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Abstract

Heavy open �avor mesons can serve as probes of hot and dense, strongly interacting matter
in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang
or in compact stars. Thus, the thorough theoretical investigation of medium modi�cations
of D mesons is of utmost importance for the interpretation of the experimental data. Even
at �nite thermodynamic parameters, such as temperature and density, the non-perturbative
framework of QCD sum rules allows for the determination of hadronic properties which are
not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation
of scales, long-range e�ects of hadrons are related to quark and gluon degrees of freedom,
where features of the hadron spectrum are linked to condensates parameterizing the complex
QCD ground state.

This thesis furnishes the conception and calculus of QCD sum rules with emphasis on
in-medium e�ects which are inevitable when addressing such e�ects in higher order con-
tributions. In this regard, the notion and implications of medium-speci�c condensates are
elucidated. Motivated by the signi�cant numerical impact of four-quark condensates to the ρ
meson sum rule we evaluate, for the �rst time, the corresponding in-medium mass-dimension
6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark conden-
sates containing heavy-quark operators may be included into the sum rule analysis utilizing
the in-medium heavy-quark expansion made available here. Particular quark condensates
are potential order parameters of chiral symmetry breaking, which is the mass generating
mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of
altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order
parameters, can be studied with chiral partner sum rules. Although, introduced for light
spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating
their sensitivity to chiral dynamics. In particular, signals of chiral restorations at higher
temperatures are evident which are compatible with results from hadronic e�ective theories.

Kurzdarstellung

Schwere Mesonen mit o�enem Flavor können als Sonden heiÿer und dichter, stark wechsel-
wirkender Materie in Schwerionenkollisionen dienen, die geeignet sind, die extremen Bedin-
gungen kurz nach dem Urknall oder im Inneren kompakter Sterne zu imitieren. Daher ist
die sorgfältige theoretische Untersuchung der Mediummodi�kationen von D-Mesonen von
gröÿter Wichtigkeit für die Interpretation der experimentellen Daten. Sogar bei endlichen
thermodynamischen Parametern, wie Temperatur und Dichte, lassen sich hadronische Eigen-
schaften im Rahmen von QCD-Summenregeln bestimmen, die der störungstheoretischen
Quantenchromodynamik (QCD) nicht zugänglich sind. Vermöge einer Separation der Skalen
sind langreichweitige E�ekte der Hadronen analytisch mit Quark- und Gluon-Freiheitsgraden
verbunden. Dabei werden Charakteristika des Hadronenspektrums mit Kondensaten ver-
knüpft, welche den komplexen QCD-Grundzustand parametrisieren.

In dieser Arbeit wird das Kalkül der QCD-Summenregeln mit Augenmerk auf Medium-
e�ekte dargestellt, die unabdingbar sind, wenn solche E�ekte in Beiträgen höherer Ord-
nung adressiert werden sollen. In diesem Zusammenhang werden die Begri�ichkeiten der
medium-spezi�schen Kondensate und deren Implikationen erläutert. Motiviert durch den



signi�kanten numerischen Beitrag von Vier-Quark-Kondensaten zur ρ-Meson-Summenregel
evaluieren wir zum ersten Mal die entsprechenden Mediumbeiträge der Massendimension 6
zum D-Meson, wobei die Faktorisierungshypothese tentativ zur Anwendung kommt. Vier-
Quark-Kondensate, die Operatoren schwerer Quarks enthalten, mögen der hier bereitgestell-
ten Schwer-Quark-Massen-Entwicklung im Medium unterzogen werden, um ebenso zur Sum-
menregelanalyse herangezogen werden zu können. Bestimmte Quark-Kondensate sind po-
tentielle Ordnungsparameter der chiralen Symmetriebrechung, welche der massegenerierende
Mechanismus der QCD ist und den essentiellen Masseanteil der leichten Hadronen liefert.
Das Zusammenspiel von geänderten spektralen Eigenschaften mit mediumabhängigen QCD-
Kondensaten, d. h. den chiralen Ordnungsparametern, kann mit Hilfe von chiralen Partner-
Summenregeln studiert werden. Obwohl diese für leichte Spin-1-Mesonen eingeführt wurden,
plädieren wir für deren Erweiterung auf Spin-0-Mesonen mit o�enem Charm und demons-
trieren deren Sensitivität auf chirale Dynamik. Insbesondere werden Signale für eine chirale
Restauration bei hohen Temperaturen evident, die mit den Resultaten aus hadronischen
e�ektiven Theorien kompatibel sind.



Contents

1 Introduction 7

1.1 Probes of strongly interacting matter . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 QCD in the low-energy regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 QCD sum rules 13

2.1 Current-current correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Vacuum dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Medium dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Operator product expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Background �eld expansion in Fock-Schwinger gauge . . . . . . . . . . 21

2.2.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Structure of the OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Nature of condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Condensates in a strongly interacting medium . . . . . . . . . . . . . . 39

2.4 Evaluation of QCD sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Model-independent resonance properties . . . . . . . . . . . . . . . . . 47

2.4.2 Resonance properties from a spectral density ansatz . . . . . . . . . . 48

3 Medium modi�cations of D mesons 53

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 QCD sum rules for qQ mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Four-quark condensate contributions . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Wilson coe�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Chirally odd four-quark condensate in D meson QSR . . . . . . . . . . 60

3.3.3 Estimates of four-quark condensates � factorization . . . . . . . . . . . 60

3.4 Numerical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Comparison of four-quark condensates in ρ meson and D meson sum rules . . 66

3.6 Heavy-quark expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 HQE in vacuum. A recollection . . . . . . . . . . . . . . . . . . . . . . 68

3.6.2 Application of HQE to in-medium heavy-light four-quark condensates 69

3.7 Algebraic vacuum limits of QCD condensates . . . . . . . . . . . . . . . . . . 70

3.8 Interim summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Chiral partner sum rules 77

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Temperature dependences of pseudo-scalar and scalar D meson properties . . 78

4.2.1 Conventional Borel analysis . . . . . . . . . . . . . . . . . . . . . . . . 81



4.2.2 Borel analysis with given meson mass input . . . . . . . . . . . . . . . 87
4.3 Weinberg sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Extending Weinberg-type sum rules for spin-0 heavy-light mesons . . . 92
4.3.2 Comments on chirally odd condensates . . . . . . . . . . . . . . . . . . 93

4.4 D meson properties from chiral partner sum rules . . . . . . . . . . . . . . . . 95
4.5 Interim summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Summary and outlook 101

A Quantum chromodynamics. An overview 105

B Chiral symmetry 111

B.1 Chiral symmetry group, related transformations and currents . . . . . . . . . 111
B.2 Derivation of the GOR relation . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.3 Finite chiral transformations in the heavy-light sector . . . . . . . . . . . . . . 116

C Operator product expansion. Addendum 119

C.1 Technicalities on condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.1.1 Projection of Dirac indices . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.1.2 Projection of color indices . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.1.3 Fierz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.2 In-medium projection of Lorentz tensors and algebraic vacuum limits . . . . . 123
C.2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.2.2 Application to four-quark condensates . . . . . . . . . . . . . . . . . . 131
C.2.3 Discussion of factorization and ground state saturation hypothesis . . 140
C.2.4 Equivalence of two approaches to the medium-speci�c decomposition . 142

C.3 Calculation of Wilson coe�cients of light-quark condensates of mass dimen-
sion 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D Borel transformation 147

E Monte-Carlo sum rule analysis 151

Acronyms 155

List of Figures 157

List of Tables 159

Bibliography 161



1 Introduction

Richard Feynman's statement 'All mass is interaction.' [Gle92] seems ultimately validated
by the discovery of the Higgs boson [Aad12, Cha12] which is key to the understanding of
the masses of the elementary particles constituting the standard model. By coupling to the
scalar Higgs boson, these elementary particles acquire their respective masses. In particular,
the heavy masses of W and Z bosons, mediating the weak force, can be generated by
the Higgs mechanism [Hig64a, Hig64b, Eng64] which is based on a spontaneously broken
symmetry principle. In the realm of theoretical physics, symmetries play an important
role with applications in many �elds but with outstanding relevance in particle physics.
Local gauge symmetries are the de�ning properties of the quantum �eld theories describing
the fundamental interactions between elementary particles. Studying unitary symmetry
groups has lead Zweig [Zwe64] and Gell-Mann [GM62,GM64] to introduce the quark model
underlying the structure of baryons and mesons. These are strongly interacting particles
and collectively referred to as hadrons.

The essential mass contribution to the visible universe, however, does not originate from
elementary particles but from massive hadrons, i. e. nucleons, being the building blocks of
nuclei. Controversially, the nucleon mass is orders of magnitude larger than the sum of the
masses of its constituents [Pat16], which is in con�ict with the concept of binding energy in
electrodynamics suggesting an underlying theory with vastly di�erent characteristics. Due to
the success of quantum chromodynamics (QCD) [Fri73] in describing high-energy processes
involving hadrons, where quarks can be treated as quasi-free particles, its validity also in the
low-energy regime is assumed. Thus, QCD is believed to provide an adequate description of
the experimentally observable degrees of freedom (DoF), namely hadrons, which are bound
states of elementary quarks and massless gluons being the force carrying gauge bosons of the
strong interaction, i. e. it incloses the famous con�nement problem. Interestingly, QCD bears
a mass generating mechanism for strongly interacting particles dissolving the nucleon mass
puzzle. It grounds on the spontaneous breaking of chiral symmetry, besides con�nement,
the central research subject in contemporary hadron physics.

1.1 Probes of strongly interacting matter

In order to shed light on the subatomic processes in the early stages of the universe char-
acterized by enormously high temperatures and to elucidate the formation and stability of
very dense cosmological object like neutron stars an understanding of strong interactions in
such extreme conditions is inevitable, i. e. a comprehensive picture how the microcosm of
particles physics determines the behavior of the macroscopic world even up to cosmological
scales must be envisaged. The thermodynamics of strongly interacting matter is quanti�ed
by equations of state and the QCD phase diagram which features the phase transition or
crossover from hadronic matter to the quark-gluon-plasma, where quarks and gluons are lib-
erated. Associated with this transition are the con�nement�decon�nement transition as well



1 Introduction

as the chiral symmetry breaking and restoration mechanism. Hence, the exact characteriza-
tion of the QCD phase diagram, e. g. the determination of the order of the phase transition,
the possible occurrence of a critical end point and/or crossover as well as the location of the
phase boundary, is the very focus of many theoretical and experimental e�orts.

Heavy-ion collisions are an appropriate tool to explore the QCD phase diagram studying
the behavior of strongly interacting matter at �nite temperatures and net-baryon densities.
The current experimental set ups at LHC [Aam08] and RHIC [Adc05, Ada05] produce a
wealth of data at high temperatures and low densities, thus, providing a glimpse on the young
universe, while the forthcoming experiments at FAIR [Fri06, Sch14, Bri07, Pre16], NICA
[Sis09, Kek16] and J-PARC [Sak14] are designed to study �nite baryon densities giving
insights into dense stellar objects.1 Heavy open �avor mesons, e. g. D and B mesons, can
serve as probes of hot and dense matter. They are produced in initial interactions of the
collision and can carry signals of the subsequent stages of the �reball; their identi�cation
is facilitated by the heavy-quark content. To interpret these signals correctly, the medium
modi�cations of D mesons are of utmost importance and the main focus of this work.

