereits bestehenden Anwendungen zu verlieren. 

In dieser Arbeit wird das baseline model welches am  Helmholtz-Zentrum Dresden-

Rossendorf hauptsächlich für Blasenströmungen in Rohren validiert wurde 

weiterentwickelt, indem es mit einer Vielzahl von Blasensäulen und Schlaufenreaktoren 

validiert wird, die in der chemischen Industrie und Biotechnologie angewendet werden. 

Solche dichtegetriebenen Strömungen zeigen charakteristische Strömungsmerkmale in 

der Größe des Apparates. Solche großen Skalen können im Allgemeinen nicht durch ein 

Turbulenzmodell abgebildet werden, wodurch die transiente Simulation von 

Blasenströmungen mit Zweigleichungs-Turbulenzmodellen basierend auf den Reynolds 

gemittelten Navier-Stokes Gleichungen untersucht wurde. In Kombination mit dem 

baseline model konnten diese transienten Simulationen die Experimente reproduzieren 

ohne Modellkonstanten anzupassen. Defizite existieren jedoch, die weiter untersucht 

werden müssen um das baseline model weiter zu verbessern 

Die Anforderungen an die experimentellen Daten bei einer Modellvalidierung sind sehr 

hoch, so müssen diese soweit möglich jeden relevanten Aspekt von Blasenströmungen 

beschreiben. Da solche umfassenden Daten in der Literatur selten sind, wurden eigene 

Experimente für einen Schlaufenreaktor speziell zur CFD-Validierung durchgeführt.  In 

diesem Zusammenhang wurden Messkonzepte entwickelt, um die 

Blasengrößenverteilung und Flüssiggeschwindigkeit bei hohen Gasgehalten zu 

bestimmen. Bei der Messung der Flüssiggeschwindigkeit wurde eine 

Stichprobenverzerrung identifiziert die bis jetzt noch nicht in der Literatur beschrieben 

wurde. Um diesen Fehler zu beheben, wurde eine hold processor entwickelt. 

Die erforderlichen Schließungsmodelle sind im Allgemeinen für 

Einzelblasenexperimente in vereinfachten Modellsystemen formuliert.  Im Besonderen 

wurde die Lift-Kraft noch nicht in Systemen mit einer niedrigen Morton Zahl und unter 

turbulenten Bedingungen vermessen. Deshalb ist in dieser Arbeit ein neue Methode 

beschrieben die es erlaubt die Lift-Kraft in solchen Systemen zu bestimmen, dabei 

werden, wie üblich, keine beweglichen Teile benutzt wodurch sich diese Methode für eine 

Vielzahl von chemischen Stoffen eignet. 
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1 Introduction 

1.1 Subject and motivation 
Bubbly flows are well known and encounter in everyday life from refreshing drinks to 

cooking. Beyond those trivial applications, aerated flows are a fundamental principle in 

biological, chemical, energy and metallurgy engineering. In energy engineering, bubbles 

are produced in heat exchangers, evaporators or cooling systems. In biological and 

chemical engineering, in contrast, gas is supplied in a liquid for process intensification 

due to a large interface and enhanced mixing. No matter how the bubbles originate, a 

great interest exists to fully understand bubbly flows and predict their behavior with 

suitable models and simulations. 

Despite the high interest in modeling bubbly flows, a distinct lack of understanding 

of such exists. This lack is due to the complex interface formed by the bubble. Even 

fundamental hydrodynamic characteristics like the bubble size are very challenging to 

measure and to model. Paired with the broad usage of bubbly flows, a better 

understanding has a great potential to increase the efficiency and energy saving for 

applications in nearly all fields of process engineering. 

In the last years, new measuring techniques were developed for bubbly flows. In 

particular, the measurement of the gas phase structure with impedance measuring 

techniques (da Silva 2008) or computer tomography (Hampel et al. 2012) is available. 

Moreover, liquid velocity measuring techniques that are used in single phase flows are 

adopted and the capability to measure at higher gas load is increased, e.g. as shown by 

Hosokawa & Tomiyama (2013) with the laser Doppler anemometry. 

In addition to new measuring techniques, the ability to perform simulations of bubbly 

flows with a complete resolved interface has been developed in the last years. From 

simulating single bubbles at lower Reynolds numbers (Tryggvason et al. 2006) up to 

several bubbles at higher Reynolds numbers (Roghair et al. 2013) the possibilities are 

steadily increasing thanks to more powerful computer systems. Besides, innovative 

methods of interface capturing like the combination of the level set and front tracking 

method (Maric et al. 2015) increase the possibilities of resolved simulations. 

Without doubt, not every chemical reactor or heat exchanger can be examined with a 

computer tomography technique and not every single bubble of a bubble column can be 

simulated with a detailed resolved interface. Nevertheless, this new methods allow a deep 

insight to hydrodynamics of bubbly flows that are used to develop and improve models 

for simulation methods which are capable to simulate bubbly flows in complete vessels 

or pipes. The simplest methods are zero dimensional based on an integral balance 

equation of the complete system. 

Since it is often needed to see local effects, methods are formulated in between a 

resolved surface simulation and the integral balance formulation. One of these methods 

is the Euler-Euler method that is based on the phase averaged Navier-Stokes equations 

formulated for the continuous and dispersed phase (Ishii & Hibiki 2006). In this process, 

the interface information is lost due to the averaging so that the interaction between the 

continuous and dispersed phase has to be modeled. With this method, three-dimensional 

simulations of large facilities are possible with locally resolved hydrodynamics. Using 
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reliable models that are based on a deep understanding of bubbly flows, promising 

results were obtained with this method in the recent years. 

Despite the efforts being made in the last years to improve the models for the Euler-

Euler method by validating a great model variety, no consensus for modelling could be 

found, especially in the area of chemical engineering (Tabib et al. 2008) (Masood & 

Delgado 2014). However, based on long-term validation of pipe flows in the area of 

nuclear safety engineering (Lucas et al. 2007a) (Frank et al. 2008) (Rzehak & Krepper 

2013a) a baseline model has been suggested for bubbly flows (Rzehak & Krepper 2013b).  

In such a baseline model, all well-known effects of bubbly flows are included and the 

model parameters are fixed. The baseline model is improved by simulating a broad range 

of experiments under different conditions with the fixed models. From such simulations, 

shortcomings are identified and the models are strategically improved with specifically 

dedicated experiments. Moreover, the baseline model is validated in a certain range of 

usage so that a prediction of bubbly flows is possible within an assessable error. This 

knowledge is essential for the process design of bubbly flows in all fields. 

The superior aim of the present work is to improve the understanding of the 

hydrodynamics in bubbly flows towards predictable simulations in all fields. In 

particular, to adopt and extend the recently suggested baseline model for the Euler-Euler 

method to the applications beyond nuclear safety. Besides widespread CFD simulations 

of bubble columns, new measuring techniques and concepts were developed as well as 

experiments were executed particular for CFD validation. 

1.2 Modelling bubbly flows 

To understand complex bubbly flows, the motion of single bubbles is investigated, which 

is in general strongly affected by their shape. In simple quiescent fluids the shape can be 

determined by knowing the Reynolds number, which is the ratio between inertial and 

viscous forces 

𝑅𝑒 =
𝜌𝑙𝑣𝑟𝑒𝑙𝑑𝐵

 

𝜇𝑙
   , (1-1) 

and the Eötvös/Bond number, which is the ratio between gravitational and surface 

tension forces 

𝐸𝑜 =
Δ𝜌𝑔𝑑𝐵

2

𝜎
   . 

(1-2) 

Besides the material values density 𝜌 , dynamic viscosity 𝜇  and surface tension  𝜎 , the 

bubble size and the slip/relative velocity 𝑣𝑟𝑒𝑙  between gas and liquid phase and the 

bubble diameter 𝑑𝐵 is of importance. With these parameters the shape of bubbles can be 

estimated as demonstrated by Grace et al. (1976) proposing the Grace Diagram shown in 

Figure 1-1. Moreover, the rising velocity, which is equal to the relative velocity in 

quiescent fluids, can be estimated by calculating the Morton number 

𝑀𝑜 =
𝑔𝜇𝑙

4Δ𝜌

𝜌𝑙
2𝜎3

   , 
 (1-3) 

which is denoted as 𝑀 in the Grace diagram. 
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Figure 1-1 Grace Diagram (Grace et al. 1976) for bubble shapes and bubble rise velocity. 
The Morton number is denoted as ‘M’ in the diagram. 

Since the Morton number is only a function of the material properties of both phases, 

the rising velocity is determined by knowing the bubble diameter and the materials. In 

the present work, air in deionized water is used in general, which has a Morton number 

of around 2.63 ⋅ 10−11. Thus, the wobbling regime is very large ranging from 𝐸𝑜 = 0.25 

up to 𝐸𝑜 = 40 or from a bubble diameter of 1.4 mm up to 17 mm, respectively. 

In Figure 1-2 bubbles in a range from 2.2 mm up to 9.8 mm with different Eötvös 

numbers in air/water are shown, which is the size range investigated in the present work. 

In addition, a bubble in air/water with 2 ppm of Triton X-100 is shown. In this case, the 

bubble has a significantly different shape compared to the corresponding bubble in 

water, but with an almost equal Morton number (Surface tension measured in steady 

state conditions). The rising bubble has a slip velocity so that the impurity concentration 

on the surface is not homogeneous distributed. This leads to the Marangoni convection, 

which is not covered by the Grace Diagram. Such effects might be important in almost all 

bubbly flows in which chemical reactions take place since a multi-material composite is 

often present. The low integral concentration of 2 ppm illustrates that even small 

impurity concentrations lead to large effects and the great complexity of bubbly flows in 

technical use. Such complex impurity effects, however, are beyond the scope of this work 

since the hydrodynamics of clean air/water systems are still not well understood. 

Nevertheless, the findings are often compared to fully contaminated systems in which the 

bubble behavior is similar for different impurities due to a very high concentration of 

such. 
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Figure 1-2 Bubbles for different Eötvös Numbers in air/water except the right bubble is 
in air/(water + 2ppm Triton X-100) at Morton number of 2.63 ⋅ 10−11. 

Although all bubbles in Figure 1-2 are in the wobbling regime distinct differences are 

observed. For lower Eötvös numbers the surface is smooth and the shape is elliptical, with 

increasing Eötvös number, the surface is disturbed and the shape becomes more random. 

These differences lead to different interactions of the bubble with the surrounding fluid. 

Usually, these interactions are modelled as forces that effect the bubble as well as the 

surrounding fluid according to the third Newton’s law of motion. 

The best-examined bubble force might be the drag force of a single bubble rising in a 

stagnant liquid. For example, important work on this topic was done by Haberman & 

Morton (1953) in the 50’s; however, still new findings are made to the drag force like the 

dependency of the drag coefficient to the initial bubble shape (Tomiyama 2004). Without 

doubt, the drag is not the only effect but it is often stated as the most important one. In 

the present work, a variety of forces is used in order to model the complex bubble motion 

in technical use. 

In moving fluids, also the turbulence is of importance. The turbulence is in general 

affected by the presence of a bubble, which has to be modeled as well. From single-phase 

flow different approaches regarding turbulence modeling exists that are also used for 

bubbly flows. In general, these approaches can be described by their capability to resolve 

different scales of fluid motion. In technical use, large apparatuses have to be modeled so 

that turbulence structures are almost completely modeled and barely resolved by the 

approach. In contrast, fundamental flow behavior is studied with methods that fully 

resolve the turbulence so that no modelling is needed. In the same way, approaches of 

modeling bubbles can be described by their capability to resolve the interface of the gas 

bubbles. Methods for technical use do not resolve the interface due to its complexity; 

methods used for model development fully resolve the interface. The first one need the 

just mentioned forces, the later one do not need any modeling of the bubble motion (for 

very simple problems). Naturally, the turbulence model and interface handling have to 

be consistent. 

Simulations in which all time and length scales are resolved are called direct 

numerical simulations (DNS). Indeed, DNS of bubbly flows are not fully resolving all 

scales, for example, the coalescence of bubbles depends on a film rupture between the 

bubbles that is in the range of nanometers. Such small scales are beyond the possibilities 

and the present scope of DNS for bubbly flows, a discussion about this issue is for example 

given by Tryggvason et al. (2013). 

Nevertheless, DNS in the field of bubbly flows is a very active field; probably the most 

investigated phenomenon is the drag of bubbles in an infinite fluid. The drag is correctly 

reproduced by DNS up to high Reynolds numbers and large bubbles (Dijkhuizen et al. 

2010a). Thus, the methods to capture the deformable interface are at a high level, which 
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is also indicated by the simulations of Tripathi et al. (2015) proposing a new kind of break 

up mechanism at low Morton numbers from DNS simulations. Moreover, the lift force of 

bubbles in a shear field is a frequently topic of DNS. Whereas the calculation of the correct 

drag is a challenging task, dealing with the lift force is a more complicated problem since 

the bubble shape interacts with a shear field and the bubble wake. Therefore, a highly 

unsteady problem over a wide range of time and length scales occurs so that only studies 

were published containing just a small amount of bubbles and simulations (Rabha & 

Buwa 2009) (Zhongchuna et al. 2014). However, Dijkhuizen et al. (2010b) performed in 

a limited range of Reynolds numbers a large amount of DNS regarding the lift force and 

compared it to own experimental results. Important effects could be reproduced with the 

DNS but also deviations to their own experimental data arise, especially simulations in 

fluids with impurities. Besides the problem of bubbles in an infinite fluid, also the 

interaction of bubbles with a wall is recently investigated with DNS (Sugioka & Tsukada 

2015). 

DNS provide also room for simplifications so that DNS were realized for turbulent 

bubble laden flows in channels with the assumption of rigid spheres (Santarelli & 

Fröhlich 2012), small bubbles (Bolotnov et al. 2011) or in small deformation regimes 

(Dabiri et al. 2013) (Murai et al. 2001). Summarizing, DNS can provide essential data for 

single bubble phenomena up to turbulent flows with few bubbles. The recent methods 

can be used for assistance in modelling of physical effects. These simulations are still 

limited to low Reynolds numbers and/or only few simulations with few bubbles so that a 

statistical reliable validation is difficult. 

A next step towards simulations at higher Reynolds numbers and increasing amount 

of bubbles is the Euler-Lagrange method. The bubbles are treated as point sources, thus 

the interface information are no longer directly available so that the interaction of the 

bubble and the fluid has to be modelled. The interactions are formulated as forces as 

described above. Besides the drag force, effects like the lagging boundary development in 

turbulent conditions (Basset force) up to bubble clustering effects are modeled. In 

addition, since the bubbles are in general larger than the smallest turbulence length scale 

a specific turbulence modelling is necessary. For this purpose, the most common methods 

are the large eddy simulations (LES) (bin Mohd Akbar et al. 2012) (Jain et al. 2013) and 

the unsteady Reynolds averaged Navier Stokes equations (URANS) (Muñoz-Cobo et al. 

2012) (Besbes et al. 2015). Despite the simplification that bubbles are treated as points 

without interface, every bubble is tracked separately in order to track bubble-bubble and 

bubble-wall collisions as well. For some applications, bubbles can be merged to parcels 

to reduce the numerical effort. The knowledge of the collisions is used for a detailed 

modelling of the effects that arise from such, e.g. coalescence and break-up (Lau et al. 

2014) (Gruber et al. 2013) (Jain et al. 2014). 

In the Euler-Lagrange formulation, for every bubble a complete set of motion 

equations has to be solved, which are expensive calculations. Furthermore, a mapping 

from the Lagrange formulation of the bubbles to the Eulerian formulations of the fluid 

and vice versa must be implemented (Kitagawa et al. 2001). Obviously, the maximum 

possible bubble size is somehow restricted to the mesh size of the Eulerian fluid grid; else, 

the assumption of a point source is no longer valid. The grid size, however, is connected 

to the flow situation so that it is not freely selectable. Recently, methods that combine a 

resolved interface for large bubbles and the point source formulation for smaller bubbles 
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in the Lagrangian formulation are developed (Hua 2015). Nevertheless, bubbles exist that 

are too small for a resolved interface treatment but are too large for the Lagrangian 

formulation. To overcome this, Badreddine et al. (2015) proposed a new method to treat 

bubbles in this transition, which gives reasonable results for simple test cases. 

Overall, the Euler-Lagrange method is a powerful and often used tool for simulating 

bubbly flows. Moreover, this field is a very active area of research proposing new ways of 

simulations and methods. Every bubble has to be tracked separately, which is for 

technical apparatuses usually far beyond the computational possibilities. 

A higher level of modeling is the treatment of both phases as interpenetrating 

continua in the Eulerian formulation. The dispersed gas phase is averaged in space 

and/or time with the purpose to dissolve the interface of the bubbles so that a continuum 

formulation is obtained. Without knowing anything about the interface structure, every 

bubble-liquid, bubble-wall and bubble-bubble interaction has to be modeled. 

Nevertheless, simulations in which every effect is seen locally, depending on the used 

models, for very large apparatuses are possible. This approach is called Euler-Euler 

formulation and is the objective of the present work. A detailed introduction is given in 

the following sections. 

In contrast to the Lagrangian approach, the Eulerian description has no limits 

regarding the bubble size to cell size ratio. However, the modeling of very large bubbles, 

which might be already treated as gas structures, in the Eulerian framework is difficult 

especially looking at the turbulence modeling. For this problem, also promising attempts 

were made to combine resolved and unresolved bubbly flow modeling, e.g. the 

generalized two-phase flow (GENTOP) concept as described by Hänsch et al. (2012). Such 

large bubbles that have to be resolved, however, are not in the focus of the present work. 

The highest levels of modeling are the integral based methods that model parts of an 

apparatus, a complete apparatus or a complete process module. The models are normally 

designed for one existing process so that they are less applicable to others. Usually, the 

hydrodynamics are given as an input and specific values or the yield is calculated in a 

limited input range. Such methods are typically used in practice of process engineering. 

The advantage of CFD methods compared to integral methods is obvious; the CFD 

methods are general so that they can be used for every process configuration. In general, 

CFD methods are used if local effects, e.g. complex geometrics, are important for the total 

process. Such problems are called multiscale problems since small scales influence the 

large scale and vice versa. Bubbly flows are such multiscale problems, even if the reactor 

geometry is simple. Usually, the flow on every scale in bubbly flows is significantly 

influenced by the bubbles. The local bubble concentration and size are in return 

determined by the local flow parameters. Thus, the hydrodynamics in bubbly flows 

cannot be modeled in general with simple zero or one-dimensional approaches. 

Moreover, complex flow situations including heat and mass transport underline the need 

of CFD for bubbly flows. Apart from interest in its own right, the hydrodynamic studies 

from the present work are a good starting point for the investigation of such complex 

situations including heat and mass transport. 
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2 Simulation Methods 

2.1 Computational fluid dynamics  
The formulation of conservative equations is the basic concept of fluid dynamics and so 

the basic concept of computational fluid dynamics (CFD). In these fields, a separation 

between material or Lagrangian coordinates and spatial or Eulerian coordinates is used. 

At first, the Reynolds transport theorem used for the Lagrange perspective as a 

generalization of the Leibniz’s rule for differentiation of integrals is derived. Afterwards, 

the finite volume method is explained as an Eulerian perspective. 

2.1.1 Material balance equations – Reynolds transport theorem 

The Leibniz’s rule gives information how to derivate an integral with the limits of 

integration as a function of the variable to derivate. Let be 𝑓(𝑡, 𝑥) a sufficient smooth 

function that the partial derivate of 𝑓(𝑡, 𝑥), 𝜕𝑡𝑓(𝑡, 𝑥) and 𝑓(𝑡, 𝑥) exists and is continuous 

in 𝑡 and 𝑥, then the Leibniz’s rule reads 

𝑑

𝑑𝑡
(∫ 𝑓(𝑡, 𝑥)𝑑𝑥

𝑏(𝑡)

𝑎(𝑡)

) = ∫ 𝜕𝑡𝑓(𝑡, 𝑥)𝑑𝑥
𝑏(𝑡)

𝑎(𝑡)

+ 𝑓(𝑡, 𝑏(𝑡))
𝑑𝑏(𝑡)

𝑑𝑡
− 𝑓(𝑡, 𝑎(𝑡))

𝑑𝑎(𝑡)

𝑑𝑡
 . (2-1) 

This rule can be also used for a three dimensional volume 𝑉(𝑡) that is changing over 

time. This formulation is called the Reynolds transport theorem: 

𝑑

𝑑𝑡
(∫ Φ(𝑡, 𝒙)𝑑𝑉

 

𝑉(𝑡)

) = ∫ 𝜕𝑡Φ(𝑡, 𝒙)𝑑𝑉
 

𝑉(𝑡)

+ ∮ Φ(𝑡, 𝒙)𝒗𝒃 ⋅ 𝒏𝑑𝐴
 

𝜕𝑉(𝑡)

 . (2-2) 

The boundary of the volume 𝑉(𝑡) is written as 𝜕𝑉(𝑡), the velocity of the boundary is 

written as 𝒗𝒃. As can be seen, the Reynolds transport theorem gives no information about 

the surrounding flow field or matter of the surrounding volume. On the right hand side, 

the first term is the change of the field variable Φ over time itself, whereas the second 

term is the change of the field variable Φ caused by a movement of the boundary. 

The material or Lagrangian coordinates are a way of defining the volume used in the 

Reynolds transport theorem so that the volume consists always the same continuum-

matter, particles or other matters depending on the problem. In consequence, if the 

volume is located in a velocity field the boundary velocity 𝒗𝒃 in Equation (2-2) is the same 

velocity as the instantaneous velocity at the boundary of the volume when the volume is 

defined as a material volume. 

 

Figure 2-1 The difference between material and spatial perspective. Left a material 

control volume with always the same material; right a fixed control volume with the 

streaklines in blue. 
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In Figure 2-1 the material and spatial perspective is sketched, the blue material 

volume in the left picture is shown at two different times, 𝑡0 and 𝑡1, and is moving with 

the flow field. Exemplary, two points are highlighted in Lagrangian coordinates  𝑋 . 

Following them over time, the pathlines, which are in a steady flow equal to the 

streamlines and streaklines, are obtained. Since a flow field is continuous, the position 𝑥 

of every point in the material control volume can be calculated by knowing the flow field 

itself, the starting point 𝑋 (which are called Lagrangian coordinates) and the time  𝑡 . 

Consequently, a transformation to the spatial coordinates 𝑥, which are the coordinates 

connected to the matter inside the volume, can be given as 

𝑥 = 𝜃(𝑋, 𝑡). (2-3) 

Defining the volume in the spatial perspective the volume is not depending on the 

matter inside the volume. A volume in spatial coordinates for a fixed coordinate system 

is illustrated In Figure 2-1 on the right hand side. If the matter that passes the spatial 

volume is tracked, the streaklines are obtained. Obviously, if the considered volume is not 

connected to matter inside the volume the boundary velocity 𝒗𝒃 in Equation (2-1) is not 

the same as the velocity of the flow field. In the case that the volume is fixed in the used 

reference coordinate system, the boundary velocity 𝒗𝒃  is zero and the second term in 

Equation (2-1) vanishes. 

Using the Stokes’ theorem, the surface integral on the right hand side of Equation 

(2-2) can be written as the divergence of Φ(𝑡, 𝒙)𝒗𝒃 inside the control volume so that a 

conservative balance equation can be formulated: 

𝑑

𝑑𝑡
(∫ Φ(𝑡, 𝒙)𝑑𝑉

 

𝑉(𝑡)

) = ∫ 𝜕𝑡Φ(𝑡, 𝒙) + 𝛁(Φ(𝑡, 𝒙)𝒗𝒃) 𝑑𝑉
 

𝑉(𝑡)

= 𝑅𝐻𝑆 . (2-4) 

The right hand side (RHS) contains the efflux 𝔍 of the volume 𝑉 and a source term 𝑆Φ 

inside the volume 

𝑅𝐻𝑆 = − ∮  𝔍 ⋅ 𝒏 𝑑𝐴
 

𝜕𝑉(𝑡)

+ ∫ 𝑆Φ 𝑑𝑉
 

𝑉(𝑡)

= ∫ −𝛁𝔍 + 𝑆Φ 𝑑𝑉
 

𝑉(𝑡)

 (2-5) 

Additionally, in Equation (2-5) Stokes’ theorem is used to rewrite the surface integral. 

Using the material perspective, the efflux is not containing any convective flux since the 

volume 𝑉(𝑡) is defined in a way that all matter stay inside the volume. Therefore, the 

efflux is containing in general transfer effects like the viscosity in the momentum 

equation when the material perspective is used. 

In the following of this work, the Lagrangian formulation/material perspective is 

used for a dispersed phase like solid or gaseous particles (if they are resolved). Moreover, 

the particles in such problems are simplified to points, so the efflux can be treated as 

source terms and no surface deformation occur. The continuous phase (including an 

averaged dispersed phase) is formulated in the Eulerian formulation/spatial perspective 

treated by the finite volume method as discussed in the next section. 

2.1.2 General balance equation, Navier-Stokes equation and finite volumes 

A general balance equation can also be formulated from the Reynolds transport theorem; 

however, it is common to formulate a general balance equation from a differential form 
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as will be shortly shown in this section. The common way to formulate this form is from 

the Eulerian perspective that is straightforward towards the finite volume method (FVM). 

The later obtained results might not be exactly calculated with the methods shown here 

since complicated solution methods for the FVM exists in commercial CFD codes which 

to explain and review is beyond the scope of this work. 

The general balance equation can be derived with an infinitesimal volume in 

Cartesian coordinates as shown in Figure 2-2 without losing generality. in Figure 2-2 the 

flux around an infinitesimal volume is shown, which summed up over all elements gives 

(𝑒𝑥𝔍 − 𝑒𝑥𝔍 +
𝜕𝔍

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 + (𝑒𝑦𝔍 − 𝑒𝑦𝔍 +

𝜕𝔍

𝜕𝑦
𝑑𝑦) 𝑑𝑥𝑑𝑧

+ (𝑒𝑧𝔍 − 𝑒𝑧𝔍 +
𝜕𝔍

𝜕𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦 = (

𝜕𝔍

𝜕𝑥
+

𝜕𝔍

𝜕𝑦
+

𝜕𝔍

𝜕𝑧
) 𝑑𝑉

= (∇ ⋅ 𝔍)𝑑𝑉 

(2-6) 

The unit vectors are written as 𝑒𝑥,𝑦,𝑧, the product of the unit vector with the flux  𝔍 is the 

flux in the direction of the unit vector. The flux  𝔍 is defined per area; therefore, the flux 

is multiplied with the infinitesimal front surface of the volume. The expression can be 

simplified by sum up the flux in every direction and take out the equal amount of the in 

and out flow terms. It remains the effective flux  ∇ ⋅ 𝔍 per volume. 

In contrast to the material perspective, the efflux contains in the spatial perspective 

also the convective part. Thus, the flux can be split up to ℑ = 𝜌ϕ𝒗 + 𝔑  with 𝜌𝜙𝒗  the 

convective flux and 𝔑  the non-convective flux. Besides the change of the efflux, the 

properties inside the volume can change because of processes inside the volume itself, 
this processes can be written as source terms 𝑆𝜙 . Since no other processes than flux 

through the boundaries or internal processes can change the properties inside the 

volume, a general balance equation in arbitrary coordinates can be formulated 

𝜕𝜌𝜙

𝜕𝑡
= −𝛁 ⋅ (𝜌ϕ𝒗 + 𝔑) + 𝑆𝜙  ⇔  

𝜕𝜌𝜙

𝜕𝑡
+ 𝛁 ⋅ (𝜌ϕ𝒗) = −𝛁 ⋅ (𝔑) + 𝑆𝜙 . 

(2-7) 

The mass balance equation is obtained by setting 𝜙 = 1. Furthermore, there is no source 
of mass and no non-convective transport of mass, thus  𝔑 = 0 = 𝑆𝜙 . The well-known 

continuity equation is obtained 

𝜕𝜌𝜙

𝜕𝑡
+ 𝛁 ⋅ (𝜌ϕ𝒗) = 0 . 

(2-8) 

The conservation of momentum can be expressed by setting  𝜙 = 𝒗 , 𝔑 = −𝑝𝑰 + 𝑻 
and 𝑆𝜙 = 𝜌𝖌. The transport term is the sum of the scalar pressure multiplied with the unit 

tensor 𝑰 and the viscous stress tensor. The viscous stress tensor can be very complex 

depending on the used fluid. In the present work, however, mainly water is used and the 

viscous stress tensor can be simplified to 𝑻 =
1

2
((∇𝒗) + (∇𝒗)𝑇). The displacement in a 

fluid is the velocity so the distortion gradient is equal to the Jacobian matrix of the 

velocity  ∇𝒗 . The viscous stress tensor is a linearization of the Green-Lagrange 

deformation tensor  𝐸 =
1

2
((∇𝒗 + 𝑰)(∇𝒗 + 𝑰)𝑇 − 𝑰) =

1

2
(∇𝒗 + (∇𝒗)𝑻 + (∇𝒗)𝑻∇𝒗),  the 

product of the Jacobian matrix with its transposed is taken as zero and the viscous stress 
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tensor is obtained 𝑻 = 𝑡𝑖𝑗 =
1

2
(

𝜕𝑣𝑖

𝑥𝑗
+

𝜕𝑣𝑗

𝑥𝑖
). With 𝖌 called the body forces as momentum 

source term the momentum conservation can be written as 

 
𝜕𝜌𝒗

𝜕𝑡
+ 𝛁(𝜌𝒗𝒗) = −𝛁 ⋅ 𝑝 + 𝛁 ⋅ 𝑻 + 𝜌𝖌 . 

(2-9) 

In the same way the energy conservation and species conservation equations can be 

obtained, which is not shown at this point. 

The Navier-Stokes equations are the summarization of the mass, momentum and 

energy conservation equations. In general, no analytic solution exists on complex 

computational domains and the problem has to be solved numerically. For this purpose 

different numerical methods exist, the most widely-know methods are the finite element 

method (FEM) and the finite volume method (FVM). Using the latter one, the 

computational domain is split up in many well-defined finite volumes. 

The finite volumes that are in sum the finite computational domain are generated in 

a way that every surface of a finite volume has contact to another finite volume or the 

boundary of the domain and that no gaps are present.  Therefore, the volumes are 

discretizing the computational domain and called mesh or grid in total and grid cell in 

particular. Around the grid cell, a balance equation equal to the balance equation around 

an infinite volume can be formulated. In general, the integral formulation of Equation 

(2-7) is more advantageous for this purpose 

∫
𝜕𝜌𝜙

𝜕𝑡
𝑑𝑉

 

𝐺𝐶

 + ∮ 𝜌ϕ𝒗 ⋅ 𝑛𝑑𝑨
 

𝜕𝐺𝐶

= − ∮ 𝔑 ⋅ 𝑛𝑑𝑨
 

𝜕𝐺𝐶

+ ∫ 𝑆𝜙𝑑𝑉
 

𝐺𝐶

 . (2-10) 

This equation is solved for every grid cell. Furthermore, since the sum of all grid cells 

is equal to the domain the general integral balance equation is obtained by summation of 

all grid cells. Therefore, the finite volume method is fulfilling the general balance equation 

for the domain automatically, which is a benefit of this method. 

Figure 2-2 Flux around an infinite volume 
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The values of a problem during a simulation, however, are only known at discrete 

points that are usually located in the centroid of the grid cells. Thus, the Integrals have to 

be approximated somehow. The surface integrals are commonly approximated with the 

Gaussian quadrature rule, the simplest one is to take the integral average multiplied with 

one. The integral average is often taken as the value in the centroid of the grid cell surface, 

which is correct if the problem is linear. This approximation is of second order, 

nevertheless, the value in the centroid of the surface is not known since only the values 

in the volume centroid are known. Consequently, the value in the surface centroid has to 

be interpolated which can be done by just using the next known value in the direction of 

the flow (upwind scheme – first order) or by interpolating linear between the 

neighboring grid cell (central difference scheme – second order). The volume integral is 

approximated similar, the value at the volume centroid is multiplied with the volume of 

the grid cell, which is correct for linear problems. The approximation and interpolation 

schemes can be more complex if the problem requires a complex treatment (Ferziger & 

Peric 2002). 

Summarizing, the material/Lagrangian and spatial/Eulerian perspective and the 

corresponding balance equations for mass and momentum were introduced. 

Furthermore, with the finite volume method a numerical method was shown, which is 

able to solve these balance equations on a computational domain. The presented methods 

can also be applied to multiphase problems; these methods, however, are only valid 

whether one phase or only the interface itself is inside the considered volume. In the next 

section, a way is shown how these methods are formulated for multiphase problems 

without these limitations. 

2.2 Eulerian averaging, two-fluid model and closure problem 
In the following section the two fluid method for formulating a balance equation for a 

volume with both phases inside is introduced. The main idea is to average the quantities 

of both phases weighted with the volume fraction. The averaging can be done over time 

at one point as it is shown in this section or by averaging over a volume; in both cases the 

same equations are obtained. As a result, balance equations for every phase are obtained 

that are coupled with interphase exchange terms. The cost of the averaging is the loss of 

the interface information, which has to be modeled and put into the interphase exchange 

terms. The advantage of the lost interface is that the simulation methods are simplified 

and multiphase problems with a very large interface size can be simulated. 

In the following, a simplification is done by assuming that the interface cannot store 

mass or momentum. The consequence of the first assumption is that the interface is in an 

equilibrium; the consequence of the second one is that the interface tension is not minded 

in the balance equation. A more precise treatment of the interface can be obtained by 

formulating the so-called jump conditions over the interface as discussed for example by 

Aris (1962) or Delhaye (1974). In the present work, however, the above simplifications 

are sufficient. In the following, a very short derivation of the two-fluid formulations is 

given by using the averaging in time method based on the work of Ishii & Hibiki (2006). 

The purpose is to give an idea of the two-fluid method and to introduce the notations used 

in this work, a complete derivation can be found in literature. 
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At first, the state functions are defined which distinguish between the phases and the 

interface. If a problem with two phases is given, two state functions and one interface 

function is needed 

𝑀𝑘(𝑥, 𝑡) = {1 if the 𝑘𝑡ℎ − phase is present at point x at time t
0 else

 

𝑀𝑆(𝑥, 𝑡) = {
1 if the interface is present at point x at time t
0 else

  . 

(2-11) 

A general differentiable function inside the phases is written as 𝐹; the multiplication with 

the state function is written as 𝐹𝑘. The thickness of the interface 𝛿 is assumed to vanish, 

which is written as lim 𝛿 → 0. 

