Outline

What do we have?
What can we do?
What did we do?
What do we want to do?
The ERAWAST project

Sources for isotopes at PSI
Processing material from outside

List of available isotopes and performed measurements

Examples for isotope and target preparation

^{10}Be from graphite wheels
^{91}Nb from irradiated ^{92}Mo
^{60}Fe from copper

Requirements for isotope and target preparation

Summary
Objective:
Exploitation of accelerator waste for isolating rare exotic radionuclides

History:
- Radiochemical analytics of activated components for disposal
- Results showed high content of several rare isotopes
- Looking for potential users of these isotopes: I. ERAWAST workshop 2006 (PSI), funded by ESF
- Five-years working program
- II. ERAWAST workshop 2011 at PSI: first results and future program
- CHANDA-workshop in 2015
- ~ 20 Partners
- Member of n_TOF

Collaboration between
Nuclide production facilities
Basic nuclear physics research
Nuclear astrophysics
AMS measurement groups
Environmental chemistry
All elements of periodic table with $Z \leq Z_{\text{target}} + 1$

- 590 MeV protons
- 2.4 mA beam current
- High activation of shieldings, targets, structure material
PSI accelerator facilities

Injector cyclotron (72 MeV protons)

590 MeV Ring Cyclotron (up to 2.4 mA proton beam current)

SINQ – spallation neutron source

COMET (cyclotron 250 MeV) for medical use

Ultra Cold Neutrons

SLS Swiss Light Source
Copper beam dump
- 44Ti, 53Mn, 26Al, 60Fe
- 60Co – 5 GBq

Myon production station
- Operation 1-3 years
- Beam doses 4 – 11 Ah
- Source for 10Be

SINQ Target Irradiation Program-STIP
- 44Ti, 53Mn, 26Al, Lanthanides

SINQ cooling water
- 7Be, 54Mn, 22Na, 88Y

Special irradiation positions with 590 MeV protons
V for 32Si production

Useful components
Target manufacturing and measurements finished

- $^{63}\text{Ni} \ @ \ n\text{-TOF}$
 10 mg
 neutron capture cross section
- $^{171}\text{Tm} \ @ \ n\text{-TOF}, \ SARAF, \ Mainz$
 3 mg
 neutron capture cross section
- $^{147}\text{Pm} \ @ \ n\text{-TOF}$
 72 μg
 neutron capture cross section

Isotope separation performed, samples ready for use

- $^{163}\text{Ho}@\text{HOLMES}$
 1.5 mg
 neutrino mass measurement
- $^{91}\text{Nb}@\text{FRANZ}$
 1 μg
 neutron capture cross section

Isotope production planned

- $^{79}\text{Se}@n\text{-TOF}$
 ?
 neutron capture cross section
Isotopes produced at PSI

Isotope production and measurements finished

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass (μg or mg)</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Fe</td>
<td>1</td>
<td>half-life and neutron capture cross sections, @several</td>
</tr>
<tr>
<td>44Ti</td>
<td>30</td>
<td>44Ti(α,p) reaction, @ISOLDE/Uni Edinburgh</td>
</tr>
<tr>
<td>7Be</td>
<td>15</td>
<td>7Be(n,α) and 7Be(n,p), @n_TOF</td>
</tr>
<tr>
<td>10Be</td>
<td>4</td>
<td>10Be(n,γ) thermal, @Uni Mainz</td>
</tr>
</tbody>
</table>

Isotope production performed, isotopes ready for use

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass (μg or mg)</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>26Al</td>
<td>0.4</td>
<td>half-life measurement</td>
</tr>
<tr>
<td>53Mn</td>
<td>3</td>
<td>half-life and neutron capture cross sections</td>
</tr>
</tbody>
</table>

Isotope production planned

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass (μg or mg)</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>32Si</td>
<td>60</td>
<td>half-life and cross section measurements</td>
</tr>
<tr>
<td>146Sm</td>
<td>100</td>
<td>half-life measurements</td>
</tr>
<tr>
<td>148Gd</td>
<td>80</td>
<td>half-life measurements</td>
</tr>
<tr>
<td>154Dy</td>
<td>25</td>
<td>half-life measurements</td>
</tr>
<tr>
<td>209Po</td>
<td>?</td>
<td>half-life measurements</td>
</tr>
<tr>
<td>Actinides and fission products from spent nuclear fuel solutions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10Be from target-E graphite targets

Myon production station consumes up to 20% of the proton beam

Typical operation time: 1-3 years

Source for 7Be and 10Be
Chemical separation

Main radioactive components: 3H, 14C

Combustion of graphite in oxygen stream

Tube furnace @ 1000°C

3H$_2$O capture efficiency > 99.99%

35 kBq 10Be on Carbon pellet
Spallation products in carbon by mass:

Remaining oxidation products:

Li$_2$O, BeO, B$_2$O$_3$

totally approx. 1200 ppmm

14 µg 10Be per g graphite

currently available: ca. 4 mg 10Be

data by courtesy of Dr. D. Kiselev
\[^{91}\text{Nb} \] – from proton-irradiated \[^{92}\text{Mo} \]

\[^{91}\text{Nb}(p,\gamma)^{92}\text{Mo} \] reaction at 2 MeV proton energy

Relevant nuclear reaction for p-process

production of the most abundant p nucleus \[^{92}\text{Mo} \]