Triggered by the Brown-Rho scaling law [Bro91], medium modi�cations of light hadrons,
in particular vector mesons, have been studied extensively. Experiments, e. g. at GSI [Aga07,
Aga12], CERN-SPS [Aga95,Arn06], JLab [Nas07] and KEK [Nar06], used direct photons and
dileptons to detect altered spectral properties of ρ and ω mesons in a strongly interacting
environment. Such investigations enable studies of the in-medium behavior of light chiral
partner mesons, which are of particular interest, because the di�erence of their spectral
functions quanti�es the degree of the dynamical breaking of chiral symmetry. Hence, they
elucidate important features of the mass generating mechanism of QCD. In this thesis, we
dwell on the advantageous evaluation of chiral e�ects in the heavy-light meson sector, and
therefore, foster D mesons as adequate probes of chiral dynamics.

1.2 QCD in the low-energy regime

QCD, being an integral part of the standard model, is understood as the theory of the strong
interaction on quark level. It is formulated as a non-Abelian SU(3) gauge theory de�ned by
its Lagrangian density. Accordingly, each quark �avor exhibits a third degree degeneracy,
where the additional quantum number is the color charge. Quark interactions are mediated
by massless gauge bosons, i. e. the gluons. Corresponding to the adjoint representation of the
SU(3) symmetry group, there exist eight gluons which carry color charge and anti-charge.
Thus, gluons are self-interacting gauge bosons resulting in a strong coupling and gluon
�eld strength at large distances, i. e. the QCD vacuum is highly non-trivial featuring anti-
screening. In contrast to electrodynamics, an e�ective quark�anti-quark potential linearly
rises with growing distance. Hence, quarks are always con�ned into colorless hadrons. The
origin of this phenomenon, dubbed con�nement, and its derivation from QCD is a pending
problem. Hadrons are of two kinds: either bosonic mesons with an even number of valence
quarks or fermionic baryons with an odd number of valence quarks.2 The interaction of
protons and neutrons has been described by the strong iso-spin symmetry, where the nucleon
coupling is realized by an e�ective strong force via light-meson exchange, which is the actual

1See the list of acronyms below for the various accelerator facilities and experiments.
2The classi�cation of the newly observed exotic states is a current matter of debate.
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1.2 QCD in the low-energy regime

origin of the name 'strong' nuclear force, as it (over)compensates the Coulomb repulsion of
protons in the nucleus.

From QCD renormalization calculations one obtains quantum corrections to tree-level
vertices which yield a running coupling αs with negative derivative, therefore, the coupling
decreases for a growing renormalization scale, known as asymptotic freedom [Gro73,Pol73].
However, in the low-energy regime the coupling becomes large, thus, spoiling a perturbative
expansion, i. e. a power series in the coupling strength in order to compute observables
becomes useless. Accordingly, non-perturbative methods are to be utilized to treat hadrons
within the framework of QCD. In the following, a few particularly successful approaches are
presented.

E�ective theories, e. g. chiral perturbation theory [Wei67a,Wei68], obey the relevant sym-
metries of the QCD Lagrangian and describe the physically realized DoF, namely hadrons.
Imposing a rigorous power counting scheme on all possible terms consistent with the sym-
metries gives excellent control over the relevance of the considered terms, in particular, it
allows to distinguish leading order contributions from negligible higher order terms. Calcu-
lation of observables in these theories rely on the numerical values of particle masses and
couplings, so-called low-energy constants, as input parameters which are to be �tted from
experimental data or derived from the underlying theory.

Lattice QCD (`QCD) [Wil74] aims for numerically solving QCD by literal evaluation of
path integrals on a �nite, periodic, Euclidean space-time grid with �nite lattice spacing a.
To obtain comparable results, a �t of intermediate data to observables �xing intrinsic pa-
rameters and to perturbative results in the continuum limit a→ 0 is in order. While `QCD
is limitedly suitable to disclose the intrinsic mechanisms of QCD, it has already proved to
be a very successful tool for particle spectroscopy, despite some issues with the treatment of
Goldstone bosons and hadrons in a strongly interacting environment characterized by �nite
chemical potentials.

The Dyson-Schwinger�Bethe-Salpeter approach based on the pioneering works [Dys49,
Sch51b,Sal51] can be also applied to quark�anti-quark bound states providing their masses
and decay constants [Mun92]. In�nitely many coupled integral equations describe the bound
state by virtue of dressed quark and gluon propagators and a relativistic Bethe-Salpeter in-
teraction kernel. A truncation of the iteratively generated integral equations has to be
performed in order to obtain a feasible numerical approach. The hierarchy of contribu-
tions beyond standard truncation schemes, e. g. rainbow-ladder approximation, w. r. t. their
numerical impact is a recent matter of debate as well as di�erent interaction models enter-
ing the Bethe-Salpeter kernel. There are many further attempts to extract the low-energy
dynamics of strongly interacting matter availing, e. g., current algebra, resummation and
renormalization group techniques, AdS/CFT correspondence, potential models, bag models
as well as instanton models.

Among the analytic approaches with intimate contact to QCD are QCD sum rules (QSRs)
which are pursued in this thesis. Introduced by Shifman, Vainshtein and Zakharov [Shi79]
they proved particularly successful in deducing spectral properties of low-lying hadronic res-
onances. QSRs connect QCD with phenomenology, i. e. quark DoF are linked to hadronic
DoF, by means of a dispersion relation of the current-current correlator. The dispersion
relation can be derived from Cauchy's formula and the analytic properties of the correlator.
It builds a bridge between the low-energy spectrum of the considered current and the cor-

9
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relator at deep Euclidean momenta, where perturbative methods are applicable. Thereby,
integrated spectral properties are linked to QCD ground state expectation values of quark
and gluon operators, the celebrated condensates. An in�nite tower of such condensates char-
acterizes the highly non-trivial QCD ground state, as they quantify the interaction of quarks
and gluons with the vacuum. Particular condensates, e. g. the famous chiral condensate 〈q̄q〉,
can serve as essential parts of order parameters of chiral symmetry and are therefore integral
to the understanding of the mass generating mechanism of QCD.

The conceptional strength of QSRs is apparent, inter alia, in the generalization of the
framework to in-medium situations [Boc86]. Due to the separation of scales, �nite temper-
ature and/or baryon density e�ects on hadronic spectra by virtue of a strongly interacting
environment can be comprehensively traced back to numerically changing condensates in
low-temperature and -density approximations. The temperature and density dependence
of condensates can be deduced model independently by evaluation of the Gibbs averages
of the respective quark and gluon operators. The determination of their medium behavior
from QSRs, where always a combination of condensates enter, is more involved. However,
the limitations in extracting individual condensates, e. g. a particular order parameter, from
channel-speci�c QSRs can be circumvented by Weinberg sum rules (WSRs) [Wei67b] which
are sensitive to individual chirally odd condensates being potential order parameters of chiral
symmetry. Thus, WSRs are a valuable tool to study chiral dynamics by means of testable
implications of changing chirally odd condensate on chiral partner meson spectra.

1.3 Structure of the thesis

In this thesis, QSRs are utilized to determine medium modi�cations of the spectral properties
of heavy-light mesons, in particular D mesons. A careful foundation of the QSR framework
with emphasis on its generalization to medium situations is provided in Chap. 2 ensuring
the correct applications of the operator product expansion (OPE) machinery to higher order
condensate contributions. Thereby, current discussions on the meaning of condensates and
di�erent QSR evaluation strategies are reviewed. Chapter 3 is devoted to the calculation
of light four-quark condensate contributions to the pseudo-scalar D meson OPE in nuclear
matter, motivated by their large numerical impact to the ρ meson sum rule and their crucial
role as potential order parameters of chiral symmetry. For the interested reader, many of
the intricate details of the in-medium computation are made available in App. C. Chiral
symmetry aspects of open charm mesons in a heat bath are presented in Chap. 4. Channel-
speci�c as well as chiral partner sum rules of pseudo-scalar and scalar D mesons are evaluated
at �nite temperatures to test heavy-light mesons as probes of chiral symmetry restoration
assumed at high temperatures. The notion of chiral symmetry presented in App. B is a
prerequisite to this analysis. The key results of this work are summarized and discussed in
Chap. 5 supplemented by an outlook focusing on a promising QSR evaluation method as
well as on critical aspects of low-energy QCD, e. g. the value of the QSR framework and its
bene�cial contribution to modern hadron physics. Appendix A recalls basics of (classical)
chromodynamics in order to clarify the notation used throughout this thesis, while Apps. D
and E describe techniques improving the reliability of QSR results.

10



1.3 Structure of the thesis

In the course of elaborating this thesis, the following publications have been written (in
chronological order):

(i) T. Buchheim, T. Hilger and B. Kämpfer: In-medium QCD sum rules for D
mesons: A projection method for higher order contributions, J. Phys. Conf. Ser. 503,
012006 (2014).

(ii) T. Buchheim, T. Hilger and B. Kämpfer: Heavy-quark expansion for D and B
mesons in nuclear matter, EPJ Web Conf. 81, 05007 (2014).

(iii) T. Buchheim, T. Hilger and B. Kämpfer: De�ning medium-speci�c condensates
in QCD sum rules for D and B mesons, Nucl. Part. Phys. Proc. 258-259, 213 (2015).

(iv) T. Buchheim, T. Hilger and B. Kämpfer: Wilson coe�cients and four-quark
condensates in QCD sum rules for medium modi�cations of D mesons, Phys. Rev. C
91, 015205 (2015).

(v) T. Buchheim, T. Hilger and B. Kämpfer: Chiral symmetry aspects in the open
charm sector, J. Phys. Conf. Ser. 668, 012047 (2016).

(vi) T. Buchheim, B. Kämpfer and T. Hilger: Algebraic vacuum limits of QCD con-
densates from in-medium projections of Lorentz tensors, J. Phys. G 43, 055105 (2016).
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2 QCD sum rules

The conceptional ideas and the theoretical foundation of QSRs were introduced by Shifman,
Vainshtein and Zakharov (SVZ) providing a systematic study of non-perturbative e�ects in
QCD [Shi79] which circumvent complications arising for this non-Abelian gauge theory in
the low-energy regime. Originally applied to resonances of vector mesons in vacuum the
ideas and notions of the QSR framework have been extended to allow for a description of
baryons [Iof81], and more recently, also tetra- and penta-quark systems [Lat85,Zhu03]. Also
further hadronic properties are accessible, e. g. form factors [Nes82] and hadronic coupling
constants [Rei83], inter alia, utilizing light-cone sum rules [Bal89,Bra89,Che90]. The valu-
able generalization of the scope of the QSR framework to cover single hadrons in a strongly
interacting medium at �nite temperatures [Boc86,Hat93] and net-baryon densities [Fur92]
enables an understanding of recent and envisaged experimental results.1

The introduction to QSRs in this chapter builds on the original articles [Shi79, Boc86,
Fur92, Hat93] and is also based on reviews [Rei85, Col01], textbooks [Pas84, Nar07] and
more detailed papers [Nov84, Jin93, Gro95] dedicated to di�erent technical aspects of the
framework.

2.1 Current-current correlator

In the framework of QSRs phenomenological hadronic properties are connected to QCD pa-
rameters. By virtue of a dispersion relation (see below) the causal current-current correlator

Π(q) = i

∫
d4x eiqx〈Ω|T

[
J(x)J†(0)

]
|Ω〉 (2.1)

can be evaluated in a twofold way, where the short-range e�ects of quarks and gluons are
linked to the long-range e�ects of hadrons. The two-point function (2.1) is de�ned as the
Fourier transform of the time-ordered expectation value (EV) of the interpolating currents
J and J†. They are formed by quark and/or gluon operators in the Heisenberg represen-
tation re�ecting the partonic content and quantum numbers, e. g. parity and spin, of the
hadron under consideration. The QCD ground state |Ω〉 di�ers from the vacuum of the free
theory |0〉, in particular a|Ω〉 6= 0 with a being an annihilation operator of the free theory.2

Although the vacuum ground state |Ω〉 must be understood as a non-perturbative ground
state it is de�ned to satisfy EΩ = 0, and hadrons as excitations of that ground state thus
have an energy equal to their mass in the rest frame. The QCD ground state is Lorentz
invariant and invariant under parity and time reversal transformations. While the QCD
ground state is not translational invariant, but acquires a phase factor when the translation

1Attempts are recently pursued in order to include e�ects of high magnetic �elds into the framework
[Mac14,Cho15] which may occur in ultra-peripheral heavy-ion collisions.