With the assumption of a vanishing interface thickness the Eulerian time average of 

the function 𝐹 is defined as 

𝐹̅(𝑥, 𝑡) ≡ lim
𝛿→0

1

𝛥𝜏
∫ 𝐹(𝑥, 𝜏)𝑑𝜏

 

[𝛥𝜏]𝑇 

  . (2-12) 

With 𝜏 the averaging time, Δ𝜏 the average interval and [Δ𝜏]𝑇 the time interval without the 

surface, which is the same as [Δ𝜏] with an assumed zero boundary thickness. Using this 

averaging the local void fraction of the 𝑘𝑡ℎ-phase can be defined 

𝛼𝑘 ≡ 𝑀𝑘
̅̅ ̅̅ (𝑥, 𝑡) . (2-13) 

Further, the mean value of the general function 𝐹 of the 𝑘𝑡ℎ-phase  𝐹𝑘
̅̅ ̅ is calculated to 

𝐹𝑘
̅̅ ̅ = 𝐹𝑀𝑘

̅̅ ̅̅ ̅̅  . (2-14) 

Since the integral is a linear function, the averaged values are also linear 

𝐹̅ = ∑ 𝐹𝑘
̅̅ ̅

𝑘
  ;   1 = ∑ 𝑀𝑘

̅̅ ̅̅
𝑘

= ∑ 𝛼𝑘
𝑘

 . (2-15) 

Therefore, the local void fraction can also be interpreted as a probability of seeing the 

𝑘𝑡ℎ-phase at the place 𝑥 to the time 𝑡. 

Besides the averaged values over the total time interval 𝐹̅ , the averaged values of only 

the 𝑘𝑡ℎ-phase are also of interest which are called phase average 

𝐹𝑘
̿̿ ̿ ≡

𝑀𝑘𝐹𝑘
̅̅ ̅̅ ̅̅ ̅

𝑀𝑘
̅̅ ̅̅

=
𝐹𝑘
̅̅ ̅

𝛼𝑘
 . (2-16) 

The phase-averaged values are obtained by weighting the Eulerian averaged values with 

the state function. In particular, the phase average values are not depending on the 

quantity of the phase since it is divided by this. Finally, the mass weighted averaged 

values are needed since the conserved quantities are extensive values  

𝜙𝑘̂ ≡
𝜌𝑘𝜙𝑘
̅̅ ̅̅ ̅̅ ̅

𝜌𝑘̅̅ ̅
=

𝜌𝑘𝜙𝑘
̿̿ ̿̿ ̿̿ ̿

𝜌𝑘̿̿ ̿
 . 

(2-17) 

Since the mass is conservative itself, the mass averaged quantities are additive and from 

the definition of the mass weighted mean values follows 
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𝜌𝜙̅̅ ̅̅ = ∑ 𝜌𝑘𝜙𝑘
̅̅ ̅̅ ̅̅ ̅

𝑘
 . (2-18) 

Summarizing, a relation can be written between mixture properties and phase averaged 

properties 

𝜙̂ =

∑ 𝛼𝑘𝜌𝑘̿̿ ̿𝜙𝑘̂    
 
 

 

𝑘

∑ 𝛼𝑘𝜌𝑘̿̿ ̿   
 
 

 

𝑘

=

∑ 𝜌𝑘̅̅ ̅𝜙𝑘̂   
 
 

 

𝑘

∑ 𝜌𝑘̅̅ ̅   
 
 

 

𝑘

  . (2-19) 

With the above shown averaging methods, the balance equations for multiphase 

problems can be formulated. Nevertheless, a lot work has to be done to formulate the 

differentiation and all fluxes for the averaged values correctly, this is referred to the 

literature at this point, e.g. as is found in the book of Ishii & Hibiki (2006). The mass 

conservation for the 𝑘𝑡ℎ-phase can be written after averaging as 

𝜕𝛼𝑘𝜌𝑘̿̿ ̿

𝜕𝑡
+ 𝛁 ⋅ (𝛼𝑘𝜌𝑘̿̿ ̿𝒗𝒌̂) = Γ𝑘  . 

(2-20) 

The mass exchange term between the phases is written as  Γ𝑘 ; the sum of all mass 

exchange terms is zero because it is assumed that the interface cannot store mass. 

Moreover, the momentum balance equation can be formulated as 

𝜕𝛼𝑘𝜌𝑘̿̿ ̿𝒗𝒌̂

𝜕𝑡
+ 𝛁 ⋅ (𝛼𝑘𝜌𝑘̿̿ ̿𝒗𝒌̂𝒗𝒌̂)

= −𝛁 ⋅ (𝛼𝑘𝑝𝑘̿̿ ̿) + 𝛁 ⋅ [𝛼𝑘(𝑇𝑘
̿̿ ̿ + ℭ𝑘

𝑇)] + 𝛼𝑘𝜌𝑘̿̿ ̿𝒈𝒌̂ + 𝑆𝒌  . 

(2-21) 

The averaged viscous stress tensor of the 𝑘𝑡ℎ -phase 𝑇𝑘
̿̿ ̿ can be obtained by phase 

averaging the velocities. Additionally, an interfacial turbulent flux tensor ℭ𝑘
𝑇 is obtained 

due to the averaging. Moreover, the interfacial momentum exchange term 𝑆𝒌 occurs with 

the side condition 

∑ S𝑘

𝑘

= 𝑆𝑆 = 0  . (2-22) 

The sum of all interfacial exchange terms is zero because it is assumed that the 

interface cannot store momentum. The interfacial momentum exchange term connects 

the phases; all interface information that is lost due to the averaging process must be 

covered in this term. If for example the interfacial exchange were zero, the phases would 

barely ‘see’ each other and would just exists side by side. 

The correct formulation of the interfacial exchange term is called closure problem 

and is one topic of the present work. The exchange is in general formulated as force per 

volume, which is called closure models, and contains for example the drag force between 

the phases. The forces in the exchange term can describe complex phenomena like the 

interaction of the wake structure behind bubbles and the bubble itself. In the next section, 

the closure models are formulated and reviewed shortly. 

Summarizing, the two-fluid model is introduced and the average balance equations 

for the phases are given. Because of the averaging a probability function 𝛼𝑘, which is the 

local void fraction, is obtained that quantifies the probability if the 𝑘𝑡ℎ-phase can be seen 
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at a point 𝑥  and time  𝑡 . Therefore, the phases literally exists side by side, which is 

reflected by formulating balance equations for every phase in the same space and time. 

The connection of the phases is done by coupling terms, which have to be modelled 

explicitly since the interface information is lost due to the averaging.  

2.3 Closure models and multiple bubble velocity classes 
In the following section, the above-described closure models without the turbulence 

closures are described. In the present work, the drag, lift, turbulent dispersion, virtual 

mass and wall force might be the most important. Noteworthy, a boundary layer that is 

not in the steady state, which is modeled as so-called history force, affects all these forces. 

Such effects are usually not taken into account because the other forces are measured in 

more or less stagnant fluids under steady state conditions. The drag and lift force are 

described in detail in the following sections, the others briefly in the following. 

The turbulent dispersion force describes the effect of the turbulent fluctuations of the 

liquid velocity on the bubbles. Burns et al. (2004) derived by Favre averaging the drag 

force an explicit expression, namely 

𝐹𝐷𝑖𝑠𝑝 =
3

4
𝐶𝐷

𝛼𝐺

𝑑𝐵

|𝑣⃗𝐺 − 𝑣⃗𝐿|
𝜇𝐿

𝑡𝑢𝑟𝑏

𝜎𝑇𝐷
(

1

𝛼𝐿
+

1

𝛼𝐺
) ∇𝛼𝐺 . (2-23) 

In analogy to molecular diffusion, 𝜎𝑇𝐷 is referred to as a Schmidt number. In principle, it 

should be possible to obtain its value from single bubble experiments by evaluating the 

statistics of bubble trajectories in well-characterized turbulent flows but to the authors 

knowledge this has not been done yet. A value of 𝜎𝑇𝐷 = 0.9 is typically used. 

A bubble translating next to a wall in an otherwise quiescent liquid experiences a lift 

force. This wall lift force, often simply referred to as wall force, has the general form 

𝐹𝑊𝑎𝑙𝑙 =
2

𝑑𝐵
𝐶𝑊𝜌𝐿𝛼𝐺|𝑣⃗𝐺 − 𝑣⃗𝐿|2 𝑦̂ , (2-24) 

in which 𝑦̂  is the unit normal perpendicular to the wall pointing into the fluid. The 

dimensionless wall force coefficient 𝐶𝑊  depends on the distance to the wall y; the 

coefficient is expected to be positive so that the bubble is driven away from the wall. 

Based on the observation of single bubble trajectories in simple shear flow of glycerol 

water solutions Tomiyama et al. (1995) and later Hosokawa et al. (2002) concluded the 

functional dependence 

𝐶𝑊(𝑦) = 𝑓(𝐸𝑜) (
𝑑𝐵

2𝑦
)

2

 , 
(2-25) 

where in the limit of small Morton number (Hosokawa et al. 2002) 

𝑓(𝐸𝑜) = 0.0217𝐸𝑜 . (2-26) 

The experimental conditions on which Eq. (2-26) is based are 2.2 ≤ 𝐸𝑜 ≤ 22 and −2.5 ≤

log10 𝑀𝑜 ≤ −6.0  which is still different from the water–air system with  𝑀𝑜 = 2.63 ⋅

10−11 . A recent comparison of this and other distance-dependencies that have been 

proposed (Rzehak et al. 2012) has nonetheless shown that good predictions could be 

obtained for a set of data on vertical pipe flow of air bubbles in water. 
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The virtual mass is the inertia of the surrounding fluid that has to be taken into 

account when a bubble or particle is accelerated relative to the surrounding continuous 

phase 

𝐹𝑉𝑀 = 𝐶𝑉𝑀𝛼𝐺𝜌𝐺 (
𝐷𝑢⃗⃗𝐺

𝐷𝑡
−

𝐷𝑢⃗⃗𝐿

𝐷𝑡
) , (2-27) 

where 𝐷 𝐷𝑡⁄  denotes the substantial derivative. The coefficient 𝐶𝑉𝑀 is simply set to 0.5 as 

suggested by Mougin and Magnaudet (2002). 

2.3.1 Drag force 

Bodies within a fluid that are moving with a relative velocity greater zero experience a 

drag force counteracting to the motion in the opposite direction of the velocity. The drag 

force 𝐹𝐷 is a function of the density 𝜌, viscosity 𝜇, the velocity 𝑣 and a length scale of the 

object. Regarding to the Buckingham Π-Theorem (Buckingham 1914) two dimensional 

groups can be formed from this 5 variables, which are taken as the Reynolds number and 

the drag coefficient 

𝐶𝐷 ≡
𝐹𝐷

0.5𝜌𝑣2𝐴
  . (2-28) 

The surface 𝐴 is a reference area, which is here defined as the projected area of the sphere 

equivalent volume of the bubble (Haberman & Morton 1953). 

Indeed, the drag coefficient is the sum of the frictional drag coefficient and the 

pressure drag coefficient. The corresponding frictional force and pressure drag force are 

obtained by integrating the shear stress over the surface and the pressure over the 

surface, respectively. For completely laminar flow situations, the drag force is dominated 

by the frictional force since the inertial forces are small compared to the viscous forces 

as indicated by a particle Reynolds number far below one. Here, a theoretical solution of 

the drag force is possible that is called the Stokes law; for rigid spheres, the drag 

coefficient is calculated to 24 𝑅𝑒⁄ . For bubbles it can be shown that the drag coefficient is 

16 𝑅𝑒⁄  (Hadamard 1911) which is only the 2/3 of the rigid sphere since the bubble 

surface is not rigid. However, through pollution and the resulting Marangoni convection 

towards the bubble cap, the drag force is nearly the same as for the rigid sphere 

(Lakshmanan & Ehrhard 2010). 

Looking at bubbles, the drag force is equal to the buoyancy force if the bubble rises 

with a constant velocity in a quiescent fluid. Thus, determining the drag coefficient is 

reduced to determine the terminal velocity of the bubble. Based on a dimensional analysis 

by Schmidt (1934) using the Π-Theorem and further work by Rosenberg (1950), the 

bubble motion was described using the Reynolds number, the drag coefficient and the 

Morton number. The Morton number is a combination of the Froude (Fr - ratio of inertia 

to body force), Reynolds (ratio of inertia to viscous force) and Weber number (We - ratio 

of inertia to surface forces). Based on this Haberman & Morton (1953) described based 

on a large preceding experimental work of others the bubble motion for various liquids. 

In the following years, several theoretical and experimental work was done regarding 

the bubble motion, which is for example summarized by (Loth 2008). The drag 

coefficient, however, is often formulated as a function of the Reynolds and Eötvös number 

(ratio of surface tension to body forces) in which empirical and semi-empirical 
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formulations exists. Normally, three different conditions are distinguished, spherical 

bubbles, distorted bubbles and cap bubbles with a blending function between them as for 

example used by Ishii & Zuber (1979) 

𝐶𝐷,𝑆𝑝ℎ𝑒𝑟𝑒 =
24

Re
(1 + 0.1Re0.75)  , 

(2-29) 
𝐶𝐷,𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =

2

3
Eo0.5  , 

𝐶𝐷,𝐶𝑎𝑝 =
8

3
   , 

𝐶𝐷 = (max(𝐶𝐷,𝑆𝑝ℎ𝑒𝑟𝑒 , min(𝐶𝐷,𝐷𝑖𝑠𝑡𝑜𝑟𝑑𝑡𝑒𝑑, 𝐶𝐷,𝐶𝑎𝑝)))  . 

This drag law is among others measured for polluted air/water systems; differences 

occur for pure systems as shown by Tomiyama et al. (1998). 

Another approach of describing the drag coefficient is done by Bozzano and Dente 

(2001) by the multiplication of a friction factor 𝑓 to a deformation factor (𝑎
𝑟⁄ )2 – 𝑎 is the 

major axis and 𝑟 the equivalent spherical radius – obtained from a minimization of the 

total energy 

𝑓 =
48

Re
(

1 + 12Mo
1

3⁄

1 + 36Mo
1

3⁄
) + 0.9

Eo
3

2⁄

1.4 (1 + 30Mo
1

6⁄ ) + Eo
3
2

   , 

(2-30) 
(

𝑎

𝑟
)

2

≅
10 (1 + 1.3 Mo

1
6⁄ ) + 3.1Eo

10 (1 + 1.3 Mo
1

6⁄ ) + Eo
   , 

𝐶𝐷 = 𝑓 ⋅ (
𝑎

𝑟
)

2

 .  

The discussed drag laws are compared in Figure 2-3; clearly, the differences between the 

drag laws for pure systems and the contaminated systems are seen. For the CFD 

simulations in the present work the drag law of Ishii and Zuber (1979) will be used. The 

drag force formulate in frame of the two fluid averaging as explained in Section 2.2  reads 

𝐹𝐷𝑟𝑎𝑔 =
3

4𝑑𝐵
𝐶𝐷𝜌𝑙𝛼𝐺|𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿|(𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿)  . (2-31) 

The gas velocity is denoted with 𝑢⃗⃗𝐺  and the liquid velocity with 𝑢⃗⃗𝐿 . 

For tracking mini bubbles in the sections below, the drag law of Bozzano and Dente 

(2001) will be used since the experimental data for this drag law are validated also for 

smaller bubbles. 
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Figure 2-3 Terminal velocity obtained with different drag laws in air/water systems 

2.3.2 Lift force 

The lift force is usually a force acting mainly perpendicular to the main flow direction. In 

contrast to the well-known aerodynamic lift force the lift force on particles and bubbles 

is fundamental different. The lift on very small rigid particles due to the shear lift force 

and particle rotation was described by Saffmann (1965) for very low particle and 

vorticity Reynolds numbers. Nonetheless, larger bubbles also experience a lift force even 

in complex flow situations as shown for example by Serizawa et al. (1975) by measuring 

a wall peak in bubbly pipe flows. The lift force on bubbles is described by a shear induced 

formulation (Zun 1980) based on the formulation for rigid spherical particles (Lawler 

1971): 

𝐹𝐿𝑖𝑓𝑡 = −𝐶𝐿𝜌𝐿(𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿) × 𝑟𝑜𝑡(𝑢⃗⃗𝐿)  . (2-32) 

The lift force coefficient is denoted with 𝐶𝐿 , the liquid velocity with 𝑢⃗⃗𝐿 , the gas velocity 

with 𝑢⃗⃗𝐺 , the liquid density with 𝜌𝐿 . Various work was done calculating the lift force for 

inviscid fluids at small shear rates (Auton 1987) and extending the work by Saffmann 

(Mei & Klausner 1994) (Legendre & Magnaudet 1997) for viscid fluids ReP → 0 and finite 

shear rates. It was found that at very low particle and vorticity Reynolds numbers the lift 

force is (2 3⁄ )2 of the lift force of a rigid sphere (Legendre & Magnaudet 1997). Based on 

an extensive study on spherical non-deformable bubbles based on DNS calculations by 

Legendre & Magnaudet (1998) two regimes can be identified, the viscid dominant regime 

with ReP → 0  and the inertia dominated ReP → ∞  describing two different physical 

effects. At low Reynolds numbers, the effect is dominated by the rapid diffusion of the 

vorticity generated by the presence of the bubble and its asymmetrical transportation by 

the far flow field. At high Reynolds numbers, the vorticity of the undisturbed flow is 

asymmetrical distorted due to the presence of the bubble. In between, the effects get very 
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complicated and are depending on the shear rate (Legendre & Magnaudet 1998). From 

the theoretical and numerical work, the lift coefficient was found to be 0.5 for higher 

particle Reynolds number; however, some experimental work, for example by Zun (1980) 

or Lance & de Bertodano (1994), suppose a lift force coefficient between 0.2 and 0.3. 

Furthermore, the lift force is also influenced by the contamination of the water and even 

a change of sign appear due to contamination was observed (Fukuta et al. 2008). 

The complexity is increased when the bubbles get larger and the assumption of 

spherical bubbles is not valid or the shear stress is that high that the bubbles are 

deformed. For larger bubbles, the lift force is changed fundamentally as experimentally 

shown by Kariyasaki (1987). Kariyasaki used a rotating belt in a channel and supplied gas 

bubbles of different sizes; they observed that the lift force changes the sign for larger 

bubbles. This change of sign could also be shown in DNS simulations (Ervin & Tryggvason 

1997) (Bothe et al. 2006). Two fundamental effects describing the lift force for larger 

bubbles might be identified. First, the non-spherical shape which is theoretically 

examined using a fixed ellipsoid for low shear rates and inviscid fluids by Naciri (1992), 

which is later studied by Adoua et al. (2009) using DNS calculations over a wide range of 

Reynolds numbers and shear rates. The lift force for this fixed ellipsoid is significantly 

influenced by the Reynolds number, shear rates and the aspect ratio of the ellipsoid. 

Increasing the aspect ratio for specific shear rates and Reynolds numbers, the lift force 

changes its sign caused by the vorticity generated at the ellipsoid surface. Besides the 

change of sign, it could be shown experimentally by Tomiyama et al. (1999) (2002) for 

high Morton numbers and low Reynolds numbers that the lift force coefficient might not 

be influenced by the shear rate. Thus, the lift force might be dominated by the 

deformation of the bubble surface by the shear flow and the produced vortexes at the 

bubble surface itself. The empirical correlation for the lift coefficient by Tomiyama et al. 

(2002) reads 

𝐶𝐿 = {

min[0.288 tanh(0.121Re), 𝑓(Eo⊥)], Eo⊥ < 4

𝑓(𝐸𝑜⊥), 4 ≤ Eo⊥ < 10.7
−0.28 Eo⊥ ≥ 10.7

  , 

(2-33) 

with  

𝑓(𝐸𝑜⊥) =  0.00105𝐸𝑜⊥
3 − 0.0159𝐸𝑜⊥

2 − 0.0204𝐸𝑜⊥ + 0.474 . (2-34) 

The modified Eötvös number 𝐸𝑜⊥ is calculated with the maximum horizontal diameter 

𝑑⊥; usually the empirical formulation by Wellek et al. (1966) is used 

𝑑⊥ =  𝑑𝐵 √1 + 0.163Eo0.7573
 . (2-35) 

The lift coefficient in air-water systems is drawn in Figure 2-4 to emphasis the change 

of the sign, which is here at around 5.83 mm for the sphere equivalent diameter. The 

measurements of Tomiyama et al. (2002) stopped at a modified Eötvös number 𝐸𝑜⊥ of 

around 10.7 because larger bubbles were not stable, the constant value of -0.28 for larger 

bubbles is usually assumed. Indeed, the lift coefficients obtained by Bothe et al. (2006) 
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and Rabha & Buwa (2009) using DNS and VOF, respectively, indicate that the lift 

coefficient decreases further with larger bubble size. 

In the past, no experiments were published in which the lift force coefficient was 

successfully measured in low Morton number systems like air/water. Kulkarni (2008), 

however, determined indirect the lift force coefficient in an air/water bubble column. The 

results are in the same area as the results measured by Tomiyama et al. (2002) but the 

lift coefficients differ also over the column diameter and show a different behavior for 

larger bubbles. Also, Lucas & Tomiyama (2011) investigated a large data obtained from 

bubbly flows in pipes and could confirm that the sign of the lift force in water changes at 

around 5.8 mm as the Tomiyama lift coefficient correlation predicts. 

In the following CFD studies, the lift coefficient correlation of Tomiyama et al. (2002) 

is used. 

2.3.3 Multiple bubble classes 

In practice, a distribution of different bubble sizes is present. The distribution has to be 

covered since the behavior of the bubbles depends on their size. For example, small 

bubbles have a positive lift force coefficient and large bubbles a negative. Thus, at least 

two different velocity fields for the gas phase covering the bubbles below 5.83 mm (zero 

of the Tomiyama lift force coefficient) and above are needed. 

Nevertheless, for some cases this separation is not sufficient, for example in the 

downcomer of an airlift reactor the bubble sizes are separated due to the different drag 

force acting on them. This is discussed in detail in Section 7.3. Moreover, if coalescence 

and break up effects are significant the bubble distribution must be discretized by bubble 

classes (Krepper et al. 2008) or represented by a characteristic function (e.g. quadrature 

method of moments) besides the modeling with different velocity fields. This topic is 

Figure 2-4 Lift coefficient correlation of Tomiyama et al. (2002) for air-water systems. The 
dashed line indicates the not measured region. 
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discussed e.g. by Jay Sanyal et al. (2005). In the present work the bubble sizes are 

assumed fixed, the bubble size distribution is modeled with different gas phases having 

their own velocity fields. 

It should be noted, that for all forces the same bubble diameter is used, even when a 

distinct distribution of the bubble size is present. Looking at the different non-linear 

bubble force models this is not correct. In fact, every closure model needs its own bubble 

size due to their non-linearity. Nevertheless, this is not a common practice, since the 

bubble size distributions are normally not known, so that it will not used in the present 

work also. 

2.4 Turbulence modeling 
Turbulence is a comprehensive phenomenon occurring in nearly all engineering 

applications and, therefore, is an important effect in bubbly flows. Turbulence is the 

apparently three-dimensional random fluid motion in space and time. In the following 

section, the very basics of turbulence modelling are given which are needed to 

understand the discussions in this work. The Einstein notation is used in this section for 

this purpose. For further information, an introduction to turbulence can be found in the 

books of Pope (2000) and Tennekes & Lumley (1972). 

The momentum equation with constant density 𝜌  as given in Section 2.1.2 in 

Cartesian coordinates using the Einstein notation reads 

𝜌 [
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
] = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝑠𝑖𝑗

𝜕𝑥𝑗
 . 

(2-36) 

With 𝑠𝑖𝑗 the viscous stress tensor as defined also in Section 2.1.2. 

To investigate the velocity fluctuations, the velocity 𝑣  is decomposed into a mean 

value and a fluctuation value, which is called Reynolds decomposition 

𝑣𝑖 = 𝑉𝑖 + 𝑣𝑖
′ . (2-37) 

The instantaneous velocity 𝑣𝑖  is the summation of the mean velocity 𝑉𝑖  and the 
fluctuation 𝑣𝑖

′. The mean value is determined by using the ensemble average of 𝑣𝑖 , which 

is denoted in the following with 〈⋅〉. This decomposition is done for all values in Equation 

(2-36). Inserting the decomposition in Equation (2-36) the ensemble average of this 

equation reads 

𝜌 [
𝜕𝑉𝑖

𝜕𝑡
+ 𝑉𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗
] = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕S𝑖𝑗

𝜕𝑥𝑗
− 𝜌 〈𝑣𝑗

′
𝜕𝑣𝑗

′

𝜕𝑥𝑗

〉 . 
(2-38) 

Adding the divergence of the velocity on the right hand side of Equation (2-38) and 

zero to the left hand side, which is possible since the divergence of the velocity is zero for 

incompressible flows, results in 

𝜌 [
𝜕𝑉𝑖

𝜕𝑡
+ 𝑉𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗
] = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝑆𝑖𝑗 − 𝜌〈𝑣𝑖

′𝑣𝑗
′〉] . 

(2-39) 

The term 𝜌〈𝑣𝑖
′𝑣𝑗

′〉 is called the Reynolds stress tensor 𝜏𝑖𝑗 , which arises out of the non-

linearity of the momentum conservation equation. 
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Normally, by solving the momentum equation numerically always a discretization in 

space and time is used that is larger than the smallest velocity fluctuation scales unless a 

direct numerical simulation is performed. Therefore, the Reynolds stress tensor has to be 

modelled using the values from the mean flow leading to the closure problem of 

turbulence. 

A frequently used concept is the Boussinesq approximation introducing an eddy 

viscosity 𝜇𝑡 

 𝜌〈𝑣𝑖
′𝑣𝑗

′〉 = 2𝜇𝑇𝑆𝑖𝑗 − 𝜌〈𝑣𝑖
′𝑣𝑖

′〉 𝛿𝑖𝑗. (2-40) 

The Reynolds stress tensor is formulated by using the mean strain rate tensor 𝑆𝑖𝑗  as 

defined above. The second term is needed since the trace of 𝑆𝑖𝑗 is zero. Thus, the problem 

is reformulated by modelling the eddy viscosity and the trace of the Reynolds stress 

tensor. 

2.4.1 Reynolds Averaged Navier Stokes (RANS) equations 

Different approaches were developed in the last century to model the Reynolds stress 

tensor; the most often used in engineering problems are the two equations models. Two 

equation models are based on the postulation of Prandtl (1961) using the square root of 

the turbulent kinetic energy 𝑘 as the characteristic mixing velocity for the eddy viscosity 

𝑘 =
1

2
〈𝑣𝑖

′𝑣𝑖
′〉 . 

(2-41) 

A transport equation for 𝑘 can be formulated by formulating the fluctuation transport 

equation. Afterwards, subtracting the momentum conservation formulated with the 

Reynolds decomposing with the mean averaged transport equation, Equation (2-38), and 

multiply it with the fluctuation itself (Wilcox 1994) 

𝜌 [
𝜕𝑘

𝜕𝑡
+ 𝑉𝑗

𝜕𝑘

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥𝑖
[−〈𝑝𝑣𝑖

′〉𝛿𝑖𝑗 −
1

2
〈𝑣𝑖

′𝑣𝑖
′𝑣𝑗

′〉 + 𝜇
𝜕𝑘

𝜕𝑥𝑗
] − 𝜏𝑖𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗
− 𝜖𝜌 . 

(2-42) 

The left hand side of Equation (2-42) describes the change of 𝑘 due to convection and 

inner processes. The three terms in the brackets on the right hand side describe the 

pressure diffusion, the turbulent transport and the molecular diffusion of 𝑘, respectively, 

which are summarized by defining a quantity 𝜎𝑘 (Wilcox 1994)  

−〈𝑝𝑣𝑖
′〉 −

1

2
〈𝑣𝑖

′𝑣𝑖
′𝑣𝑗

′〉 + 𝜇
𝜕𝑘

𝜕𝑥𝑗
= (

𝜇𝑇

𝜎𝑘
+ 𝜇)

𝜕𝑘

𝜕𝑥𝑗
 . 

(2-43) 

The next term on the right hand side of Equation (2-42) is the production term of 𝑘 due 

to the shear of the mean flow, which is therefore often named shear-induced 

turbulence −𝑃𝑘 . Finally, the last term is the sink term of the turbulent kinetic energy 

named turbulence dissipation rate 𝜖 

𝜖 ≡ 𝜈 〈
𝜕𝑣𝑖

′

𝜕𝑥𝑗

𝜕𝑣𝑖
′

𝜕𝑥𝑗

〉 ~
𝑘

3
2

𝑙
  . 

(2-44) 
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From a dimensional analysis, the turbulence dissipation might be described by the 

turbulent kinetic energy and a length scale, which can be taken as the mixing length scale 

(Wilcox 1994). Summarizing, the 𝑘-equation is written as 

𝜌 [
𝜕𝑘

𝜕𝑡
+ 𝑉𝑗

𝜕𝑘

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥𝑖
[− (

𝜇𝑇

𝜎𝑘
+ 𝜇)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜖𝜌 . 

(2-45) 

Thus, an equation for the turbulent kinetic energy is obtained that is used for the 

characteristic mixing velocity to estimate the eddy viscosity. Nonetheless, a mixing length 

scale is needed to describe the eddy viscosity and, additionally, is needed to model the 

turbulence dissipation rate 𝜖 since the dissipation rate is not accessible with mean values 

by definition. 

For the length scale modelling with a two-equation model, two approaches are 

frequently used: Formulating a transport equation for the dissipation per unit turbulent 

kinetic energy 𝜔  or formulating a transport equation for the dissipation rate  𝜖 . The 

transport equation for the latter one reads (Jones & Launder 1972) 

𝜌 [
𝜕𝜌𝜖

𝜕𝑡
+ 𝑉𝑗

𝜕𝜌𝜖

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥𝑖
[− (

𝜇𝑇

𝜎𝜖
+ 𝜇)

𝜕𝜖

𝜕𝑥𝑗
] + 𝐶1𝜖

𝜖

𝑘
𝑃𝑘 + 𝐶2𝜖𝜌

𝜖2

𝑘
 . 

(2-46) 

For further studies a model distinguishing near wall and free turbulence by 

blending between the 𝑘 − 𝜔  and 𝑘 − 𝜖  model called SST 𝑘 − 𝜔  model by Menter et al. 

(2003) is used with  

𝜌 [
𝜕𝜌𝜔

𝜕𝑡
+ 𝑉𝑗

𝜕𝜌𝜔

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥𝑖
[− (

𝜇𝑇

𝜎𝜔
+ 𝜇)

𝜕𝜔

𝜕𝑥𝑗
] + 𝑃𝜔 − 𝑌𝜔 + 𝐷𝜔  . 

(2-47) 

The production term 𝑃𝜔 and dissipation term 𝑌𝜔 are more complicated than for the 𝑘 or 𝜖 

equation as described by Menter et al. (2003). A derivation for these values is not shown 

at this point. The term 𝐷𝜔 arises due to the blending between the model formulations.  

2.4.2 Unsteady RANS equations 

As described above, the length and time scales of turbulence are in general very small. By 

the use of an extra eddy viscosity, these very small scales are modeled (or filtered as 

discussed in the next section). Thus, just a coarse mesh is needed to resolve the remaining 

scales. The RANS equations need only a relative coarse mesh compared to other methods, 

which is a great advantage in technical use. 

Nevertheless, turbulence is a complex phenomenon and depends on the local 

geometry/local flow. Furthermore, the usage of a total kinetic turbulent kinetic energy 

𝑘 in the transport equation implies the assumption of isotropic turbulence, which is often 

not given. Anisotropic turbulence phenomena, however, occur often on the larger scales 

whereas the assumption of isotropic turbulence phenomena is good for the smaller 

scales. Thus, the small scales might be described with general models while the larger 

scales should be resolved. Therefore, an improvement is reached by calculating the large-

scale fluctuations directly while the smaller scales are modeled. For this purpose, the 

RANS equations are solved transient while the small scales are modeled by the same 

equations as for the steady state case. This method is often called unsteady RANS 

(URANS) or very large eddy simulation (VLES). Often, the relatively simple and fast 

URANS calculations are even treated with stationary boundary conditions to study for 
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example vortex shedding at bluff bodies, which gives reasonable predictions as discussed 

by Spalart (2000). 

With the URANS approach, the fluctuations of the velocity are decomposed in 
resolved and unresolved parts. For comparison with experiments, both fluctuation parts 
have to be considered to get the total fluctuation. In general, for transient simulations the 
total time-averaged kinetic energy is simply equal to the sum of the squared averaged 
velocity and the average of the squared fluctuations: 

1

2
𝜌 𝑣𝑣̅̅ ̅ =

1

2
𝜌(𝑣̅𝑣̅ + 𝑣′𝑣′̅̅ ̅̅ ̅̅ )   . 

(2-48) 

Analog to above, 𝑣̅  is the average over time and 𝑣′ is the fluctuation around the average. 
The modeled and resolved fluctuation that are obtained in the URANS approach can be 
written as the sum of these two components 

𝑣′ = 𝑣′̃ + 𝑣′′   , (2-49) 

where 𝑣′̃  denotes the resolved fluctuation and 𝑣′′  the modeled fluctuation. Using this 
summation the turbulent kinetic energy for the velocity component 𝑣 can be written as 

𝑣′𝑣′̅̅ ̅̅ ̅̅ = 𝑣 ′̃𝑣 ′̃ + 𝑣′′𝑣′′̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    . (2-50) 

The modeled fluctuation 𝑣′′𝑣′′̃  is described by the above defined 𝑘𝑚𝑜𝑑  transport 
equation. Since only the total modeled turbulent kinetic energy is known, 𝑣′′𝑣′′̃  is 
calculated by 

𝑣′′𝑣′′̃ =
2

3
𝑘𝑚𝑜𝑑    . 

(2-51) 

Whereas the resolved part is obtained from the transient simulation. The normal 
component of the Reynolds stress tensor is therefore 

𝑣′𝑣′̅̅ ̅̅ ̅̅ = 𝑣 ′̃𝑣 ′̃̅̅ ̅̅ ̅̅  +
2

3
𝑘𝑚𝑜𝑑
̅̅ ̅̅ ̅̅ ̅   . 

(2-52) 

2.4.3 Large Eddy Simulations 

Large eddy simulations (LES) are similar to URANS simulations, but the small scales are 

specifically filtered using filter functions. The filtering of the small scales for LES is done 

by a convolution of the value with a filter function. Different filter functions exist for 

different purposes. The selection of the scales is regulated by varying the size of the filter 

functions, which is often called filter length. The advantage of this selection is that the 

small scales can be specifically modelled. Normally, the small scales are only needed for 

the dissipation of the turbulent kinetic energy, so a simple model can be used. 

By filtering the Navier-Stokes equations, the filtered Navier Stokes equations and an 

unresolved part are obtained, similar to the URANS equations. Differences to the URANS 

equations occur since the filters usually used in LES have not the same properties as the 

RANS models. Nevertheless, also the filter functions have to fulfill specific requirements 

(Lesieur et al. 2005) and cannot be chosen arbitrary. The filtered Navier Stokes equations 

can be discretized using for example the finite volume (FV) method and can be solved 
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using the standard procedures with consideration of the properties of the filtering 

process. 

Usually, the filter is connected to the used discretization, e.g. on a rectangular mesh 

using the FV method the Navier-Stokes equations are naturally filtered with the shape of 

a box filter. Therefore, the models for the small scales are connected to the local grid size. 

Consequently, with this procedure a mesh independent solution is usually not achieved. 

The unresolved scale is usually called sub-grid-scale (SGS) and has to be modeled. 

Often, the SGS are modeled using the Boussinesq-approximation so that a turbulent 

viscosity is modeled. For this purpose, different model approaches exists, ranging from 

algebraic models up to two equation or Reynolds-stress models. A common model is the 
algebraic Smagorinsky model using the filter width Δ and the rate of strain tensor 𝑺 

𝜈𝑡 = (𝐶𝑆Δ)2|𝑺|  . (2-53) 

The prefactor 𝐶𝑆 depends on the actual flow conditions; a constant value between 0.1 and 

0.24 is usually taken. 