Cross sections from TALYS

\[10^{16} \] \[^{91}\text{Nb} \] nuclei with cyclotron at PTB
Braunschweig in about 7 days possible
Radiochemical separation

Development of the chemical system using model tracers

\[
\begin{align*}
\text{99Mo-foil (95Nb)} & \quad + 2 \text{ mg La} \quad + \text{HNO}_3/\text{HCl} \\
& \quad \text{Dissolution} \quad \text{Evaporation to dryness} \\
& \quad \downarrow \quad + 1 \text{ M HCl} \\
\text{99MoO}_4^{2-} & \quad + 1 \text{ M NH}_3 \\
& \quad \text{La(OH)$_3$
95NbO(OH)$_3$} \quad + 1 \text{ M HF} \\
& \quad \downarrow \quad \text{Dissolution} \\
\text{LaF}_3 & \quad \text{95NbOF}_5^{2-}
\end{align*}
\]

Sample preparation:
Irradiation of 971.3 mg 92Mo with 20 MeV protons
Determination of the decontamination factor from 92Mo by ICP-MS: > 10^5; ~ 1 \mu g 91Nb
The discovery of 60Fe from a nearby supernova explosion ~ 2.5 million years ago

Nature 2016:
- Investigation of ocean floor samples with AMS

Science 2016:
- Mass spectrometry with CRIS

LETTER
- Transport calculations

ASTROPHYSICS
- Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays

PRL 116, 151104 (2016)

The locations of recent supernovae near the Sun from modelling 60Fe transport

LETTER
- Samples from the Apollo missions measured by AMS

Nature 2016:
- Radioactive iron rain: transporting 60Fe in supernova dust to the ocean floor
Separation and preparation

Dissolution of Cu chips (3 g) in 7 M HNO₃

Evaporation to dryness

Dissolution in 7 M HCl + 5 mg Co²⁺ as carrier

Extraction with methylisobutylketone

Aqueous phase:
Ni, Co, Cu,
organic phase: Fe

Back extraction with 0.1 M HCl,
repetition of procedure

Result: 7.8 \times 10^{15} \text{ or } 777 \text{ ng } ^{60}\text{Fe atoms,}
decontamination factor (Co) > 10^8
(0.3 \text{ Bq})

Evaporation of the final solution onto a graphite backing
60Fe - summary

- Sample preparation for 4 half-life determinations
- Target preparation for 2 neutron capture cross section experiments (thermal energy and 25 keV)
- Preparation of standard material for AMS measurement

All sample-requiring experiments on 60Fe world-wide within the last 20 years work with material produced at PSI

- New measurement of the 60Fe half-life, G. Rugel et.al. PRL 2009
- Determination of the neutron capture cross section at stellar energies, E. Ueberseder et.al. PRL 2009
- Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life, N. Kivel et.al. ABC 2013
- The thermal neutron capture cross section of the radioactive isotope 60Fe, T. Heftrich et.al., PRC 2015
- Settling the half-life of 60Fe – fundamental for a versatile astrophysical chronometer, A. Wallner et.al., PRL 2015
- Activity measurement of 60Fe through the decay of 60mCo and confirmation of its half-life, K. Ostiek et.al. PRC 2017
- Nuclear properties of 60Fe, R. Dressler et.al., currently ongoing
G. Rugel, et al.:
Requirements for sample and target preparation

Isotope production and separation
- Total amount of activity?
- Which chemical form?
- With carrier or non-carrier-added?
- Disturbing isotopes?
- Magnitude of decontamination factors?
- Matrix of the final sample?
- Single or multiple separation?
- Shielding equipment (hotcell) necessary?

Target preparation
- Self-supporting or with backing?
- Which backing?
- Thickness of the backing to be known?
- Isotope composition required?
- Distribution to be known?
- Thickness measurement required?
- Single or multi-use?
- Radioprotection issues
- Transport issues

Collaboration on the basis of a material transfer agreement (MTA)
Summary and conclusions

• Exotic radionuclides are produced in components of the 590 MeV proton accelerator at PSI

• After chemical separation, these isotopes are available for scientific applications
 – Nuclear astrophysics
 – Geoscience
 – Basic nuclear physics
 – AMS standards

• PSI owns a store house of several very rare isotopes, some of them being unique world-wide in quality and quantity (7/10Be, 60Fe, 53Mn, 44Ti and others)

• Examples for front-end experiments using targets made by PSI
 – 60Fe half-life and neutron capture cross section measurements

• Examples for ongoing experiments (10Be, 91Nb)

• We need a network on target preparation

• We need a dedicated mass separation device for exotic radionuclides!
My thanks go to

• Stephan Heinitz
• Emilio Maugeri
• Zeynep Talip
• Tanja Stowasser
 – n_TOF
 – Uni Frankfurt
 – and many others
• CHANDA (7th EC framework)
• Swiss National Science Foundation
• You for your attention!