2In the Lagrangian of the 'free theory', interaction terms are absent.



2 QCD sum rules

operator is applied, EVs in this state are invariant under space-time translations as the phase
factors cancel each other.

The Gell-Mann�Low formula [Pas84,Ste93] connects EVs of Heisenberg operators, eval-
uated with the interacting states of the full theory, with EVs of operators in the interaction
representation, evaluated with states of the free theory [GM51]. For the relevant two-point
function one obtains

〈Ω|T
[
J(x)J†(0)

]
|Ω〉 =

〈0|T
[
j(x)j†(0)ei

∫
d4yLint(y)

]
|0〉

〈0|T
[
ei
∫

d4yLint(y)
]
|0〉

, (2.2)

where Lint (A.15) is the interaction term of the Lagrangian comprising free �elds. Whenever
the coupling g in Lint obeys g � 1, a series expansion of the operator-valued exponentials
is a suitable starting point for a perturbative evaluation.

The current-current correlator (2.1) uncovers two particularly important regimes: (i) for
large space-like momenta, it represents the short-range quark�anti-quark �uctuations, per-
turbatively assessable, whereas (ii) long-range hadronic properties are encoded for positive
momenta q2 > 0. For instance, the correlator of the vector meson current jV = q̄γµq can be
linked to the hadron production cross section σ in e+e− annihilation via [Rei85]

ImΠ(q2) =
9

64π2α2
q2σ(e+e− → hadrons) , (2.3)

where α = e2/(4π) is the quantum electrodynamics (QED) �ne structure constant. This
formula already discloses a severe restriction to the interpretation of QSR results. The
phenomenological information provided by Eq. (2.3) is not unique to one speci�c vector
meson, but the cross section includes the complete spectrum of hadrons, and even multi-
particle excitation, with the quantum numbers of the considered vector meson. This becomes
obvious from explicitly writing out the time-ordering in Eq. (2.1) employing the integral
representation of the Heavyside function (and intermediate insertion of a complete set of
hadronic states) which leads to the Källén-Lehmann representation [Käl52, Leh54] of the
correlator

Π(q) = −
∫

dω

(
ρ(ω, ~q)

q0 − ω + iε
− ρ̃(ω, ~q)

q0 − ω − iε

)
(2.4)

with independent spectral densities

ρ(p) =
1

2π

∫
d4x eipx〈Ω|j(x)j†(0)|Ω〉 , (2.5)

ρ̃(p) =
1

2π

∫
d4x eipx〈Ω|j†(0)j(x)|Ω〉 (2.6)

for particles (ρ) and anti-particles (ρ̃). However, in vacuum (due to the assumed symmetries
of the QCD ground state) or for self-adjoint particles (e. g. the ρ0 meson) with ρ̃(ω) =
−ρ(−ω) the correlator reads

Π(q) =

∞∫

0

ds
ρ(s)

s− q2
. (2.7)
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2.1 Current-current correlator

Insertion of a complete set of hadronic states {|h〉} into the de�nition (2.5) of the spectral
density

ρ(p) = (2π)3
∑

h

δ(4)
(
p− (ph − pΩ)

)
〈Ω|j(0)|h〉〈h|j†(0)|Ω〉 (2.8)

reveals that all hadronic states |h〉 with the quantum numbers of the considered current, i. e.
〈Ω|j(0)|h〉 6= 0, contribute to the spectral density (and thus to the correlator). In Eq. (2.8),
pΩ (ph) denotes the eigen value of the momentum operator applied to the QCD ground state
|Ω〉 (hadronic state |h〉). In vacuum one can choose pΩ = 0 due to Lorentz invariance of the
QCD ground state.

In a strongly interacting environment characterized by a medium velocity vµ and some
intensive thermodynamic properties, the current product of the correlator (2.1) is not evalu-
ated with the QCD ground state |Ω〉, but it is Gibbs averaged, i. e. the substitution [Boc86]

〈Ω| · · · |Ω〉 −→ 〈〈· · · 〉〉 =
1

Z
Tr
[
· · · e−(H−µN)/T

]
(2.9)

is required to generalize the correlator to cover in-medium situations.3 The quantity Z =
Tr[e−(H−µN)/T ] is the grand-canonical partition function, where H denotes the QCD Hamil-
tonian operator (emerging from Lagrangian (A.1)), T is the temperature of the system, N
symbolizes some additive quantum number, e. g. baryon number, strangeness, etc., and µ is
the corresponding chemical potential. The trace represents the summation over complete
sets of states to any particle number (baryon number, strangeness, etc.) N. As the presence
of the strongly interacting medium breaks Lorentz invariance, the correlator depends on
q0 and ~q separately. Generalized formulae for the Källén-Lehmann representation (2.4) of
the Gibbs averaged causal correlator (2.1) as well as retarded and advanced correlators are
presented in [Neg88].

The in-medium ground state is understood as a many-particle state. In contrast to
the vacuum QCD ground state, it is only assumed to be invariant under parity and time
reversal transformations in its local rest frame and it is not invariant under all Lorentz
transformations [Fur92]. However, EVs calculated in this state, e. g. the current-current
correlator (2.1), do have well de�ned Lorentz transformation properties. The new feature
in the medium is the additional four-vector vµ that must be transformed when making the
comparison of observables in di�erent reference frames and must be included when building
tensors or identifying invariant functions [Fur92]. Analogous to the QCD ground state EV,
translational invariance is assumed for the Gibbs average, i. e. 〈〈O(x)〉〉 = 〈〈O(x + a)〉〉 for
arbitrary operators O [Jin93].

2.1.1 Vacuum dispersion relation

On grounds of analyticity a dispersion relation can be derived connecting the current-current
correlator (2.1), expressed in QCD DoF for deep-Euclidean momenta, to the hadronic sum
in Eq. (2.8) at physical momenta. Assuming analyticity of the correlator Π(q2) within the

3In subsequent parts of this work, where vacuum and in-medium ground state EVs are not distinguished
explicitly, the common symbol 〈 · · · 〉 is used.
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2 QCD sum rules

Req2

Imq2

C

OPE Req0

Imq0

C

OPE

OPE

Figure 2.1: The integration contours C for a derivation of the dispersion relations in
vacuum (left panel) and in medium (right panel) using Cauchy's integral theorem. The
operator product expansion (OPE) is employed at bold dots either in the complex momen-
tum q2 plane (left) or complex energy q0 plane at �xed ~q (right), respectively. Red lines
indicate positions of hadronic poles and cuts of the correlator along the real axis.

contour C, where the poles of the correlator along the positive real axis are excluded, cf. left
panel of Fig. 2.1, Cauchy's integral theorem is applicable, i. e.

Π(q2) =
1

2πi

∮

C

ds
Π(s)

s− q2
(2.10)

=
1

2πi

∮

|s|=R

ds
Π(s)

s− q2
+

1

2πi

R∫

0+

ds
Π(s+ iε)−Π(s− iε)

s− q2
. (2.11)

The integration contour of the second integral in Eq. (2.11) runs on both sides along the
positive real axis with ε > 0. Thus, the Schwarz re�ection principle Π(z∗) = Π∗(z) can be
applied to the discontinuity

∆Π(s) =
1

2i
lim
ε→0

[Π(s+ iε)−Π(s− iε)] (2.12)

and one can identify the spectral density by comparing with the Källén-Lehmann represen-
tation (2.7) of the correlator, i. e.

∆Π(s) = ImΠ(s) = πρ(s) . (2.13)

The �rst integral in Eq. (2.11) over the circle with radius R vanishes, if the current-current
correlator on this circle for R→∞ decreases su�ciently rapidly, i. e. lim|s|→∞Π(s) ∝ 1/|s|η
is satis�ed for arbitrary η > 0. The resulting dispersion relation

Π(q2) =
1

π

∞∫

0

ds
ImΠ(s)

s− q2
(2.14)
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2.1 Current-current correlator

as one possible representation of the correlator (2.1) is the starting point of a QSR analysis
in vacuum [Shi79]. Another representation of the correlator (2.1) in terms of quark and
gluon DoF utilizes the OPE, which is presented in Sec. 2.2.

If the integrand in the �rst integral in Eq. (2.11) does not decrease rapidly enough for
|q2| → ∞, as required in the derivation of Eq. (2.14), the integral along the circle R does not
vanish, but converges to a �nite-degree polynomial instead [Sug61]. Assuming |Π(s)| ≤ |s|N
for s→∞ with N ∈ N a �nite �xed integer and R→∞ one can prove this statement. As
|q2| < |s|, if s is on the circle, the integrand can be expanded in a geometric series. If Π(s)
obeys the above assumption the power series in q2/s breaks down at the power N . Thus, in
such a case the vacuum dispersion relation reads

Π(q2) =
1

π

∞∫

0

ds
ImΠ(s)

s− q2
+

N∑

n=0

anq
2n , (2.15)

instead of (2.14), with an = 1
2π lim|s|→∞

∫ 2π
0 dϕΠ(s)/sn. For clarity, one may point out

that the coe�cients an are not proportional to derivatives of Π(s) at s = 0 which enter the
forthcoming subtracted dispersion relation. The (N + 1)-th derivative with respect to q2 of
Eq. (2.15) eliminates the polynomial.

If Π(q2) is analytic in the vicinity of the origin a further approach to the dispersion
relation is feasible leading to so-called subtraction terms but circumvents polynomials from
the integral over the circle with radius R. If the lower limit of the integral along the positive
real axis is a �nite value s0, which may be regarded as the energy squared of the �rst
resonance of the spectral density, this approach can be pursued. Subtracting on both sides
of Eq. (2.10) the Taylor polynomial of the correlator around the origin up to the power of
N − 1,

Π(q2)−
N−1∑

n=0

Π(n)(s)
∣∣
s=0

n!
q2n =

1

2πi

∮

C

ds
Π(s)

s− q2
−
N−1∑

n=0

q2n

2πi

∮

C

ds
Π(s)

sn+1
, (2.16)

the assumption leading to the polynomial in Eq. (2.15) yields the N -fold subtracted disper-
sion relation in vacuum

Π(q2)−
N−1∑

n=0

Π(n)(s)
∣∣
s=0

n!
q2n =

1

π

∞∫

s0

ds

(
q2

s

)N
ImΠ(s)

s− q2
, (2.17)

where Π(n)(s)|s=0 denotes the n-th derivative of the current-current correlator evaluated at
the origin. The N terms of the polynomial in powers of q2 on the l. h. s. of Eq. (2.17), i. e.
the terms of the sum, are dubbed subtraction terms.

2.1.2 Medium dispersion relation

The medium dispersion relation di�ers from that in vacuum. Due to the presence of the
medium, represented by the medium velocity vµ, Lorentz invariance is broken and the
current-current correlator does not solely depend on the outer hadron momentum q2, but
becomes a function of all possible scalar products of qµ and vµ, i. e. Π(q, v) = Π(q2, v2, vq).
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2 QCD sum rules

In the rest frame of the medium the correlator is a function of q0 and ~q, i. e. Π(q0, ~q) and
one can make no further restrictions to the pole structure. In contrast to the vacuum, the
correlator exhibits now poles along the complete energy axis [Fur92] and the desired dis-
persion relation must be derived on the complex energy plane rather than on the q2 plane.
As the OPE building on perturbative methods is valid for large space-like momenta only,
the correlator must be continued analytically for imaginary values of q0 performing a Wick
rotation. For q0 = iq′0 with q′0 ∈ R, the requirement q2 < 0 is satis�ed.