Modelling the turbulence of bubbly flows is not trivial with the LES approach and an 

active topic of research. Often, an additional turbulent viscosity is added to the modeled 

turbulent viscosity obtained from the SGS modelling. Among others, the modelling of the 

bubble-induced turbulence using an additional turbulent viscosity is discussed in the next 

section. 

2.4.4 Turbulence in Bubbly flows 

The turbulence in bubbly flows is not very well investigated compared to the turbulence 

in single-phase flows. The presence of bubbles can either increase or suppress the 

turbulence (Serizawa & Kataoka 1990). The wake of the bubbles, for example, usually 

leads to an increase in turbulence. In addition, the turbulence interaction of bubbles and 

their wake structures with the surrounding turbulence might be very complicated, up to 

now no reliable models exists. Moreover, the gas phase distribution in the reactor due to 

the turbulent dispersion of the bubbles and the gas phase structure due to break up and 

coalescence processes is influenced by the turbulence. The gas phase distribution and 

bubble size in return influence the turbulence; the interaction of the turbulence with the 

bubbles is in general depending on the bubble size/length as well as the turbulence length 

scale, which are both more or less continuously distributed and both often not known. 

Since the turbulence of such complex bubbly flows are not understood no straight 

forward theory exists, as for single-phase flows. Thus, a discussion of this topic is beyond 

the scope of this section and is referred to the literature (Kataoka & Serizawa 1989) (de 

Bertodano et al. 1994) (Risso et al. 2008) (Riboux et al. 2010). Nevertheless, in the 

following some frequently used modeling approaches are shown, which are also used for 

CFD simulations. 

In practice, the turbulence in bubbly flows is modeled by the superposition of the 

single-phase flow (SP) with a bubbly flow (B). One approach is the assumption that the 

eddy viscosity is superimposed 

𝜇𝑇 = 𝜇𝑇,𝑆𝑃 + 𝜇𝑇,𝐵  . (2-54) 
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An early semi-empirical model is the well-known Sato model (Sato et al. 1981) that reads 

in the formulation of the two fluid model 

𝜇𝑇,𝐵 = 0.6𝜌𝛼𝑑𝑝|𝒗𝐺 − 𝒗𝐿|  . (2-55) 

Originally, this model was developed for pipe flows with a zero equation turbulence 

model. Nevertheless, using two equation turbulence models derived for single phase 

flows and just adding the additionally viscosity afterwards good results are obtained in 

pipe flows (Krepper et al. 2005) and bubble columns (Tabib et al. 2008). In addition, the 

separation of the turbulent viscosities is also a useful method to investigate the 

turbulence in bubbly flows (Hosokawa & Tomiyama 2004). These models are useful for 

the sub grid scale modeling in large eddy simulations (Ma et al. 2015) and for Reynolds 

stress models (Masood et al. 2014). 

Despite the usefulness of such viscosity superposition, the turbulent kinetic energy is 

usually underpredicted, especially in combination with one or more equation models. 

The only contribution to the turbulent kinetic energy production is to the shear induced 

production 𝑃𝑘 in Equation (2-45) 

𝑃𝑘 = 𝜏𝑖𝑗

𝜕𝑉𝑖

𝑥𝑗
= 𝜇𝑡(2𝑆𝑖𝑗𝑆𝑗𝑖) = (𝜇𝑇,𝑆𝑃 + 𝜇𝑇,𝐵)(2𝑆𝑖𝑗𝑆𝑗𝑖)  , 

(2-56) 

with 𝑆𝑖𝑗 the mean strain rate tensor. It is imaginable that this contribution is not enough 

if wake effects significantly contribute to the turbulent kinetic energy. This 

underprediction is significant if further effects in bubbly flows depending on the kinetic 

energy are modeled, in particular the break up and coalescence effects. 

Another approach is the superposition of the production terms 𝑃 in Equations (2-45) 

to (2-47) with a bubble induced turbulence (BIT) term. The production of the turbulent 

kinetic energy then reads 

𝑃𝑘 = 𝜇𝑡(2𝑆𝑖𝑗𝑆𝑗𝑖) + 𝑃𝑘,𝐵𝐼𝑇  . (2-57) 

The production term 𝑃𝑘,𝐵𝐼𝑇 is usually taken as the energy transferred to the surrounding 

liquid due to the slip velocity 

𝑃𝑘,𝐵𝐼𝑇 = 𝐶𝑘,𝐵𝐼𝑇𝐹𝐷𝑟𝑎𝑔|𝒗𝐺 − 𝒗𝐿|  . (2-58) 

The prefactor 𝐶𝑘,𝐵𝐼𝑇 is normally taken to one, which is also used in the following. 

Formulating the production terms of the energy dissipation and dissipation rate the 

similar heuristic is used as for single-phase flows (Rzehak & Krepper 2013a), e.g. 

𝑃𝜖,𝐵𝐼𝑇 = 𝐶𝜖,𝐵𝐼𝑇  
𝑃𝑘,𝐵𝐼𝑇

𝜏
  . 

(2-59) 

The production term is formulated by dividing the production of the turbulent kinetic 

energy by a time scale 𝜏 with a prefactor 𝐶𝜖,𝐵𝐼𝑇 . Using a dimensional analysis the time 

scale can be formulated on four different ways as shown in Table 2-1. 
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Author 1/𝜏 𝐶𝜖,𝐵𝐼𝑇 

Morel (1997) (
𝜖

𝑑𝐵
2 )

1
3⁄

 1 

Troshko & Hassan  (2001) 
|𝒗𝐺 − 𝒗𝐿|

𝑑𝐵
 0.45 

Politano et al. (2003) 
𝜖

𝑘
 1.93 

Rzehak & Krepper (2012) 
√𝑘

𝑑𝐵
 1 

Table 2-1 Different formulations of the time scale of the turbulence dissipation 
production  

All the models in Table 2-1 are formulated and/or validated for different pipe flows. The 

latter one formulated by Rzehak & Krepper (2012) is taken for the simulations in bubble 

columns. 

2.5 Baseline concept for simulating bubbly flows 
CFD simulations of dispersed bubbly flow on the scale of technical equipment are feasible 

within the above-discussed Eulerian two-fluid framework of interpenetrating continua. 

By the use of suitable closure models describing the physics on the scale of individual 

bubbles or groups thereof. A large number of numerical work exists, in each of those 

largely a different set of closure relations is compared to a different set of experimental 

data. However, the used models are often explicitly picked and adjusted to fit the actual 

experimental data. Therefore, a reasonable agreement for a specific case is reached but a 

reliable predictive modeling is not given. Predictive simulation, however, requires a 

model that works without any adjustments within the targeted domain of applicability. 

As a step towards this goal, the HZDR CFD group attempted to collect the best 

available description for all aspects known to be relevant for adiabatic bubbly flows to a 

baseline model. This attempt was predominantly focused on pipe flows with external 

pressure gradients. In the present work, the performance of this baseline in bubbly flows, 

which are driven by the bubbles, in particular bubble columns, is investigated and 

extended. 

Aspects requiring closure for adiabatic bubbly flows that have to be fixed in the 

baseline model are the exchange of momentum between liquid and gas phases, the effects 

of the dispersed bubbles on the turbulence of the liquid carrier phase and processes of 

bubble coalescence and breakup that determine the distribution of bubble sizes. Those 

closure models require a reliable validation, preferably by the use of experiments, which 

are dedicated to one specific problem over a large range of boundary conditions. Since 

such experimental data not exist, also because the closure models are strongly coupled, 

the complex validation problem has to be simplified. A reasonable simplification is to 

confine on problems with a fixed bubble size distribution as discussed above. In this way 

the sub-models for bubble forces and bubble-induced turbulence can be validated 

independently of bubble coalescence and breakup processes. The validation of this 
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partial problem is done by the use of experimental data from the literature as well as 

experimental data that was produced in the framework of the present work. 

Besides a set of closure models, which are summarized in Table 2-2, other aspects of 

simulating bubbly flows have to be determined. Up to now, these aspects are not fixed in 

the current baseline model version; in the present work, however, they are held constant. 

In particular, the URANS formulation with the SST turbulence model (Menter et al. 2003) 

is used to resolve the large-scale structures, which often occur in bubbly driven flow, 

including a reasonable convergence criterion. Moreover, a slip condition for the gas phase 

and a no-slip condition for the liquid phase are used at the walls. The surface that 

normally occurs in bubbly driven flows is modeled with a degassing boundary with a 

variable pressure on it (Ansys 2013). Here the pressure remains variable over the top of 

the column, which might be interpreted as different surface heights at different positions 

due to the flow, for other scalar quantities of the dispersed phase a constant gradient is 

imposed. Thus, effects of a free surface such as waves or foaming is not considered. The 

gas inlet is modeled by the use of mass flow through surfaces in the range of the generated 

bubble sizes. Accordingly, the initial gas velocity is taken to the ratio of the gas volume 

flow rate to the corresponding inlet area. Therefore, the initial velocity of the gas phase 

in the experiments, which range from zero for single bubble formation to large velocities 

for aerating with gas jets, is not directly modeled because the terminal bubble velocity is 

usually reached after one or two cells (Sokolichin et al. 2004). Furthermore, no 

experimental data with significant gas jets are used in the present work. 

In addition, it is attended to use a simple mesh consisting of rectangular volume cells 

of the same size, only for the simulations of an airlift reactor in Section 7.3 the size of the 

rectangular volume cells differs over the calculation domain due to the complex 

geometry. The size of the volume cells was determined for every validation case in a mesh 

study separately containing at least three different meshes, which is shown once in 

Section 4. A cells size of 5 mm was usually found to be sufficient. For the spatial 

discretization a high-resolution scheme is used (Ansys 2013). For the transient 

discretization, a second-order backward Euler scheme is used. 

Drag force Ishii and Zuber (1979) 

Lift force Tomiyama et al. (2002) 

Wall force Hosokawa et al. (2002) 

Virtual mass 𝐶𝑉𝑀 = 0.5 

Turbulent dispersion Favre Averaging (Burns et al. 2004) 

Table 2-2 Closure models in the baseline model. 

Apart from interest in its own right, results obtained for the momentum exchange 

restricted problem also provide a good starting point for the investigation of more 

complex situations including heat and mass transport, phase change and chemical 

reactions in bubbly flows. 
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3 Experimental Methods 

3.1 Experimental facility 
The used experimental facility, which was build up during the present work, is a 

rectangular Plexiglas® bubble column shown in Figure 3-1. The cross sectional area is 

250 × 50 mm2 large. The total height is 1000 mm. The liquid level is set depending on the 

application. The ground plate is made of 10 mm thick stainless steel and up to 18 needles 

can be placed in the threaded holes shown in the right side of Figure 3-1. The holes are 

displaced to each other. The bubble column is placed in a frame of profiles as shown in 

Figure 3-2. 

The sparger consists of single needles pressed in a bracket with an inner radius of 3 

mm and are screwed in the ground plate. The deburred needles are cut flatly and various 

sizes of them were used in the experiments. The gas volume flow rate is regulated by up 

to two mass flow controllers from Omega Engineering. 

For a proper design of the experiments, the bubble sizes generated by different 

needles were determined with the methods described in Section 3.2. In Figure 3-3 the 

spherical equivalent diameter of the projected area with its standard deviation over the 

volume flow rate per needle is shown. In addition, the bubbles are wobbling during the 

ascent. This wobbling is artificial because the bubble size is evaluated from the projected 

area; the resulting artificial standard deviation is shown in Figure 3-4. The shown 

wobbling standard deviation is the arithmetic average of the standard deviations 

determined along the bubble tracks. 

 

 

Figure 3-1 Sketch of the experimental setup and the ground plate with (right) (metrics 
in mm). 
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Figure 3-2 Photograph of the experimental setup 
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Figure 3-3 Size of the bubbles (top) and the standard deviation of the size (bottom) over 
the volume flow rate for different needle sizes. 

 

Figure 3-4 Wobbling uncertainty  
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3.2 Bubble size 
Determining the bubble size distribution in bubbly flows is essential since all closure 

models discussed above depend on them. Digital image analysis of bubbly flows is often 

used in order to determine the bubble size distribution, which is described e.g. by Bröder 

& Sommerfeld (2007) or Lau et al. (2013). Although the identification of objects from 

photographs is a well-known technique, the reliable identification of bubbles from 

images is still very challenging. The nature of bubbly flows, in particular bubble clusters 

that consists of many overlapping bubbles, is very complex so that a reliable identification 

of bubbles is problematic. Therefore, bubbles in complex bubbly flows are normally 

identified by hand (e.g. by Mohd Akbar et al. (2012)). 

In the following, the used and developed digital image analysis methods in the 

present work are described, ranging from automatized single bubble identification to 

methods of handling bubbles in dense clusters. In the first part, the determination of 

single bubbles with an edge detector is described; further, the basic principles of bubble 

detection are introduced. In the second part, an algorithm is developed to evaluate 

whether a bubble is overlaid by another bubble or not. Using this algorithm, bubble sizes 

can be automatically determined for very low void fractions and/or narrow bubble size 

distributions. Finally, a method is developed to pick bubbles by hand in dense clusters 

with the aid of the previous developed methods. 

After the bubbles are identified, a representative bubble size has to be determined. 

For this purpose, two reasonable assumptions exist, first the circular equivalent diameter 

of the projected area and second the spherical equivalent diameter of the solid of rotation 

of the projected area. Since the closure models are formulated by using the spherical 

equivalent diameter of the bubble volume (Haberman & Morton 1953) (Tomiyama et al. 

2002) the latter one might be a reasonable choice.  

The solid of rotation is calculated by half rotating the left and the right half of the 

bubble that is split by the rotation center as demonstrated in Figure 3-5. The red point 

marks the rotation center of the bubble. The boundary (𝛺1 + 𝛺2) and the projected Area 
(A1 + A2) of the bubble is separated by the rotation symmetry (dashed line). The left and 

right half of the bubble have an own centroid (blue and black point, respectively) with a 

distance to the rotation symmetry of Δx1 and Δx2, respectively.   

 

Figure 3-5 Calculation of the solid of rotation of a bubble. 

Using the second Guldinus theorem and further assuming  𝐴1 = 𝐴2 , the volume is 

calculated by 
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𝑉𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜋(A1Δ𝑥1 + 𝐴2Δ𝑥2) = 𝜋
𝐴𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

2
(Δ𝑥1 + Δ𝑥2) . 

(3-1) 

With the spherical equivalent diameter of this volume, the density functions (DF) are 

calculated. For this purpose, the determined bubbles are separated in bubble size classes 

𝑑𝑖 −
Δ𝑑𝑖

2⁄ ≤ 𝑑𝑏 < 𝑑𝑖 +
Δ𝑑𝑖

2⁄ . The discretized density functions are then calculated by 

𝐷𝐹𝑖 =
𝑓𝑖

∑ 𝑓𝑖𝑖

1

Δ𝑑𝑖
 , 𝑓𝑖 = ∑ 𝑓(𝑑𝑏)

𝑑𝑖−
Δ𝑑𝑖

2⁄ ≤𝑑𝑏<𝑑𝑖+
Δ𝑑𝑖

2⁄
   , 

(3-2) 

With 𝑓  the characteristic function. The number density function is calculated by 

using  𝑓(𝑑𝑏) = 1 , the area density function by 𝑓(𝑑𝑏) = 𝜋𝑑𝑏
2  and the volume density 

function by 𝑓(𝑑𝑏) = 𝜋 6⁄  𝑑𝑏
3. The expected value (𝐸) is calculated by 

𝐸𝑓 = ∑ 𝑓𝑖𝑑𝑖Δ𝑑𝑖
𝑖

   . (3-3) 

For example, the Sauter diameter is the expected value of the area density function. This 

diameter is in the following given as bubble diameter, if not explicitly said otherwise. 

3.2.1 Single bubbles 

In this section, the procedure to determine single bubbles is explained, as for example 

shown in Figure 3-6. All algorithms are based on a modified Canny edge detector (Canny 

1986). The basic algorithm is shortly introduced and results are shown. The 

mathematically description of every step is not given at this point since it is standard 

knowledge and can be found in the literature (Petrou & Petrou 2010) (Parker 2010). All 

images were recorded with a backlight technique with diffusors between the light source 

and the bubble column. 

As a first step the images are generally preprocessed, particularly the images are cut, 

rotated, the contrast is corrected and modified to the needs of the edge detecting 

algorithms. The contrast is corrected by renormalizing the white and black pixels at the 

end of the histogram and elongating the grey scale histogram to fit the complete grey 

scale. For a higher edge detecting quality, a Median and a Gaussian Filter is used. Besides, 

the pixel size and the reference point are determined with calibration grids on the 

experimental facility to identify later the size and position of the bubbles. 

The used edge-detecting algorithm can be separated in the steps: Two dimensional 

derivation, edge thinning and edge selection. The two dimensional derivation is obtained 

by a convolution using the Sobel operator. The edges are thinned to one pixel by taking 

the pixel that is at the minimum of the absolute value function of the two dimensional 

derivation along the normal direction of the bubble surface. The normal direction of the 

surface is calculated from the arctangent function of the derivation in vertical and 

horizontal direction. The normal direction is discretized to 45-degree angels 

corresponding to the pixel discretization of the image. Afterwards, a hysteresis with two 

thresholds is used for the edge selection so that three categories are obtained, below the 

first (edge is deleted), in the middle of the first and second (weak edge) and above the 

second threshold (strong edge). Afterwards, if a weak edge is direct or indirect over other 

weak edges connected to a strong edge, the weak edge becomes a strong edge; else, the 

weak edge is deleted. The output of this double threshold is shown in Figure 3-6. 
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Figure 3-6 Main steps for bubble size determination of single bubbles, left to the right: 
Original image; Edges with weak (grey) and strong edges (white); filled structures; result 
with major and minor axis and area centroid (white dots). 

After the edges are detected, the bubbles have to be identified as such. At First, the 

edges are closed by a simple dilatation and erosion step. Next, the inside and outside of 

every bubble have to be defined. For this purpose, the detected edges are marked as white 

and the rest as black. Afterwards, the obtained image is as often dilated until all the image 

is covered by white. Then, the previous dilation step is considered and evaluated if a black 

pixel exists that have in the original (preprocessed) image a grey value of 127 or larger. 

If so, this pixel is stated as a point in the surrounding and the surrounding is obtained by 

getting the connected black pixels from the image obtained from the edge detecting. If 

there is no black pixel that has a value greater than 127 in the original (preprocessed) 

image, the next previous dilatation step is considered and so on. This algorithm is very 

stable and gives in almost all cases a very good result. The definition of the surrounding 

of the bubbles is very important since the bubbles have also structures inside as can be 

seen in Figure 3-6. Moreover, for complex problems like the particle tracking in bubbly 

flows described below the definition of the surrounding is problematic since most of the 

image is covered by very big bubbles or bubble clusters. Here, the described algorithm 

also works very well. After the surrounding of the single bubbles is defined, the bubbles 

are separated by nature and can be identified easily. Clearly, if bubbles are overlapping 

an extra step for separation is necessary. Finally, the projected areas of the bubbles are 

obtained and the bubble sizes are calculated as described above. 

The limit of the shown algorithm is when two bubbles are touching. Nevertheless, the 

algorithm already shows good results for a single needle sparger as shown in Figure 3-7. 

 
Figure 3-7 Bubble size measurement for a 0.6 mm inner diameter single needle sparger 
with 0.05 l/min gas volume flow rate. 
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3.2.2 Systems with very low void fraction or narrow bubble size distributions 

In the following section, an algorithm is developed to determine whether a bubble is 

overlaid by other bubbles or not. Identifying bubbles that are overlaid by other bubbles 

is simple, but identifying whether a bubble is in front or not is more difficult as well as 

the reconstruction of the bubble(s) in the back. Up to now, no reliable and/or efficient 

methods exist for this purpose. Thus, only the non-overlaid bubbles are used to 

determine the bubble size distribution, segmentation of the overlaid bubbles is not 

conducted. 

Determining the bubble size distribution from the non-overlaid bubbles only, 

imposes the assumption that all bubbles have the same probability to be overlaid, else a 

wrong result is obtained. This assumption is only appropriate if the bubble size 

distribution is narrow. 

The algorithm for the automated evaluation of the recordings is demonstrated in 

Figure 3-8. At first, the raw picture is segmented by the use of an adaptive threshold to 

divide the black surrounding of the bubble and the translucent inside. The adaptive 

threshold is determined for every pixel by averaging over a 25 × 25 pixel area; usually 

this value is subtracted by 5 grey values afterwards. After the adaptive threshold is 

applied, the bubbles that have a translucent inside are identified by a simple divide and 

conquer algorithm. 

The centroid of the translucent inside is used as bubble position. Furthermore, if an 

object appears completely black without a white inside, the use of the adaptive threshold 

is repeated for this single object with a threshold determined with reduced averaging 

area size. This leads to a better segmentation of the previously under-segmented 

completely dark object. 

Next, the result of the above-described edge-detecting algorithm is combined with 

the result of the segmentation; if inside a closed edge more than two bubbles are found, 

the area inside the edge is treated as overlaid bubbles. Finally, the bubble size distribution 

is determined with the non-overlaid bubbles as shown in Figure 3-8. 

 

Figure 3-8: Automated detection of overlaid bubbles. a) Input with corrected contrast b) 
segmented bubbles with positions (grey crosses) c) edge detection algorithm d) cutting 
out the overlaid bubbles (dark grey). Only bubbles larger than 1.5 mm are treated. 

This algorithm is used to identify bubbles in single needle experiments at higher gas 

volume flow rates. Moreover, the algorithm is used in the downcomer of the later 

discussed airlift reactor; a determined volume density function is shown in Figure 3-9. 

Among others, this determined volume density function was compared to a 
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comprehensive evaluating of the bubble size by hand using the algorithm described in 

the next section; as a result, an underprediction of 5 % was found. In general, this 

algorithm gives very good results in bubbly flows containing small bubbles with a narrow 

bubble size distribution and low gas void fraction. 

 

Figure 3-9 Volume density function in the downcomer of an airlift reactor shown in 
Section 7, the shown volume density function is obtained in the downcomer for case 6 
between y =  0.2 m and y =  0.3 m. 

3.2.3 Systems with higher void fractions and wide bubble size distributions 

In general, wide bubble size distributions as well as bubble clusters are found in bubbly 

flows. No method or algorithm is published that can determine reliable bubble sizes in 

such flows. The level reached are methods that are trying to reconstruct overlaid bubble 

structures from single pictures (Bröder & Sommerfeld 2007) (Lau et al. 2013). Such 

reconstruction methods are very limited and can only be used in flow situations with 

simple shapes like spherical or ellipsoid. In real flow problems, larger bubbles have an 

arbitrary shape as demonstrated in Figure 3-10. Even at the lowest flow rate of 3 l/min 

with an integral hold up of around 2% bubble clusters occur and an automated 

reconstruction of the overlaid bubbles might be not possible. 

  
Figure 3-10 Bubbly flow for different volume flow rates, left, 3 l/min, right, 7 l/min. The 
used sparger setup is discussed in Section 3.4.  
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In this context, a semi-automated algorithm is developed. The main idea is to follow 

a bubble cluster over a certain time until all bubbles of the cluster were clearly seen, a 

maximum time is exceeded or the cluster moves out of the observation area. The bubble 

identification in general is again done by an edge-detecting algorithm based on the Canny 

edge detector (Canny 1986). Despite a certain amount of automation, the used algorithms 

need the input of a user for proper separation of complex clusters. 

In Figure 3-11 the results for a bubble cluster recorded over ten frames are shown. 

The projected area of the bubbles at frame zero, five and ten is determined refereed to 

frame zero. The used edge-detecting algorithm suggests shapes of bubbles, the user has 

to pick bubbles and/or separate them from others. In principal, the result is equal to a 

handpicked bubble size distribution. Although the bubble clusters are followed over time 

not all bubbles from the cluster could be evaluated; the bubble in the left corner of frame 

zero is moving behind the larger bubbles the whole time. From experience, such bubbles 

are relatively seldom and are neglected. 

Depending on the distribution of the bubble sizes, 1000 to 4000 identified bubbles 

were found to represent sufficiently narrow and broad bubble size distributions, 

respectively. The repeatability of the method was tested for different flow conditions by 

evaluating the same flow conditions three times, in all cases almost equal bubble size 

distributions were obtained. The reliability of the method cannot be evaluated by 

comparing the obtained bubble size distributions with other methods from the literature 

since no valid methods exist. To get a feeling for the reliability, setups in which no 

coalescence and break up is expected (relatively low gas hold but a broad bubble size 

distribution and using salt as coalescence inhibitor) were evaluated at two different 

heights. A narrow sparger setup was used in order to obtain a bubble plume at the lower 

height and a more or less homogenized bubby flow at the higher. Almost the same results 

at both heights were obtained as demonstrated in Figure 3-12. Thus, it is reasonable to 

assume that the shown method is reliable and robust for complex bubbly flows. 

 

Figure 3-11 Determination of the bubble sizes in bubble clusters by following the cluster 
over ten frames with 200 frames per second recording speed. 
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Figure 3-12 Bubble size distribution determined at two different heights and two 
different volume flow rates; left, 2.2 l/min, right, 3.4 l/min. The sparger consists of four 
needles with 1.5 mm and four needles with 0.6 mm inner diameter. 

3.3 Void fraction 

3.3.1 Needle probe 

The volume fraction is measured by the use of a conductivity needle probe. The 

performance is discussed in several studies, e.g. by Le Corre et al. (2001) or by Manera et 

al. (2009). In the present work, a single needle probe that is described by Da Silva et al. 

(2007) and Schleicher et al. (2008) is used. The probe lance is assembled movable at the 

top of the reactor. 

A needle probe is an invasive method and not usable if the probe lance disturbs the 

flow. Depending on the bubble size, the bubbles need a distinct relative velocity to the 

probe to get reliable information. For example, in the downcomer of the later discussed 

airlift reactor the bubbles are small and have a slow relative velocity to the needle so that 

a needle probe is not useable. 

3.3.2 2D-Videometry 

For very small void fractions, the void fraction is determined with videometry. For 

this purpose, the method for the bubble size measurement given in Section 3.2.2 and 

shown in Figure 3-8 is used. The divide and conquer algorithm that identifies the bubbles 

from the segmented pictures gives the count of all bubbles including the overlaid bubbles. 

From the non-overlaid bubbles, the volume of the solid of revolution obtained by 

revolving of the projected area is calculated. The average of these volumes is assumed 

representative for the bubbly flow so that the total gas volume is calculated by 

multiplying the total bubble count (including overlaid bubbles) with the averaged bubble 

volume (excluding the overlaid bubbles). Performing this method in different areas of the 

downcomer the two-dimensional void fraction distribution along the downcomer is 

obtained. This void fraction is a volume-averaged value over the cross section of the 

downcomer and a certain height. 

Using the above-described manual bubble-picking algorithm, the results of the 

automated void fraction algorithm are compared to an extensive evaluation by hand. As 

a result, an underprediction of 15 % was found for the case with the highest void fraction 
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and broadest bubble size distribution evaluated with the automated method. This error 

is mainly caused by an underprediction of the large bubbles since they have a higher 

probability to be overlaid by smaller bubbles, which leads to a smaller determined 

averaged bubble volume. For lower void fractions and narrower bubble size 

distributions, the error was found to be smaller. 

3.4 Liquid velocity, turbulence & Sampling bias in bubbly flows 
In the following section the particle tracking velocimetry (PTV) using naturally occurring 

micro bubbles and the particle image velocimetry (PIV) using fluorescence particles are 

described. The results of the determined velocity, turbulent kinetic energy and 

fluctuation distribution with both methods are compared and discussed. 

In single-phase flow, added tracer particles do not disturb the flow; in multiphase 
flows, however, these particles often tend to accumulate at the interfaces and could affect 
the flow. In addition, tracer particles contaminate the facility in general, which might 
disturb chemical as well as biological processes. Besides, the seeding of particles can be 
problematic, for example in oceanographic applications. To overcome such problems 
naturally occurring micro bubbles can be used as tracer particles. 

Tracking micro bubbles so that the velocity of the continuous phase can be 
determined is not extensively investigated yet. Nevertheless, some applications can be 
found in literature, e.g. in breaking waves (Ryu et al. 2005), behind propellers bubbles 
(Graff et al. 2008), around dolphins (Fish et al. 2014) or in horizontal channels (Murai et 
al. 2006). Noteworthy, micro bubbles can also be explicitly generated for particle tracking 
as for example shown by Ishikawa et al. (2009). 

In the present work, particle-tracking velocimetry with micro bubbles (BTV) in 
bubbly flows is investigated. In a rectangular tabletop bubble column, the results 
obtained by tracking micro bubbles in the range of 100-300 µm are compared to PIV 
measurements. For BTV a volume illumination is used so that high gas void fractions can 
be investigated. A two dimensional measuring plane is obtained by using a narrow depth 
of field in combination with an edge filter technique. 

Using PTV and PIV the view on the measuring plane is hindered in general because of 
passing bubbles. This leads to a sampling bias that has a significant effect on the 
measurements. This effect is described in the present work; further, a method is 
developed to overcome the bias. 

The sampling bias in general is a well-known phenomenon for many applications. For 
example, in single-phase flow it is described for the usage of LDA (Hoesel & Rodi 1977) 
(Edwards 1987). Based on that, the sampling bias for bubbly flows by the use of LDA was 
described recently by Hosokawa & Tomiyama (2013). Nonetheless, a sampling bias in 
multiphase flow is not restricted to LDA measurements, it might occurs for all measuring 
techniques that are affected by the phases. 

3.4.1 Particle Image velocimetry in bubbly flows 

Particle image velocimetry in bubbly flows is a well-known method and is frequently 

used since the late nineties of the last century (Oakley et al. 1997). The fundamental 

principle is to illuminate tracer particles with a laser once or multiple times; the velocity 

is determined by the particle displacement. 

In multiphase flow, the problem arises to distinguish between the phases. The 

bubbles are usually masked from the images (Brücker 2000) (Deen et al. 2002) for this 
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purpose. An early method that is described by Jakobsen et al. (1996) uses edge detecting 

algorithm to identify the brighter illuminated bubbles, which is also used recently by 

Pang & Wei (2013). Later, the use of fluorescence particles imprinted with Rhodamine is 

used (Lindken et al. 1999). Rhodamine is fluorescenting in the yellow to red spectra 

whereas the lasers used for PIV often emitting green light. A color filter for green light is 

used in order to reduce reflections coming from the bubbles. The fluorescence particles, 

however, tend to accumulated at the bubble surfaces and the bubbles are still present in 

the recording. 

Noteworthy, besides cutting the bubbles out, the phases can be distinguished by 

different displacement peaks (Delnoij et al. 2000). Another method is the shadowgraph 

technique which is described e.g. by Lindken & Merzkirch (2002) and is frequently used 

in bubbly flows (Fujiwara et al. 2004) (Bröder & Sommerfeld 2007) (Sathe et al. 2010) 

(Deen et al. 2001). The bubbly flow is illuminated with an additional light source so that 

only bubbles by a second camera or in an extra pulse are recorded. The resulting complex 

experimental setup is a disadvantage of those techniques. For that reason, fluorescence 

particles are used in combination with digital image analysis in order to identify the 

bubbles in the same recording with the PIV particles. 

The flow is seeded with 20-50 µm PMMA particles imprinted with Rhodamine from 
microParticles GmbH in Berlin. The particles are illuminated by a two dimensional laser 
light sheet from the side. A double-pulsed laser is used with a difference of 1/2500 s 
between the pulses, the double pulse is generated every 1/10 s. Every pulse is recorded 
separately by one high-speed camera. 

The recorded pictures are separated in rectangular interrogation areas, which are 2 
mm large and are overlapping 50%. The commercial software Davis 8.2.1 is used for this 
purpose. Hence, the PIV methods are not explicitly discussed at this point, a detailed 
explanation of those can be found in various books, e.g. in the book of Raffel (2007). For 
the phase discrimination, the complete interrogation areas that touch a bubble or a 
shadow are excluded. Thus, the bubbles and shadows have to be identified from the 
recordings. 

A median filter is used in order to eliminate the tracer particles from the image 
(Lindken et al. 1999), which is demonstrated in Figure 3-13. After the median filter is 
applied (2), two thresholds are used. First, a low threshold value is applied to get more 
or less closed bubble boundaries (3); many structures remain that do not belong to 
bubbles. Second, a high threshold value is used to get only the bubbles (4). The obtained 
bubbles are not complete, but almost all structures belong reliable to bubbles. The 
pictures obtained from both thresholds are segmented and combined. If an object from 
(4) touches an object from (3), this object (from (3)) is taken as a bubble. The bubble 
structures are colored black in (5). Finally, the identified bubbles are dilated and eroded 
to close possible disrupted boundaries (6). The artificial coalescence that is seen in (6) is 
not adverse because possibly overexposed areas are identified as well.  
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(1) 

 

(2) 

 
(3) 

 

(4) 

 
(5) 

 

(6) 

 
Figure 3-13 Algorithm for determining the bubbles in the PIV image for case 3 (1): The 
obtained image from the PIV camera. (2): Applying a median filter on (1). (3): Results 
obtained from a low threshold on (2). (4): Results obtained from a high threshold on 
(2). (5): Hysteresis of the low and high threshold value results (6): Closing the 
boundaries and filling the structures. 

The laser that illuminates the particles is coming from the left in Figure 3-13 (1) so 

that the bubble located in the sheet produce a shadow in which no particles are seen. 

Therefore, such shadows have to be cut out as well. The same procedure as described for 

the bubbles is used for this purpose. The result of the bubble and shadow detecting is 

shown in Figure 3-14. In the top right corner the shadow is not detected (marked red in 

b)) because the reflections of the other bubbles re-illuminate it, which is representative 

for a distinct problem using PIV in multiphase flow in general; the light is reflected 

arbitrary at the bubble surface. Such reflections lead to a scattering of the accurate 

produced laser sheet. Consequently, particles might be seen that are not in the quasi two-

dimensional measuring area originally generated by the laser sheet. 
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a) 

 

b) 

 
c) 

 
Figure 3-14 Masking the bubbles and shadows. a) The original PIV image; b) the bubble 
masks (blue) and shadow mask (black); c) obtained velocity vectors. 

Despite fluorescenting particles are used, nearly all bubbles in the bubble column are 
seen. Bubbles that are not in the laser sheet are illuminated by the scattered light from 
the bubbles in it and other reflections. These bubbles are seen bright in the recorded 
pictures and are cut out by the post processing. The out of plane bubbles can be identified 
in Figure 3-14 by the missing shadow behind them (light comes from left). 

Therefore, the velocity information in general behind or before a bubble (related to 
the view of the recording camera) in the bubble column is not measureable, besides, the 
bubbles between the laser sheet and the camera naturally block the view in general. This 
behavior leads to a sampling bias discussed below. 

