Contact

Porträt Prof. Dr. Cowan, Thomas; FWK

Prof. Dr. Thomas Cowan
Director Institute of Radiation Physics
Head High Energy Density
t.cowan@hzdr.de
Phone: +49 351 260 - 2270
Fax: +49 351 260 - 3700

Sirit Vellguth
Support Staff
s.vellguthAthzdr.de
Phone: +49 351 260 - 2662
Fax: +49 351 260 - 12662

Hemholtz International Beamline for Extreme Fields - HIBEF

HIBEF Logo

HZDR coordinates the Helmholtz International Beamline for Extreme Field (HIBEF) User Consortium, a multi-million Euro project that aims to extend the capabilitities of the High Energy Density instrument at the European XFEL facility. HIBEF will provide two high repetition lasers: One of these lasers will be a high power laser with 350 TW and short pulse duration at 30 fs. The second laser will be a high energy laser with nanosecond pulse duration. Additionally, HIBEF will provide several x-ray diagnostics as well as a diamond anvil cell experimental setup. More information can be found at www.hibef.eu.


Warm Dense Matter

Warme Dense Matter

Warm Dense Matter, i.e. the transition regime between solids or liquids and hot plasmas is present in the interiors of many celestial bodies like planets and stars, but also plays a major role in modern laboratory applications like synthesis of new materials, intense laser-matter interaction, fusion research, and many more. Our team works towards first experiments at European XFEL equipped with HIBEF, which will allow for unprecedented insights into the dynamic properties of warm dense matter. A Helmholtz Young Investigators group is planning Day-1 WMD experiments at HIBEF. More information can be found here.


EUCALL Target Network - EuTN

Logo EUCALL

In the frame of the European Cluster of Advanced Laser Light sources, the HED group is promoting a European initiative aimed at enabling high repetition rate experiments at advanced laser facilities. The goal of this initiative is to make available for the European community a sustainable infrastructure for sample supply and technical solutions for issues such as, for example, sample debris, effects of electromagnetic pulses and sample damage.


Small-Angle X-Ray Scattering – SAXS

The group has successfully applied Small-Angle X-Ray Scattering to the study of nanometer scale phenomena in plasmas generated by ultra-intense laser-matter interactions. This technique can explore feature sizes in the order of 5 nanometers, bridging the current ranges between phasecontrast imaging (~500 nm) and diffraction imaging (~ Å).


Contact

Prof. Dr. Thomas Cowan
Director Institute of Radiation Physics
Head High Energy Density
t.cowan@hzdr.de
Phone: +49 351 260 - 2270
Fax: +49 351 260 - 3700

Sirit Vellguth
Support Staff
s.vellguthAthzdr.de
Phone: +49 351 260 - 2662
Fax: +49 351 260 - 12662