Analogously to the derivation in vacuum, Cauchy's integral theorem

Π(q0, ~q) =
1

2πi

∮

C

dω
Π(ω, ~q)

ω − q0
(2.18)

is applied to the integration contour C in the right panel of Fig. 2.1 for �xed ~q. The in-
medium correlator can be decomposed into an even and odd part with respect to the hadron
energy q0:

Π(q0, ~q) = Πeven(q0, ~q) + q0Πodd(q0, ~q) (2.19)

with

Πeven(q0, ~q) =
1

2

[
Π(q0, ~q) + Π(−q0, ~q)

]
= Πeven(−q0, ~q) , (2.20a)

Πodd(q0, ~q) =
1

2q0

[
Π(q0, ~q)−Π(−q0, ~q)

]
= Πodd(−q0, ~q) . (2.20b)

Provided that the discontinuity is restricted to the real axis, i. e.

∆Π(ω, ~q) =
1

2i
lim
ε→0

[
Π(ω + iε, ~q)−Π(ω − iε, ~q)

]
= ImΠ(ω, ~q) , (2.21)

the N -fold subtracted dispersion relation in medium of the even part takes the form

Πeven(q0, ~q)−
1

2

N−1∑

n=0

Π(n)(ω, ~q)
∣∣
ω=0

n!
(q0)n [1 + (−1)n]

=
1

2π

∞∫

−∞

dω ImΠ(ω, ~q)
qN0
ωN−1

[
1 + (−1)N

]
+ q0

ω

[
1− (−1)N

]

ω2 − q2
0

(2.22)

and for the odd part it reads

Πodd(q0, ~q)−
1

2

N−1∑

n=0

Π(n)(ω, ~q)
∣∣
ω=0

n!
(q0)n−1 [1− (−1)n]

=
1

2π

∞∫

−∞

dω ImΠ(ω, ~q)
qN−1

0

ωN−1

[
1− (−1)N

]
+ q0

ω

[
1 + (−1)N

]

ω2 − q2
0

. (2.23)
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2.2 Operator product expansion

2.2 Operator product expansion

Utilizing Wilson's operator product expansion (OPE) the correlator is linked to the quark
and gluon DoF [Wil69]. As hadrons are the relevant DoF of the strong interaction theory for
low energies, whereas quarks can be resolved for large momentum transfer only, an expansion
based on quark DoF is valid, intuitively, only for large outer momenta. The proof of the
validity of the OPE is based on Feynman diagram techniques and is rigorously proven only
for perturbation theory [Shi79]. Following Wilson, an operator product can be expanded
into an asymptotic series of complex functions C̃n and local operators On for short distances
x− y:

A(x)B(y) =
∑

n

C̃n(x− y)On . (2.24)

The Wilson coe�cients C̃n(x − y) are singular for x → y. The full expansion features an
in�nite number of local operators On sorted by the degree of singularity rising with index n.
Due to the constant mass dimension of the operator product A(x)B(y) the operators on the
r. h. s. of Eq. (2.24) may be sorted by their mass dimension accordingly, where the sum runs
over all products of operators in the theory under consideration. Apart from the perturbative
contribution with On = 1 (dimm = 0) all possible products of the available operators in
QCD, i. e. gauge covariant derivative Dµ (dimm = 1), quark operator q (dimm = 3/2) and
gauge �eld strength tensor Gµν (dimm = 2) (Dirac, �avor and color indices are not displayed
here), form local operators On with increasing mass dimension entering the expansion.

In momentum space the OPE reads
∫

d4x eiq(x−y)A(x)B(y) =
∑

n

Cn(q)On (2.25)

with Cn ∝ q−n+m, where m is a constant value depending on the mass dimension of the
operator product A(x)B(y). Due to the polynomial structure of the Wilson coe�cients the
terms of the series (2.25) beyond the perturbative contribution are dubbed power corrections.
As the series (2.25) is an expansion on operator level the complex valued Wilson coe�cient
do not depend on the state used to evaluate the operator product. In particular, the coe�-
cients are not altered weather the OPE is evaluated in vacuum or medium. Despite further
medium-speci�c condensates and associated Wilson coe�cients entering the OPE for �nite
temperatures and/or baryon densities, the Wilson coe�cients of the vacuum-speci�c con-
densates at low temperatures are (approximately) equal to the Wilson coe�cients of these
condensates in vacuum.4 Wilson coe�cients can be calculated utilizing the background �eld
expansion in Fock-Schwinger gauge outlined in Subsec. 2.2.1 or further approaches, e. g. the
plane wave method [Rei85,Bag94].

The evaluation of the current-current correlator (2.1) comprises the EV of the time-
ordered operator product of the expansion (2.25) with A(x) = j(x) and B(y = 0) = j†(0),
i. e.

Π(q) =
∑

n

Cn(q)〈Ω|On|Ω〉 . (2.26)

4The notions of vacuum- and medium-speci�c condensates and its relevance for in-medium QSRs are
explained in detail in App. C.2.
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2 QCD sum rules

The quantity 〈Ω|On|Ω〉 is referred to as a QCD condensate. If the OPE is calculated in
perturbation theory solely the EV of the unit operator contributes, because all further EVs
vanish. To account for non-perturbative e�ects also the EVs of higher mass dimension
operators must not vanish. Due to the QCD ground state |Ω〉 the EVs of the operators On
give �nite results. Thus, non-perturbative e�ects are absorbed into condensates, whereas
the Wilson coe�cients contain the perturbative part. To ensure separation of long-range
from short-range e�ects the introduction of a scale µ is mandatory. The separation of scales
is necessary for loop corrections, where small momentum contributions to the momentum
integrals lead to Wilson coe�cients which contain long-range e�ects. This requires the
rede�nition of condensates [Col01]. Therefore, the 'practical OPE' is introduced in [Shi98].
At �nite loop order and with condensates up to a �xed mass dimension the separation of
scales is achieved by a rede�nition of the condensates.

If the OPE of a Gibbs averaged current-current correlator is performed, Gibbs averaged
operators 〈〈On〉〉 will enter. As the QCD ground state is the lowest energy contribution to
the trace in Eq. (2.9), the deviation of the numerical values of a Gibbs averaged operator
〈〈On〉〉 from its ground state EV 〈Ω|On|Ω〉 grows for increasing intensive thermodynamic
quantities of the system, e. g. temperature or baryon density, while their values coincide for
vanishing thermodynamic parameters. The meaning of condensates beyond their role in an
OPE, where they absorb the non-perturbative phenomena, and further details on in-medium
condensates are presented in Sec. 2.3.

If the separation of scales is veri�ed, perturbative methods can be utilized for actual
calculations. Evaluation of the current-current correlator (2.1) in the deep-Euclidean region
q2 � 0 allows for the application of Wick's theorem, which is based on the decomposition of
�eld operators into positive and negative frequency parts with associated annihilation and
creation operators. While such a Fourier decomposition is common for free �eld operators,
it is impossible for interacting operators in the Heisenberg representation. However, the
operators in the interaction representation of perturbation theory satisfy the equations of
motion (EoMs) of the free theory enabling a decomposition similar to free �elds. In this
regard, Wick's theorem is a perturbative method [Rom69]. For a time-ordered product of n
operators one has [Pes95]

T [φ1(x1)φ2(x2) · · ·φn(xn)] = : φ1(x1)φ2(x2) · · ·φn(xn) :

+ : all possible contractions : , (2.27)

where a contraction ' ' is de�ned by

φ1(x1)φ2(x2) = 〈0|T [φ1(x1)φ2(x2)] |0〉 (2.28)

and ' : · · · : ' denotes normal-ordering, i. e. within the colons all annihilation operators are
grouped to the right of creation operators. If Wick's theorem is applied to the vacuum
EV of operators, the normal-ordered terms will vanish due to the de�nition of normal-
ordering, in particular: 〈0| : (odd number of operators) : |0〉 = 0. Thus, solely fully contracted
terms remain. These considerations apply to the ground state |0〉 of the free theory, due to
a|0〉 = 0, but do not apply the QCD ground state |Ω〉. Hence, Wick-uncontracted operators
sandwiched between QCD ground states can have non-zero values forming the celebrated
condensates.
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2.2 Operator product expansion

2.2.1 Background �eld expansion in Fock-Schwinger gauge

The correlators of color neutral currents considered in this thesis are gauge invariant [Nov84].
That is, every particular gauge condition on the gluonic background �eld yields the same
results and, thus, can be chosen appropriately. The Fock-Schwinger gauge

(xµ − xµ0 )Aµ(x) = 0 , (2.29)

independently introduced by Fock [Foc37] and Schwinger [Sch51a] in the framework of QED,
is suitable for the OPE of current-current correlators. The SVZ sum rules widened the
application of the gauge (2.29) introducing it to QCD calculations, because it allows for
a compact formulation of quark and gluon propagators. The calculus presented in this
section is derived from [Nov84, Pas84]. Usually, one chooses xµ0 = 0. Although the gauge
condition (2.29) is scale independent as well as has an independence under parity and time
reversal transformations it breaks translation symmetry. However, the cancellation of the
x0 dependence in the calculation is supported by arguments in [Nov84].

The Fock-Schwinger gauge implies the relation

Aµ(x) =

1∫

0

dα αxνGνµ(αx) (2.30)

which connects the gluonic background �eld potential Aµ to its �eld strength tensor Gνµ.
Furthermore, in the Taylor expansion of arbitrary �elds

φ(x) =

∞∑

n=0

1

n!
xα1 · · ·xαn(∂α1 · · · ∂αnφ)x=0 (2.31)

it allows for a substitution of the partial derivatives ∂αi = ∂/∂xαi by covariant derivatives
Dαi(x) = ∂αi − igAαi(x):

xα1 · · ·xαn(∂α1 · · · ∂αnφ)x=0 = xα1 · · ·xαn(Dα1 · · ·Dαnφ)x=0 . (2.32)

Expanding the �eld strength tensor Gνµ in Eq. (2.30) at the origin using Eq. (2.32) with
φ = Gνµ yields

Aµ(x) =

1∫

0

dα αxν
∞∑

n=0

αn

n!
xα1 · · ·xαn(Dα1 · · ·DαnGνµ)x=0 (2.33)

=
∞∑

n=0

1

n!(n+ 2)
xνxα1 · · ·xαn(Dα1 · · ·DαnGνµ)x=0 , (2.34)

i. e. the covariant expansion of the gluon �eld in terms of the gluon �eld strength ten-
sor. Analogously, within the Fock-Schwinger gauge one obtains the covariant expansion of
fermion �eld operators by substituting φ with ψ or its adjoint ψ̄ in Eq. (2.31):

ψ(x) =

∞∑

n=0

1

n!
xα1 · · ·xαn(Dα1 · · ·Dαnψ)x=0 , (2.35a)

ψ̄(x) =

∞∑

n=0

1

n!
xα1 · · ·xαn

(
ψ̄
←
Dα1 · · ·

←
Dαn

)
x=0

. (2.35b)
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iS(x, y)
=

iS(0)(x− y)
+

iS(0)(z1 − y)iS(0)(x− z1)

ig /A(z1)

+
iS(0)(z2 − y)iS(0)(x− z1) iS(0)(z1 − z2)

ig /A(z1) ig /A(z2)

+ · · ·

Figure 2.2: Diagrammatic representation of the perturbative quark propagator S (thick
solid line) in a classical, weak, gluonic background �eld yielding a series of the free quark
propagator S(0) (thin solid lines) coupled via soft-gluon exchange (curly lines) to the back-
ground (crosses). The vertices originate from the interaction Lagrangian.