3.4.2 Particle tracking velocimetry with micro bubbles in bubbly flows  

In contrast to the frequent use of PIV, PTV is rarely used in bubbly flows and only few 

examples are found in literature. However, PTV is an often-used technique in single-

phase flows (Dimotakis et al. 1981). In the present work, micro bubbles as tracking 

particles are used (Bubble tracking velocimetry – BTV). 

In contrast to PIV, a volume illumination is used so that the experimental set-up is 

simplified and higher gas volume fractions can be realized. A camera setup with a narrow 

depth of field in combination with an edge filter is used in order to obtain a two 

dimensional measuring plane. The technique is demonstrated in Figure 3-15. The field of 

maximum sharpness is situated between the fourth and the fifth object from the left. The 

blurring is increasing with increasing distance to the field of maximum sharpness. The 

edge-detecting algorithm (Canny 1986) is applied on the a); the normalized edge strength 

is shown along the red-white dotted line in picture b). Here, only the edges of the squares 

are of interest, so the borders of the objects are excluded from the diagram in order to 



3.4    Liquid velocity, turbulence & Sampling bias in bubbly flows 

43 
 

constitute the method clearly. A hysteresis on the edge strength is applied so that the 

blurred edges are excluded. For the shown example, the hysteresis would cut out all edges 

with an edge strength below 0.8. 

With a similar test set-up, the depth of field was calibrated to 2 mm; the results of this 

calibration are shown in Figure 3-16. The lowest measurable depth of field with the 

present setup is 2 mm because the test object displacement in depth is 1 mm similar to 

that shown in Figure 3-15. In practice, a resolution of 21 Px/mm with a normalized edge 

filter of 0.75 gives good results so that a sufficient large area of view is still seen. These 

settings will be used for the measurements in this work. The method applied to bubbly 

flows is demonstrated in Figure 3-17. The marked bubbles, which are in the maximum 

field of sharpness, are used for tracking. 

a) 

 

 

b) 

 
 

Figure 3-15  Determining the depth of field by filtering the edge strength. The distance 
in depth between the test prints is 1 mm. a) Original picture, b) edge strength in grey 
shades and as graph along the red-white dotted line. 
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Figure 3-16 Determination of the depth of field depending on the edge filter for three 
different resolutions. 

 

Figure 3-17 Bubbles that are used for tracking in the field of maximum sharpness. 

After the micro bubbles are identified, the weighted averaged position of the pixels 

that belongs to the micro bubble is calculated in order to calculate the bubble position 

𝒙𝑃 =
1

∑ 𝜔𝑗    
 
 

 

𝑗

 ∑ 𝜔𝑗𝒙𝑗   
 

 
 

 

𝑗

. 
(3-4) 

With 𝒙𝑃 the resulting positon vector, 𝒙𝑗  the position vector of the 𝑗𝑡ℎ-pixel, 𝜔𝑗  the scalar 

weight function of the 𝑗𝑡ℎ-pixel and 𝑗 the pixel index over all pixels assigned to the micro 

bubble. In general, the mass weighted centroid is the correct position for particle 

tracking. Since this information is often not accessible, other methods are required as 

discussed by Feng et al.  (2007) and by Saunter (2010). Here, the position is determined 
by calculating the centroid of the projected area (𝜔𝑗 = 1 ∀𝑗), which is reliable since the 

micro bubbles are spherical and have a sharp boundary. 
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After the positions are determined in all pictures that belong to a burst, the particle 

tracks have to be determined. In principal, this problem can be formulated to define 

similarity conditions that group positions to one track. For problems with a very high 

particle concentration, this can be a challenging task and is still an active discussion in 

literature. For the present setup, however, the concentration of the micro bubbles is low; 

hence, the nearest particle in the next image is used to connect the particles to a track: 

𝕋i = {𝐱P,k(t), 𝐱P,j(t + Δt) ∈ ith Burst|‖𝐱P,k(t) − 𝐱P,j(t + Δt)‖ < d

∩ ∀𝐱p(t + Δt): ‖𝐱P,k(t) − 𝐱P(t + Δt)‖ ≤ ‖𝐱P,k(t) − 𝐱P,j(t + Δt)‖}. 

 (3-5) 

The micro bubble positions 𝐱P,k(t), 𝐱P,j(𝑡 + 𝛥𝑡) in a burst of pictures are in the set 𝕋𝑖 if 

the distance between 𝐱P,k(t)  and 𝐱P,j(𝑡 + 𝛥𝑡) is smaller than 𝑑  and 𝐱P,j(𝑡 + 𝛥𝑡)  is the 

nearest position at time 𝑡 + 𝛥𝑡 compared to 𝐱P,k(t); the set  𝕋𝑖  is called the 𝑖𝑡ℎ - track. 

From experience, the distance 𝑑 is chosen to be equivalent to a velocity of 1.5 m/s divided 

by the measuring frequency for the discussed bubble column experiments. The set 

formulated in Equation (3-5) is only meaningful if two or more micro bubbles are not 

crossing each other during the recording. This does almost not exist because the 

recording frequency is high so that the micro bubble displacement is low. 

In Figure 3-18 an example of the BTV method in a 60 mm wide channel is shown. Two 

pictures are taken consecutively with a recording frequency of 1000 Hz. In general, it is 

assumed that the micro bubbles move linear, hence the velocity of the 𝑖𝑡ℎ -track is 

calculated by the displacement multiplied with the recording frequency: 

𝒗𝑷,𝒊(𝑡𝑖̅, 𝒙̅𝒊) =
1

Δ𝑡
(𝒙𝑷,𝒊(𝑡𝑖 + Δ𝑡) − 𝒙𝑷,𝒊(𝑡𝑖)) , 𝒙𝑃,𝑖 ∈ 𝕋𝑖 . 

(3-6) 

With 𝒗𝑷,𝒊  the velocity vector of the 𝑖𝑡ℎ -track, 𝑡𝑖̅  and 𝒙̅𝒊  the time and position of the 

calculated velocity vector, respectively. Since the movement is assumed linear, the 

position 𝒙̅𝑖 of the velocity vector is calculated by 

𝒙̅𝑖 = 𝒙𝑷,𝒊(𝑡𝑖) +
1

2
 (𝒙𝑷,𝒊(𝑡𝑖 + Δ𝑡) − 𝒙𝑷,𝒊(𝑡𝑖)) ;  𝑡𝑖̅ = 𝑡𝑖 +

1

2
 (Δ𝑡), 𝒙𝑃,𝑖 ∈ 𝕋𝑖  . 

(3-7) 

The time 𝑡𝑖̅ of the velocity vector 𝒗𝑷,𝒊 is taken as the time in between the frames. 

 
Figure 3-18 Particle tracking using mini bubbles below 500 µm diameter in a 60 mm wide 

chanel. Bottom: The original picture at t = t1; top: The selected particles at t = t1 and t =

t1 + Δt labeld with different grey tones, Δt = 1/1000 s. 
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The demand of linear movement of the micro bubbles leads to a high recording 

frequency. On the contrary, a high recording frequency leads to very small displacements 

if the particles have a small velocity. The pictures are recorded in discrete pixels so that 

the pixel-discretization error becomes significant for very small displacements. In order 

to obtain sufficient displacements, the particles are usually tracked at least four times by 

a pulsed camera every 1/1600 s; if the micro bubble does not move its own radius from 

one picture to another, the next picture will be taken. The first and the last picture are 

used if a bubble does not move its own radius during the four-recorded frames. 

It should be noted that the time interval between two pictures becomes important if 

the particles are strongly accelerated in this time. This problem is also reduced by 

recording several images in one burst of several pictures because the recording 

frequency is increased; this topic is discussed for example by Feng et al. (2011). 

In general, the naturally occurring micro bubbles are used as tracking particles so 

that the size of them cannot be controlled. Micro bubbles in the range of 100 – 300 µm 

exist in large numbers in the investigated bubbly flows. Such are large compared to tracer 

particles usually used for velocity measurements, but the micro bubbles are distinctly 

lighter than such tracers are. The micro bubbles, however, have a terminal velocity that 

has to be taken into account. 

The Stokes number (St) gives information about if particles are capable to follow all 

turbulent scales of the flow and, therefore, if the determined particle velocities give 

reliable information about the flow. The Stokes number is equal to the ratio between the 

characteristic time scale of the particle and the flow 

𝑆𝑡 ≡
𝜏𝑃

𝜏𝐹
   . (3-8) 

For velocity measurements very small, buoyancy neutral tracer particles are used that 

fulfill 𝑆𝑡 ≪ 1. If the Stokes number is around one or even larger, important deviations 

occur from the perfect flow following behavior. For particles with a greater density than 

the continuous phase and a Stokes number around one the particles are accumulating in 

region with high strain (Maxey 1987), which can be quantified with the second invariant 

of the strain tensor 
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 (Squires 1990). It could be shown that larger particles than the 

Kolmogorov length with a density similar to the flow show a similar behavior as heavier 

particles smaller than the Kolmogorov length (Xu & Bodenschatz 2008) (Bourgoin et al. 

2011). The wake effects of the larger particles and the Faxen correction of the added mass 

becomes important, as dicussed for example by (Calzavarini et al. 2011).  More recently, 

the behavior of micro bubbles is studied in turbulence with Stokes numbers below one 

(Mercado et al. 2012),  for 75 µm bubbles with a Stokes number around one (Volk et al. 

2008) and above (Prakash 2013). In comparison to heavy particles, bubbles show a 

different behaviour; however, compared to tracer particles also a different behavior and 

clustering effects depending on the turbulence structure occur. Therefore, it can be 

assumed that such clustering effects also occur in bubbly flows when the micro bubbles 

are used for particle tracking. This is important because if the micro bubbles, for example, 

tend to accumulate in the wake region of the larger bubbles, this regions might be 

overrated in the averaging process, hypothetically. This topic, however, is not yet 

investigated and the effect of the wake and turbulence structure in bubbly flows on the 
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accumulation of micro bubbles are speculative, hence these possible effects are neglected 

at this point but should be keept in mind. 

The characteristic time scale of complex bubbly flows is not known so that the Stokes 
number cannot be used at this point. To get an idea, however, the results obtained with 
different micro bubble sizes are compared below. Moreover, the characteristic time scale 
is used in order to compare the micro bubbles with tracers used in similar experiments, 
which is shown in Table 3-1. The characteristic time scale, which is the time constant of 
the exponential decay of the particle velocity due to drag, is calculated by taking the 
virtual mass into account (Calzavarini et al. 2008) to 

𝜏𝑃 =
1

12

𝑑𝑃
2

𝜈

2𝜌𝑃 + 𝜌𝐹

3𝜌𝑓
  . 

(3-9) 

In general, the time scale of the used micro bubbles is comparable to other methods. 
Their time scale is in the range of the PIV particles used by Deen et al. (2001). LDA 
particles, however, have a distinctly smaller time scale whereas the polystyrene particles 
used for Computer-Automated Radioactive Particle Tracking (Luo & Al-Dahhan 2008) 
have a significantly larger time scale. 

Reference Time scale 𝝉𝑷 Particles Method 

Present work 100 µm: 0.3 ms 
200 µm: 1.1 ms 
300 µm: 2.5 ms 
 

Bubbles 
𝑑𝑃: 100-300 µm 

Particle tracking 

Deen et al. (2001) 0.21 ms PMMA particles 
𝑑𝑃: 50 µm 
 

PIV 

Julia et al. (2007) 0.03 ms Hole glass particles 
𝑑𝑃: 20 µm 
 

LDA 

Luo & Al-Dahhan 
(2008) 

53 ms PS particles 
𝑑𝑃: 800 µm 

Computer-
Automated 
Radioactive Particle 
Tracking (CARPT) 

Table 3-1 Characteristic particle time scale for different measurement techniques in 
bubbly flows 

In contrast to buoyancy neutral tracer particles, the density of the micro bubbles is 
smaller than the density of the liquid. The rising velocity has to be subtracted from the 
measured velocity. The rising velocity is calculated by using the drag law by Bozzano & 
Dente (2001).  

3.4.3 Sampling Bias in bubbly flows 

A sampling bias occurs if a not representative sample, in which some values are less likely 

included than others, is picked. If the liquid velocity is measured with BTV or PIV in 

bubbly flows, such a not representative sample is picked. Bubbles that are passing the 

field of view hinder the view on the measuring plane. However, these large bubbles drive 
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the flow so that higher velocities occur just when many of these bubbles are in the field 

of view. Since these velocities are less likely measured because the large bubbles hinder 

the view, a sampling bias occurs. It should be noted, that the sampling bias is not caused 

by the bubbles inside the measuring plane, but by the bubbles out of it. 

The sampling bias is demonstrated in Figure 3-19. Clearly, the count of the velocity 
information is low when the vertical velocity is high and vice versa. The above-described 
behavior leads to this negative correlation. Other mechanisms might be identified that 
cause a sampling bias, for example the re-illumination of the shadows by the other 
bubbles for the PIV measurements or the micro bubble generation by the system for the 
BTV measurements. The hindered view on the measuring plane due to the passing 
bubbles, however, seems to be the most significant for the present setup. 

Due to the sampling bias, the calculation of the correct averaged velocity is not trivial. 
The ensemble average is usually used to calculate the averaged velocity 

𝒗̅𝑃 = 〈𝒗𝑃 〉 =  
1

∑ 1   
 
 

 

𝑖

∑ 𝒗𝑃,𝑖(𝒙𝑃,𝑖, 𝑡𝑖)
 

 

 
 

𝑖

   , (3-10) 

with 𝒗𝑃,𝑖(𝒙𝑃,𝑖, 𝑡𝑖) the particle velocity. When the non-random picked sample is used, an 

error occurs using the ensemble average. This might be quantified with the correlation 
coefficient 

𝜌(𝒗̅𝑃, 𝒞𝑇) =
𝐶𝑜𝑣(𝒗̅𝑃 , 𝒞𝑇)

𝜎(𝒗̅𝑃)𝜎(𝒞𝑇)
    , (3-11) 

with 𝐶𝑜𝑣(𝒗̅𝑃, 𝒞𝑇) the covariance between the averaged velocity 𝒗̅𝑃 and the count of the 
trajectories 𝒞𝑇 that are used to calculate this averaged velocity  

𝐶𝑜𝑣(𝒗̅𝑃, 𝒞𝑇) = 〈 (𝒗̅𝑃 − 〈𝒗̅𝑃〉)  ⋅ ( 𝒞𝑇 − 〈𝒞𝑇〉 ) 〉    . (3-12) 

In PTV methods, the averaged velocity 𝒗̅𝑃  is the average of the particle velocities in a 
certain measuring area so that 𝒞𝑇 is the count of trajectories in this measuring area. The 
correlation coefficients of the examples in Figure 3-19 are both around -0.4. 

To overcome the sampling bias various methods exist. If the flow contains enough 
particles and the velocity is only desired at one specific point, a windowed ensemble 
average over time 𝒗̅𝑃,𝑖 will provide reasonable results 

𝒗̅𝑃,𝑖  =  〈𝒗𝑃,𝑖 〉Δ𝑡 =  
1

𝒞𝑇Δ𝑡

∑ 𝒗𝑃(𝒙𝑃, 𝑡𝑖)
 

 
 

 

𝑡𝑖−
Δ𝑡
2

≤𝑡𝑖<𝑡𝑖+
Δ𝑡
2

   , (3-13) 

with 𝒞𝑇Δ𝑡
 the count of trajectories in the time window Δ𝑡. The averaged velocity over the 

total time is then calculated by 

𝒗̅𝑃 = (𝒗̅𝑃,𝑖)
̅̅ ̅̅ ̅̅ ̅ = 〈〈𝒗𝑃,𝑖 〉Δ𝑡 〉 =  

1

∑ 1   
 
 

 

𝑖

∑〈𝒗𝑃,𝑖 〉Δ𝑡

 

 
 

 

𝑖

   . (3-14) 

As a consequence, the covariance between 𝒗̅𝑃,𝑖 and the count of the windowed averages 

𝒞Δ𝑡 = 1  is zero because 1 − 〈1〉 = 0  and, thus, also the correlation coefficient. This 
averaging is also used in single-phase flow problems using (LDA) (Edwards 1987) (Murai 
et al. 2001) and is called hold processor. 
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Figure 3-19 Sampling bias in bubbly flows using BTV (top) and PIV (bottom). The tracked 
vertical velocity (dashed blue line) and the count of the determined trajectories 
(continuous red line) are smoothed with a moving average to represent the sampling bias 
clearly. 

The length of the time interval Δ𝑡 is problematic; if a too long or too short interval is 
used, the same sampling bias will be obtained. The problem is solved by using a variable 
time interval depending on the distribution of the velocity information over the 
measuring area. 

In fact, the velocity information is not distributed equally over the measuring area for 
the used setups. More bubbles that hinder the field of view are found in the center so that 
the count of the velocity information near the wall is twice as high as in the center. 
Therefore, simple hold-processors that wait in time until certain amounts of trajectories 
in one area/at one point are sampled are not meaningful. Therefore, the measuring area 
is discretized in grid cells and the hold processor waits the time Δ𝑡𝑖 (hold time) until all 
grid cells are filled with at least one velocity information. Afterwards, the velocity 
information is averaged over the time Δ𝑡𝑖 inside the grid cells. Thus, one value in each 
grid cell is obtained afterwards. The averaging over the grid cell is a windowed averaging 
in space. After the complete measuring time, these averaged values are arithmetic 
averaged. In the following, this hold processor in space and time is written as 〈𝑣𝑃,𝑗〉Δ𝑡𝑖

 

 
. 

This procedure can be formulated as 
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〈𝑣𝑃〉Δ𝑡𝑖

 (𝒙𝑗) =   
1

𝒞𝑇Δ𝑡𝑖
(𝒙𝑗)

∑ 𝒗𝑃(𝒙𝑃, 𝑡𝑖)
 

 
 

 

𝑡𝑖−
Δ𝑡𝑖
2

≤𝑡𝑖<𝑡𝑖+
Δ𝑡𝑖
2

, 𝑥𝑃
𝑘 ∈ (𝑥𝑗

𝑘 − 𝑑𝑘, 𝑥𝑗
𝑘 + 𝑑𝑘]   , 

 (3-15) 

with 𝒙𝑗  the centroid of the 𝑗𝑡ℎ -grid cell and 𝒞𝑇Δ𝑡𝑖
(𝒙𝑗)  the count of the trajectories 

collected over Δ𝑡𝑖 in the  𝑗𝑡ℎ-grid. For the present setups, the grid cells are quadratic so 
that 𝑥𝑃

𝑘 ∈ (𝑥𝑗
𝑘 − 𝑑𝑘, 𝑥𝑗

𝑘 + 𝑑𝑘] for the 𝑘𝑡ℎ-coordinate. The algorithm is illustrated in Figure 

3-20. 

 

Figure 3-20 The algorithm for the hold processor in space and time with an example on 
an Eulerian grid with illustrated velocity vectors. 

Using this hold processor, the sampling bias is overcome. For investigation a test function 
with an analytic solution can be defined, for example 

𝑦𝑗(𝑥𝑖) = sin ((
𝔾(𝑛(𝑖))

𝑗

√𝑠
+

xi

𝜋
) ⋅ 𝜋) + 𝑑,       𝑥𝑖 = 𝑥𝑖−1sgn(sin((Δ𝑥 ⋅ 𝑖)π)) ⋅ Δ𝑥 . 

 (3-16) 

The function described by Equation (3-16) is a discretized sinus function. The 
Gaussian distribution function 𝔾(𝑛(𝑖))

𝑗
 provides 𝑛(𝑖) points between 0 and 1. The sinus 

function is meandering in time by shifting the x-axis; the time is denoted with 𝑖 . The 
amount of discretization points 𝑛(𝑖) is randomly distributed over time. The meandering 
Gaussian distribution simulates a problem similar to the one shown in Figure 3-19 with 
a positive correlation coefficient between sampling count (represented by the Gaussian 
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distribution) and the measuring value (the sinus function value  y) . The correct average 
in continuous space over the steps 𝑖  of this test function is simply 𝑦(〈𝑥𝑖〉) = sin(𝑋𝜋 +
〈𝑥𝑖〉) + 𝑑 (𝑋 is the x-axis). 

The above defined hold processor  〈𝑣𝑃,𝑗〉Δ𝑡𝑖

 

 
 can be studied by the use of this easy test 

function nicely. For example, using Δ𝑥 = 0.1  and 𝑑 = 0.5  the sinus function is 
meandering in 0.1 𝜋⁄  steps around 0.5 with 𝑥𝑖 ∈ [−0.5,0.5]. Using 𝑠 = 50, the normalized 
averaged results obtained with the hold processor, the simple ensemble averaging and 
the analytical solution are shown in Figure 3-21. Obviously, the hold processor can 
represent the averaged function. The ensemble average method, in contrast, cannot 
represent it. 

 

Figure 3-21 Comparison of the hold processor with the simple ensemble averaging used 
on the analytical test function. 

If the time step is too large or the hold processor have to wait too long, the result will 
tend to the simple ensemble-averaged result. The best results will be obtained if no 
waiting time is needed so that only the information is windowed averaged in space due 
to the grid definition; if the grid cells are too large, the sampling bias persists inside them. 
Naturally, if no sampling bias occurs and enough velocity information is available, the 
hold processor is equal to the ensemble average. 

Turbulence parameters have to be formulated correctly when the hold processor is 
used. For example, the turbulent kinetic energy 𝑘 is defined as 

𝑘(𝑡) =
1

2
(𝑣𝑥

′ 𝑣𝑥
′ + 𝑣𝑦

′ 𝑣𝑦
′ + 𝑣𝑧

′𝑣𝑧
′  )  . (3-17) 

With 𝑣𝑘
′  the fluctuation in the 𝑘𝑡ℎ-direction 

𝑣𝑘
′ (𝑡) =  𝑣𝑘(𝑡) −  〈𝑣𝑘〉 . (3-18) 

The hold processor must not be simply used on the turbulent kinetic energy or the 
fluctuation. The fluctuation in the 𝑗𝑡ℎ-cell in the 𝑘𝑡ℎ-direction have to be written as 

𝑣𝑗,𝑘
′ (𝑡) =  𝑣𝑗,𝑘(𝑡) − 𝑣̅𝑗,𝑘 = 𝑣𝑗,𝑘(𝑡) − 〈𝑣𝑗,𝑘〉Δ𝑡𝑖

  . (3-19) 

Moreover, the fluctuation must not be simply averaged over the hold time because the 
fluctuations with different sign would compensate each other. Consequently, the square 



3    Experimental Methods 

 

52 
 

of the fluctuation is averaged with the hold processor, hence the turbulent kinetic energy 
at the discrete time 𝑡𝑖 in the 𝑗𝑡ℎ-cell is calculated by 

𝑘𝑗(𝑡𝑖) =
1

2
(〈𝑣𝑗,𝑥

′ 𝑣𝑗,𝑥
′ 〉Δ𝑡𝑖

+ 〈𝑣𝑗,𝑦
′ 𝑣𝑗,𝑦

′ 〉Δ𝑡𝑖
+ 〈𝑣𝑗,𝑧

′ 𝑣𝑗,𝑧
′ 〉Δ𝑡𝑖

 )  . (3-20) 

The same treatment is needed for all statistic variables. 

3.4.4 Results 

The bubble column that is described in Section 3.1 is used. The liquid velocities and 

turbulence parameters were determined at the centerline 0.2 m above the ground plate 

as shown in Figure 3-22. The sparger that is installed level with the ground plate consists 

of eight needles with an inner diameter of 1.5 mm. 

Six different volume flow rates, which are given in Table 3-2, are investigated. The 

volume flow rate was measured and controlled with a mass flow controller. 0.375 liter 

per minute per needle was the smallest possible volume flow rate whereas 20 liter per 

minute in total was the highest possible with used mass flow controllers. 

 

 

Figure 3-22 Experimental setup used for the liquid velocity experiments. Left a sketch of 
the facility, the measuring line is dotted red, the axis indicate the origin; right the ground 
plate of the bubble column with the holes for the used needle sparger. 

Case 
Number 

Volume flow rate  
[liter/min] 

Flow per needle 
 [liter/min] 

3 3  0.375  
4 4  0.5 
5 5  0.625  
7 7  0.875  
13 13  1.625  
20 20 2.5 

Table 3-2 The different gas volume flow rates used for the experiments, the values are 

refereed to standard conditions. 
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3.4.4.1 Micro bubble tracking velocimetry 

The micro bubbles were tracked by the use of a Redlake motion pro high-speed camera 

and a Sigma macro objective with a focal length of 300 mm. Since a distinct magnification 

was needed, only a quarter of the bubble column could be recorded so that two different 

measurements had to be executed in order to get a velocity profile over half of the bubble 

column. Moreover, the different volume flow rates were measured for one window 

consecutively to reduce the measuring effort. Nevertheless, no significant mismatch at 

the overlapping regions was observed as demonstrated in Figure 3-23. Therefore, this 

error is negligible and the overlapping regions are simply averaged. 

 

Figure 3-23 Left and the right measuring window of the left half of the column for case 
13. 

Micro bubble size 

The size of the micro bubbles that are used for particle tracking is not uniform and 
different at different positions. Bubble size distributions at two positions are 
demonstrated in Figure 3-24. Near the wall, the count of smaller bubbles is higher than 
towards the center. Hypothetically, if the smaller bubbles follow the flow better than the 
larger bubbles, locally different turbulence parameters are obtained. Therefore, it is 
essential to track bubbles in a range of size in which the capability to follow the flow is 
the same. Moreover, the general capability of the micro bubbles to follow the liquid flow 
fields is of interest to assess possible errors due to the larger size and smaller density of 
them compared to, for example, LDA or PIV particles. 

The results that are obtained by using different micro bubble sizes are compared to 
each other for case 13 in Figure 3-25. They are discretized in five different groups. For 
every group the liquid velocity and fluctuation is determined. 

The vertical liquid velocity is similar for all bubble groups except for the group of 400-
500 µm micro bubbles; near the wall, the results are lower than the others are. Tracking 
larger micro bubbles, however, must not imply a larger vertical velocity due to the higher 
terminal velocity because the liquid velocity is corrected with this. The results that are 
obtained by using all bubbles (bubble group 150-500 µm) is not equal to the average of 
the results over all sub bubble groups because all results are obtained by using the hold 
processor. In addition, the quantity of the tracked micro bubbles in the different bubble 
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groups is not the same, but the quantity of the smallest group is sufficient to produce a 
plausible result. 
 

 

Figure 3-24 Count of the tracked micro bubbles for case 13 at the wall and towards the 
center; the center is at x = 0.125 m. 

The normal Reynolds stress tensor component v′v′(v is the vertical velocity) might 
indicate a different ability to follow the flow for the different bubble sizes. Looking at b) 
in Figure 3-25 a clear trend is seen. In the center v′v′ is decreasing with increasing bubble 
size. The results obtained with the bubble groups ranging from 150 to 250 µm and from 
200 to 300 µm, however, are almost equal. 

In addition, the probability density function (PDF) of the fluctuations is shown in c) 
and d); the larger and smaller micro bubbles have the same behavior in general. The PDF 
of the larger bubbles, however, are smoother than the functions of the smaller bubbles, 
although the quantity of the smaller size group is larger; particularly in picture c), the 
smaller size group contains 7 600 tracks whereas the larger bubble size group only 6 300 
tracks. Despite this, the PDFs of the small bubbles and the large bubbles are similar, 
especially at the shoulders. 

Overall, the results obtained using larger micro bubbles are different compared to the 
results using smaller micro bubbles. The trend of decreasing Reynolds stress tensor 
component v′v′ with increasing size might indicate a worse capability to follow the flow 
of these. However, the PDFs of the small and large bubbles are similar at high fluctuations. 
A definite conclusion cannot be drawn since the characteristic time scale of the fluid flow 
is unknown. Nevertheless, the results that are obtained using bubbles between 150 and 
300 µm are similar for the present setup so that this bubble group is used for further 
investigations. Noteworthy, the good agreement between the PIV results and the bubble 
tracking results, which is later discussed, might confirm that the chosen bubble size group 
is reasonable. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3-25 Comparing the results obtained by tracking different bubble sizes. a) The 
vertical liquid velocity v for the different bubble sizes, b) the normal Reynolds stress 
tensor component v′v′, c) the fluctuation probability function in 0.0375 m < x < 0.05 m 
for two bubble groups, b) the fluctuation probability function in 0.0875 m < x < 0.1 m 
for two bubble groups. 

Influence of the different volume flow rates 

The results for all cases that are obtained with the BTV technique are shown in Figure 
3-26. The progression of the vertical liquid velocity with increasing the gas volume flow 
rates is reasonable. 

As expected, the normal Reynolds stress tensor components 𝑣′𝑣′  and 𝑢′𝑢′  are 
increasing with increasing gas volume flow rates (𝑢 is the horizontal velocity). The graphs 
of 𝑣′𝑣′ show a distinct peak between the wall and the center for all volume flow rates. In 
contrast, 𝑢′𝑢′  is permanently increasing towards the center. This behavior is also 
described in other work using similar experimental setups (Mudde et al. 1997) (Simiano 
et al. 2006). Since the flow regime is changing, 𝑣′𝑣′ and 𝑢′𝑢′ obtained for case 20 are 
distinctly higher than these for the other flow rates are. In case 20 all bubble sizes are 
pulled downwards in the recirculation zone so that the bubble column is completely filled 
with bubbles; whereas in case 13 bubble clusters are pulled downward occasionally and 
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in case 7 only few bubbles. The possible outlier in the 𝑢′𝑢′ graph obtained for case 20 at 
around x = 0.055 m is discussed below. 

a) 

 

b) 

 

c) 

 
Figure 3-26 Results of the BTV for all cases. a) Vertical liquid velocity v  b) normal 
Reynolds stress component v′v′ c) normal Reynolds stress u′u′ (u is the horizontal liquid 
velocity). 

3.4.4.2 Comparison with PIV 

Influence of the sampling bias 

The influence of the sampling bias on the PIV results is demonstrated for three different 
volume flow rates in Figure 3-27. The measuring area is discretized in twelve areas, the 
hold processor waits until all areas contain at least one velocity information as discussed 
above. Looking at the liquid velocity, the sampling bias leads to a flat velocity profile for 
all flow rates. The underprediction in the center is due to the bubbles which drive the 
flow and ,parallel, hinder the view on the measuring plane, therefore, the velocity 
information which contains the higher velocities are underrated. A large negative vertical 
velocity at the wall might be connected to a larger count of bubbles that are pulled 
downward so that these bubbles might block the view on the measuring plane, which 
leads to an underrating of the large negative velocities. 

The normal component of the Reynolds stress tensor 𝑣′𝑣′ is affected by the sampling 
bias in the same way as the liquid velocity. Towards the center, the 𝑣′𝑣′  values are 
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underpredicted for all volume flow rates; the underprediction increases with increasing 
the volume flow rate. Surprisingly, the sampling bias has no effect near the wall in 
contrast to the liquid velocity. Similar to 𝑣′𝑣′ the cross component 𝑢′𝑣′ of the Reynolds 
stress tensor is affected by the sampling bias, although the effect is smaller in the center.  

3 l/min 

 

 

 

 

 
5 l/min 

 

 

 

 

 
7 l/min 

 

 

 

 

 
Figure 3-27 The influence of the sampling bias on the PIV results for different volume flow 
rates. 

The influence on the BTV results is not as strong as on the PIV results as shown in 

Figure 3-28; the influence is weak near the wall for the liquid velocity. Towards the 

center, however, the influence is significant. The same trend is seen for the 𝑣′𝑣′ graph. 

Looking at the 𝑢′𝑣′ graph the influence is compared to the PIV results minor. 

Although PIV and BTV are influenced differently by the sampling bias, the results 

obtained with the hold processor are similar. For the other volume flow rates, the 

agreement between PIV and BTV is very good as well, which is discussed below. Thus, the 

hold processor might be reasonable and both, BTV and PIV, can represent the liquid 

velocity fields. 
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Figure 3-28 The influence of the sampling bias on the BTV results compared to the PIV 
results for case 13. 

Comparison for different volume flow rates 

The results that are obtained with PIV are compared to those with BTV; for the PIV 
measurements 10 minutes were recorded per case whereas for the BTV measurements 
3.75 minutes were recorded. All results are obtained by the use of the hold processor. 

The PDFs of v′ for case 13, which are shown in Figure 3-29, are in good agreement. 
At zero fluctuations near the wall between 0.0375 m < x < 0.05 m, however, the results 
are slightly different but difficult to compare since the BTV graph is too noisy here. 
Nevertheless, the peak at around -0.12  m

s⁄  is clearly represented by both measuring 
techniques. The PDFs of the fluctuation towards the center at 0.0875 m < x < 0.1 m are 
almost perfectly matching. 

a) 

 

b) 

 
Figure 3-29 The probability density function of the upward liquid velocity fluctuations 
obtained with PIV and BTV for case 13. a) Near the wall between 0.0375 m < x < 0.05 m, 
b) towards the center between 0.0875 m < x < 0.1 m. 

The time averaged liquid velocity profiles that are obtained with PIV and BTV and 
shown in Figure 3-30 are perfectly matching until case 13. Despite a relatively high gas 
void fraction for case 13 and 20, still a good result is obtained with PIV. 
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Figure 3-30 The vertical liquid velocity obtained with PIV with BTV for different gas 
volume flow rates. 

The results for 𝑣′𝑣′ and 𝑢′𝑢′, which are shown in Figure 3-31 a), are similar up to case 
20. Some deviations occur, for case 3 the peak of the 𝑣′𝑣′ graph obtained with BTV is 
closer to the wall than the peak obtained with PIV. In fact, the amount of the naturally 
occurring micro bubbles is very small for this case because of the small gas volume flow 
rate. In combination with the small void fraction in general, the PIV technique might be 
advantageous for case 3. For case 4 and case 5, however, the obtained Reynolds stresses 
are very similar. 

Looking at 𝑣′𝑣′ for case 7 and 𝑢′𝑢′ for case 20, possible outliers at around 0.055 m 
occur. These outliers are situated at the connection between the left and the right 
measurement window. The two needed separate measurements to get a half profile as 
discussed above, in combination that the bubble plume sometimes tends to prefer one 
side of the bubble column so that it is swinging not symmetrical for a distinct time, might 
be the reasons for this possible outlier. For the PIV measurements, in contrast, a larger 
measuring time was used and the complete measuring area was recorded at once so that 
such problems not arose. 

The first distinct differences between the PIV and BTV measurements occur for case 
13. In the center, the normal Reynolds stresses 𝑣′𝑣′  that are obtained with PIV are 
smaller. The higher gas volume fraction might distort the PIV measurements, the bubble 
clusters that are pulled downward at the walls block the laser assembled at the side of 
the bubble column. In comparison, since the amount of micro bubbles is increasing with 
increasing volume flow rate the BTV measurements are easier to evaluate for case 13. In 
addition, the volume illumination is not as strong disturbed by the higher gas void 
fraction as the PIV laser. Nevertheless, the results are still in good agreement as also 
discussed above by using the PDFs of the fluctuation shown in Figure 3-29. 

 



3    Experimental Methods 

 

60 
 

a) 

 

 

 

 

 

   

b) 

 

 

 

 

 

   

Figure 3-31 Reynolds stress components obtained by using PIV and BTV. a) Normal 
Reynolds stress components v′v′ and u′u′ (u is the horizontal liquid velocity), b) cross 
Reynolds stress component u′v′. 

A mismatch between both methods is obtained for case 20; here all sizes of bubbles 
are pulled downward by the circulating flow so that the light sheet of the PIV laser is 
barely available. In contrast, the BTV measurements are still good manageable because 
of the volume illumination. Although the agreement is good for the time-averaged 
velocity, the normal Reynolds stresses obtained with PIV are strongly under predicted. 
These normal Reynolds stresses are in the range of the results obtained for case 13, which 
is not reasonable. As expected, the results for case 20 obtained with BTV are higher than 
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the results for case 13. Therefore, for case 20 the BTV results are more reasonable than 
the PIV results. 

The results for the cross Reynolds stress component 𝑢′𝑣′ are shown in Figure 3-31 
b). The agreement between both measuring techniques is acceptable. However, the 
shorter measuring time in combination with a relatively small amount of micro bubbles 
might lead to an insufficient statistic in the BTV measurements, especially for case 3. 
Surprisingly, for case 13 the graphs are matching almost perfectly. 

3.4.5 Conclusions 

The particle tracking velocimetry using micro bubbles (BTV) is investigated. Micro 

bubbles in the range of 100-300 µm that naturally occur in bubbly flows are used to 

determine the liquid velocity and basic turbulence parameters. The particle relaxation 

time of the micro bubbles is comparable to other measurement techniques used in 

multiphase flows. Also from the results obtained with different micro bubble sizes and 

from the comparison with PIV measurements these micro bubbles are capable to 

represent the flow for the present setup. The liquid velocity, two normal and a cross 

Reynolds stress tensor component obtained with BTV are compared to PIV 

measurements, very good agreement is obtained. 

Moreover, the use of a volume illumination in bubbly flows is described. Bubbles in a 

quasi-two dimensional plane are identified with an edge filter provided by a camera setup 

with a narrow depth of field. This measurement assembly is very simple so that 

measurements in difficult environments like in pilot plants or submerged oceanic 

multiphase flows problems are simpler feasible. In addition, high void fraction (in the 

present measurements over 15 % gas holdup) measurements up in a narrow test section 

are easily possible. 

The sampling bias caused by the presence of bubbles was described. It was found that 

indifferent whether BTV or PIV is used a distinct sampling bias occurs. In general, the 

sampling bias is important for all measuring techniques affected by the dispersed phase. 

This effect might be quantified by calculating the correlation coefficient of the measured 

value and the sample. For PIV and BTV measurements, the measured value is the velocity 

and the sample was chosen to the count of the velocity information. 

The described sampling bias is overcome by using a multidimensional hold processor 
defined in the present work. This derived hold processor, which was also tested with 
analytical test functions, gave reasonable results. It was found that the BTV and PIV 
measurements were affected by the hold processor differently. The results obtained with 
the hold processor for PIV and BTV, however, were similar; further, both measurements 
are only in accordance by using the hold processor. Therefore, the quality of the velocity 
measurements in bubbly flows using PIV and PTV/BTV can be improved with this 
method. 
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4 Eulerian bubbly flow simulations with the URANS equations 

In the following the method for simulating bubbly flows in the present work is developed. 

As described above, the recent baseline model concept developed mainly for pipe flows 

should be adopted and studied for gravity driven flows. For this purpose, the URANS 

solution method described in Section 2.4.2 is used to cover the influence of large-scale 

turbulence (Mudde 2005) in such flows. Such large-scale phenomenon occurs due to an 

uneven aeration (Juliá et al. 2007) or in heterogeneous flow regimes (Lucas et al. 2007b). 

A proper turbulence modeling including large-scale structures in dispersed 

multiphase flows is essential for a correct prediction of the momentum exchange 

between the phases. Especially for bubbly flows the break-up and coalescence processes, 

which are responsible for the bubble size distribution, are dominated by turbulence (Liao 

& Lucas 2009). Since all modeled forces depend on the bubble size, the importance of a 

reliable turbulence prediction is underlined. In bubble columns the large scale structures 

are also very important for mixing in technical apparatuses, as described for example by 

Joshi et al. (2002). Mixing might be underpredicted if these large-scale fluctuations are 

suppressed by a steady solution method. 

In contrast to the consistently stated conclusion, e.g. by (Tabib et al. 2008) or (Masood 

et al. 2014), it is shown that the virtual mass force is not negligible in bubbly flows with 

distinct large-scale turbulence structures. In addition, with the aid of a developed 

convergence criteria it is shown that a solution time, time step length and mesh size 

independent solution for the bubbly flow URANS simulations exists. 

4.1 Modelling, setup and convergence criteria 
As an experimental reference, the results of Mohd Akbar et al. (2012) are used. The 

experiments were executed in a rectangular water/air bubble column at ambient 

conditions. The ground plate is a rectangle of 240 × 72 mm and the water level is at 700 

mm. The inlet is realized through needles at the bottom. Measurements were performed 

for two superficial velocities, 3 mm/s and 13 mm/s, the integral void fraction for both 

conditions is below 10%. The measurement plane is 500 mm above the inlet. A sketch of 

the experimental setup is shown in Figure 4-1. 

The measured quantities are the liquid velocity, gas volume fraction and the 

turbulence intensity in the upward direction. Additionally, the bubble size distributions 

at the inlet and at the measurement plane were measured. The bubble size distributions 

are reproduced in Figure 4-2. 

In contrast to the case with 3 mm/s superficial velocity, which is treated as 

monodisperse using 4.3 mm as bubble size, for the case with 13 mm/s superficial velocity 

a distinct amount of bubbles is above and below 5.83 mm. Therefore, two bubble classes 

with its own velocity field as described in Section 2.3.3 are used.  In particular, the first 

bubble class has a bubble diameter of 5.3 mm, the second 6.3 mm. The inlet gas volume 

flow is split up to 63 % and 37 %, respectively. As indicated in Figure 4-2 coalescence and 

break-up processes are not dominant for the present setup, thus these processes are 

neglected. 
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Figure 4-1 Experimental setup 

 

Figure 4-2 Number density function of the bubble diameter in the experiment of Mohd 
Akbar et al. (2012) 

The rectangular bubble column is discretized in structured rectangular volumes. The 

size of the volumes is determined after a mesh study, which is shown below. The inlet is 

defined as surfaces at the bottom of the domain, representing the experimental needle 

setup. The surface that represents one needle is rectangular with an edge length of 4 × 4 

mm. The gas volume flow is divided equally over all needles. 
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To determine whether the results are independent of the total simulation time a 

convergence criterion is needed. Often a fixed total simulation time is taken as a 

convergence criterion. If this fixed simulation time is reached, the simulation is defined 

as convergent. This simple method makes the assumption that a convergent state exists 

and that this state is reliably reached after the defined time. Therefore, this method is 

insufficient to investigate the convergence behavior of a simulation. In addition, this 

method is insufficient if it is unknown if the convergence is reliably reached after this 

time. Therefore, another convergence criterion is needed for the present investigations. 

The convergence criterion is defined in a way that averages 𝑓̅  taken over the 

simulation time 𝑇  of a function 𝑓 do not change significantly anymore when 𝑇  is 

increased. The average over a finite time 𝜁 is defined as 

𝑓(̅𝜁) =
1

𝜁
∫ 𝑓(𝑡)𝑑𝑡

𝜁

0

 . (4-1) 

In particular, the averages 𝑓̅  tend to be a constant asymptote as 𝜁 is increased. A 

reasonable convergence criterion can be defined by analyzing the distance between 𝑓(̅𝜁) 

and this constant asymptote. 

Nevertheless, the constant asymptote that 𝑓(̅𝜁) is tending to is not known. However, 

if 𝑓(̅𝜁) is tending to be a constant asymptote, the values of 𝑓(̅𝜁) will change less with 

increasing 𝜁. For example, the difference between 𝑓(̅𝑇 − Δ𝜁) and 𝑓(̅𝜁) tends to zero with 

increasing simulation time  𝑇 . If the difference between all values of 𝑓̅ in the interval 

between 𝑇 − Δ𝜁 and 𝑇 is evaluated, a trustworthy convergence criterion is obtained. The 

effort of this procedure is reduced by comparing each value of 𝑓̅ in this interval to an 

average of 𝑓 ̅over this interval. This is expressed mathematically by requiring that 

|
1

Δ𝜁
∫ 𝑓(̅𝜁)𝑑𝜁

𝑇

𝑇−Δ𝜁

− 𝑓(̅𝜁)| ≤ 𝜖;    𝑇 − Δ𝜁 ≤ 𝜁 ≤ 𝑇 . (4-2) 

As function 𝑓  the upward liquid velocity is chosen. Based on experience, Δ𝜁 = 150𝑠 

and 𝜖 to half of the experimental uncertainty (1.5% of the experimental value) is chosen 

to obtain a good approximation without consuming excessive CPU-time. The convergence 

criterion is evaluated at two points, 𝑥1 and 𝑥2, which are chosen symmetric. Therefore, a 

criterion evaluating the symmetry of the obtained result can be defined 

|𝑓(̅𝑥1, 𝜁) − 𝑓(̅𝑥2, 𝜁)| ≤ 2𝜖;    𝑇 − Δ𝜁 ≤ 𝜁 ≤ 𝑇 . (4-3) 

This criterion is meaningful because the setup is symmetrical and a symmetric result is 

expected. It will be used in the further discussion. 

4.2 Mesh and time step study 
To obtain a mesh independent solution an intensive mesh study was performed. An 

extract of this study for the case with a superficial velocity of 13 mm/s is shown in Figure 

4-3. All simulations are converged using the defined convergence criterion. Four meshes 

are presented: 
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 an isotropic mesh with 4 mm edge length of each cell, which contains around 

200 000 cells, 

 two anisotropic meshes, one with an edge length of 3 mm in depth and vertical 

direction and 4 mm in the width direction, which contains around 300 000 cells 

and the other with an edge length of 5 mm in depth and vertical direction and 4 

mm in the width direction which contains around 140 000 cells, 

 a dilation in stream wise direction with 10 mm edge length in the vertical direction 

and 4 mm edge length in depth and width direction with 80 000 cells. 

The mesh study is conducted by investigating the gas volume fraction, the upward 

liquid velocity and the root mean square of the normal component of the Reynolds stress 
tensor 𝑅𝑀𝑆(𝑤’𝑤’). Comparing the obtained values for the gas volume fraction and the 

upward liquid velocity even the coarse grid with 80 000 cells gives similar results as the 

finest mesh with 300 000 cells. The resolved turbulence intensity is a little bit different, 

but a clear trend with mesh size is not observable. 
The 𝑅𝑀𝑆(𝑤’𝑤’)  diagram consists of three curves that correspond to the URANS 

modeling discussed in Section 2.4.2. The curve marked with ‘resolved’ corresponds to the 

resolved part of the Reynolds stress component  𝑤 ′̃𝑤 ′̃̅̅ ̅̅ ̅̅ ̅ , the curve marked with 

‘unresolved’ to the modeled component 𝑤′′𝑤′′̅̃̅ ̅̅ ̅̅ ̅̅ = 2 3⁄ 𝑘𝑚𝑜𝑑
̅̅ ̅̅ ̅̅ ̅ and the curve marked with 

‘total’ to the total component  𝑤′𝑤′̅̅ ̅̅ ̅̅ . The unresolved curve is the result that would be 

obtained if a stationary simulation would be performed. Further, the resolved curve 

represents the amount, which is added through the transient simulation. The total curve 

represents the 𝑅𝑀𝑆(𝑤’𝑤’) as it is obtained in the experiment. 

The differences in the 𝑅𝑀𝑆(𝑤’𝑤’) graphs occur close to the wall. Using the isotropic 

and the finest mesh, two peaks are noticeable at the walls. Using the two coarser meshes, 

these wall peaks are less pronounced. With the coarsest mesh, a slightly higher value 

overall is obtained. Nevertheless, deviations are quantitatively small. 

Summarizing, the solution is mesh-independent already for the isotropic mesh; 

hence, this is used for the further calculations. It should be noted that a mesh study is only 

possible if the solution is independent of the time step and vice versa. This circumstance 

was considered and the mesh study was performed with sufficiently minor steps, which 

is discussed in the following. 

To find conditions under which the solution becomes independent of the time step a 

study is performed for 13 mm/s superficial velocity. Since it turns out that the time step 

is connected with the virtual mass force, both model variations including the virtual mass 

force and not including the virtual mass force are investigated. The difference between 

both model setups is discussed in detail in the next section. 

To characterize the discretization of the problem in time and space the Courant–

Friedrichs–Lewy number (CFL number,  𝐶𝐹𝐿 = |𝑢|(|Δ𝑥|/Δ𝑡) ) is used. Because the 

velocity is a function of position and time so is the CFL number. To get a characteristic 

value, the root mean square of all CFL numbers in the computational domain is calculated. 

Further, the maximum and minimum 𝑅𝑀𝑆(𝐶𝐹𝐿) numbers over time are given. 
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a) 

 

b) 

 
c) 

 
Figure 4-3 Mesh study for four different meshes. 
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4.3 Influence of the virtual mass force 
The time step study with the virtual mass force was performed in the range of 
𝑅𝑀𝑆(𝐶𝐹𝐿)  =  0.8 up to 𝑅𝑀𝑆(𝐶𝐹𝐿) = 2.6. The results are shown in Figure 4-4 for the 13 

mm/s case. For both simulations the convergence and symmetry criteria are reached. 

a) 

 

b) 

 
c) 

 
Figure 4-4 Time step study for different CFL numbers using the virtual mass force for 
the 13 mm/s case 

Comparing the gas volume fraction and the liquid velocity profile for both time steps 

good accordance is reached. The volume fraction profile is nearly the same for both time 

steps. The liquid velocity profile differs a little bit for the different time steps. The 

resolved upward turbulence profiles for the different time steps are slightly different, the 
peak near the wall being slightly higher for the larger value of 𝑅𝑀𝑆(𝐶𝐹𝐿). The unresolved 

turbulence profiles are equal for both time steps. Since the unresolved contribution 

constitutes a major part of the total turbulence intensity, the curves for this quantity are 

in good agreement as well. 

In conclusion, when the virtual mass force is included, the solution becomes 

independent of the time step for 𝑅𝑀𝑆(𝐶𝐹𝐿) ≲ 2.6. 

The time step study without using the virtual mass force was performed in the range 

of 𝑅𝑀𝑆(𝐶𝐹𝐿) = 0.6 up to 𝑅𝑀𝑆(𝐶𝐹𝐿) = 8. In Figure 4-5 selected results of the time step 
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study are shown. All simulations are convergent using the convergence criterion defined 

in Section 4.1. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 4-5 Time study for different 𝑅𝑀𝑆(𝐶𝐹𝐿)-numbers without using the virtual mass 
force for the 13 mm/s case 

Comparing the gas volume fraction, the upward liquid velocity and 𝑅𝑀𝑆(𝑤′𝑤′) 

significant differences can be seen. In particular, the simulations using 𝑅𝑀𝑆(𝐶𝐹𝐿) above 

1 do not fulfill the expected symmetry according to the criterion given in Section 4.1. In 

contrast, the simulation using 𝑅𝑀𝑆(𝐶𝐹𝐿)  below 1 does fulfill this criterion. Also, in 

contrast to the simulations using 𝑅𝑀𝑆(𝐶𝐹𝐿) above 1 the simulation using 𝑅𝑀𝑆(𝐶𝐹𝐿) 

below 1 gives two peaks in all three quantities. Comparing the simulation using 
𝑅𝑀𝑆(𝐶𝐹𝐿) below 1 with the simulations including the virtual mass force in Figure 4-4, 

very small differences are seen. 

In conclusion, when the virtual mass force is neglected, a solution that is independent 

of the time step is achieved if the condition 𝑅𝑀𝑆(𝐶𝐹𝐿) < 1 is satisfied. 

Besides the discussed influence on a reliable 𝐶𝐹𝐿  number, the virtual mass force 

influences also the other values. In Figure 4-6 the results of the simulations with and 

without virtual mass force are shown for both superficial velocities 13 mm/s and 3 mm/s. 

For 3 mm/s superficial velocity the results obtained with and without virtual mass force 
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are the same. This is different for 13 mm/s superficial velocity. Therefore, the following 

discussion is only related to the 13 mm/s case. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 4-6 Comparison between using the virtual mass force and not using the virtual 
mass force for a superficial velocity of 13 mm/s and 3 mm/s. The curves for using the 
virtual mass force and not using the virtual mass force for the 3 mm/s case are on the top 
of each other. 

Looking at the liquid velocity profiles for the case with 13 m/s superficial velocity, no 

differences between the model variants with and without virtual mass force are seen. 

Distinct peaks at each side can be observed in the profiles. At the same positions as in the 

liquid velocity profile, broad maxima can be observed in the gas volume fraction profile 

for both model variants. In addition, if the model variant including the virtual mass force 

is used, the gas volume fraction profile will exhibit sharp peaks almost at the wall. In 

contrast, if the model variant neglecting the virtual mass force is used, these sharp peaks 

will nearly vanish. 

The broad maxima near the center in the gas volume fraction profile can be explained 

by the stability criterion of Lucas et al. (2005), which is derived analytically from the force 

balance, depending on the volume fraction of big and small bubbles. This stability 

criterion is based on the change of sign in the lift force coefficient and is, therefore, 
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connected to the gradient of the liquid velocity. By solving separate momentum equations 

for big and small bubbles this effect is also taken into account in the present simulations. 

Since the liquid velocity gradient and the volume fractions of big and small bubbles 

depend on the local position, the stability criterion of Lucas et al. (2005) has to be 

evaluated locally. 

In the lower section of the column, the big and small bubbles are not separated. Due 

to the wall shear stress and the resulting liquid velocity gradient, the big and small 

bubbles separate with increasing height. The big bubbles move to the center, the small 

bubbles move to the wall. Consequently, the local concentration of the big bubbles rises 

from the wall towards the center of the column. Further, away from the wall the lateral 

movement of the big bubbles is slowed down, because of the decreasing liquid velocity 

gradient. As a result, the big bubbles accumulate and the local void fraction of the big 

bubbles increases at the same point. Due to buoyancy, this is accompanied by an increase 

of the local liquid velocity. If the stability criterion described in Lucas et al. (2005) is 

exceeded, a distinct liquid velocity peak will be formed at this point. Once this has 

happened the large bubbles cannot move further towards the center because of the 

negative lift coefficient. This means that steady profiles with peaks in the liquid velocity 

and gas fraction are established. 

The near wall peak in the gas fraction graphs is also caused by the described 

separation of small and big bubbles. The small bubbles move to the wall due to the liquid 

velocity gradient; however, near the wall the wall force push the bubbles away from the 

wall. The bubbles accumulate where both forces have the same quantity and, 

consequently, a wall peak occurs. 

Figure 4-6 also shows the upward 𝑅𝑀𝑆(𝑤′𝑤′) values. Here, for the case with 13 

mm/s superficial velocity also peaks near the wall can be observed. These peaks are not 

at the same position as the peaks in the liquid velocity profile and might be less affected 
by the separation of big and small bubbles. The near wall peaks in the 𝑅𝑀𝑆(𝑤′𝑤′) profile 

are nearly at the point where the liquid velocity passes through the zero line, which is the 
point of the highest liquid velocity gradient. In addition, the resolved 𝑅𝑀𝑆(𝑤′𝑤′) profile 

is higher in general for the simulation without using the virtual mass force. Therefore, by 

using the virtual mass force a damping of the liquid velocity fluctuations is introduced. 

Overall, neglecting the virtual mass force leads to different results for the case with 

13 mm/s superficial velocity. The gas volume fraction profile is quantitatively almost the 

same for both model variants. However, not using the virtual mass force the near wall 

peak in the gas volume fraction profile nearly vanishes. The resolved 𝑅𝑀𝑆(𝑤′𝑤′) profiles 

have the same shape, but quantitatively the resolved 𝑅𝑀𝑆(𝑤′𝑤′) is higher if the virtual 

mass force is neglected. While the gas volume fraction and the upward turbulence profiles 

are different, the liquid velocity profile is nearly the same for both model variants. In 

contrast to the case with 13 mm/s superficial velocity, all profiles obtained for the 3 

mm/s superficial velocity are the same. The equality might be explained by the fact that 

the resolved upward turbulence intensity at the measurement plane is nearly zero. 

Consequently, nearly no fluctuation is resolved and the acceleration is nearly zero. As a 

result, the virtual mass force is nearly zero. 
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4.4 Influence of the bubble induced turbulence 
The influence of the bubble induced turbulence (BIT) model on the URANS simulations is 

discussed in this section. For this purpose, the bubble induced turbulence (BIT) modeling 

used in the baseline model with source terms (Rzehak & Krepper 2013a), with an 

additional viscosity (Sato et al. 1981), both described in Section 2.4.4 and a model 

neglecting the bubble induced turbulence are compared. 

The results for 13 mm/s superficial velocity are shown in Figure 4-7. The gas hold up 

is quantitatively very similar for all considered models, but the sharp near wall peak is 

pronounced only for turbulence modeling with source terms. The liquid velocity using 

the Sato model and using the no BIT model is lower than the experiments and the profile 

obtained with the baseline model. Qualitatively the different model approaches show the 

same behavior. However, using the Sato model and using the no BIT model both peaks in 

the liquid velocity profile are shifted towards the center and are smaller. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 4-7 Comparison of different bubble induced turbulence modeling approaches for 
13 mm/s superficial velocity. 

Remarkably, the quantity of the resolved turbulence intensity is very similar for all 

used BIT models. Concerning the shape of the profiles, the peaks are shifted to the center 

and are smaller for the models not using the source terms. The total 𝑅𝑀𝑆(𝑤′𝑤′) values 
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are underpredicted by all models but significantly closer to the data for the models with 

source terms. Differences between the Sato model and neglecting BIT are small in 

comparison. 

The differences between the different approaches to BIT modeling can be explained 

by considering the turbulent viscosity, which is shown in Figure 4-8. As the resolved 

𝑅𝑀𝑆(𝑤′𝑤′)  values are comparable for all models, only the unresolved part of the 

turbulent viscosity is shown. It can be seen from Figure 4-8 that for the BIT modeling 

using source terms the turbulent viscosity is the lowest. This is caused by a higher 

turbulence dissipation rate (not shown). Looking only at the turbulent kinetic energy that 

is the highest for the modeling using source terms, the opposite effect on the turbulence 

viscosity may have been expected. The reason for the behavior observed in the 

simulations must be sought in the bubble induced source term of the turbulence 

dissipation rate. 

 
Figure 4-8 Unresolved turbulent viscosity 
for different modeling approaches for 13 
mm/s superficial velocity. 

 
Figure 4-9 Comparison of the total upward 
turbulence intensity for different bubble 
induced turbulence modeling approaches 
for 3 mm/s superficial velocity. 

Further, as expected, the turbulent viscosity using a BIT model with additional 

viscosity is the highest. Using the no BIT model the level of the turbulent viscosity is 

between the other approaches.  

The higher turbulent viscosity obtained with the Sato model and using the no BIT 

model is causing a reduced amplitude in the lower liquid velocity profile compared to the 

BIT modeling with source terms, as shown in Figure 4-7. In particular, using the Sato 

model and using the no BIT model the liquid velocity gradient near the wall is smaller 

compared to the experiment and the BIT modeling with source terms. Consequently, the 

instability caused by the separation by the big and small bubbles, as discussed above, is 

also shifted to the center. Therefore, the observed velocity peaks using the Sato model 

and using the no BIT model observed in Figure 4-7 are shifted to the center. 

Another effect of the higher turbulent viscosity that is obtained with the Sato model 

and using the no BIT model is a higher turbulent dispersion of the bubbles. As described 

in Section 2.3, the turbulent dispersion force is proportional to the turbulent viscosity 

and to the gradient of the gas volume fraction. It acts towards a uniform distribution of 
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gas. As a result, the peaks in the gas volume fraction profiles shown in Figure 4-7 are 

flatter when using the Sato model or using the no BIT model compared to the BIT 

modeling with source terms. Consequently, the liquid velocity peak is also flatten when 

using the Sato model or using the no BIT model. In particular, the near wall peak of the 

small bubbles that can be observed for the BIT modeling with source terms in Figure 4-7 

nearly vanishes when using the Sato model or using no BIT model. 

For the case with 3 mm /s superficial velocity, the liquid velocity and the gas volume 

fraction profiles obtained by using the different BIT model approaches are nearly the 
same. Therefore, only the total 𝑅𝑀𝑆(𝑤′𝑤′) values are discussed in the following. The 

results are shown in Figure 4-9. 
It can be seen from Figure 4-9 that the 𝑅𝑀𝑆(𝑤′𝑤′) values are quite well predicted by 

the BIT modeling with source terms. In contrast, using the Sato model or using the no BIT 

model they are considerably underpredicted. This is the same trend seen for the case with 

13 mm/s superficial velocity. 
Summarizing, the best prediction of 𝑅𝑀𝑆(𝑤′𝑤′)  is obtained by the turbulence 

modeling with source terms, using the baseline model. The position of the peak in the 
𝑅𝑀𝑆(𝑤′𝑤′) graphs for 13 mm/s superficial velocity is well reproduced. Using the Sato 

model or the no BIT model 𝑅𝑀𝑆(𝑤′𝑤′) is considerably underpredicted compared to the 

experimental data. Furthermore, there is no peak in the 𝑅𝑀𝑆(𝑤′𝑤′) graphs for 13 mm/s 

superficial velocity. 

The turbulent viscosity obtained for this case with the Sato model or using the no BIT 

model is significantly higher than the obtained turbulent viscosity using the BIT modeling 

with source terms using the formulation of Rzehak and Krepper (2013b). Consequently, 

the liquid velocity profiles are less steep using the Sato model and using no BIT model 

compared to the BIT modeling with source terms. Compared to the experimental data the 

liquid velocity is underpredicted using the Sato model or the no BIT model, but predicted 

well by the modeling using source terms. 

4.5 Conclusions  
It was shown that for transient simulations with RANS-based turbulence modeling 

(URANS) an independent solution concerning simulation time, time step length and mesh 

size is reachable with the two fluid model. For this purpose, the defined convergence and 

a symmetry criterion give reliable information.  

The resolved flow structures that are obtained due to the transient simulation give 

important contributions to the turbulence, indifferent of the used bubble induced 

turbulence (BIT) model. As expected, the resolved turbulence is very low for the low gas 

volume flow rate; here the turbulence might be dominated by the BIT. Thus, the URANS 

simulations are capable to reproduce bubbly flows dominated by large-scale structures 

and dominated by BIT. 

Moreover, it was found that the virtual mass force is not negligible, especially for the 

higher gas volume flow rate in which the resolved turbulence is significant. Despite the 

simulation results reproduce the experiments better without the virtual mass force, the 

force has to be included towards a reliable modelling. 

The baseline model gives very good results, especially with the baseline BIT model 

the turbulent kinetic energy for both volume flow rates can be reproduced. The baseline 
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BIT model was also compared to other BIT models for the present experimental setup in 

(Ziegenhein et al. 2013); regarding to the root mean square of the normal Reynolds stress 

tensor component the baseline model gives the best results. 

The further studies will be performed with the here developed method. From the 

findings above, it is justified to identify two leading turbulence scales: The scales that are 

in the size of the apparatus and the small scales, which might be dominated by the bubble, 

induced turbulence. For the here investigated experimental setup these scales are both 

present for the 13 mm/s superficial velocity case. In contrast, for the 3 mm/s superficial 

velocity case large scales might not be present. In the following section, the capability of 

the shown URANS approach with the baseline model is investigated to reproduce the 

large-scale flow structures in a bubble column. 
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5 Prediction of the large liquid structures of bubbly flows with 

the URANS equations  

In this section, especially the fluid dynamics on the large scale is of interest, which is often 

generated due to a partial aeration or a heterogeneous bubbly flow regime. Such partial 

aeration is often obtained with common spargers like the ring or spider sparger (Kulkarni 

et al. 2009). Moreover, the heterogeneous flow regime produced by large bubbles created 

at the inlet or due to coalescence might be also a common flow regime. Thus, this topic is 

of general interest. 

The local high gas void fraction generated by a partial aeration is in general called 

bubble plume. Besides the bubble plumes in bubble columns this effect is found for a wide 

variety of applications. In the field of bioengineering partial aeration is used to drive the 

flow inside different vessels (Wang et al. 2014) (Bitog et al. 2011) and wastewater pools 

(Garcia & Garcia 2006). Without confining walls bubble plumes are used to mix complete 

lakes (Wuest et al. 1992) (Boegman & Sleep 2012), helps to build barriers for oil on water 

(McClimans et al. 2012) or even fishing (Grimaldo et al. 2011). Moreover, bubble plumes 

are naturally found in oceans (Schmale et al. 2015) (Nauw et al. 2015) or occur due to 

mining processes or pipe ruptures under water (Cloete et al. 2009). 

In the following, the simulations are focused on bubble columns for chemical or 

biological engineering since here comprehensive experimental data exist. 

Notwithstanding the large amount of experiments and simulations conducted in the 

recent years on this topic, the research is ongoing experimental (Besbes et al. 2015) as 

well as theoretically (Masood & Delgado 2014). 

Such large-scale structures that are generated by a bubble plume dominate the flow 

field in the vessel, thus the prediction of the correct transient behavior of such is essential. 

This is studied with the above-discussed URANS approach. Often a distinct bubble plume 

frequency can be determined from the experiment which is easily compared to 

simulations; many studies regarding this topic exist, e.g. (Rensen & Roig 2001) (Buwa & 

Ranade 2004) (Juliá et al. 2007). 

Three experiments dominated by bubble plumes with different operating conditions 

are chosen from the literature. Namely, the experiment by Becker et al. (1994) with an 

asymmetric gas aeration, the experiment by Pfleger et al. (1999) with a central gas 

aeration and the experiments by Julia et al. (2007) using different aeration widths and 

different gas volume flow rates. 

The experiments of Becker et al. (1994) and Pfleger et al. (1999) are well known and 

often simulated. The experiment of Becker et al. (1994) might be one of the most 

simulated bubble plume experiments ranging from Euler-Euler two fluid model methods 

(Sokolichin & Eigenberger 1999) (Mudde & Simonin 1999) to Euler-Lagrange methods 

(Delnoij et al. 1997) (Hu & Celik 2008).  The experiment of Pfleger et al. (1999) is also 

used for many different model validation e.g. by (Bech 2005) or (Ma et al. 2015). These 

two experiments are standard experiments and are used to show that the here used 

simulation methods are capable to give the same good results as other methods. The 

experiments of Julia et al. (2007) are more complex since different sparger conditions 
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and high superficial velocities are realized. Simulations for these experiments are not 

published yet. 

5.1 Simulation setup and experimental data  
The experimental setups of the three investigated cases of Becker et al. (1994), Pfleger et 

al. (1999) and Julia et al. (2007) are shown in Figure 5-1. All setups are narrow bubble 

columns of different sizes and operate in water with air supply. The largest bubble 

column is used by Becker et al. with a water level of 1.5 m a width of 0.5 m and a deep of 

0.08 m. The gas is aerated with 1.6 l/min through a porous frit at the left side 0.15 m away 

from the wall. The liquid velocity was measured with laser Doppler anemometry (LDA) 

at the points A and B as well over the width 0.75 m above the ground plate. The bubble 

size was measured using a photoelectrical suction probe and was determined to 3 mm. 

The bubble column used by Pfleger et al. (1999) is smaller and is centrally aerated 

with 0.8 l/min through eight holes. The liquid velocity was measured using LDA as well. 

The bubble size were not measured explicitly but are given by Pfleger et al. between 1 

and 5 mm; however, here a bubble size of 2 mm is used, which is also used by Pfleger et 

al. for their own simulations. The velocity profile is measured 0.13 m, 0.25 m and 0.37 m 

above the ground plate. In addition, the velocity is measured over time in the center of 

the column 0.25 m above the ground plate. 

By Julia et al. (2007) a flat bubble column is used with a variable needle sparger 

consisting up to 137 needles. The bubbles are uniformly aerated over the 0.031 m column 

depth with different aeration width. The liquid velocities are determined with LDA on 

different heights. The bubble plume dynamics are measured mainly on a line 0.3 m above 

the ground plate. The used experiments for comparison with simulations are summarized 

in Table 5-1. Three different aeration pattern aerating 59 % to 18 % of the ground plate 

are used for the simulations from the experiments. The bubble sizes are determined with 

digital imaging from extra experiments in which only a single needle is operating. The 

holdup is determined by measuring the bed expansion for the smallest and the lowest gas 

volume flow rate. 

The bubble columns are discretized to a regular grid. The grid size was determined 

after conducting a mesh study using a minimum of three different grid sizes. All 

simulations are conducted with the baseline model as described in the previous section 

and in Section 2.5. In particular, the column of Becker et al. is discretized with 

100x150x16 (width x height x depth) rectangular cells. The column of Pfleger et al. is 

discretized with 40x90x16 cells. Finally, a rectangular mesh composed of 50x300x6 was 

found to be sufficient for the bubble column of Julia et al. The total simulation time varies 

from case to case; nevertheless, the convergence criteria defined in the previous section 

is fulfilled every time. 
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Figure 5-1 Setup of the experiments by Becker et al. (1994) (left), Pfleger et al. (1999) 
(middle) and Julia et al. (2007) (right). The measurement planes are dotted and points 
with measurements over time are marked red. 

Flow pattern (Aerated 
area/ Used needles) 

Superficial velocity 
[mm/s] 

Bubble size  
[mm] 

Holdup  
[%] 

F8 (59 % / 81) 16 3.78 4.7 
 29 4.20  
 40 4.56  
 49 4.85 17.1 

F11 (44 % / 59) 12 3.79 2.5 
 16 3.97  
 24 4.33  
 29 4.56  
 36 4.87 11 
F16 (18 % / 25) 5 3.78 0.9 
 12 4.52  
 16 4.94  
 29 6.31 7.6 

Table 5-1 Setups of the experiments by Julia et al. (2007) used for simulations. 

5.2 Results 
At first, the simulation results regarding the experiments of Becker et al. (1994) and 

Pfleger et al. (1999) are compared to the experimental observations. These two 

experiments were executed at relatively low gas volume flow rates with small bubbles. 

After that, the simulation results regarding to the experiments of Julia et al. (2007), which 

are summarized in Table 5-1, are compared to the experimental results. In contrast to the 

other two experiments, the experiments by Julia et al. are conducted over a wide range of 

bubble sizes and volume flow rates. 

5.2.1 Experiments of Becker et al. (1994) 

In the experiments of Becker et al. (1994) a large vortex is built near the wall due to 

asymmetric aeration. The vortex is wandering from the top to the bottom as can be seen 

in Figure 5-2. Another vortex is built on the other side pressing the bubble plume to the 
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wall in the bottom section. This behavior is very good reproduced by the simulations. In 

addition, the frequency of the meandering vortex is very good reproduced. 

 

Figure 5-2 Qualitatively results of the experiments (top) of Becker et al. (1994) and the 
simulations (bottom). Pictures are taken every 5 seconds; the crosses in the simulation 
pictures mark the measuring points Point A and Point B, respectively. 