The background �eld method is utilized to model non-perturbative e�ects of the vacuum
and the medium. The quark propagator S(x, y) = −i〈T[q(x)q̄(y)]〉, emerging from Wick's
theorem, does not describe free propagation but the propagation of the quark in a classical,
weak, gluonic background �eld Aµ. This propagator is dubbed perturbative propagator
throughout this thesis; it satis�es the relations

[
i /D(z)−mq

]
S(z, y) =

[
i/∂z + g /A(z)−mq

]
S(z, y) = δ(4)(z − y) . (2.36)

Provided the impact of the background �eld via gAµ is a small perturbation, S(z, y) can
be expanded in an asymptotic series [Itz80,Nov84]. The derivation employs the free quark
propagator iS(0)(x, z) = iS(0)(x− z), which ful�lls

S(0)(x− z)
[
− i

←
/∂ z −mq

]
= δ(4)(x− z) , (2.37)

to obtain the implicit integral equation of the perturbative propagator

iS(x, y) = iS(0)(x− y) +

∫
d4z iS(0)(x− z)ig /A(z)iS(z, y) . (2.38)

An iterative expansion of Eq. (2.38) yields

iS(x, y) = iS(0)(x− y)

+

∞∑

n=1

∫
d4z1 · · · d4zn iS

(0)(x− z1)ig /A(z1)iS(0)(z1 − z2) · · · ig /A(zn)iS(0)(zn − y) .

(2.39)

The diagrammatic interpretation of the �rst three terms of this expansion is illustrated in
Fig. 2.2. Due to the gauge condition (2.29) the perturbative quark propagator (2.39) does
not exhibit translation invariance, i. e. space-time shifts x −→ x′ = x − y do not give the
same expression, in contrast to the free quark propagator. Thus, S(x, y) and S(x − y, 0)
are di�erent quantities. In order to preserve the gauge condition, two separate Fourier
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2.2 Operator product expansion

transforms of the perturbative quark propagator are introduced:

S(p) =

∫
d4x eipxS(x, 0) , (2.40)

S̃(p) =

∫
d4x e−ipxS(0, x) . (2.41)

The Fourier transforms of the free quark propagators and the gluonic background �eld read

S(0)(q) =

∫
d4x eiqxS(0)(x, 0) =

∫
d4x e−iqxS(0)(0, x) , (2.42)

Aµ(k) =

∫
d4x eikxAµ(x) . (2.43)

Further utilizing momentum derivatives ∂p of the Fourier exponentials to absorb the spatial
dependence of the covariant expansion (2.34) the perturbative quark propagator in a classical,
weak, gluonic background �eld can be expanded as

S(p) =
∞∑

n=0

S(n)(p) (2.44)

with

S(n)(p) = −S(0)(p)
(
γÃ
)
S(n−1)(p)

= −S(n−1)(p)
(
γÃ
)
S(0)(p)

= (−1)nS(0)(p)
(
γÃ
)
S(0)(p) · · ·

(
γÃ
)
S(0)(p)

︸ ︷︷ ︸
n times (γÃ)S(0)(p)

, (2.45)

where the background �eld contribution (γÃ) = γµÃµ is inserted using the expansion

Ãµ =

∞∑

k=0

Ã(k)
µ , (2.46)

Ã(k)
µ = −g (−i)k+1

k!(k + 2)
(Dα1 · · ·DαkGνµ)x=0 ∂

ν
p∂

α1
p · · · ∂αkp . (2.47)

The partial derivatives ∂αip contained in a particular (γÃ) act on all functions (quark propaga-
tors) to the right in Eq. (2.45), whereas the contained covariant derivatives Dαi solely a�ect
the next gluonic �eld strength tensor Gνµ. Analogously, one can derive the perturbative
quark propagator

S̃(p) = S(0)(p) +

∞∑

n=1

(−1)nS(0)(p)
(
γ
←

Ã
)
S(0)(p) · · ·

(
γ
←

Ã
)
S(0)(p)

︸ ︷︷ ︸
n times

(
γ
←
Ã

)
S(0)(p)

, (2.48)

where the arrows indicate the direction of application of the partial derivatives in (γÃ).
Although, the perturbative quark propagator in position space (2.39) is not translation
invariant, i. e. S(x, 0) di�ers from S(0, x), Eqs. (2.48) and (2.44) are identical.

23



2 QCD sum rules

To denote the order of the background �eld expansion Ã(ki) contained in the perturbative
quark propagator (2.44) one may introduce the notation

S
(n)

(Ã(k1),...,Ã(kn))
(p) = (−1)nS(0)(p)γµ1Ã(k1)

µ1
S(0)(p) · · · γµnÃ(kn)

µn S(0)(p) . (2.49)

If k1 = · · · = kn = k is satis�ed, the notation reduces to S
(n)

(Ã(k))
(p).

As OPEs of current-current correlators to higher orders in the perturbative expansion
are to be considered, also the perturbative gluon propagator in a classical, weak, gluonic
background �eld needs to be introduced to achieve a complete evaluation. In this thesis, no
contributions are evaluated which demand inclusion of the perturbative gluon propagator.
Accordingly, only a brief, schematic derivation is presented in the following.

Propagation of the gluon is modeled by further terms entering the QCD Lagrangian if
the gauge �eld is substituted by [Shu82b,Gro95]

AAµ + aAµ . (2.50)

In this derivation, the gluon �eld strength tensors GAµν and the covariant derivatives Dµ

solely contain the background �eld AAµ . Similarly as above, the Fock-Schwinger gauge is

chosen for AAµ retaining the purely gluonic QCD Lagrangian

Lglu = −1

4
GAµνG

Aµν − 1

2

(
Dµa

A
ν

)2
+

1

2

(
Dµa

A
ν

)(
DνaAµ

)
+

1

2
gaAµGABµν a

B ν + · · · (2.51)

with

Dµa
A
ν = ∂µa

A
ν + gAACµ aCν , (2.52a)

AACµ = fABCABµ , (2.52b)

GABµν = fABCGCµν (2.52c)

being gauge invariant with respect to the free gluon �eld aAµ [Nov84]. The fourth term of the

Lagrangian (2.51) yields only vertex functions Γ
(1)
µν containing one background �eld, whereas

the second and third term in Eq. (2.51) provide, apart from Γ
(1)
µν , further vertex functions

Γ
(2)
µν containing two background �elds. The perturbative gluon propagator in a classical,

weak, gluonic background �eld is de�ned by

DAB
µν (x, y) = −i〈T

[
aAµ (x)aBν (y)

]
〉 . (2.53)

Its diagrammatic representation is displayed in Fig. 2.3. If the Lagrangian (2.51) is sup-
plemented by the gauge �xing term −1

2(DµaAµ )2, ensuring canonical quantization, the re-

sulting free gluon propagator is D
(0)
µν (p) = −gµν/p2 and the corresponding vertex functions

are Γ
(1)
µν = igAABλ (pλ1 + pλ2)gµν − igAABµ (p1 ν − p2 ν) − igAABν (p2µ − p1µ) − igGABµν as well

as Γ
(2)
µν = −g2AACλ ACB λgµν − g2AACµ ACBν + g2AACν ACBµ , where p1 is the incoming and p2

the outgoing momentum of the propagating gluon. Construction of the perturbative gluon
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2.2 Operator product expansion

iDAB
µν (x, y)

=

iD
(0)AB
µν (x− y)

+

+ + + · · ·

Figure 2.3: Diagrammatic representation of the perturbative gluon propagator D (thick
curly line) in a classical, weak, gluonic background �eld yielding a series of the free gluon
propagator D(0) (thin curly lines) coupled via soft-gluon exchange to the background
(crosses). The vertices originate from the interaction part of the Lagrangian (2.51).

propagator up to order 1/p6 as in Fig. 2.3 using Eq. (2.34) yields

Dµν(p) =

∫
d4x eip(x−y)Dµν(x, y)

= −gµν
p2

+ g
2

p4
Gµν + g

4i

p6
(pD)Gµν − g

2i

3p6
gµνD

λGλσp
σ

+ g
2

p8
(pD)gµνD

λGλσp
σ + g

2

p8

(
p2D2Gµν − 4(pD)2Gµν

)

− g2 1

2p8
gµν

(
p2(Gλσ)2 − 4(pλGλσ)2

)
+ g2 4

p6
gλσGµλGσν . (2.54)

The Fock-Schwinger gauge allows to compute the OPE (2.26) of the current-current
correlator (2.1) in a systematic and profound way not relying on 'appropriate' states to single
out particular Wilson coe�cients of the OPE as necessary for the plane wave method [Rei85].
Applying Wick's theorem to the components of the interpolating currents j(x) and j†(0) in
Eq. (2.1) leads to perturbative quark and/or gluon propagators, i. e. the expansions (2.44)
and/or (2.54) emerge, respectively. Remaining Wick-uncontracted partonic operators and
the background �elds entering through the perturbative quark and gluon propagators form
the normal-ordered condensates. Accordingly, the free propagators and the vertex functions
entering the expansions (2.44) and/or (2.54) form the Wilson coe�cients. Starting from
the very �rst terms of the expansions (2.44) one recognizes the perturbative contribution
and the well known low mass dimension condensates, e. g. the chiral condensate 〈q̄q〉 and
the gluon condensate 〈G2〉. For higher order αs contributions and for more exotic hadrons
comprising gluonic valence partons or pure glueballs the expansion (2.54) becomes relevant.

2.2.2 Renormalization

Following Ref. [Pas84] the renormalization procedure is reviewed to arrive at the running
coupling, quark masses and renormalized condensates. These are employed in vacuum QSR
analyses by authors which aim for the extraction of hadronic and/or QCD parameters with
the highest accuracy allowed by the framework, e. g. [Nar13, Luc15]. If the impact of a
strongly interacting medium on hadronic observables is envisaged one may refrain from
using the running quantities. In order to gain further insights into the convergence behavior
of the OPE such e�orts are worthwhile.
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2 QCD sum rules

Experimentally observable quantities can be calculated by means of Green's functions in
perturbative quantum �eld theories. If quantum corrections to the classical description are
addressed one encounters (super�cially) divergent momentum integrals in intermediate steps
of the calculation which must vanish in the �nal result. These divergences are associated
to loops in the corresponding Feynman diagrams, e. g. self-energies or vertex-corrections.
To treat the divergences one has to �x a regularization and a renormalization scheme, e. g.
dimensional renormalization and the MS scheme, respectively. While the former casts the
divergences into a rigorous form, e. g. a pole 1/ε in the limit ε→ 0 after introducing a scale
µ to preserve mass dimension, the latter eliminates them by inserting appropriate counter
terms proportional to Ci into the Lagrangian, which exactly cancel the divergences in a
given loop order, i. e. the counter terms are a power series in g2 up to the given loop order.
One then de�nes the renormalization constants

Zi = 1− Ci (2.55)

for each term in the Lagrangian, which allow to write the constituting �elds and parame-
ters (couplings, masses, gauge) as bare quantities absorbing the renormalization constants.
Gauge invariance of the Lagrangian requires the bare couplings of each single interaction
term to coincide, i. e. the Slavnov-Taylor identities give restrictions on renormalization con-
stant ratios. As the counter terms are not unique various renormalization schemes can be
applied in order to calculate Green's functions.