Looking at the velocity at Point A and Point B over time shown in Figure 5-3 the 

frequency of the vortex is very well seen. The meandering of the bubble plume is more 

regular in the experiments than in the simulations. The first three passages of the vortex 

structures, however, are very similar to the experiments. The simulated meandering 

bubble plume tends sometimes to stay at one position as is seen at the last two passages. 

The absolute velocity peaks obtained by the LDA measurements are a little bit higher 

compared to the simulations; this is explained because the URANS modeling is not 

resolving the large velocity peaks. 

The averaged results of the simulation are compared to the experiments in Figure 

5-4, the experimental results are taken from (Deen 2001) since they are not given by 

Becker et al. in their published work. The vertical liquid velocity profile is reproduced 

qualitatively and quantitatively by the simulations. The root mean square of the normal 

components of the Reynolds stress tensor 𝑣′𝑣′ and 𝑢′𝑢′ (𝑅𝑀𝑆(𝑢′𝑢′), 𝑅𝑀𝑆(𝑣′𝑣′) (𝑢  the 

horizontal and 𝑣  the vertical velocity) are under predicted. Nevertheless, simulations 

qualitatively reproduce the experiments. A maximum in the 𝑅𝑀𝑆(𝑣′𝑣′) graphs at the wall 

is observed, they are falling below the 𝑅𝑀𝑆(𝑢′𝑢′) graph to a minimum around 𝑋 𝑑⁄ = 0.4 

to rise again above the 𝑅𝑀𝑆(𝑢′𝑢′) graph towards the right wall. The 𝑅𝑀𝑆(𝑢′𝑢′) graphs, 

in contrast, show a maximum around 𝑋 𝑑⁄ = 0.4. Moreover, the unresolved part of the 

liquid velocity fluctuations in both directions is negligible with the baseline model. 
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Figure 5-3 Liquid upward velocity at two different points obtained from experiments of 
Becker et al. (1994) and simulations. 

  
Figure 5-4 Comparison of the averaged results with the experiment at 0.75 m above the 
ground plate. 

5.2.2 Experiments of Pfleger et al. (1999) 

In contrast to the above-discussed bubble column, the bubble column of Pfleger et al. 

(1999) is aerated symmetric in the center. Here, also large vortexes near the wall are 

observed but symmetrical at both sides. Thus, a symmetrical swinging motion of the 

bubble plume is observed. 
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This swinging motion is seen at the sideward velocities determined with LDA in 

Figure 5-5 which can be reproduced by the simulations with nearly the same frequency. 

In contrast to the above discussed experiment, here the bubble plume obtained in the 

experiment tend to swing uneven and the bubble plume obtained from the simulations 

has a more regular motion. The absolute value of the measured velocity in Figure 5-5 is 

not comparable to the simulations since the experiments are moving averaged over time 

with an unknown filter length. 

 
Figure 5-5 Liquid velocity in sideward direction at 0.25 m above the ground plate. 

  

 
Figure 5-6 Liquid upward velocity profiles at three different heights. 



5.2    Results 

83 
 

Nevertheless, the vertical velocity profiles are also measured for three different heights, 

which are compared to the simulation results in Figure 5-6. The simulation results are 

in good agreement with the experimental data. Overall, the simulations can reproduce 

the qualitatively observed swinging bubble plume with nearly the same frequency as 

well as the quantitatively measured velocity profiles on three different heights. 

5.2.3 Experiments of Julia et al. (2007) 

Julia et al. (2007) conducted experiments over a wide range of gas volume flow rates and 

for three different aeration pattern as given in Table 5-1. In contrast to the previous 

experiments, the bubble plume is spreading after a certain height over the complete area 

of the bubble column. 

The spreading is seen for most aeration pattern as shown in Figure 5-7. The vortex 

structures for pattern F11 and F8 are vanishing towards the top of the column, whereas 

the vortex structures of F16 are propagating until the top. For F8 and F11, the gas clusters 

detached from the bubble plume in the bottom are spreading over the column cross 

section and rise up as a front. At the bottom, the bubbles pulled downward in the large 

vortexes or even retained by them. 

 

 

Figure 5-7 Simulation results for three different cases velocity vectors and void fraction 
profiles at the center plane. The measuring lines at 0.15 m and 0.3 m height are marked 
black. 

Before looking at the transient behavior of the bubble plume, the averaged simulation 

results are compared to the experiments in Figure 5-8 for pattern F8 and F11 at four 
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different heights with 29 mm/s superficial velocity. For pattern F8 at a height of 0.15 m, 

the simulations clearly over predict the vertical velocity in the center and the downward 

velocity near the sidewalls. Due to the very high velocities in the simulations near the 

wall, more bubbles might be pulled downwards at the wall compared to the experiments. 

The experimental results at 0.15 m and 0.3 m are almost equal; in contrast, a flat velocity 

profile is obtained by the simulations at 0.3 m. In fact, the velocity fluctuations obtained 

by the simulations at 0.3 m have an amplitude of around 0.2 m/s but are symmetric 

leading to the flat velocity profile. Looking at the profiles at 0.6 m and 1.125 m, the 

measured velocity profiles show a wall peak while the simulations show a center peak. 

The velocity wall peaks might be indicating a coalescence process for the F8 pattern in 

the experiments since the small bubbles, which are obtained from the single needle 

experiments and used in the simulations, would migrate away from velocity peaks due to 

the lift force and a flat velocity profile would be obtained. Consequently, a wall peak in 

the velocity profile cannot be seen in the simulations since the bubble size distribution is 

fixed and the used lift force model forbids such peaks at the wall. 

F8 - 29mm/s 

 

F11 - 29 mm/s 

 
Figure 5-8 Velocity profiles at four different heights for pattern F8 and F11 with 29 
mm/s superficial velocity compared with the experiments. 
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The F11 pattern at 29 mm/s superficial velocity, in contrast, is well reproduced by 

the simulations shown in Figure 5-8. Nevertheless, at 0.15 m the simulations also 

overpredict the downward velocity near the walls and the upward velocity at the center. 

At the next measurement line at 0.3 m, the simulations are in agreement with the 

experimental data. The discrepancy between the simulations and the measurements are 

also small for the other two heights at 0.6 m and 1.125 m. However, the measured velocity 

profiles tend to have a more flat profile in the center than the profiles obtained from the 

simulation, in general. 

The trend from pattern F11 to F8 is different for the simulations. First, the velocity 

profiles measured at 0.15 m are nearly the same; in contrast, the profiles obtained from 

the simulations are flatter for the F11 pattern. It would be expected that the center peak 

for the broader aeration pattern is also broader. Vortex structures that compress the 

bubble plume at the bottom, which is seen in Figure 5-7, however, lead to a narrow 

velocity center peak. The vortex structures in the experiments for both patterns might 

have the same influence on the bubble plume since the velocity profiles are almost equal, 

which might also explain the same bubble plume swinging frequency as discussed below. 

Nevertheless, at a height of 0.3 m this trend of a flatter velocity profile obtained with the 

narrower aeration patter F11 is also seen in the experiments. The wall peaks in the 

measured velocity profiles at 0.6 m and 1.125 m for F8, which might indicate a bubble 

coalescence, are not present for F11. 

 

 
Figure 5-9 Vertical velocity over time in the center of the column for pattern F11 at a 
superficial velocity of 29 mm/s. Simulation results are shown at two heights. 
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Despite the good agreement between the simulations and the experiments for the 

F11 pattern at 29 mm/s superficial velocity, distinct differences occur looking at the 

velocities over time at the center at a height of 0.3 m as shown in Figure 5-9. Clearly, the 

simulation results at 0.3 m height do not coincide with the experiments whereas the 

simulation results at 0.15 m height are perfectly matching in frequency and amplitude. 

This might be explained by an earlier spreading bubble plume than in the experiments. 

Indeed, the void fraction profiles obtained from the simulations are at 0.3 m already 

homogenized and a distinct plume is not remaining visible as indicated in Figure 5-7. A 

transition of the flow regime is obtained by the simulation shown in Figure 5-10. From 

the void fraction profiles at 0.15 m, a transition is seen from 16 mm/s to 24 mm/s. At 24 

mm/s, more bubbles are pulled downwards at the walls than are found above the sparger. 

This effect significantly changes the velocity profiles at 0.3 m. The downward movement 

of the bubbles near the wall requires a strong downward flow; however, as seen in Figure 

5-8 the averaged absolute vertical velocities near the wall from the experiments are 

distinctly smaller than in the simulations. Therefore, the downward movement of the 

bubbles could be different in the experiments; this might explain the differences in the 

transient behavior seen in Figure 5-9. 

  

  
Figure 5-10 Velocity and gas void fraction profiles for pattern F11 for different 
superficial velocities at two different heights. 
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The bubble plume frequency is determined from the simulations by analyzing the 
vertical velocities at 0.15 m and not at 0.3 m as in the experiments. The plume frequency 
is changing over time in the simulations; in Figure 5-9 simulation and measurement are 
compared at a time at which the accordance between them is good. Time sections are 
found in which the simulations are not matching the experimental data. Therefore, the 
frequency was determined with the windowed Fourier transformation. The windows 
have the same length as the measurement time, namely 60 s and are overlapping 50 
percentage; the obtained frequencies were averaged over time. The real time of the 
simulations is between 1000 and 2000 s. 

Despite the differences between simulations and experiments discussed above, for 
pattern F8 and F11 the agreement regarding the bubble plume frequencies is very good 
as shown in Figure 5-11. The almost linear increase of the measured frequencies for the 
F8 and F11 pattern is reproduced by the simulations. The accuracy of the determined 
frequencies, especially for the experiments, is 1 60⁄ 𝑠 = 0.0166̅ 𝑠 (60 s measuring time). 

  
Figure 5-11 Comparison of the bubble plume frequency obtained by experiments and 
simulations. Left the Frequencies for the F11 pattern; right the frequencies for the F16 
and F8 pattern. 

Large differences are obtained for the F16 pattern in general and for the F11 pattern 

at 36 mm/s superficial velocity. The bubble plume tends to stabilize and is not moving 

anymore. The stabilized bubble plume for F11 at 36 mm/s superficial velocity and F16 at 

16 mm/s superficial velocity is demonstrated in Figure 5-12. The averaging time was 

around 2000 seconds for the F11 pattern and around 1000 seconds for the F16 pattern. 

The bubble plume is meandering at the beginning but slowly stabilize after several 

minutes. Then, the vortex zones that would move downwards and dissipate at the bottom 

are stabilizing as is seen from the vector plots. 

Such stabilized bubble plumes were also observed in previous simulations (Lucas et 

al. 2007b) in which the lift force stabilizes or destabilizes the plume (Lucas et al. 2005). 

The influence of the lift force on the present setup is demonstrated in Figure 5-13 for 

pattern F11 with a superficial velocity of 29 mm/s. Since the lift force model of Tomiyama 

et al. (2002) is used with a bubble diameter of 4.56 mm (see Table 5-1), the lift force 

coefficient is positive with a value of 0.25 in the original setup. Thus, the bubbles are 

moving towards the walls of the bubble column and away from positive vertical velocity 

peaks. These stabilizing effect leads to a homogenizing towards the top. Without the lift 

force, the bubble plume stands on one side, after approximately 400 seconds the plume 
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swings to the other side. This leads to a wall-peaked velocity profile near the sparger as 

seen in Figure 5-13. Moreover, towards the top of the column an inhomogeneous flow 

pattern is observed with a distinct upward flow in the center and downward flow at the 

walls. 

 

Figure 5-12 Averaged upward velocities and vector plots for pattern F11 at 36 mm/s 
superficial velocity and F16 at 16 mm/s superficial velocity. 

 

 

Figure 5-13 Sensitivity regarding lift force for pattern F11, superficial velocity 29 mm/s. 
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Since the bubble sizes in the experiment are determined from single needle 

experiments, another bubble size in the fully aerated bubble column is possible. Since the 

flow is stabilized for smaller bubbles due to the lift force (Lucas et al. 2005), the bubble 

size is decreased to 4 mm; among other effects, the lift force coefficient is increased to 

in 𝐶𝑙 = 0.288. The influence of the bubble size is shown in Figure 5-14. The cases F11 – 

36 mm/s and F16 – 29 mm/s do not show a swinging motion with the original setup (see 

Figure 5-11). A different behavior is seen for F11 with reduced bubble size, the stabilized 

vortex structures are broken up and the plume shows a swinging motion, occasionally. 

Nevertheless, the standing bubble plume persists for F16. However, the flow is 

homogenizing towards the center as is expected due to the lateral motion of the small 

bubbles away from the center, which is induced by the lift force. 

F11 with 36 mm/s F16 with 16 mm/s 

 
Figure 5-14 Influence of the bubble size for two different flow patterns. 

From experience, also the bubble induced turbulence model influences the swinging 

motion of the bubble plume. This is demonstrated in Figure 5-15 for pattern F16 with 16 

mm/s superficial velocity by comparing the baseline BIT model with the Sato model (Sato 

et al. 1981) described in Section 2.4.4. The stabilized vortex structures are not found with 

the Sato model, but the bubble plume is swinging slower compared to the experiments. 

The velocity profiles are symmetric as would be expected. These effects are due to the 

higher eddy viscosity shown on the right hand side of Figure 5-15. The highest eddy 

viscosity is found at the position where the bubbles are redirected and occasionally 

pulled downward. Nevertheless, using the Sato model leads to a non-swinging motion of 

the bubble plume for the lower superficial velocities (not shown). 
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Figure 5-15 Influence of the turbulence model for flow pattern F16 and a superficial 
velocity of 16 mm/s. 

5.3 Conclusions 
The swinging bubble plumes are reproduced by the simulations in general. For the 

Becker and Pfleger cases, the experiments were reproduced qualitatively and 

quantitatively for the time-averaged results as well as for the transient results. For the 

Julia cases several deviations occur. The time averaged results are well reproduced for 

some cases; however, for some other cases the experiments could not be reproduced 

qualitatively as well as quantitatively. 

Surprisingly, the bubble plume frequencies are similar to the experiments for most of 

the cases for the F8 and F11 flow pattern. Nevertheless, for the highest gas volume flow 

rate of the F11 pattern and for almost all cases of the F16 pattern the bubble plumes 

obtained from the simulations are more or less swinging asymmetrically; asymmetric 

time averaged velocity profiles were obtained as well. 

The influence of the lift force, bubble size and turbulence model on the asymmetric 

swinging bubble plumes is significantly depending on the gas volume flow rate and 

aeration pattern. Changing these properties improve some cases but also has no effect on 

or worsen the result for other cases. Changing the lift force or bubble sizes in a way that 

the stability criterion by Lucas et al. (2005) is fulfilled, the asymmetric plumes are mostly 

maintained but are homogenizing faster towards the top of the column. Using the Sato 

BIT model, which is resulting in a significant higher turbulent viscosity, the asymmetric 

plumes tend to be symmetric, but the swinging motion is suppressed and for lower gas 

volume flow rates even no swinging motion is obtained. 

The asymmetric bubble plume position is a stable or meta-stable state in the 

simulations. The comparison with experiments, however, is difficult especially since the 
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precise bubble size for the Julia experiments is not known. Nevertheless, from own 

experimental experience a bubble plume tends occasionally to stay at one side of the 

bubble column for an apparently arbitrary long time, especially if the bubble column is 

not exactly in absolute straight alignment. Since it might be difficult to align large facilities 

exactly straight, the effect of an asymmetric bubble plume is important for practical use, 

especially if flow situations exists that amplify such asymmetric behaviors. 

It should be noted, that locally very high void fractions occur in the bubble plume. 

Swarm effects, however, are not minded in the present baseline model, but might be 

significant. 

Nevertheless, the URANS approach with the present baseline model is capable to 

reproduce the large-scale structures in a bubble column at least for lower void fraction. 

The frequency of the bubble plume is reproduced for these cases as well as the time-

averaged values. 
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6 Turbulence in bubbly flows using the URANS equations with 

separation in large and small turbulence structures 

In bubbly flows, two flow regimes with different characteristics might be identified, 

especially in bubble columns. In one of them, there is a uniform flow pattern with a 

uniform distribution of the gas content over the cross section. The other flow regime is 

characterized by large-scale flow structures with a non-uniform flow pattern, which arise 

from partially distributed gas content and/or because of bubble coalescence and break-

up processes (Mudde et al. 2009).  Therefore, the bubble sizes in this regime are often 

ranging from very small to very large bubbles. In the uniform flow regime in contrast 

coalescence and breakup is absent. In this context, they are also refereed as 

heterogeneous and homogeneous regimes, respectively. Because of the different flow 

patterns, the dominant turbulent structures in heterogeneous and homogenous regimes 

might be different. 

Partially aerated bubble columns like that of Becker et al. (1994), Pfleger et al., (1999) 

or Deen et al. (2001) are frequently used to validate simulation models for flows with a 

non-uniform pattern. The outcome of such studies is in general that the hydrodynamics 

can be well predicted even by neglecting the bubble induced turbulence (Sokolichin et al. 

2004) or bubble forces like the lift force (Diaz et al. 2009). More recently, Ojima et al. 

(2014) concluded that even without any turbulence modeling non-uniform bubbly flows 

with large vortex structures could be well described. 

Whereas in the previous section the ability of the URANS to reproduce the transient 

behavior in the heterogeneous regime in general was discussed, in the present it is shown 

that by using the URANS baseline model, both regimes, non-uniform and uniform bubbly 

flows, can be reproduced. An approach that is capable to model both regimes is essential 

for reliable CFD calculations since geometrical changes of the facilities can lead to a 

regime transition or just bubble coalescence and break up (Lucas et al. 2007b). 

The heterogeneous regime is investigated by using the experimental data of Deen et 

al. (2001), the homogenous regime by using the experimental data of Julia et al. (2007) . 

At this point, the heterogeneous regime is simplified by using a partially aerated bubble 

column with a fixed bubble size distribution, which bypasses the additional complexity 

and uncertainty of modeling bubble coalescence and breakup. 

6.1 Simulation Setup and experimental data 
A sketch of both experimental setups, Deen et al. (2001) and Julia et al. (2007), is shown 

in Figure 6-1. The gas volume flow rates and bubble sizes are summarized in Table 6-1. 

The bubble column used by Deen et al. has a quadratic ground plate and an initial water 

level of 0.45 m. The sparger consists of an array of 7 by 7 holes. The mean and fluctuation 

of the liquid velocity were measured using LDA and PIV on a line 0.25 m above the ground 

plate. The bubble sizes were estimated as 4 mm by not further specified visual 

observations. Water was used in which 0.04 weight % of kitchen salt were added to 

suppress coalescence. 

The bubble column used by Julia et al. (2007) is a flat bubble column with a 

homogenous distributed needle sparger that consists of 137 needles. The liquid velocities 
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and turbulence properties were measured with LDA on a line 0.6 m above the ground 

plate. The bubble sizes were obtained by single needle experiments using video cameras.  

 

Figure 6-1 Sketch of the experimental setups. Right the setup of Julia et al. (2007); left 
the setup of Deen et al. (2001). The measurement positions are shown as dotted lines. 

Author Superficial velocity Bubble size 
Deen et al. (2001) 4.9 mm/s  4 mm 

Julia et al. (2007) 

21 mm/s 3.66 mm 
29 mm/s 3.82 mm 
43 mm/s 4.09 mm 
58 mm/s 5.6 mm 

Table 6-1 The superficial velocities and bubbles sizes. 

For both cases, grid studies were conducted. The bubble column of Deen et al. (2001) 

is discretized using a uniform cubic mesh of 5 mm cell size consisting of 81 000 cells. The 

bubble column of Julia et al. (2007) is, likewise, discretized using a uniform rectangular 

mesh of  Δx = 5mm, Δy = 8.2 mm, Δz = 5.16̅ size, consisting of 90 000 cells.  

For the Deen column, the inlet is modeled as a region of size of 0.03 x 0.03 m in the 

center of the column bottom as in the original work (Deen et al 2001). For the Julia 

column, the inlet corresponds with the full column bottom. Otherwise, the setup and 

methods are used as defined in Section 2.5 and Section 4. 
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6.2 Simulation results for both regimes 

6.3 Heterogeneous regime  
The flow in the bubble column of Deen et al. (2001) is characterized by large-scale flow 

structures. The liquid velocities were measured using particle image velocimetry (PIV) 

and laser Doppler anemometry (LDA). In the following, the PIV results are plotted with 

the LDA results as error bars to indicate the uncertainty of the experimental data. The 

measurement technique to determine the bubble size is not described by Deen et al., so 

the reported value may not be reliable. 

Therefore three different bubble sizes 3, 4, and 5 mm were tested. The results are 

shown in Figure 6-2. The vertical liquid velocity varies strongly with the bubble size; the 

simulation with 4 mm gives here the best results compared to experiments. In contrast, 

the root mean square of the normal Reynolds stress tensor components v′v′ and 𝑢′𝑢′ 

(RMS(v′v′) and RMS(u′u′), respectively) are not as much influenced by the bubble size 

as the vertical liquid velocity. Nevertheless, the RMS(v′v′) and RMS(u′u′) results shown 

in  Figure 6-2 are the summation of the unresolved and resolved turbulence modeling, 

both contributions are varying with the bubble sizes but the total amount is nearly the 

same. Since the results for 4 mm bubble size are in fact closest to the experimental data, 

this value will be used from hereon. 

  
Figure 6-2 Simulation results using different bubble sizes compared to experiments 
(Deen et al. 2001). Left the vertical liquid velocity is shown; right the root mean square 
of the normal components of the Reynolds shear stress tensor (𝑣 vertical, 𝑢 horizontal). 

The contribution of the unresolved as well as the resolved parts of RMS(v′v′) 

and RMS(u′u′), both with and without BIT modeling are shown in Figure 6-3. For the 

mean liquid velocity, there is no significant difference whether BIT is included or not, 

therefore no additional figure is shown. Considering the measurement uncertainty, the 
total values of both RMS(v′v′) and RMS(u′u′) obtained by the simulations both with and 

without BIT are in reasonable agreement with the data. The most prominent difference 
between the models with and without BIT is the shape of the total  RMS(v′v′) profiles. 

With BIT, a profile with a single center-peak is obtained with a trend to overpredict the 

measured values in the center of the column. Without BIT, a double-peaked profile is 

found which is somewhat closer to the data. The nature of these differences is situated in 
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the resolved contribution. For both models, the predicted variations are too pronounced 

compared with the experimental profiles, which have a rather flat shape. For the 
total RMS(u′u′), both models give similar results. 

Such double peaked RMS(v′v′) profiles that are obtained without the BIT modeling 

have been observed in flat bubble columns with partial aeration (Simiano et al. 

2006)(Section 3.4 and Section 7). The experimental data of Deen et al. in the square 

shaped bubble column might indicate also such profile shape; however, due to the 

measurement uncertainty this is speculative. 
RMS(v′v′)  is dominated by the resolved contribution for both models with and 

without BIT. In contrast, for RMS(u′u′) the resolved and unresolved contributions have 

similar values for the model with BIT whereas for the model without BIT the modeled 

contribution is much larger than the resolved contribution. 

The resolved contribution to the Reynolds stresses is higher with BIT model than 

without a BIT model in general. This is caused by the eight times lower eddy viscosity 

obtained with the BIT model. Accordingly, the eddy dissipation rate is distinctly higher 

with the BIT model. Nevertheless, the liquid velocity profiles (not shown) obtained with 

BIT und without BIT modeling are nearly the same. 

a) 

 

b) 

 
c) 

 

d) 
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Figure 6-3 Resolved and unresolved parts of RMS(v′v′) and RMS(u′u′) with and without 
BIT at 0.25 m above sparger compared to experimental data by Deen et al. (2001). a) 
And b) using BIT; c) and d) without a BIT model. 

Summarizing, the non-uniform regime represented here by the experiments of Deen 

et al. (2001) using a monodisperse bubble size distribution in a partially aerated bubble 

column can be reproduced satisfactorily using a two equation turbulence model either 

with or without BIT source terms. Moreover, the URANS modeling gives nearly the same 

results as large eddy simulations and scale adaptive simulations (Ma et al. 2015) or 

Reynolds stress models (Masood et al. 2014). 

6.4 Homogenous regime 
The uniform regime is characterized by a uniform distribution of the bubbles over the 

cross section of the column. When the bubbles are small enough this situation is stabilized 

by the lift force as discussed by Lucas et al. (2005) (2007b). Hence, no larger vorticities 

are expected in this regime as well as the turbulence is dominated by the BIT part. As 

discussed above, the experiments of Julia et al. (2007) are chosen for the investigation of 

this regime. 

Profiles of the liquid velocity, which were measured with LDA for the cases with gas 

superficial velocities of 29 mm/s and 43 mm/s, are compared with the URANS modeling 

in Figure 6-4 a), b) and c), d) respectively. Simulation results obtained both with and 

without BIT modeling are shown. As expected, the resolved part of the fluctuations in 

both directions RMS(v′v′) and RMS(u′u′) turns out to be zero in the simulations for both 

model variants, thus only the modeled part is shown which equals the total fluctuations. 

As a consequence the calculated values for  RMS(v′v′) and RMS(u′u′) are equal since the 

modeled fluctuations are isotropic. 

In comparison to the non-uniform regime the liquid velocity profiles are much more 

plug flow like with the liquid flowing downwards only much closer to the sidewalls. 

Similarly the profiles of RMS(v′v′)  and RMS(u′u′)  here are almost constant over the 

column width and drop to zero steeply near the walls. 

Comparing experiment and simulations, the vertical liquid velocity is underpredicted 

in the simulations for both values of the superficial velocity. As seen from the comparison 

of LDA and PIV data by Deen et al. (2001) a possible systematic error of the LDA method, 

which gives consistently higher values than obtained by PIV, may contribute to this 

deviation. From the modeling, the neglect of swarm effects and the use of a drag 

correlation for contaminated rather than clean systems are likely to play a role. The data 

show characteristic peaks near the walls, which are in principle also indicated in the 

simulations. Simulations with and without BIT modeling give quite similar results for the 

vertical liquid velocity. 

Concerning the fluctuations the RMS(v′v′)  and RMS(u′u′)  which have both been 

measured for the lower superficial velocity of 29 mm/s a certain anisotropy is seen that 

is not covered by the present two-equation turbulence model. A Reynolds stress model is 

needed to capture this effect. Without a BIT model the turbulence is underpredicted by a 

factor of 4 or more whereas with BIT model it is overpredicted by a factor of 

approximately 2. The profile shape with BIT model shows peculiar peaks at the wall 

which are absent in the data. For the higher superficial velocity of 43 mm/s only data for 
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RMS(v′v′) are available which show slightly higher values than for 29 mm/s. This trend 

is also seen in the simulations with BIT model but not in those without BIT model. 

 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 6-4 Vertical liquid velocity and RMS values of the normal Reynolds stress 
components obtained with the URANS modeling compared to experiment (Juliá et al. 
2007). a) and b) superficial velocity of 29 mm/s. c) And d) superficial velocity of 43 
mm/s. 

For all four superficial velocities, averages of the RMS(v′v′) and RMS(u′u′) values 

along the measurement line have been reported by Julia et al. (2007) (without the near 

wall region). These are shown in Figure 6-5 together with the corresponding simulation 

results for the model with BIT. As can be seen, the overprediction of the values by the 

simulations is present for all superficial velocities with the deviations increasing with 

decreasing superficial velocity. 

In addition, the data from another experiment for uniform flow in a bubble column 

by bin Mohd Akbar et al. (2012) and corresponding URANS simulations from Section 4 

using the same modeling as in the present study with BIT is included. The results obtained 

with the URANS simulations for the latter case are in good agreement with the 

measured RMS(v′v′). 
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Since the data of Julia et al. (2007) and bin Mohd Akbar et al. (2012) do not fall on a 

single curve, it appears that besides the superficial velocity some other relevant 

parameter must exist. The bubble sizes in both experiments are about 4 mm and both 

have been conducted in an air/water system. Also the geometries are rather similar, the 

column of bin Mohd Akbar et al. (2012) being about twice as thick as that of Julia et al. 

(2007) or in other words almost twenty and ten times the bubble diameter respectively. 

The integral gas hold up differs strongly between the two experiments, for the 

experiments of bin Mohd Akbar et al. (2012) is about 1.5 % while for the experiments by 

and Julia et al. (2007) ranges from 5.4 % to 20.2 %. However, this difference corresponds 

with the different superficial velocity. Therefore, it is not clear where the mismatch 

between both experiments comes from. 

In Julia et al. (2007) it is mentioned that a turbulence model for bubbly flows based 

on the pseudo turbulence obtained from potential flow (de Bertodano et al. 1990) with a 

dependency on the void fraction as 𝛼
2

3⁄  (Lance et al. 1991) can reproduce their 

experimental data. Additional simulations performed using this model, however, have 

shown heavy underprediction for the experiments by bin Mohd Akbar et al. (2012). 

Hence, such a model adaptation is not useful in general. Moreover, introducing a similar 

void fraction dependence in the prefactor 𝐶𝜖𝐵 of the present BIT model would also 

worsen the agreement for the experiments by bin Mohd Akbar et al. (2012) and probably 

also for the pipe flow tests by Rzehak & Krepper (2013b) (2015) and Rzehak & 

Kriebitzsch (2014). 

 

Figure 6-5 Reynolds stresses in homogenous bubble columns for different superficial 
velocities. The four superficial velocities from the present study (Juliá et al. 2007) and the 
experiments by bin Mohd Akbar et al. (2012) with the corresponding URANS simulations 
by Ziegenhein et al. (2015) are shown.  

Summarizing, the uniform regime represented by the experiments of Julia et al. 

(2007) can be roughly reproduced by the URANS approach. The resolved part of the 

turbulence modeling is zero as would be expected and the simulated RMS values of the 

normal Reynolds stress components are completely dominated by the used BIT model. 

6.5 Comparison with Large Eddy simulation 
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Besides the URANS approach also large eddy simulations (LES) were performed in 

corporation with the group of Prof. Jochen Fröhlich from TU-Dresden. The LES were 

executed by Dipl.-Ing. Tian Ma (HZDR/TU-Dresden), the results are described in several 

publications (Ma et al. 2015) (Ma et al. 2015) (Ma et al. 2015). At this point, the results 

are shortly compared to the URANS results by using the results of the last two mentioned 

papers. The results from the LES are reproduced with permission of Dipl.-Ing. Tian Ma, 

which is not repeated in the following. The results are taken from the LES with the 

Smagorinsky model using 𝐶𝑠 = 0.12 and the Sato BIT model (see Section 2.4.3). Further, 

the same force model set was taken as used for the baseline URANS except the turbulent 

dispersion force since these turbulence structures are resolved in the LES. 

For the experiment of Deen et al. (2001) which is investigated in the previous section, 

the LES from Ma et al. and URANS simulations are compared in Figure 6-6. The vertical 

liquid velocity is stronger over-predicted than by the URANS simulations compared to 

the experiments. The obtained root mean square of the normal components of the 
Reynolds stress tensor 𝑢′𝑢′  and 𝑣′𝑣′  are similar for both approaches. The 𝑅𝑀𝑆(𝑣′𝑣′) 

obtained from the LES, however, shows a very strong peak in the center. Likewise as the 

liquid velocity, the void fraction is higher in the center compared to the URANS 

simulations. The eddy viscosity obtained from the LES is distinctly smaller compared to 

that obtained from the URANS simulations, as would be expected. For comparison, the 

eddy viscosity obtained from the URANS simulations without a BIT model is shown. The 

lower the modeled eddy viscosity the higher the resolved part of the turbulence. 
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Figure 6-6 LES compared with the URANS simulations for experiments of Deen et al. 
(2001). 

It should be noted, the LES result obtained without the Sato BIT model, which is 

leading to a lower eddy viscosity, fits better to the experiment. Therefore, LES are capable 

to reproduce the bubbly flow for this experiment in general. 

For homogenous regimes that might be dominated by the BIT, the LES, however, 

cannot represent the turbulence as shown in Figure 6-7. Here, the experiments of Mohd 

bin Akbar et al. (2012), which are discussed in Section 4, are compared to LES and URANS 

simulations. For the 3 mm/s superficial velocity it was previously found that the resolved 

turbulence scales obtained from the URANS simulations are almost zero. The same result 
is obtained from the LES resulting in a strong underprediction of the 𝑅𝑀𝑆(𝑤′𝑤′) (𝑤 is 

the upward velocity to stay in the notation of the experiments) values shown in Figure 

6-7 d). Nevertheless, vertical liquid velocity and gas volume fraction are similar to the 

URANS simulations. 

The results of the LES for the 13 mm/s case are similar to the URANS results. Looking 
at the 𝑅𝑀𝑆(𝑤′𝑤′) profiles an improvement is obtained compared to the experiments; the 

distinct near wall peak is better reproduced by the LES. 

a) 

 

b) 
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c) 

 

d) 

 
Figure 6-7 LES compared with the URANS simulations for the experiments of bin Mohd 
Akbar et al. (2012) (cf. Section 4). a) and b) vertical liquid velocity and gas volume fraction 
for 3 mm/s and 13 mm/s superficial velocity, c) 𝑅𝑀𝑆(𝑤′𝑤′) for 13 mm/s superficial 
velocity (𝑤 is the upward velocity), d) 𝑅𝑀𝑆(𝑤′𝑤′) for 3 mm/s superficial velocity. 

Summarizing, the baseline URANS model approach and the LES give similar results 
in the inhomogeneous, large-scale flow dominated bubbly flow regime. Therefore, the 
URANS simulations are capable to reproduce such structures in general. The URANS 
approach is capable to reproduce the homogenous, BIT dominated regime, which is not 
possible with the present BIT modeling for the LES. Therefore, towards a general 
approach to model bubbly flows the URANS approach is advantageous. 

6.6 Conclusions 
The resolved structures obtained from the simulations give an important 

contribution to the turbulence in general. Further, the anisotropic character of the 

turbulence in this regime is reproduced in this way. Comparing the URANS results to 

other turbulence model approaches like LES (Section 6.5) or a Reynolds stress model 

(RSM) (Masood et al. 2014) similar results are obtained. Therefore, in the heterogeneous 

bubbly flow regime the URANS approach is capable to reproduce the large-scale flow 

structures in the same way as approaches that are more sophisticated. 

The total turbulent kinetic energy is similar with and without BIT modeling; the 

unresolved and resolved parts, however, are different. Since also the LES with and 

without BIT and the RSM simulations give almost the same results for the Deen 

experiments, it is reasonable to assume that the BIT modelling has a minor influence in 

the heterogeneous regime. Differences between the approaches are small and are in the 

range of the experimental uncertainty; especially the not measured bubble size 

distribution is problematic. 

A different situation is found in the homogeneous regime. The liquid velocity is small 

and no large-scale flow structures are expected. This expectation is consistent with the 

results obtained from the URANS simulations since the resolved turbulence part is nearly 

zero. Therefore, the turbulence is completely characterized by the unresolved turbulence 

model. Simulations without BIT modeling heavily underpredict the turbulence in this 

regime. The results obtained from the simulations with BIT in contrast overpredict the 
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experimental data to somewhat lesser degree with deviations increasing with decreasing 

superficial velocity. Despite the necessity to improve the modeling further, the URANS 

approach with the BIT model used here is capable to describe the uniform bubbly flow 

regime as well. 