Renormalization invariance means independence of physical observables of the renormal-
ization scheme chosen for their theoretical calculation. The group structure within classes of
renormalization can be easily exhibited for multiplicatively renormalizable, general Green's
functions

ΓR( · · · ) = ZR Γ( · · · ) , (2.56)

where ZR denotes the appropriate product of renormalization constants in the renormaliza-
tion scheme R. For a di�erent scheme R′ one has ΓR′( · · · ) = ZR′ Γ( · · · ) analogously. Thus,
the di�erently normalized Green's functions satisfy

ΓR′( · · · ) = ZR′R ΓR( · · · ) with ZR′R = ZR′/ZR . (2.57)

Therefore, for the set of all possible ZR′R with arbitrary R and R′ there exist the composition
law

ZR′′R = ZR′′R′ZR′R . (2.58)

For each element ZR′R one can associate an inverse Z−1
R′R = ZRR′ and a unit element ZRR = 1.

These relations de�ne a group structure. Notice that the composition law is not de�ned for
two arbitrary elements of the group, because the resulting product ZRiRjZRkRl is an element
of the group for j = k only.

The relation between the renormalized and bare Green's function which depend on the
gauge coupling αs, the quark masses mq and the gauge �xing parameter ξ reads

ΓR(p1, . . . , pN ;αs,mq, ξ;µ) = lim
ε→0

{
ZΓ(µ, ε)Γ0(p1, . . . , pN ;αs0,mq0, ξ0; ε)

}
(2.59)
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2.2 Operator product expansion

with the combined �eld renormalization constant ZΓ(µ, ε) depending on the number and
type of fundamental QCD �eld operators contained in the Green's function ΓR with mass
dimension dΓ. The µ-independence of the bare Green's function, i. e.

d
dµΓ0 = 0, implies

[
µ
∂

∂µ
+ µ

dαs

dµ

∂

∂αs
+
∑

q

µ
dmq

dµ

∂

∂mq
+ µ

dξ

dµ

∂

∂ξ

]
ΓR =

µ

ZΓ

dZΓ

dµ
ΓR , (2.60)

where one can introduce a set of universal functions β, γi and δ depending on αs, mq and ξ:

µ
dαs

dµ
= αsβ(αs,mq, ξ) ,

µ

mq

dmq

dµ
= −γq(αs,mq, ξ) ,

µ
dξ

dµ
= ξδ(αs,mq, ξ) ,

µ

ZΓ

dZΓ

dµ
= γΓ(αs,mq, ξ) (2.61)

with the famous β function determining the behavior of the running coupling and the anoma-
lous dimension γΓ of the Green's function from the (combined) �eld renormalization. These
functions convert Eq. (2.60) into the renormalization group equation (RGE)

[
µ
∂

∂µ
+ β(αs)αs

∂

∂αs
−
∑

q

γq(αs)mq
∂

∂mq
+ δ(αs)ξ

∂

∂ξ
− γΓ(αs)

]
ΓR = 0 , (2.62)

where only the αs-dependence of the universal functions in Eqs. (2.61) has been written
explicitly. The expressions for these functions can be obtained from the corresponding
renormalization constants (2.55) calculated in a given renormalization scheme. In the MS
scheme applied throughout this thesis, these fundamental functions are mq-independent,
while the β function is also independent of the gauge parameter ξ.

Dimensional analysis puts another constraint on the Green's function. Scaling the mo-
menta pi by a dimensionless parameter λ one has

ΓR(λp1, . . . , λpN ;αs,mq, ξ;µ) = λdΓ ΓR(p1, . . . , pN ;αs,mq/λ, ξ;µ/λ) (2.63)

resulting in
[
λ
∂

∂λ
+
∑

q

mq
∂

∂mq
+ µ

∂

∂µ
− dΓ

]
ΓR(λp1, . . . , λpN ;αs,mq, ξ;µ) = 0 (2.64)

which is known from Euler's homogenous function theorem. Introducing the dimensionless
quantities

t = lnλ and xq = mq/µ (2.65)

for convenience and upon application of Eq. (2.64) one obtains the RGE (2.62) in the desired
form

[
− ∂

∂t
+ β(αs)αs

∂

∂αs
+ δ(αs)ξ

∂

∂ξ
−
∑

q

{1 + γq(αs)}xq
∂

∂xq

+ dΓ − γΓ(αs)

]
ΓR(etp1, . . . , e

tpN ;αs, xq, ξ;µ) = 0 (2.66)
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2 QCD sum rules

which is the fundamental equation of the renormalization group. As above, the fundamental
functions appearing in Eq. (2.66) do not only depend on αs but also on xq and ξ. The
general solution of Eq. (2.66) reads5

ΓR(etp1, . . . , e
tpN ;αs, xq, ξ;µ)

= λdΓΓR(p1, . . . , pN ; ᾱs(t), x̄q(t), ξ̄(t);µ)e−
∫ t
0 dt′ γΓ(ᾱs(t′),x̄q(t′),ξ̄(t′)) , (2.67)

where the running coupling ᾱs(t), mass x̄q(t) and gauge ξ̄(t) expressions are obtained via
the method of characteristics. Thus, �rst one must solve the system of coupled ordinary
di�erential equations

dᾱs(t)

dt
= ᾱs(t)β

(
ᾱs(t), x̄q(t), ξ̄(t)

)
, ᾱs(0) = αs , (2.68)

dx̄q(t)

dt
= −x̄q(t)

[
1 + γq

(
ᾱs(t), x̄q(t), ξ̄(t)

)]
, x̄q(0) = xq , (2.69)

dξ̄(t)

dt
= ξ̄(t)δ

(
ᾱs(t), x̄q(t), ξ̄(t)

)
, ξ̄(0) = ξ . (2.70)

As we work in the MS scheme and are interested in the running coupling and mass, only the
β function and the mass anomalous dimension γq need to be speci�ed. They are polynomials
in the coupling as = αs/π, i. e.

β(αs) = β1as + β2a
2
s + · · · and γq(αs) = γ1as + γ2a

2
s + · · · (2.71)

with the coe�cients [Pas84,Ynd06]

β1 = −1

2

(
11− 2

3
Nf

)
, γ1 = 2 , (2.72)

β2 = −1

4

(
51− 19

3
Nf

)
, γ2 =

1

12

(
101− 10

3
Nf

)
(2.73)

which are determined from the one- and two-loop contributions to the renormalization con-
stants Zαs and Zmq evaluated in the MS scheme for Nc = 3 and Nf �avors. One introduces
the renormalization group invariant (RGI) scale Λ and the RGI quark mass m̂q and obtains
for the corresponding two-loop result of the running coupling

ᾱ(2)
s (q2) = ᾱ(1)

s (q2)

[
1− β2

β1

ᾱ
(1)
s (q2)

π
ln

(
1

2
ln
−q2

Λ2

)]
(2.74)

with the one-loop expression

ᾱ(1)
s (q2) =

π

−β1
1
2 ln −q

2

Λ2

(2.75)

and for the running mass

m̄(2)
q (q2) = m̄(1)

q (q2)

{
1 +

[
γ1
β2

β2
1

ln

(
1

2
ln
−q2

Λ2

)
− 1

β1

(
γ2 − γ1

β2

β1

)]
ᾱ

(1)
s (q2)

π

}
(2.76)

5Comparing this result with Eq. (2.63) exhibits that the global scale factor of the Green's function is not the
naively expected λdΓ but exp

(
tdΓ −

∫ t
0

dt′ γΓ(ᾱs(t
′), x̄q(t

′), ξ̄(t′))
)
which is the reason that γΓ is dubbed

the anomalous dimension.
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with the one-loop expression

m̄(1)
q (q2) = m̂q

(
1

2
ln
−q2

Λ2

)γ1/β1

= m̂q

[
−β1

ᾱ
(1)
s (q2)

π

]−γ1/β1

. (2.77)

The QCD condensates entering the OPE are EVs of composite operators which in general
also require renormalization [Pas84,Nar89,Ynd06,Nar07]. Due to the short distance singu-
larities of composite local operators their very de�nition and renormalization is a subject
by itself [Zim73]. However, the situation for the QSR relevant quantities is much simpler,
because EVs of such operators are considered which is similar to perturbation theory, where
Green's functions are expanded in the coupling times the interaction Lagrangian being a
local composite operator of free �elds. In perturbation theory, the renormalization of the
�elds composing the interaction Lagrangian does not absorb the ultra-violet divergences
associated with the vertex described by the considered interaction term, but requires the
renormalization of the coupling as well. Similarly, the renormalization of other composite op-
erators demands an additional overall renormalization constant beyond the renormalization
of their component �elds.

In QCD, the fundamental �elds can be renormalized multiplicatively, i. e. there exists a
one-to-one correspondence between bare and renormalized �elds, because all fundamental
�elds entering the action have di�erent quantum numbers, thus they do not mix under
renormalization. In contrast, composite operators can and do mix, as there are usually
several of them which share the same quantum numbers. Renormalization of a composite
operator involves three types of bare composite operators: (I) gauge invariant operators
which do not vanish by virtue of the classical EoMs (A.17), (A.18) and (A.19), (II) gauge
invariant operators which do vanish due to the EoMs and (III) gauge dependent operators
of the same mass dimension, quantum numbers and Lorentz structure. Generically, one may
write for a composite operator O

OR(µ) = ZI(µ)O
(I)
0 + ZII(µ)O

(II)
0 + ZIII(µ)O

(III)
0 (2.78)

with O
(J)
0 being vectors of the three types of bare composite operators and corresponding

renormalization constant matrices ZJ . It is particularly advantageous to work in the Lan-

dau background �eld gauge [Shi79, Pas84], where type-(III) operators O
(III)
0 do not enter

the renormalized expression of type-(I) operators O
(I)
0 , i. e. ZIII = 0, while type-(II) and

-(III) operators are renormalized among themselves. Physical relevance resides in the gauge
invariant operators of type-(I) alone, cf. QCD condensates.

The components of the renormalization matrix ZI and the corresponding anomalous di-
mensions, cf. lower right Eq. (2.61), are determined from suitable N -point Green's functions

ΓOR(p1, . . . , pN−1;µ) ∝ 〈φ1(x1) · · ·φN (xN )OR(µ)〉 (2.79)

with fundamental QCD �elds φi and inserted zero-momentum composite operator OR,
e. g. the quark propagators ΓOR(p;µ) = −i

∫
d4x eipx〈T[q(x)q̄(0)OR(µ)]〉, the gluon prop-

agators ΓOR(k;µ) = −i
∫

d4x eikx〈T[AAµ (x)ABν (0)OR(µ)]〉 and the vertices ΓOR(q, q′;µ) =

i
∫

d4xd4y e−iqxe−iq
′y〈T[q(x)q̄(y)AAµ (0)OR(µ)]〉 are evaluated up to the envisaged loop or-

der. Thus, these Green's functions being combination of Green's functions with inserted
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bare operators, cf. Eq. (2.78), and expressed by free fundamental �elds in the interaction
representation allow for a perturbative treatment [Ynd06]. Diagrammatic techniques can be
employed, i. e. the well known Feynman rules of QCD supplemented by the Feynman rules
for the zero-momentum insertion of the composite operators, which are readily obtained
from derivatives w. r. t. their component �elds, can be used to calculate the divergent parts
of the Green's functions ΓOR up to a given loop order. The renormalization constants ZI
are chosen to absorb these arising divergences. The desired renormalization constants of
dimension-4 QCD condensates can be deduced by comparison with the vertex corrections
and self-energies from the renormalization (2.55) of the QCD Lagrangian to a given loop-
order.