Therefore, the present URANS approach with a BIT modeling using source terms for 

𝑘 and 𝜖/𝜔 is able to reproduce both regimes. To improve the Eulerian LES it might be 

necessary to define at least a one-equation turbulence transport with a filter width 

addicted to the bubble size and not to the mesh size. To cover isotropic turbulence in the 

unresolved part, especially in the BIT modeling, a RSM approach might be the only 

reasonable approach. 

The nature of the bubble-induced turbulence remains an issue of active research and 

up to now, no model is sufficient for a general formulation. Besides fundamental 

investigations to this topic, also reliable experimental data for a validation is needed. For 

this purpose, a comprehensive set of locally measured values is needed in different flow 

conditions. Indeed, the above discussed experiments, except of the one used in Section 4, 

do not provide such data since often information about the gas phase (gas void fraction) 

or liquid velocity field (basic turbulence parameters) are missing. In particular, the 

bubble sizes are insufficient determined since the measuring method is often not given 

or the bubble sizes are estimated from simplified flow conditions. Furthermore, the 

bubble size distribution at different positions is needed to evaluate if coalescence and 

break up processes are negligible or not. Unfortunately, such comprehensive 

experimental data that can be used for CFD validation are rare in the literature. Thus, an 

own experimental study is performed in the next section covering all the needs of a CFD 

validation. 

In parallel, the modeling of the different closure models in the momentum equation 

(see Section 2.3) has to be evolved. From the discussion from the last sections it appears 

that the lift force plays an important role. Reliable measurements, however, were only 

performed under high Morton numbers and low Reynolds numbers, which are far away 

from the here used conditions. Moreover, the significance of the lift force in turbulent 

air/water bubbly flows is an open discussion in the community. Therefore, new methods 

are developed to measure the lift force in the after next section. 
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7 A complex validation case for CFD simulations: Airlift reactor  

In the bubble columns that are discussed in the previous sections the gas bubbles drive 

the flow and usually the liquid is rising in the center and falling near the wall. The up- and 

downward flow are next to each other and can interact. Alternatively, internal walls can 

be placed in bubble columns to separate the up and downward flow; these reactors are 

called internal airlift reactors. 

For many applications that use airlift reactors it is desired to know the exact fluid 

dynamics. For example, the light exposure of microorganisms in airlift photo bioreactors 

can be optimized by knowing the fluid dynamics (Fernandes et al. 2010). Moreover, the 

shear rate and turbulence parameters are important for all process with microorganisms 

(Liu & Tay 2002) (Miron et al. 200) (Oliver-Salvador et al. 2013) and for mass transfer 

modelling (Korpijarvi et al. 1999) (Lu et al. 2000). Nevertheless, such detailed 

information of the fluid dynamics are rarely accessible by the use of experiments. 

A better understanding of the fluid dynamics is gained by using the methods of the 

computational fluid dynamics (CFD). A lot of work was done simulating airlift reactors in 

the past with the Eulerian two-fluid approach. However, in general the bubble sizes were 

not known (Huang et al. 2010) or only known in the downcomer (Luo & Al-Dahhan 2011). 

Further, often only integral measured values were available (Simcik 2011) (Ghasemi & 

Hosseini 2012). Hence, a validation of the closure models in airlift reactors is limited with 

the existing experimental data. 

In the present section, an internal airlift reactor is experimental studied to provide a 

comprehensive set of locally measured data for CFD validation. To the best of the author’s 

knowledge, those measurements were not published in the past and are urgently needed. 

Moreover, the measured data provide a complete picture of the flow in an internal airlift 

reactor.   

7.1 Setup 
The bubble column that is described in Section 3.1 is used with internal walls as shown 

in Figure 7-1. The 5 mm thick internal walls separate the 0.12 m wide riser from the 

downcomers. Each downcomer has a width of 0.06 m so that the riser and the sum of both 

downcomers have the same cross section. The distance from the ground plate to the 

beginning of the internal walls is 0.06 m, which is equal to the width of a downcomer. In 

addition, the distance from the top of the internal walls to the water surface (the top 

clearance) is held constant to 0.06 m for all gas volume flow rates. Thus, the liquid level 

is at 0.72 m above the ground plate for all setups. 

Liquid velocity, turbulent kinetic energy, available Reynolds stress tensor 

components and bubble sizes are determined at a height of 0.2 m and 0.6 m in the riser 

and the downcomer, which is indicated with red lines in Figure 7-1. The void fraction is 

measured at a height of 0.6 m in the riser. In addition, the bubble size distribution and the 

void fraction are determined along the downcomer. 
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Figure 7-1 Experimental setup and the used ground plate setup. The red lines label the 
measuring positions. 

Rubber seals that are attached at the side of the internal walls hold them in place. 

Therefore, no interaction between the riser and the downcomer is possible and no flow 

disturbing installations are needed to hold the walls in place. The Gas is injected through 

the ground plate, which is shown in Figure 7-1 on the right hand side, by using up to eight 

needles with an inner diameter of 0.6 mm. The volume flow rate per needle is held 

constant for all cases to get a similar bubble size distribution. The total gas volume flow 

rate is regulated by changing the needle count. A summary of the important parameters 

is given in Table 7-1. 

case 
cumber 

Volume 
flow 

Sparger 
needle 

Needle 
count 

Volume flow 
rate per needle 

S W  
(gas on) 

4 3 l/min 0.6 mm 4 0.75 l/min 35 mm 60 mm 

6 4.5 l/min 0.6 mm 6 0.75 l/min 60 mm 60 mm 

8 6 l/min 0.6 mm 8 0.75 l/min 85 mm 60 mm 

Table 7-1 Experimental parameters at standard conditions. 

7.2 Results 
The bubble size distribution is determined with videography at several positions as 

discussed in Section 3.2. The volume fraction in the riser is measured with a conductivity 

needle probe as described in Section 3.3.1. In contrast, the volume fraction in the 

downcomer is determined by the use of videography as described in Section 3.3.2. The 
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liquid velocity and the turbulent kinetic energy are measured with particle-tracking 

velocimetry using micro bubbles (BTV), which is discussed in Section 3.4. 

7.2.1 Bubble size distribution 

The bubble size distributions in the riser for the different volume flow rates are shown in 

Figure 7-2. Bubbles that are smaller than 1.5 mm are not evaluated in order to reduce the 

measuring effort since the count of the small bubbles is large whereas such small bubbles 

are not significant for the Sauter diameter, which is used for CFD calculations. In the riser, 

the bubble sizes are determined at a height of 0.2 m and 0.6 m to evaluate possible break-

up and coalescence effects. The number density function is identical at both heights for 

case 6 and case 4 (case 4 is not shown). For case 8, the number density function is shifted 

slightly towards smaller bubbles. Nevertheless, comparing the area density and volume 

density function of case 8 with the results of case 6 and case 4 no large differences are 

seen so that coalescence and break up might be negligible. 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 7-2 Bubble size distributions in the riser. a) Number density for case 6 at two 
different heights b) number density for case 8 at two different heights; c) averaged area 
density function at 0.2 m and 0.6 m; d) averaged volume density function at 0.2 m and 0.6 
m. 
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The bubbles in the riser are shown in Figure 7-3. Bubble cluster are seen clearly for 

all volume flow rates. The bubbles inside the clusters are identified by chasing the bubble 

clusters over several images until the bubbles are seen distinctly as described in Section 

3.2.3. 

a) 

 

b) 

 
c) 

 
Figure 7-3 Pictures of the bubbly flow in the riser at a height of y = 0.2 m. a) case 4; b) 
case 6; c) case 8. 

The automatically determined bubble sizes along the downcomer are shown in 

Figure 7-4 picture a). The bubble sizes are averaged over the cross section of the 

downcomer. The bubble size at the top of the downcomer for case 6 and case 8 are 

determined by hand because the void fraction is too high for an automated evaluation. A 

separation of the bubble sizes along the downcomer occurs. 

Besides a separation over the height, also a separation of the bubble sizes over the 

width of the downcomer is seen as demonstrated in Figure 7-4 picture b) for case 8. The 

bubble sizes are averaged over height from y = 0.3 m to y = 0.4 m  and are plotted 

against the horizontal coordinate from the airlift reactor wall at x = 0 m to the internal 

wall at x = 0.06 m. Near the reactor wall, larger bubbles are situated compared to the 

bubbles that are found near the internal walls. As will be discussed below, the liquid 

velocity near the reactor wall is higher than near the internal walls so that this separation 

occurs. 

The situation in the downcomer is shown in Figure 7-5 for the three flow rates. The 

bubble count for case 4 is very low, although the size of the bubbles might be comparable 

to case 6. Many large bubbles are seen for case 8, which might be the reason for the larger 

Sauter diameter. 
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a) 

 

b) 

 
Figure 7-4 Bubble sizes in the downcomer. a) Bubble sizes along the downcomer. b) 
Bubble sizes over the width of the downcomer for case 8 averaged over height from y =
0.3 m to y = 0.4 m 

a) 

 

b) 

 

c) 

 
Figure 7-5 Situation in the downcomer, a) case 4 b) case 6 c) case 8. 

7.2.2 Liquid velocity and turbulence 

The described sampling bias for BTV is also present in the airlift reactor as demonstrated 

in Figure 7-6. The count of the trajectories is plotted with the velocity over time; a moving 

average over 2 s is used to show the sampling bias clearly. The count of the trajectories is 

low when the velocity is high and vice versa over 80 s. Therefore, the count of the tracked 

micro bubbles is correlated to the velocity, which is leading to a sampling bias. To 

overcome the bias the hold processor derived in Section 3.4.3 is used as described in 

Section 3.4.4. 
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Figure 7-6 Sampling bias in the center of the riser for case 8 at y = 0.2 m. 

The liquid velocity profiles in the riser are obtained from four single measurements 

with a distinct time between them. In total, 48 000 bursts, equivalent to eight minutes 

measuring time, are evaluated in the riser at a height of 0.2 and 0.6 m. In the upper part 

of the downcomer at a height of 0.6 m 36 000 bursts are recorded and in the lower part 

24 000 bursts. The long measuring time is necessary because a bubble plume with a very 

long time scale occurs; especially in the lower part of the riser, this effect is noticeable. 

The liquid velocities at two different heights in the riser and the downcomer for the 

investigated volume flow rates are shown in Figure 7-7. At a height of 0.2 m, the velocity 

profiles in the downcomer are flat and are nearly the same for all three flow-rates. 

Surprisingly, the integral averaged velocity for case 6 and case 8 along this measuring line 

are both almost exactly -0.2 m/s; this is nearly the exact value obtained for both cases at 

the height of 0.6 m in the downcomer. For case 4 a slightly lower averaged velocity of -

0.18 m/s at y=0.2 m and y=0.6 m is obtained. 

The similar results obtained in the riser at y = 0.2 m for all cases are due to a distinct 

bubble plume created by the circulating liquid that constricts the bubbles developed at 

the sparger. This bubble plume swings from one side to the other. An occasionally 

asymmetric stabilization at the internal walls of the bubble plume was observed. 

y=0.2 m 

 

y=0.6 m 

 
Figure 7-7 Liquid velocity profiles measured at two different heights. 
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The transient liquid velocity results in Figure 7-8 demonstrate the occasionally 

stabilization of the bubble plume at one side. From the transient results in the riser at a 

height y=0.2 m in the left quarter at x=0.09 m (upper plot), it is seen that the bubble plume 

is standing 40 seconds at the left wall before going to the right wall. However, between 

60 s and 110 s a steady bubble plume swinging motion is not seen as well. Nevertheless, 

a steady swinging motion was dominant during the experiments. This motion is observed 

in all areas of the reactor as demonstrated in the lower transient vertical velocity plot, 

which was recorded in the downcomer, in Figure 7-8. Here, a more or less steady 

frequency over 120 s is observed. 

 

 
Figure 7-8 Vertical velocity over time at two different positions for case 6, the time scale 
is arbitrarily set to zero for both and is not synchronized. Top: The vertical velocity over 
time in the left quarter of the riser at x = 0.095 m and y = 0.2 m; every measuring point 
is moving averaged over 0.08 s. Bottom: The vertical velocity over time in the center of 
the left downcomer at  x = 0.03 m  and  y = 0.6 m ; every measuring point is moving 
averaged over 2 s. 

The behavior of a standing bubble plume at one side of the riser for a distinct quantity 

of time was observed for every case. The time that the bubble plume stood at one side 

seemed to be arbitrary in the range of several seconds to minutes. In addition, the 

switching between the situations of a permanently swinging motion to a standing one at 

one wall seemed to be arbitrary. Deviations between the four consecutively conducted 
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liquid velocity measurements, as discussed in the method section, were observed, 

particularly, in the bottom part of the riser. 

A more continuous situation is obtained in the upper part of the column. The bubble 

plume is spreading towards the top. The results that are obtained from the single 

measurements are not deviating much. The same is found in the downcomer. 

Noteworthy, the vertical liquid velocity in the downcomer at a height of y = 0.6 m is 

zero near the internal walls and distinctly negative towards the reactor walls. 

Consequently, a large standing vortex in this region is observed; the liquid in the top 

clearance is forced to the side because of the driving force of the bubbles in the riser. 

Reaching the reactor wall the liquid is pulled downward in the downcomer. From visual 

observations, bubbles are dragged in the downcomer by the same mechanism. However, 

many bubbles that are pulled in the downcomer at the reactor walls migrate to the 

internal walls and rise up at them because of a lower vertical liquid velocity there. This 

lower vertical liquid velocity at the internal walls was observed along the complete 

downcomer and can be still observed at y=0.2 m for all volume flow rates. 

Despite the averaged liquid velocities are similar for all investigated cases, the normal 

components of the Reynolds stress tensor u′u′  and v′v′  shown in Figure 7-9 are very 

different among the volume flow rates. In general, an increasing of u′u′  and v′v′  with 

increasing gas volume flow rate is seen. Looking at the bottom of the riser at a height 

of y = 0.2 m, the v’v’ graphs show clear maxima located beside the center for all cases. 

Such maxima are consistent to previous measurements in the bubble plume regime 

(Section 3.4) (Simiano et al. 2006) (Mudde et al. 1997). In contrast, the u′u′ graphs show 

maxima in the center, which is also observed in the previously mentioned work. 

Averaged over the cross section of the riser at y = 0.2 m, the v′v′ values are for all 

cases almost exactly twice as high as the u′u′ values. The averaged normal components of 

the Reynolds stress tensor along the centerline seem to increase linearly with the volume 

flow rate, for example for v’v’ 0.01 m2/s2  from case 4 to case 6 and 0.011 m2/s2  from 

case 6 to case 8. 

With increasing height u′u′ and v′v′ are decreasing in the riser as shown in Figure 7-9. 

The averaged v′v′  values, however, are remaining twice as high as the u′u′  values. 

Looking at the results obtained for case 8 distinct maxima are seen in the u′u′ and v′v′ 

graphs at  x = 0.095 m . These maxima can be found in every measurement and are, 

therefore, no outlier. The origin of this effect is unknown. 

Along the downcomer, u′u′ and v′v′ are decreasing, compared to the riser, the values 

in the downcomer are low. At a height of y = 0.6 m, the obtained profiles for case 4 and 

case 6 are, surprisingly, very similar. In contrast, for case 8 the values are distinctly 

higher. Nevertheless, the ratio between u′u′ and v′v′ is 1.5 for all cases, compared to a 

ratio of two in the riser. The turbulence intensity is almost zero at the bottom. 

The cross component of the Reynolds stress tensor u′v′  is shown in Figure 7-10. 

Similar to the normal components, large values are obtained at a height of y = 0.2 m in 

the riser that are decreasing with increasing height. Although, the u′v′ values are similar 

for case 4 and case 6 at y = 0.2 m in the riser, the values for case 8 are distinctly larger. 

In the downcomer at y = 0.6 m u′v′ is very similar for all cases. Parallel to the normal 

components, the u′v′ values are decreasing along the downcomer to almost zero. 
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y=0.2 m 

 

y=0.6 m 

 

y=0.2 m 

 

y=0.6 m 

 
Figure 7-9 Normal Reynolds stresses in the vertical (v’v’) and horizontal (u’u’) direction 
at two different heights. 

 

y=0.2 m 

 

y=0.6 m 

 
Figure 7-10 Cross Reynolds stress u′v′ at two different heights. 
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7.2.3 Void fraction 

The void fraction was determined inside the riser with a needle probe and along the 

downcomer by using videography. The void fraction that is measured with a needle probe 

is a local value. In contrast, the values that are obtained in the downcomer by using 

videography are the quantity of gas inside a specific measuring volume. The measuring 

volume is composed of the cross section of the downcomer (0.06 m width and 0.05 m 

depth) and a height of Δy = 0.025 m. The given values are placed in the middle of these 

volumes.  

The void fraction results for the upper region of the riser and along the lower region 

of the downcomer are shown in Figure 7-11. The void fraction is measured only in the 

upper region of the riser in order not to disturb the bubble plume at the bottom. The void 

fraction inside the downcomer is determined only up to a height of 0.45 m because a 

flange is blocking the view. Above the flange the void fraction inside the vortex structure 

at the top of the internal walls, which is described above, was too high for reliable 

measurements with the videography method. 

  
Figure 7-11 Void fraction in the riser at y = 0.6 m (left) and along the downcomer 
(right). 

The void fraction inside the riser is increasing with the volume flow rate. A center 

peak is observed for all cases, with a maximum void fraction of around 7 % for case 8 at 

the center. 

Along the downcomer, surprisingly, the profiles obtained for case 6 and case 8 are 

very similar. The void fraction is steadily decreasing with decreasing height in general. 

Moreover near the end of the internal walls (the bottom edge of the internal walls is 

at 𝑦 = 0.06 𝑚) the void fraction is rapidly decreasing due to an increasing liquid velocity 

at this point. The rising bubbles in the riser pull the liquid from the downcomer into the 

riser and, therefore, also the bubbles from the downcomer. 

The steadily decreasing void fraction along the downcomer in general is explained by 

the liquid velocity field. As a strong downward flow at the reactor wall is observed, a 

positive horizontal liquid velocity in the downcomer towards the internal walls occurs, 

as shown in Figure 7-12 a). Naturally, this horizontal velocity is decreasing along the 

downcomer, surprisingly, in the bottom region the strongest horizontal velocity is seen 

for case 4 whereas it is for case 8 almost zero. This behavior might be due to the higher 

void fraction and/or larger bubble sizes for case 6 and case 8. Nevertheless, a liquid 
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velocity that pushes the bubbles towards the internal walls is observed in the downcomer 

in general. 

a) 

 

b) 

 
Figure 7-12 Flow situation in the downcomer. a) Horizontal liquid velocity at two 
different heights, b) void fraction profiles for case 6 at three different heights. 

The bubbles are pulled into the downcomer near the reactor wall so that the void 

fraction profile in the upper part of the downcomer at y = 0.415 m has a peak near the 

reactor walls at x = 0.02 m, as shown in Figure 7-12 b). Below this measuring position at 

y = 0.375 m the void fraction near the reactor wall is distinctly smaller but towards the 

internal walls almost the same. This indicates a migration of the bubbles away from the 

reactor wall to the internal walls where a lower downward liquid velocity is observed so 

that the bubbles rise up (see Figure 7-7). Nevertheless, the peak is still near x = 0.02 m. 

Looking at the void fraction profile further downstream at y = 0.215 m, the gas void 

fraction at the internal walls is still at the same level, further the maximum gas fraction is 

seen near the internal walls at x = 0.04 m. Thus, more and more bubbles had moved to 

the internal walls and risen up. 

7.3 CFD Simulations 
The URANS baseline setup as discussed in Section 2.5 and in Section 4 is used to simulate 

the hydrodynamics in the investigated airlift reactor. For this purpose, four bubble size 

classes with their own velocity field were used. The volume weighted bubble size 

distribution was used to distribute the gas volume on the single bubbles classes at the 

inlet. Since coalescence and break up might be negligible, the bubble size distribution is 

fixed. The inlet conditions are summarized in Table 7-2. 

The gas volume flow rate of the bubble classes 1 and 2 is very small at the inlet, thus 

they are negligible in the riser but are important in the downcomer. The bubble class 1 

contains all bubbles 𝑑𝐵 < 3 𝑚𝑚, bubble class 2: 3 𝑚𝑚 ≤ 𝑑𝐵 < 4.5 𝑚𝑚. These two bubble 

classes are chosen somewhat arbitrary by evaluating the occurring bubble sizes in the 

downcomer from the experiment. Bubble class 3 was chosen to cover the remaining 

bubble diameters up to 5.83 mm, which is the zero of the Tomiyama lift force coefficient. 

Bubble class 4 includes the remaining from that diameter. 
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Figure 7-13 The complete computational mesh and a magnification of the top region. 

 Bubble class Sauter diameter [mm] Void fraction  [-] 
Case 4 1 2.15 0.0085 

2 3.85 0.0263 
3 5.37 0.1321 
4 7.50 0.8331 

Case 6 1 2.24 0.0120 
2 3.79 0.0226 
3 5.38 0.1325 
4 7.63 0.8329 

Case 8 1 2.30 0.0145 
2 3.87 0.0312 
3 5.32 0.1623 
4 7.59 0.7920 

Table 7-2 Inlet conditions. 
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The computational domain is the complete airlift reactor in three dimensions as 

shown in Figure 7-1. A structured mesh was used as shown in Figure 7-13. After a mesh 

study, the base mesh size was chosen to 3.75 mm, cells at the wall were refined to 1.875 

mm. In addition, above and below the internal walls the mesh was locally refined to cover 

large gradients at these points. Since the top clearance was held constant in the 

experiments, the same mesh was used for all cases. The internal walls are treated in the 

same way as the reactor wall, namely, no-slip condition for the liquid phase and slip 

condition for the gas phase are applied. 

7.3.1 Results 

After a problem time of 400 seconds the simulations had converged by using the local 

integral convergence criteria described in Section 4.1, although the symmetric 

convergence criteria is not fulfilled. Thus, an asymmetric flow behavior for all cases is 

obtained, which is demonstrated in Figure 7-14. The shown averaged vertical liquid 

velocity tends to the right-hand side internal wall for case 4 and case 6 and to the left-

hand side internal wall for case 8. Indeed, this behavior of an asymmetric bubble plume 

was also observed in the experiments as described above. 

 
Figure 7-14 Asymmetric flow behavior in the airlift reactor. From left to right: Case 4, case 

6, case 8. 

If the bubble plume in the experiments shows a symmetric state, it is still swinging 

asymmetric rather than standing at one wall. In addition, the bubble plume often tends 

to restore a symmetric swinging motion, but the time of the asymmetric behavior was 

sometimes distinctly long; the liquid velocity measurements during these times were 

discarded. During the experiments, it was assumed that this asymmetric behavior was 
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due to not exactly placed internal walls or not exactly equal mass flow controllers; two 

mass flow controllers were used to control the gas volume flow rate of four needles of the 

eight used needles each. However, since the simulations show an equal behavior, at least 

three metastable conditions that contain the asymmetric bubble plume at each side and 

the symmetric bubble plume swinging might exist. A systematic error in the simulations 

is unlikely because a perfectly symmetrical regular mesh was used and the position 

where the plume stands is different for case 8 compared to case 4 and case 6. In addition, 

this behavior was seen in all cases of the mesh study. The bubble plume in the simulations 

is asymmetric swinging at one side and not steady standing, which is the same behavior 

as observed in the experiments. 

Since the state when the bubble plume swings asymmetric was discarded in the 

experiments, a sampling bias might be the result because the symmetric state was 

actively chosen, especially in the lower part of the riser. Nevertheless, a comparison of 

the simulations with the experiments is meaningful because towards the top of the riser 

all quantities are more or less homogenized over the cross section. Moreover, the 

simulation results in the left and the right downcomer are almost equal, for all cases. 

In Figure 7-15 the void fraction profiles are compared to the experimental data in the 

riser at y = 0.6 m. Still, an asymmetrical void fraction profile from the simulations is seen. 

Considering this, the simulation results are in agreement with the experimental results. 

However, for case 8 the void fraction profile is underpredicted in the center in general. 

 

Figure 7-15 Void fraction at y = 0.6 m in the riser. 

In Figure 7-16 the obtained liquid velocity and the normal components of the 

Reynolds stress tensor 𝑢′𝑢′ and 𝑣′𝑣′ are compared with the experiments. As expected, at 

the bottom of the riser at y = 0.2 m the liquid velocity profiles are asymmetrical, so a 

comparison with the experiments is difficult. At y = 0.6 m, the liquid velocity profiles are 

becoming symmetrical but all simulations over-predict the liquid velocity. 

The obtained 𝑣′𝑣′ profiles are more or less symmetrical in the riser at y = 0.2 m. For 

case 6 and case 8, the 𝑣′𝑣′ profiles are in good agreement with the experimental data. The 

minima in the center as well as the maxima towards the inner walls are reproduced; the 
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heights of the maxima are almost equal compared to the experimental data whereas the 

positions of the maxima are slightly displaced. The 𝑣′𝑣′ profile for case 4 is asymmetrical, 

so this result might be difficult to compare with the experiment; nevertheless, the 

quantity of the results is similar to the experiments in general. In the top region of the 

riser at y = 0.6 m, the simulations for case 6 and case 8 over-predict the 𝑣′𝑣′ profiles. 

Case 4 is better reproduced quantitatively. Nevertheless, all simulation results show a 

distinct peak towards the internal walls that is only seen for case 8 in the experiments. 

y=0.2 m 

 

y=0.6 m 

 

  

  
Figure 7-16 Liquid velocity and normal components of the Reynolds stress tensor v′v′ 
and u′u′ (u is the horizontal liquid velocity) at y = 0.2 m (left) and y = 0.6 m (right) with 
delineated internal walls. 

The obtained u′u′ values at y = 0.2 m are consistently too small in the riser compared 

to the experiments for all cases. At y = 0.6 m, however, the simulations are, despite a 

slight underprediction, in agreement with the experimental data. In contrast to the 

experiments, the obtained u′u′ values are almost equal at y = 0.2 m and y = 0.6 m.  

In the downcomer at y = 0.6 m,  the u′u′  and v′v′  profiles are underpredicted in 

general. The decreasing turbulence intensity to almost zero at  y = 0.2 m, however, is 

reproduced in the simulations. 
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The vertical liquid velocity is overpredicted in the downcomer at y = 0.6 m for case 6 and 

case 8. However, at y = 0.2 m the velocity obtained from the simulation is in agreement 

with the experiments and for all cases almost equal as in the experiment. 

The resolved and unresolved contribution of the turbulence modelling to 

u′u′ and v′v′ are shown in Figure 7-17. In this context, the summation of the contributions 

gives the total value. In the riser, the double-peaked v′v′ profiles are produced by the 

resolved part at both heights; further, the resolved part is distinctly larger than the 

unresolved part. In contrast, the influence of the resolved part is minor for the u′u′ 

profiles at both heights. The same trend is found in the downcomer at y = 0.6 m, whereas 

the resolved and unresolved part for v′v′ are similar. 

y=0.2 m 

 

y=0.6m 

 

  
Figure 7-17 Resolved and unresolved normal components of the Reynolds stress tensor 
v′v′ and u′u′ (u is the horizontal liquid velocity) for case 6 at y = 0.2 m (left) and y =
0.6 m (right) with delineated internal walls. 

The obtained gas void fraction along the downcomer is compared to the experiments 

in Figure 7-18. Despite of case 4, the qualitative behavior is not well reproduced by the 

simulations. In the experiments, the void fraction is slowly decreasing over the height, in 

the simulations the void fraction is rapidly falling from very large values to almost zero 

at the bottom of the downcomer. In addition, the void fraction profiles for case 6 and case 

8 are not similar as observed in the experiments. 
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Figure 7-18 Void fraction along the downcomer. 

The Sauter diameters are compared to the experiments in Figure 7-19. The Sauter 

diameters are determined by averaging the (fixed) bubble sizes of the four bubble classes 

with their void fraction by weight. Thus, the separation of the bubble classes along the 

downcomer is seen. For case 4, the simulation underpredicts the Sauter diameter in the 

upper region of the downcomer, since the void fraction becomes zero towards the bottom 

region no bubble size could be calculated for the simulation here. The experimental 

determined Sauter diameters for case 6 are well reproduced by the simulation; again, the 

void fraction becomes zero towards the bottom region. For case 8, the bubble sizes are 

distinctly underpredicted over the complete downcomer. 

 

Figure 7-19 Bubble size seperation along the downcomer. 
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Despite the acceptable agreement of the Sauter diameter especially for case 6, the 

void fraction obtained from the simulations are distinctly different. Several reason can be 

identified; on the one hand, the discretization of the bubble size distribution might be too 

coarse, on the other hand horizontal liquid velocity in the downcomer over-predicted as 

shown in Figure 7-20. This higher velocity pushes the bubbles towards the internal walls 

where they can rise up in the downcomer as discussed below (as well as discussed above 

in the experimental section). Consequently, a rapid decrease of the void fraction along the 

downcomer occurs as shown in Figure 7-20 on the right hand side. 

  
Figure 7-20 Horizontal liquid velocity and gas void fraction in the downcomer compared 
to experiments for case 6. 

The Situation of the gas phase in the downcomer is shown in Figure 7-21 for case 6. 

A strong vortex at the top of the downcomer is observed in the simulations as is seen from 

the two dimensional gas fraction profile. In this, the bubbles are pulled deeper into the 

downcomer but a majority is already rising up and leaving the downcomer, which is also 

observed in the experiments. The positions where bubbles rise up are seen in the gas 

velocity profile, the red color indicate a positive (upward) gas velocity. The bubbles 

clearly rise up at the internal walls of the downcomer where they are pushed by the liquid 

velocity. The liquid velocity at 𝑦 = 0.415 m is shown in the vector plot in which a large 

vortex structure directed towards the internal walls is seen. This structure is propelled 

by the bubbles themselves as seen in the horizontal slip velocity plot. The positive 

(directed to the internal walls) horizontal slip velocity means that a positive bubble force 

acts. From the baseline model, this force is the summation of the lift and turbulent 

dispersion force, in which the lift force might be dominating. 
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Figure 7-21 Flow situation of the gas phase in the downcomer for case 6. From right to 
left: The gas void fraction and the gas velocity in the center plane; the liquid velocity 
vectors from the aerial view in the downcomer at  𝑦 = 0.415 m , the horizontal slip 
velocity in the downcomer at 𝑦 = 0.415 m. All shown values are time averaged. 

Consequently, the situation in the downcomer is very complex and not only the drag 

force regulate the void fraction in the downcomer. The void fraction here might be very 

sensitive to the bubble size since the coefficient of the lift force, which propels the 

horizontal flow in the downcomer, strongly depends on it. Moreover, the turbulent 

dispersion force might be important since bubbles that rise up lead to a gradient in the 

void fraction profile that the dispersion counteracts. 

7.4 Conclusion 
The experiments are situated in the regime of a constant velocity in the downcomer as 

described e.g. by van Benthum et al. (1999) or Law et al. (2013). Indeed, for case 6 and 

case 8 the mean velocity in the downcomer along the centerline is 0.2 m/s and for case 4 

around 0.18 m/s. Therefore, case 4 might be at the beginning of this regime. The velocity 

profiles in the riser are similar for all cases. 

Although similar velocity profiles obtained for the different flow rates, distinct 

differences are found for the normal and cross components of the Reynolds stress tensor, 

especially in the riser. The turbulence parameters might be a summation of larger scale 

structures induced by the swinging bubble plume and bubble induced turbulence 

phenomena. The CFD simulations reproduce the similar velocity profiles for the different 

flow rates as well as the different normal components of the Reynolds stress tensor. 

Although the vertical normal components are dominated by the resolved large-scale 

structures, the horizontal normal component is dominated by the unresolved part. 

Moreover, the influence of the resolved large-scale structures is smaller towards the top 
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region of the riser. In the downcomer, however, both parts are almost equal for both 

directions. The resolved structures as well as the unresolved part, which might be 

dominated by BIT, are important for the present setup. As discussed above, a steady state 

RANS model as well as a LES or RSM model without a proper BIT modeling might not be 

able to reproduce the experiments. 

For all used sparger setups a distinct bubble plume is build up at the bottom of the 

riser so that a distinct swinging motion is observed. In the experiments, the bubble plume 

swings asymmetric on one side occasionally for an arbitrary time, but the swinging 

motion is restored in general. In the CFD simulations, however, this metastable state of 

an asymmetric bubble plume is overrated so that asymmetric time averaged results are 

obtained, especially in the bottom of the riser. The origin of this effect is unclear, as 

already discussed in Section 5. Moreover, asymmetric time averaged profiles can be 

observed in many work dealing with CFD simulations of bubble plumes, e.g. (Masood & 

Delgado 2014)  and (Pourtousi et al. 2015). 

A large vortex structure is seen at the top of the downcomer so that bubbles are pulled 

in the downcomer at the reactor wall. Due to a horizontal liquid velocity, these bubbles 

move to the internal wall where they can rise up because the vertical velocity is smaller 

there. Both effects are well reproduced by the CFD simulations; from the simulations, the 

horizontal liquid velocity is accelerated by the lateral bubble movement due to lift and 

turbulent dispersion force. However, the resulting bubble movement to the internal walls 

might be overpredicted in the simulations, because the void fraction is rapidly decreasing 

along the downcomer, in contrast to a slow decreasing in the experiments. Since it is a 

complex phenomenon, the reasons for this deviation are manifold. One likely reason is a 

too coarse discretization of the bubble size distribution. In general, discrete bubble 

classes might be critical for such cases in which a bubble size separation takes place since 

locally very different bubble size distributions are seen in the experiment. At least, 

besides a mesh size and time step study, a study for the discretization of the bubble size 

distribution is needed. Another reason might be the missing consistency regarding clean 

and contaminated systems in the bubble forces. Indeed, the water used in the present 

experiment is reliably pure by using the naturally occurring micro bubbles as tracer for 

particle tracking instead of additional tracer particles.
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8 Lift force measurements in very low Morton number 

systems and high bubble Reynolds number flows 

Measuring the lift force on bubbles in a shear field is a very challenging task. Up to now, 

the only working measurement concept that allows the direct measurement of the lift 

force consists of a submerged rotating belt confined by walls (Kariyasaki 1987). The 

rotating belt drives the flow and produces a shear field between the belt and a wall. 

Tomiyama et al. (2002) used this experimental setup to measure the lift force on bubbles 

in water/glycerin systems. With these experiments, it was shown that the lift force 

coefficient changes it sign with increasing bubble diameter, also a well-known empirical 

lift force correlation was obtained. Moreover, such experiments were repeated by 

Dijkhuizen et al. (2010b) for polluted systems, in which a distinctly shear rate 

dependency of the lift force was observed. Nevertheless, all experiments are conducted 

in fluids with a large Morton number of around 𝑀𝑜 > 10−5, which results in a very low 

bubble Reynolds number in the rage of  101  and laminar flow conditions. In contrast, 

bubbly flows are often investigated in air/water like systems having a very low Morton 

number of  𝑀𝑜 = 2.63 × 10−11  with bubble Reynolds numbers in the range of 103 and, 

additionally, with a turbulent background flow. Therefore, determining the lift force in 

such systems is highly desirable. Nevertheless, the change of sign of the lift force for large 

bubbles in air/water systems was already shown by Lucas & Tomiyama (2011) by using 

a large database of bubbly pipe flow experiments. 