Once the renormalization constants are deduced, one may write the renormalization of
�xed-mass dimension condensates in component notation (with implicit summation over
repeated indices and omission of the label I)

〈OR〉i(µ) = Zij(µ)〈O0〉j , (2.80)

where the renormalization matrix in the MS scheme has the form

Zij(µ) = δij +
∞∑

n=1

Z
(n)
ij [αs(µ)]

εn
. (2.81)

The corresponding anomalous dimension matrix γij〈O〉, de�ned by

γij〈O〉〈OR〉j = µ
d〈OR〉i

dµ
, (2.82)

can be expressed by the renormalization matrix yielding γij〈O〉 = µ(dZik/dµ)(Z−1)kj , where

Eq. (2.80) and δjl = (Z−1)jkZkl have been employed. Since the µ-dependence of the renor-
malization matrix is exclusively contained within the coupling, which is not dimensionless
for arbitrary space-time dimensions, i. e. αs(µ, ε) = µ2εαs(µ), one can rewrite the anomalous
dimension matrix

γij〈O〉(αs, ε) = µ
dαs(µ, ε)

dµ

∂Zik(αs)

∂αs
(Z−1)kj = [2αsε+ αsβ(αs)]

∂Zik(αs)

∂αs
(Z−1)kj . (2.83)

Substituting Eq. (2.81) in Eq. (2.83) and comparison of equal powers of ε yields in order ε0

γij〈O〉(αs) = 2αsε
∂Z

(1)
ik /ε

∂αs
δkj = 2αs

∂Z
(1)
ij (αs)

∂αs
(2.84)

≡ γij〈O〉,1as + γij〈O〉,2a
2
s + · · · , (2.85)

where analogous relations to (2.84) from further powers of ε must be satis�ed which en-
sure that γij〈O〉 has no poles in ε [Pas84]. Often, a multiplicatively renormalizable operator

combination can be found [Tar82, Nar83,Gri89] considerably reducing evaluational e�orts.
In particular, in the light chiral limit, the renormalization matrices of dimension-4 and -5
vacuum condensates reduce to scalars. Hence, the indices in the above relations can be omit-
ted and the RGI condensate 〈O〉RGI can be introduced analogous to the RGI quark mass

30



2.2 Operator product expansion

m̂q. The running condensate 〈OR〉(µ) to one-loop order is obtained from an integration of

Eq. (2.82) with γ〈O〉 = γ〈O〉,1as

∫
d〈OR〉
〈OR〉

=
γ〈O〉,1
π

∫
dµ
αs(µ)

µ
. (2.86)

Using the one-loop result for the running coupling (2.75) allows for the evaluation of the
µ-integral, i. e.

ln〈OR〉(µ) = −
γ〈O〉,1
π

π

β1

∫
d(µ/Λ)

(µ
Λ

ln
µ

Λ

)−1
+ const.

= −
γ〈O〉,1
β1

ln
(

ln
µ

Λ

)
+ ln〈O〉RGI , (2.87)

and one readily obtains the one-loop result for the running condensate in the desired form

〈OR〉(µ) =

[
−β1

ᾱ
(1)
s (−µ2)

π

] γ〈O〉,1/β1

〈O〉RGI . (2.88)

Pseudo-conserved currents, such as the gauge invariant vector and axial-vector currents
which have a vanishing divergence in the massless quark limit, do not get renormalized in
contrast to the EVs entering the OPE. The chiral condensate is conveniently renormalized
from the quark mass renormalization result using the RGI of the Gell-Mann�Oakes�Renner
(GOR) relation (B.23), cf. Eqs. (2.89) and (2.77). The gluon condensate and higher mass di-
mension vacuum condensates are renormalized according to the above prescription. Results
for mass dimension-5 and -6 condensates are obtained in [Nar83,Jam86]. As renormalization
of four-quark condensates is incompatible with factorization of these condensates [Nar83]
and the corrections from their anomalous dimensions are approximately canceled by the run-
ning coupling anyway [Shi79], RGI four-quark condensates are commonly not used in the
renormalization group improved QSR, e. g. [Nar13]. The renormalization results to order αs

in the light chiral limit, mq → 0, are [Nar13]

〈q̄q〉(q2) = µ̂3
q [−β1as(q

2)]2/β1 , (2.89)

〈q̄gσGq〉(q2) = M2
0 µ̂

3
q [−β1as(q

2)]1/(3β1) , (2.90)

where µ̂3
q denotes the RGI chiral condensate andM

2
0 , numerically �xed from B and B∗ masses

in Ref. [Nar88], is a mass dimension-2 parameter to scale the mixed quark-gluon condensate
〈q̄gσGq〉 with the chiral condensate 〈q̄q〉. To one loop level, the gluon condensate 〈(αs/π)G2〉
does not require renormalization in the light chiral limit, mq → 0.

2.2.3 Structure of the OPE

The operator product expansion (OPE) is an expansion in two distinct variables. On one
hand, the current-current correlator Π(q), de�ned in Eq. (2.1), is expanded into a perturba-
tive series of the strong coupling αs

Π(q) = i

∫
d4x eiqx 〈T

[
j(x)j†(0)

∞∑

n=0

(i)n

n!

∫
d4y1 · · · d4yn Lint(y1) · · · Lint(yn)

]
〉 , (2.91)
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where Lint is a function of αs according to Eqs. (A.15) and (A.16). On the other hand,
an expansion of Π(q) in powers of 1/q2 is performed, which are contained in the Wilson
coe�cients Cn(q) of the OPE

Π(q) =
∑

n

Cn(q)〈On〉 . (2.92)

This expansion entails the introduction of condensates 〈On〉 of the respective mass dimen-
sions compensating the mass dimensions of the Wilson coe�cients in order to ensure the
�xed mass dimension of their product.

In general, there are two options of how to perform the expansions � commencing with
the OPE (2.92) followed by the perturbative series (2.91), or vice versa. The equation6

ΠOPE(q) =
∑

n

〈On〉
( ∞∑

k=0

C(k)
n (q)αks

)
(2.93)

= 1

(
C

(0)
0 (q) + C

(1)
0 (q)α1

s + C
(2)
0 (q)α2

s + · · ·
)

+ 〈g2G2〉
(
C

(0)
4G

(q) + C
(1)
4G

(q)α1
s + C

(2)
4G

(q)α2
s + · · ·

)

+m〈q̄q〉
(
C

(0)
4q

(q) + C
(1)
4q

(q)α1
s + C

(2)
4q

(q)α2
s + · · ·

)

+ 〈q̄gσGq〉
(
C

(0)
5 (q) + C

(1)
5 (q)α1

s + C
(2)
5 (q)α2

s + · · ·
)

+ 〈g3G3〉
(
C

(0)
6G

(q) + C
(1)
6G

(q)α1
s + C

(2)
6G

(q)α2
s + · · ·

)

+ 〈g2q̄q
∑

f

f̄f〉
(
C

(0)
6q

(q) + C
(1)
6q

(q)α1
s + C

(2)
6q

(q)α2
s + · · ·

)

+ · · · (2.94)

prepends the expansion in the series of power corrections (2.92) following the introduc-

tory work [Shi79]. The lower index of the coe�cient C
(k)
n denotes the mass dimension of

the associated condensate, and the upper index gives the order of the αs expansion. Per-
turbative corrections to the Wilson coe�cient of a particular condensate are subsequently
evaluated employing diagrammatic techniques. Hence, four-quark condensates originating
from tree-level diagrams of the next-to-leading order (NLO) correlator, cf. Fig. 3.3, remain
disregarded.

In contrast, the equation6

ΠOPE(q) =

∞∑

k=0

αks

(∑

n

C
(n)
k (q)〈On(k)〉

)
(2.95)

6While the notation G2, q̄σGq and G3 is often employed for the gauge invariant operator combina-
tions (A.27), the expressions q̄q

∑
f f̄f and q̄qq̄q merely symbolize generic four-quark terms entering

the leading order and next-to-leading order correlator, respectively.
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= α0
s

(
C

(0)
0 (q)1+ C

(4G)
0 (q)〈g2G2〉+ C

(4q)
0 (q)m〈q̄q〉+ C

(6G)(q)
0 〈g3G3〉

+ C
(6q)
0 (q)〈g2q̄q

∑

f

f̄f〉+ · · ·
)

+ α1
s

(
C

(0)
1 (q)1+ C

(4G)
1 (q)〈g2G2〉+ C

(4q)
1 (q)m〈q̄q〉+ C

(6G)(q)
1 〈g3G3〉

+ C
(6q)
1 (q)〈g2q̄q

∑

f

f̄f〉+ C
′ (6q)
1 (q)〈q̄qq̄q〉+ · · ·

)

+ · · · (2.96)

prepends the expansion in the perturbative series (2.91). Such a view is advantageous when
dealing with four-quark condensates [Pas84] and it is also suggested by the diagrammatic in-

terpretation of the OPE in Figs. 2.4 and 2.5. The lower index of the coe�cient C
(n)
k denotes

the order of the αs expansion, while the upper index provides the mass dimension of the
associated condensate. The condensate 〈On(k)〉 carries an additional lower index denoting
the order of the αs expansion, because certain condensates (disregarded in Eq. (2.93)) enter
the OPE starting from the NLO of the αs expansion, e. g. 〈q̄qq̄q〉. The Eq. (2.92) is ap-
plied systematically in each considered order of the perturbative expansion. Application of
Wick's theorem produces perturbative quark and gluon propagators, Eqs. (2.44) and (2.54),
and condensates emerge from the ground state EVs of remaining Wick-uncontracted QCD
operators. Thus, the OPE results in order α1

s of the perturbative expansion contain tree-
level diagrams associated with four-quark condensates αs〈q̄qq̄q〉 as well as loop corrections
to the coe�cients associated with αsg

2〈q̄q∑f f̄f〉 originating from the perturbative quark
propagator.

The diagrammatic representation of the perturbative expansion of the current-current
correlator is depicted in Fig. 2.4. The QCD quark propagator displayed therein corresponds
to the perturbative quark propagator supplemented by the quark condensate [Jin93] as
depicted in Fig. 2.5. To graphically generate diagrams contributing to the OPE of the cor-
relator, the QCD quark propagator construction is inserted at the respective positions in
Fig. 2.4, where resulting disconnected diagrams are to be avoided.

ΠOPE(q) =

︸ ︷︷ ︸
α0

s

+ +

︸ ︷︷ ︸
α1

s

+ · · ·

Figure 2.4: Diagrammatic representation of the perturbative expansion of the current-
current correlator into a power series of αs, where the dashed lines depict meson currents
and the quark propagators are speci�ed in Fig. 2.5. Vacuum and tadpole diagrams are not
displayed here.
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QCD quark

propagator
=

perturbative

contribution

+
∝ 〈q̄q〉

+
∝ 〈G2〉

+
∝ 〈q̄σGq〉

+
∝ 〈q̄q∑f f̄f〉

+
∝ 〈G3〉

+ · · ·

︸ ︷︷ ︸
non-perturbative contributions

Figure 2.5: Diagrammatic representation of the QCD quark propagator associated with
the expansion (2.92) containing the perturbative contribution and vacuum condensate
terms, explicitly depicted up to mass dimension 6.

Super�cially, the OPE may appear as an expansion in two variables, the coupling αs

and the power correction 1/q2. However, the series of the power corrections involves three
expansions, in fact: (i) the covariant Taylor expansion of the quark �eld (2.35), (ii) the
perturbative quark propagator (2.44), and (iii) the therein enclosed expansion of the gluonic
background �eld (2.46). Although, these expansions are utilized to compute the power
corrections they implicitly entail an expansion in the coupling g. The perturbative quark
propagator contains powers of the coupling constant depending on the order of the expansion
in the gluonic background �eld. While the coupling g in the expansion (2.44) is absorbed by
the de�nition of Ãµ it is apparent in Eq. (2.39). Furthermore, the coupling strength comes
into play by virtue of commutations of covariant derivatives Dµ and gluonic EoMs.