In the following section, a measuring concept is developed for measuring the lift force 

in systems with a very low Morton number. The focus during the present work was on 

the development of the new techniques and assembling the experimental setup. 

Nevertheless, preliminary results are shown at which the measurement concept is 

demonstrated. 

8.1 Experimental setup 
Measuring the lift force in low viscosity systems like water under turbulent conditions 

poses some problems. Moreover, using a belt to produce a shear field is connected to 

several extra problems. In the first place, the moving of the belt generates abrasion debris 

that pollutes the measurement system (Dijkhuizen et al. 2010b). Furthermore, producing 

a linear shear field with a moving belt in low viscosity systems over a necessary wide 

channel under turbulent conditions might be hardly possible. 

Another serious problem is that bubbles in turbulent low Morton number systems 

rise in a non-straight motion so that a clear direction of movement cannot be seen. In 

addition, the turbulent background distributes the bubbles over the channel, which has 

to be separated from the migration induced by a lift force. 

In the present work, a suitable shear flow is produced with an uneven aerated bubbly 

flow, as shown in Figure 8-1, to overcome the problems that arise by using belts in low 

viscosity systems. A circulation flow is induced by aerating the bubble column at one side 

with large bubbles. Particularly, a linear shear field in a large vortex over a wider range 

is obtained in the center. The lift force is determined for single bubbles generated at the 

other side of the bubble column. They are pulled into the vortex where they experience 
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the shear field. Here, the lift force is determined by investigating the movement of the 

single bubbles in the vortex structure. 

  
Figure 8-1 Setup to determine the lift force coefficient with the measuring area delineated 
form 𝑧 = 0.5 𝑚  to 𝑧 = 0.65 𝑚  (left) and the flow structure from PIV measurements 
(right). 

Nevertheless, the bubbles still rise up in an arbitrary swinging motion overlaying the 

lateral migration. To determine this migration clearly, time averaged three dimensional 

void fraction distributions are determined. For this purpose, the rising bubbles are 

photographed from the front and the side view. The three dimensional shape and position 

of the bubbles are calculated from these two projections. Afterwards, the reconstructed 

bubble is transferred to a grid discretizing the used bubble column. A representative gas 

void fraction at one grid point is obtained by counting the times when gas is present at 

this point. Assuming that the swinging rising motion of the bubbles is truly random, the 

time averaged bubble trace is calculated by connecting the maxima of the void fraction in 

the horizontal planes along the vertical Axis. 

Furthermore, assuming that the turbulent dispersion force is symmetrical along the 

obtained bubble trace, in particular that no turbophoresis effects occur, the bubble force 

balance along the trace reads 

0 = 𝑭̅𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 + 𝑭̅𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑀𝑎𝑠𝑠 + 𝑭̅𝐷𝑟𝑎𝑔 + 𝑭̅𝐿𝑖𝑓𝑡  . (8-1) 

The wall force in the  𝑥  and  𝑧  direction is neglected, moreover, the wall force is 

assumed to be symmetrical in the y direction along the trace. The bar over the forces 

indicates that the time-averaged forces fulfill this balance. 

The time average of the buoyancy force and virtual mass force are trivial since all 

quantities are constant for the present setup over time and statistically independent, 
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respectively. Nevertheless, to calculate the time average values of the other forces some 

assumptions have to be made. The time average is calculated by using the ensemble 

average 〈⋅〉 

𝑭̅𝐷𝑟𝑎𝑔 = 〈𝑭𝐷𝑟𝑎𝑔〉 =
3

4𝑑𝐵
𝜌𝑙〈𝐶𝐷|𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿|(𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿)〉

=
3

4𝑑𝐵
𝜌𝑙𝐶𝐷 |〈𝑢⃗⃗𝐺〉 − 〈𝑢⃗⃗𝐿〉| (〈𝑢⃗⃗𝐺〉 − 〈𝑢⃗⃗𝐿〉) . 

(8-2) 

The last equal sign is only valid if  𝐶𝐷 , |𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿|  and (𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿)𝑖  are statistically 

independent. In particular, this can be interpreted that the drag force is statistically 

independent of the flow condition. During the further procedure, this will be assumed. 

Looking at the averaged lift force similar problems arise 

𝑭̅𝐿𝑖𝑓𝑡 = 〈𝑭𝐿𝑖𝑓𝑡〉 = −𝜌𝑙〈𝐶𝐿(𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿) × 𝑟𝑜𝑡(𝑢⃗⃗𝐿)〉

= −𝜌𝑙𝐶𝐿(〈𝑢⃗⃗𝐺〉 − 〈𝑢⃗⃗𝐿〉) × 𝑟𝑜𝑡(〈𝑢⃗⃗𝐿〉) . 
(8-3) 

Again, it is assumed that 𝐶𝐿 and (𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿) × 𝑟𝑜𝑡(𝑢⃗⃗𝐿) are statistically independent during 

one measurement. This might be fulfilled since the flow conditions are less changing 

during the same experiment due to a low turbulence level as will be discussed below. In 

addition, it is assumed that the slip velocity of the bubble is independent from the liquid 

velocity shear field ((𝑢⃗⃗𝐺 − 𝑢⃗⃗𝐿) and 𝑟𝑜𝑡(𝑢⃗⃗𝐿)), which was shown valid by Dijkhuizen et al. 

(2010b) using DNS. 

From these simplifications, the velocity field of the liquid and gas phase can be 

determined separately. In addition, since only single bubbles are generated at the left side 

of the bubble column (Figure 8-1) it is assumed that these single bubbles do not influence 

the time averaged liquid velocity field. This assumption was found to be valid by 

comparing velocity profiles obtained with and without the generated small bubbles. 

Therefore, the liquid velocity is measured only once without the single bubbles in the test 

section. 

As will be discussed below the liquid velocity is measured with particle image 

velocimetry (PIV), therefore the separation of the liquid and gas velocity is necessary 

because the lift force experiments cannot be executed with PIV tracer particles since they 

contaminate the bubble surface. This, in turn, implies the assumption that the generated 

flow by the large bubbles on the right hand side is not influenced by the tracer particles. 

After the liquid and gas velocity fields are determined, the lift force can be directly 

calculated by using the force balance in Equation (8-1). In particular, only the horizontal 

vector component is used for the calculation because the vertical direction is 

superimposed with the relatively strong buoyancy force. 

The direct calculation is an improvement compared to the method that is usually used 

estimating the bubble velocity by calculating the derivation of the bubble trajectory in 

vertical direction (Tomiyama 2002) (Bothe et al. 2006) (Dijkhuizen et al. 2010b). The 

disadvantageous of such a method is that a bubble trajectory has to be smoothly 

reconstructed to obtain a reliable derivation. Especially if an arbitrary movement is 

superimposed on the rising bubble, this reconstruction is difficult and not well defined. 

The entire bubble column is divided in five measuring areas in which the three-

dimensional void fraction is determined and three areas in which the velocity is 

measured with PIV. However, only the results from a height of 0.5 m to 0.65 m including 
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two void measuring areas and one PIV area will be used for the lift force calculations. 

Three different gas volume flow rates for the large bubbles, which drive the flow, are used 

to generate different shear fields. The lift force is evaluated for several bubble sizes that 

are generated by using eight different single needles. The experimental inlet conditions 

are summarized in Table 8-1. The used drilled out needle is different compared to the 

other needles, which are described in Section 3.1. A flat needle with 1.5 mm inner 

diameter is drilled out to a cone that flares to 3 mm diameter. 

Needle inner diameter Volume flow rate 
Bubble diameter  

Driving volume flow rate 

0.2 mm  1 ml/min 
2.22 mm 

800 ml/min 
- 
- 

0.3 mm 3 ml/min 
2.25 mm 

800 ml/min 
1000 ml/min 
- 

0.5 mm 6 ml/min 
2.76 mm 

800 ml/min 
- 
- 

0.6 mm 10 ml/min 
2.95 mm 

800 ml/min 
1000 ml/min 
- 

0.7 mm 10 ml/min 
3.16 mm 

800 ml/min 
- 
- 

0.9 mm 10 ml/min 
3.77 mm 

800 ml/min 
1000 ml/min 
1200 ml/min 

1.5 mm 13 ml/min 
6.17 mm 

- 
1000 ml/min 
- 

Drilled out 3 mm 10 ml/min 
4.34 mm 

800 ml/min 
1000 ml/min 
- 

Table 8-1 Experimental conditions of the lift force experiments. 

8.2 Methods 

8.2.1 3D-Videometry  

Approaches to determine the three dimensional void fraction with videometry are well 

known and are used in various fields ranging from 3D particle tracking (Pereira et al. 

2006) to 3D bubble identification with stereo cameras  (Murai et al. 2001). Two 

synchronized cameras are used and the bubble is reconstructed from the projected front 

view of the bubble. The side view is used to position the recorded bubbles on the y-axis. 

The bubble is reconstructed to three dimensions by defining an ellipse with the major 

and minor axis from the front view of the bubble. 
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For the present setup, the identification of the bubbles in the side view is problematic 

because the bubbles from the driving bubble plume interfere the view on the single 

bubbles. To overcome this problem the driving bubble plume is not illuminated by the 

backlight as shown in Figure 8-2. 

 

Figure 8-2 Back illumination (yellow) of the experimental setup.  

Nevertheless, the driving bubble plume is not completely dark since at least one side 

is always open and scattered light illuminates the bubbles. The single bubbles that are 

directly illuminated by the backlight, however, are reflecting the light very bright on the 

backlight facing bubble tip as shown in Figure 8-3. This reflection is used to identify the 

bubbles in the side view. 

The position of the bubble in the side view is not directly accessible since only the left 

tip is seen. Here, the position is determined by adding half the length of the major axis 

(𝑑𝑀 in Figure 8-4), which is determined from the front view, to the left illuminated tip as 

shown in Figure 8-4. This procedure is reasonable since the obtained void fraction 

profiles in y-direction are symmetrical with a peak in the center (not shown). 

After determining the position of the bubble, an ellipse defined by the minor and 

major axis from the front view is discretized to a three dimensional grid of the measuring 

area. If a grid point is inside the ellipse, the value of the grid point is increased by one. 

This is repeated for every bubble. Over time, a three dimensional representation of the 

void fraction in the bubble column is obtained. The recording time for every measuring 

area for all used needle sizes was 15 minutes, resulting in 100 000 up to 400 000 recorded 

bubbles for the 1.5 mm and the 0.3 mm inner diameter needle, respectively. The gird size 

on which the bubbles are discretized is chosen to 0.1 mm. 
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Figure 8-3 Side view (left), which is illuminated from left, and front view (right), which is 
illuminated from the back. The red rectangles mark the same bubble and edge the 
pictures used in Figure 8-4.  

  

  
Figure 8-4 Determining the position of the bubble in the side view (left) by adding half 
of the major axis dM determined from the front view (right) to the left tip. 

8.2.2 Averaged bubble trace and spline interpolation 

After a representative three dimensional void fraction function on a grid is determined, 

the averaged bubble trace is calculated. For this purpose, the maximum of the 

representative void fraction function for every horizontal plane on the grid is calculated 

by determining the local minima of the absolute value of the derivative. To find the 

correct local minima of the derivation, the neighborhood is defined as a region with a 

sufficient count of bubbles. Particularly, if not enough bubbles are in the neighborhood of 

a grid point, the derivation is not calculated. Moreover, the void fraction function is 

smoothed for this purpose by using a constant convolution function with a size 
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of 3x3x3 mm. The determined maxima in the void fraction function are shown in Figure 

8-5 on the left hand side. Indeed, a simplification was done for further calculation by 

reducing the calculation area to a two dimensional cut through the center as shown in 

Figure 8-5. This simplification reduced the amount of used grid points from 109 to 106. 

This, however, implies the assumption that the bubble path is situated in the center of the 

bubble column which was found to be reasonable. 

As mentioned above, the experimental setup was divided in five measuring sections 

and only two sections were used to evaluate the lift force coefficient. The border of the 

sections is at 𝑦 = 0.6 𝑚; the void fraction function is averaged in the overlapping region. 

In Figure 8-5 the 0.6 m line is delineated with a straight dashed line and the overlapping 

region is marked with a red arrow. 

  
Figure 8-5 The void fraction function on a two dimensional cut in the center between z =
0.4 m and z = 0.7 m for the drilled out needle and 800 ml/min driving volume flow rate. 
The color from red to blue indicates the void fraction function from high to low values, 
respectively. The left picture shows the determined local maxima and the right picture 
the spline that is taken as bubble trace. 

In general, a discontinuous trace is obtained if the determined maxima in the void 

fraction function are connected along the vertical axis. To get a continuous and 

sufficiently smooth trace, a B-Spline curve is determined with the algorithm proposed by 

Liu et al. (2005). The algorithm is simplified by introducing a minimum energy criterion, 

y=0.6 m 
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in which the second order derivation of the B-Spline is minimized. The performance of 

the B-Spline approximation is demonstrated in Figure 8-5 on the right hand side. 

It should be noted that in fact a great effort was done to reconstruct the bubble trace 

with B-Spline functions in a way that the first derivation is meaningful to compare the 

present method with the method used in previous work. Promisingly, by minimizing the 

energy represented by the second derivation of the B-Spline, very good results were 

obtained. Nevertheless, calculating the lift force directly with the velocity of the gas phase 

is much more reliable compared to using the angle of the bubble trace as done in previous 

work for single bubble trajectories. Especially, the horizontal bubble velocity is very small 

compared to the vertical velocity so that small deviations or uncertainties have a big 

effect on the first derivation. In addition, the method that uses the first derivation 

includes the assumption of a simple shear flow without a gradient in vertical direction, 

which is not fulfilled in the present setup satisfactorily. 

8.2.3 Liquid phase velocity 

The liquid velocity is determined with PIV. The velocity is measured once using only the 

driving flow. The different generated shear rates 𝜕𝑣𝑧 𝜕𝑥⁄  are around 2.45  1/s for 800 

ml/min, around 2.65 1/s for 1000 ml/min and around 2.9 1/s for 1200 ml/min. 

The averaged velocity field that is generated by the 800 ml/min flow is shown 

simplified in Figure 8-6. Clearly, the shear field ranging from the left wall at x = 0 m to 

the driving flow at the right wall, which is situated between x = 0.2 m and x = 0.25 m, is 

seen. The measuring window shows the lower part of the vortex created along the bubble 

column. The size of the vortex can be adjusted by the water level of the bubble column, 

which was preliminary optimized with CFD simulations. 

 

Figure 8-6 Liquid velocity field determined with PIV for 800 ml/min. The left reactor wall 
is at x = 0 m, the driving flow at the right wall is between x = 0.2 m and x = 0.25 m.  
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The normal components of the Reynolds stress tensor  𝑢′𝑢′ and 𝑣′𝑣′ are shown in 

Figure 8-7. From the two dimensional distribution for 800 ml/min gas volume flow rate 

it is seen that larger values are present in the downflow region. Moreover, the 𝑣′𝑣′ values 

are high at the left wall and near the driving bubble plume on the right-hand side; in these 

regions, however, no bubble trajectories are obtained. The values are increasing with 

increasing gas volume flow rate, which drives the flow. 

 

  
Figure 8-7 Normal components of the Reynolds stress tensor  u′u′ and v′v′. Top: Two 
dimensional distribution of u′u′ (left) and v′v′ (right) for 800 ml/min gas volume flow 
rate. Bottom: Profile at y=0.6 m for all gas volume flow rates. 

In the vortex, the vertical velocity is almost constant over height as demonstrated in 

Figure 8-8 on the left-hand side for the 800 ml/min case. The shear rate 𝜕𝑣𝑧 𝜕𝑥⁄  is also 

almost constant over height in the measuring section between x = 0.1 m and x = 0.15 m. 

The horizontal velocity, however, is changing over height because of the round shape of 

the generated vortex, which is not avoidable. 
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Figure 8-8 Vertical and horizontal liquid velocity along the x-axis for different heights 
generated by the 800 ml/min driving flow. Left the vertical velocity and right the 
horizontal velocity. 

The bubble traces for the different bubble sizes are not the same. Thus, the different 

bubble sizes run through the vortex on different paths and, therefore, experience a 

slightly other flow field of the vortex each. The velocities and shear rates along the traces 

over height for the 0.3 mm inner diameter needle (2.25 mm bubble size) and the drilled 

out needle (4.13 mm bubbles size) are shown in Figure 8-9.  

Looking at the vertical velocity, the smaller bubbles experience a higher negative 

velocity compared to the larger bubbles because the smaller bubbles are situated more 

left in the vortex. Indeed, the bubble trace has a parabolic shape as indicated in Figure 8-5 

so the vertical velocity is for both bubble sizes not constant over height. Furthermore, the 

vortex is slightly inclined what is seen by the shifting of the zero of the vertical velocity 

with increasing height in Figure 8-8. The experienced shear rate 𝜕𝑣 𝜕𝑥⁄  is slightly different 

for the different bubble sizes as shown in Figure 8-9. The shear rate 𝜕𝑣 𝜕𝑧⁄  (not shown) is 

very small for both traces and constant over height. 

Looking at the horizontal velocity, the experienced velocity and largest shear rate 

𝜕𝑣 𝜕𝑥⁄  component is almost equal for both traces as well as the shear rate 𝜕𝑢 𝜕𝑧⁄  (not 

shown). 

8.2.4 Bubble Size and gas phase velocity 

The bubble sizes as well as the major and minor axis are determined from the front view 

by using edge-detecting algorithms as described in Section 3.2. Tomiyama et al. (2002) 

formulated an empirical lift force coefficient as a function of the maximum axis of the 

bubble perpendicular to the flow, in the following this is stated as major axis or is denoted 

with ⊥. This axis, however, is in general not known, so the empirical correlation by Wellek 

et al. (1966) is used 
𝑑𝑀𝑎𝑗𝑜𝑟

𝑑𝑀𝑖𝑛𝑜𝑟
= 1 + 0.163𝐸𝑜0.757  , 

(8-4) 

𝑑𝑀𝑎𝑗𝑜𝑟 = 𝑑𝐵 √1 + 0.163𝐸𝑜0.7573
  , (8-5) 

with 𝑑𝐵 the spherical equivalent diameter. 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 8-9 Fluid velocities along two bubble traces over height for 800 ml/min driving 
flow. 

The empirical Wellek correlation, however, is derived for fully contaminated flow 

without a turbulent background flow. The results from the lift force experiments are 

compared to the Wellek correlation in Figure 8-10. The ratio of major to minor axis is 

clearly underpredicted by the correlation; the bubbles have a stronger ellipsoid shape. 
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Figure 8-10 Comparison of the empirical Wellek correlation with the results in 
air/water with turbulent background flow. 

The bubbles from different experiments are shown in Figure 8-11. The shape of small 

bubbles is clearly ellipsoidal in contrast to the Wellek correlation, which predicts an 
almost spherical shape with 𝑑𝑀𝑎𝑗𝑜𝑟 ≈ 𝑑𝑀𝑖𝑛𝑜𝑟. A significant difference among the different 

driving gas volume flow rates was not observed. 

𝑑𝐵 = 2.22 𝑚𝑚; 𝐸𝑜 = 0.7 (ID 0.2 mm) 

 

𝑑𝐵 = 2.95 𝑚𝑚; 𝐸𝑜 = 1.2 (ID 0.6 mm) 

 
𝑑𝐵 = 4.43; 𝐸𝑜 = 2.5 (Drilled out needle) 

 

𝑑𝐵 = 6.18 𝑚𝑚; 𝐸𝑜 = 5.21 (ID 1.5 mm) 

 
Figure 8-11 Different bubble sizes in the lift force experiment (All pictures have the same 
scale).  

The number density functions of the determined spherical equivalent bubble 

diameter and the major axis are plotted in Figure 8-12 for 0.8 l/min driving gas flow rate. 

The used bubble sizes are averaged along the single bubble tracks. The density functions 

are discretized with 0.25 mm. Except for the 1.5 mm needle, the generated bubbles have 

a low variance in the range of 0.25 mm. 

The density function of the large 6.18 mm bubbles generated by the 1.5 mm needle is 

clearly asymmetric for both values. In the experiments, it was observed that the bubbles 

3 mm 
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sometimes break up in the shear field and sometimes the bubble generation at the needle 

was instable. 

 

 
Figure 8-12 Number density function of the spherical equivalent diameter and major 
axis for 0.8 𝑙/𝑚𝑖𝑛 driving flow, except for the 1.5 mm needle 1.0 𝑙/𝑚𝑖𝑛 is plotted. 

The velocity of the gas phase is calculated by tracking the bubbles in the same way as 

described in Section 3.4.2. The used measuring frequency was 25 Hz. The calculated 

relative velocities are compared to results from literature in Figure 8-13. 

The relative velocities that are determined from experiments are situated between 

the terminal velocities obtained from the drag force model of Bozzano & Dente (2001) 

and Tomiyama et al. (1998) for pure systems. Therefore, it is reasonable to assume that 

the used water is pure. The drag force coefficient, which is needed to solve the force 

balance equation, is calculated by the experimental determined relative velocity. For the 

use in the force balance, it is assumed that these obtained drag coefficients are isotropic 

as also assumed in previous work, e.g. by Tomiyama et al. (2002). 

Furthermore, the velocity field of the gas phase has to be determined. Indeed, the gas 

velocity used for calculating the lift force coefficient is only calculated along the 

determined averaged bubble traces with a round averaging area. The results for the 

determined (absolute) gas phase velocity field on a rectangular mesh, however, are 

demonstrated in Figure 8-14 for the 0.3 mm needle and the drilled out needle at a driving 

flow of 800 ml/min. 
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Figure 8-13 Determined terminal velocity. 

 

Figure 8-14 Absolute gas phase velocity field with vertical velocity as color for 800 
ml/min driving flow. The left reactor wall is at x = 0 m, the driving flow at the right wall 
is between x = 0.2 m and x = 0.25 m. Left: The velocity field obtained with the 0.3 mm 
inner diameter needle generating 2.27 mm bubbles. Right: The velocity field obtained 
with the drilled out needle generating 4.13 mm bubbles. 
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In Figure 8-14 only the velocity vectors that are calculated by a sufficient amount of 

tracked bubbles are shown. Clearly, the shear field of the underlying liquid velocity is 

seen. The bubbles follow the velocity field shown in Figure 8-6. However, comparing the 

velocity field of the small bubbles (2.25 mm)  generated by the 0.3 mm needle and the 

large bubbles (4.3 mm) generated by the drilled out needle, some differences are seen. At 

first, the large bubbles are dragged further towards the right wall. Moreover, the small 

bubbles move towards the left wall (towards x = 0 m) whereas the large bubbles are 

rising straight up. Nevertheless, since along both traces a positive liquid velocity is 

recorded (see Figure 8-9) the relative horizontal gas velocity is negative (in the direction 

of 𝑥 = 0 𝑚) for both traces. This horizontal velocity of the gas phase, which is directed 

opposite to the positive liquid velocity, is the result of a lateral force that is assumed the 

lift force. The distinctly higher negative horizontal velocity of the smaller bubbles, which 

is indicated by the velocity vectors pointing towards the negative x-axis, might be the 

result from a higher lift force. In contrast, plotting the (absolute) gas phase velocity field 

of the largest bubbles (6.17 mm) (not shown) the velocity vectors point towards the 

positive x-axis. 

8.3 Results for air/water 
The lift force coefficient is calculated with the velocity data of the liquid and gas phase 

along the averaged traces, as discussed in the previous section. Using the force balance 

given in Equation (8-1) the lift force coefficient is the only unknown remaining. The lift 

force coefficient is calculated by using the horizontal component of the force balance. 

The lift force coefficients are averaged between a height of 𝑦 = 0.5 𝑚 and 𝑦 = 0.65 𝑚. 

In this area, the bubbles are less accelerated due to small liquid velocity gradients 𝑑𝑣𝑙,𝑖/

𝑑𝑥𝑖 . In the lower and upper sections, these are large; the lift force coefficients obtained in 

these sections might not be comparable to the lift force coefficients obtained in other 

work with a not accelerated bubbles motion due to the flow. The results are shown in 

Figure 8-15. Clearly, the lift force coefficient is not constant along the bubble traces, which 

might indicate an insufficient amount of tracked bubbles in general. 

The available data do not allow an obvious statement regarding the dependency of 

the lift force coefficient of the shear rate strength as shown in Figure 8-16. The lift force 

coefficient is plotted against the modified Eötvös number 

𝐸𝑜⊥ =
Δ𝜌𝑔𝑑⊥

𝜎
   , (8-6) 

with 𝑑⊥ the axis perpendicular to the flow, which is assumed equal with the major axis. 

The amount of experiments is too small in general so that the lift force coefficients are 

scattered and no clear trend is found. From previous findings in high Morton number 

systems under laminar conditions (Tomiyama et al. 2002) (Dijkhuizen et al. 2010b), 

however, also no dependency is found. Nevertheless, a high shear rate is connected to a 

high turbulence intensity in the present setup. Thus, no clear dependency of the lift force 

regarding the turbulence intensity is seen as well, or possible effects cancel each other 

out. 
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ID=0.2 mm 𝑑𝐵 = 2.22 𝑚𝑚  𝑑⊥ = 2.86 𝑚𝑚  

 

ID=0.3 mm 𝑑𝐵 = 2.25 𝑚𝑚  𝑑⊥ = 2.90 𝑚𝑚 

 
ID=0.5 mm 𝑑𝐵 = 2.76 𝑚𝑚  𝑑⊥ = 3.61 𝑚𝑚 

 

ID=0.6 mm 𝑑𝐵 = 2.95 𝑚𝑚  𝑑⊥ = 3.96 𝑚𝑚 

 
ID=0.7 mm 𝑑𝐵 = 3.16 𝑚𝑚  𝑑⊥ = 4.28 𝑚𝑚 

 

ID=0.9 mm 𝑑𝐵 = 3.77 𝑚𝑚  𝑑⊥ = 5.27 𝑚𝑚 

 
Drilled 𝑑𝐵 = 4.34 𝑚𝑚  𝑑⊥ = 6.19 𝑚𝑚 

 

ID=1.5 mm 𝑑𝐵 = 6.17 𝑚𝑚  𝑑⊥ = 9.27 𝑚𝑚 

 
Figure 8-15 Lift force coefficient along the averaged traces. 
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Figure 8-16 Averaged lift force coefficients along the averaged bubble traces for different 
shear rates. The needle diameter is written at the points. 

The results are compared to results from literature (Tomiyama et al. 2002) 

(Dijkhuizen et al. 2010b) in Figure 8-17 for the Eötvös number calculated with the 

spherical equivalent diameter and with the perpendicular flow axis. The lift force 

coefficients obtained from the present experiments are falling to negative values with 

rising Eötvös numbers. This falling is consistent to the results obtained in the other work. 

Apparently, from the actual measurements a peak is seen at an Eötvös number of around 

1.2, after the peak the lift force is tending to smaller values with decreasing Eötvös 

numbers. 

Comparing the results of the present study with the results of the well-known 

Tomiyama lift force model, distinct differences are observed for the Eötvös number graph 

but similarities for the modified Eötvös number graph. In contrast, the present 

experiments fit the DNS of Dijkhuizen et al. (2010b) very well for both, the normal and 

modified Eötvös number. Overall, the DNS, the present experiments and the empirical 

Tomiyama lift force model agree for the modified Eötvös number. 

Whereas the graph for the normal Eötvös number was obtained for the present 

experiments and the DNS from directly measured variables, the correlation of Wellek et 

al. (1966) was used by Tomiyama et al. (2002) to calculate the spherical equivalent 

diameter from the (measured) perpendicular flow axis. In Section 8.2.4 it was shown that 

the Wellek correlation might not be applicable to pure and/or turbulent air/water flows. 

Thus, it is reasonable that such large deviations regarding the lift force coefficient occur 

for the normal Eötvös number. Moreover, since the present experiments agree well with 

the DNS of Dijkhuizen et al., which were also done for pure systems, for both Eötvös 

numbers it is reasonable to assume that the Wellek correlation is incorrect. The rotating 

belt generating the shear field in the experiments of Tomiyama et al. might create 

abrasion that lead to a contamination of the liquid as pointed out by Dijkhuizen et al. 

(2010b). Speculatively, this contamination might be the reason why Tomiyama et al. used 

the Wellek correlation formulated for contaminated flows (Tomiyama et al. 2002). 
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Figure 8-17 Results of the present lift force measurements in turbulent air/water flow 
(Morton number of around  2.63 ⋅ 10−11 ) compared to results from the literature for 
different Morton numbers. The DNS by Dijkhuizen et al. (2010b) and the experiments of 
Tomiyama et al. (2002) are conducted under laminar conditions. 

Nevertheless, the agreement regarding the modified Eötvös number of the present 

experiment, the DNS and the empirical Tomiyama model is suprisingly good considering 

the very different flow conditions. In the first place, the Morton numbers used in the 

Tomiyama experiment are distinctly higher (in the range of 10−3 to 10−6) compared to 

the present experiment in air/water (Mo = 2.63 ⋅ 10−11). In addition, the experiments of 

Tomiyama et al. (2002) are conducted under laminar flow conditions with bubble 

Reynolds numbers below 102 whereas turbulent flow conditions with bubble Reynolds 

numbers ranging from 680 to 1500. The shear rates used in the present study are 

comparable with the shear rates used by Tomiyama et al. 

The used bubble Reynolds numbers for the DNS of Dijkhuizen et al. (2010b) are in 

the range of 10 to 1609 (1609 only for very large bubbles, which are not shown here) and 
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comparable to the present experiment. In addition, the used Morton numbers are in the 

range of an air/water system. The background flow, however, was laminar. The amount 

of DNS is limited, especially in the distorted regime in which the bubbles are wobbling. 

This leads to a poor statistic since the wobbling motion is random. Therefore, the DNS lift 

force coefficients are scattering because many DNS are needed for reliable results (Bothe 

et al. 2006). 

8.4 Discussion and Conclusions 
With the developed measuring concept, the lift force was successfully determined in a 

system with a very low Morton number under turbulent conditions by using long-term 

measurements. This is the first time that the lift force is direct measureable in such 

systems. In contrast to other measuring concepts, the here presented concept do not have 

any moving parts like moving belts that tend to contaminate the measuring system. 

Therefore, it is a very simple and reliable method and, further, can be applied to every 

chemical system. 

Comparing to results from the literature (Tomiyama et al. 2002) (Dijkhuizen et al. 

2010b) a very good agreement is reached. From the present measurements, it is 

confirmed that the lift force coefficient is significant and is likely changing its sign in 

turbulent flow and in very low Morton number systems. 

Nevertheless, more experiments are needed to confirm the findings quantitatively, 

especially the gap between 𝐸𝑜 = 2.5 and 𝐸𝑜 = 5.2 has to be filled up. In addition, the 

measuring effort has to be decreased; now, the complete bubble column is investigated, 

which results in a measuring time of around 80 hours. Focusing only on one measuring 

area might be sufficient. Moreover, the scattering of the determined lift force coefficients 

has to be decreased, which is caused by a poor statistic on the gas phase side. This is a 

general problem because the lift force can only be evaluated on the center plane since the 

liquid velocity is only known there. As a result, the bubbles not situated in this plane 

cannot be taken into account. Assuming an equal velocity, an extension to a narrow three-

dimensional region around the center plane might be justified to increase the bubble 

count. Nonetheless, the measuring time has to be increased in general to get accurate 

data. 
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9 Summary 

The complex nature of bubbly flows limits by now the predictive capabilities of two-fluid 

CFD approaches. Applying such CFD simulations to bubbly flows for unknown 

experimental setups, however, is highly preferable for process design. Since the physical 

phenomena are independent of the application, an important step toward predictive CFD 

simulations are baseline models in which all closure models and all constants are fixed. 

Such models have to reflect the underlying physics. Based on this idea, a baseline model 

developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on 

experimental data for bubbly pipe flows is validated to bubble columns, bubble plumes 

and airlift reactors that are relevant in chemical and biological engineering applications. 

Such applications comprise buoyancy driven bubbly flows that often show dynamics 

on the scale of the used facility. It was shown that this large-scale flow phenomena can be 

well described with the baseline model in combination with the unsteady Reynolds-

averaged Navier–Stokes equations (URANS) approach. The advantage of the URANS 

approach is that problems in which such large scales appear (mainly heterogeneous 

bubbly flows and partial aerated reactors) as well as problems that are dominated by the 

small scales (mainly homogenous bubbly flows) can be well predicted. This was shown 

by validating a large variety of experimental setups with respect to time averaged but 

also transient experimental results. However, in literature there is a lack of experimental 

data that are suitable for comprehensive CFD validation, in particular the bubble size 

distribution and reliable liquid velocity measurements in higher void fractions are 

missing. 

In order to conduct own CFD-grade experiments measuring techniques were 

developed to determine the bubble size distribution in bubble clusters and to measure 

the liquid velocities without contaminating the flow by tracer particles for high void 

fractions. The main idea for the bubble size measurements is to follow the bubbles over 

a distinct period so that bubbles that are overlapped by others can be clearly seen in one 

of the images since the shape of a bubble cluster is steadily changing. In combination with 

an edge detector, this method gave reproducible and reliable results in complex bubbly 

flows. 

Measuring the liquid velocity in bubbly flows is very difficult in general. Independent 

of the used measuring technique a sampling bias that had not been yet published is 

described in the present work. In particular, the sampling bias was shown to be distinct 

in bubbly flows for particle image and particle tracking velocimetry. Using the developed 

hold processor, very similar averaged liquid velocities and Reynolds-stresses could be 

obtained with both measuring methods. Moreover, common tracer particles, which are 

necessary for measuring the liquid velocities, contaminate the bubble interface. 

Contaminated bubbles can show a different behavior compared to clean bubbles so that 

a modeling of such is problematic since the grade of contamination due to the presence 

of tracer particles is not known. In order to obtain experimental data in reliable clean 

systems, micro bubbles that are naturally occurring in bubbly flows were used as tracer 

particles. It was shown that micro bubbles up to 300 µm are feasible for liquid velocity 

measurements for the setups used in the present work. 
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A CFD-grade airlift experiment was conducted, for which the bubble size, void 

fraction, liquid velocities and normal Reynolds-stress components were determined at 

two different heights in the riser and the downcomer as well as along the downcomer. In 

addition, the transient behavior of the airlift was studied since a distinct bubble plume 

was observed. The complexity of the experiments is intentional reduced by using gas 

volume flow rates and a sparger with which break-up and coalescence processes can be 

neglected. The URANS CFD-simulations gave good results in the riser; however, the void 

fraction in the downcomer does not fit the experimental observations. The reason for that 

might be a too strong predicted migration of the bubbles toward the internal walls at 

which the bubbles can rise up and escape the downcomer. 

Besides a validation of closure models, a new measuring concept to determine the lift 

force on bubbles in systems with a very low Morton number and under turbulent 

conditions was developed. In particular, the new concept does not have any moving parts, 

which other measuring concepts usually have, that causes some problems with 

contamination due to abbreviation reported in the literature. Preliminary studies with 

the new concept in air/water confirmed that the lift force changes its sign for larger 

bubbles and the lift force coefficient is in the range of experiments conducted in high 

Morton number systems under laminar conditions. In comparison with DNS results from 

the literature a good agreement was reached. 
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