In this subsection, we attribute a di�erent meaning to the strong coupling αs distinct
from the one of the coupling strength g, despite their obvious relation (A.16). In order to
comprehensively distinguish the origin of couplings, αs is used in the loop expansion (2.91)
whereas g is employed in the three expansions described in the previous paragraph resulting
in Eq. (2.92). Although, the power corrections are related to the coupling strength g the
mass dimension of a particular condensate does not uniquely determine its power of g, e. g.
it di�ers for di�erent mass dimension-6 vacuum condensates: the triple gluon condensate
〈G3〉 is of order g3 while the four-quark condensate 〈q̄q∑f f̄f〉 (order α0

s ) scales with g2.
Albeit, distinguishing the couplings, αs and g, originating from the di�erent expansions, a
complete evaluation of the current-current correlator up to a given order in each expansion
is impossible.

The complexity of the OPE computation grows further if the gluons of the loop expansion
are expressed by perturbative gluon propagators (2.54) which also couple to the classical,
weak, gluonic background �eld, thus, entailing a further expansion in the coupling g. Apart
from this, one may also consider to expand condensates which contain heavy-quark opera-
tors in the inverse heavy-quark mass, cf. Sec. 3.6. Therefore, an order scheme which sorts
OPE terms by numerical relevance due to their orders in the individual expansions has lim-
ited signi�cance. As the individual expansions can not be disentangled it is impossible to
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complete each expansion up to a particular order. The multiple expansions entering an OPE
evaluation compromise an order scheme based on only two or three parameters.

2.3 Nature of condensates

The OPE techniques outlined in Sec. 2.2 demonstrate how QCD condensates emerge 'nat-
urally' in the asymptotic expansion of the current-current correlator (2.1) as correction to
the perturbative results accounting for the long-range e�ects of the theory. Formally, QCD
condensates are ground state EVs of Hermitian products of local QCD operators, i. e. they
are real-valued. Only EVs which obey the assumed symmetries of the QCD ground state,
i. e. invariance under parity and time reversal transformations (cf. Tab. A.1), do not vanish
a priori. Condensates are to be color singlets as well as Dirac and Lorentz scalars. To
satisfy the latter requirements the projection of color, Dirac and Lorentz indices has to be
performed (cf. App. C for details). The origin and the physical meaning of condensates is a
very recent matter of debate [Bro10,Bro11,Bro12,Cha13,Clo14].

2.3.1 Universality

Following the common perception on condensates advocated since the advent of the QSR
framework, QCD condensates are understood as numerical values parameterizing the inter-
action of quarks and gluons with the non-trivial QCD ground state. Light quarks and gluons
couple to the QCD ground state, where annihilation with the corresponding virtual particles
occurs. In vacuum, condensates attain �xed, �nite numerical values, which can be employed
for any QSR evaluation once they are known.7 That is, condensates are of universal charac-
ter re�ecting the vacuum structure of QCD [Shi79]. Thus, an in�nite tower of condensates
being spread in space-time characterizes the complex QCD ground state which can be visu-
alized in `QCD [Lei99]. The numerical values may be deduced from QSRs employing known
hadronic properties and they are accessible in `QCD. The vacuum condensates have been
the central object of many studies since their introduction.

In QSR analyses at �nite temperatures and/or net-baryon densities, the numerical val-
ues of vacuum condensates change whereas the Wilson coe�cients of vacuum condensates
are unaltered (at least in low-temperature and -density approximations) [Hat93]. However,
further condensates contribute to in-medium QSRs which do vanish identically in vacuum.
The common idea of hadrons being excitations of the QCD vacuum characterized by quark
and gluon condensates immediately suggests the following interpretation of the in-medium
changes of the condensate values: As the properties of low mass hadrons are closely con-
nected with vacuum structure, in-medium changes of hadron properties carry signals of the
way the vacuum changes in a nuclear environment [Wei94].8

Despite the overwhelming success of the QSR framework, relying on the above percep-
tion, doubts have been raised about the meaning of condensates [Bro10,Bro12]. Supported

7There are concerns by Shifman that this may not apply to glueballs, cf. �8 in Ref. [Shi98].
8A di�erent point of view is presented in [Koi97], where in-medium e�ects described by QSRs are interpreted
as the scattering of the considered hadron with medium particles (quanti�ed to leading order by the
scattering length) rather than a change of the QCD vacuum caused by ambient strongly interacting
particles.
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by cosmological arguments the perception of condensates is changed from a space-time-
independent quantity extending throughout all of space to a quantity having spatial support
within hadrons only. The presence of con�nement, where condensates can not be considered
as space-time-independent vacuum properties of QCD's elementary DoF, and the measurable
impact of the condensates is expressed entirely in the properties of QCD's asymptotically
realizable states, namely hadrons [Bro12]. Thus, the notion of 'in-hadron condensates' is
introduced [Bro10] emphasizing their spatial restrictions and the close connection of conden-
sates to hadronic wave functions [Cas74].

Observations of supernovae as well as the systematics of the cosmic microwave back-
ground anisotropies showed the accelerated expansion of the universe, consistent with the
hypothesis that this accelerated expansion can be ascribed to a cosmological constant [Bro11].
However, if the contribution of condensates to the energy-momentum tensor in Einstein's
equations are accounted for, e. g. the gluon condensate having the dimension of an energy
density, QCD would lead to a cosmological constant of some 45 orders of magnitude larger
than observed. This con�ict is avoided if strong interaction condensates are properties of
rigorously well-de�ned wave function of the hadrons, rather than the hadronless ground
state of QCD [Bro10]. Following this view, QCD condensates would contribute to the
energy-momentum tensor through the hadrons masses, leaving the cosmological constant
compatible with an accelerated expansion of the universe.

In this perception, not the interactions of the light quarks and gluons with the QCD
ground state cause non-vanishing condensates but the quark and gluon propagator dressings
as described by Dyson-Schwinger equations. However, with regard to QSRs the essential
question is whether also in-hadron condensates are universal, i. e. whether they exhibit no
dependence on the host hadron and the same numerical values may be used for QSR evalua-
tions of di�erent hadrons. At least for the quark condensate, a particularly weak sensitivity
to its host hadron could be veri�ed [Bro12]. The new perception suggests to consider con-
densates entering the OPE as merely mass-dependent parameters in a theoretical truncation
scheme, such that the OPE techniques presented in the previous section and in App. C re-
main valid despite the shift of paradigm. The insensitivity to the host hadronic state of all
QCD condensates is yet to be proven. Supported by the already achieved positive proof for
the quark condensate universality of all QCD condensates is assumed throughout this thesis
being aware that cosmological observations strongly favor in-hadron condensates.

2.3.2 Order parameters

Condensates parametrize the QCD ground state and concentrate much of the complexity
of the theory of QCD. Partially such EVs can also be related to (broken) symmetries of
the theory. The gluon condensate 〈(αs/π)GAµνG

Aµν〉 is related to the energy density via
the trace of the symmetric energy-momentum tensor Tµν . For zero quark masses, classical
chromodynamics exhibits an invariance under the scale transformation x −→ x′ = e−σx, i. e.
it obeys dilatation symmetry, because the classical action contains no parameters with mass
dimension. On the quantum level, i. e. in QCD, this symmetry is broken by the regularization
scale parameter µ. The divergence of the dilatation current Jµdil = xνT

µν (which vanishes
in the classical theory due to Noether's theorem) is then determined by the trace of the
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energy-momentum tensor, the so-called QCD trace anomaly

∂µJ
µ
dil = Tµµ =

β(g)

2g
GAµνG

Aµν +
∑

q

mq q̄q , (2.97)

where the Callan-Symanzik β function describes the scale dependence of the renormalized
coupling g which is shifted to g′ = g + σβ(g) by the above transformation [Pes95]. Besides
the �nite quark masses mq, breaking the scale invariance explicitly, it is the non-zero gluon
condensate which drives the dilatation symmetry breaking9 of QCD (apart from multi-loop
corrections O(α2

s )). The numerical value 〈(αs/π)G2〉 = (0.33 GeV)4 has been deduced from
the charmonium QSRs, where this quantity gives the dominant condensate contribution.

A further global symmetry of QCD related to quark condensates is chiral symmetry,
which is particularly interesting as the experimentally accessible chiral partner meson spec-
tra can be used to study chiral symmetry breaking or restoration patterns. Chiral symmetry
is the invariance of the QCD Lagrangian under �avor rotations acting separately on the left-
handed and right-handed quark spinors. Details on chiral symmetry transformations and
chiral partner currents are relegated to App. B. As �nite quark masses break the sym-
metry explicitly only the light-quark sector of QCD exhibits an approximately invariant
Lagrangian. However, even if massless quarks are assumed, chiral symmetry is dynamically
broken because the QCD ground state is not invariant under chiral transformations. The vi-
olation of chiral symmetry by the ground state can be quanti�ed by particular QCD ground
state EVs of quark operators which were already introduced as QCD condensates. Suit-
able quantities which measure the degree of dynamical chiral symmetry breaking (DχSB)
are dubbed order parameters. To attribute the new meaning to these quark condensates,
the relevant notions of Noether's and Goldstone's theorem are formally introduced follow-
ing [Pas84,Kug97,Bur00,Gre02,Tho08a,Fuk13].

Noether's theorem provides a conserved current jaµ, i. e. ∂
µjaµ = 0, for each global contin-

uous symmetry of the action S =
∫

d4xL(x) and guarantees the time independence of the
charge

Qa(x0) =

∫
d3x ja0 (x) . (2.98)

These charges are the generators of the symmetry group, because their commutators with
the �eld give the in�nitesimal symmetry transformations δφ = φ′ − φ in a-direction by

[iQa, φ] = δaφ . (2.99)

The existence of such a conserved current carries special information whether the symmetry
involved should be spontaneously broken.

The symmetry exhibited by the action may or may not hold for the ground state. If the
ground state |Ω〉 is symmetric with respect to the transformation generated by Qa one has
eiω

aQa |Ω〉 = |Ω〉 (implicit summation over a) which is equivalent to

Qa|Ω〉 = 0 , (2.100)

9However, the situation is more intricate, due to the absence of a quasi-conserved quantum number or an
identi�able physical quantity related to this ground state EV, cf. Ref. [Rei85].
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and the symmetry realized in the system is in the Wigner-Weyl phase. In this phase, the
invariance of the system is manifest in the spectrum exhibiting degenerate patterns for states
which are related by the transformation generated by Qa. However, if the ground state is
not invariant under such a transformation one can formally write

Qa|Ω〉 6= 0 (2.101)

which is actually ill-de�ned, because the integral over the conserved current in Eq. (2.98)
is convergent, thus exists, only in the symmetric case. This issue can be circumvented by
introducing the commutator of the charge with a local Heisenberg �eld Φ(y), i. e. a �eld
with limited support in space-time, which renders the commutator �nite. Thus, a rigorous
de�nition of the degree of symmetry breaking by the ground state |Ω〉 can be provided by
the ground state EV of the commutator [iQa(x0),Φ(x)]. A symmetric ground state which
ful�lls Eq. (2.100) yields

〈Ω| [iQa(x0),Φ(x)] |Ω〉 = 0 , (2.102)

while violation of the symmetry by the ground state requires

〈Ω| [iQa(x0),Φ(x)] |Ω〉 6= 0 . (2.103)

The �eld Φ does not need to be an elementary �eld φ, instead a polynomial in φ with
�nite support is allowed as well. The proof of Goldstone's theorem utilizes the conservation
of the charge (2.98) and insertion of a complete set of energy eigenstates on either side
of ja0 (x) in the commutator. The condition (2.103) is satis�ed only when excited states
couple to ja0 (x) as well as to Φ. These states are to be identi�ed with the Goldstone bosons,
which are massless excitations with the quantum numbers of ja0 (x). Otherwise, the EV
of the commutator vanishes, and the system resides in the Wigner-Weyl realization of the
symmetry. Thus, the quantity in Eq. (2.103) distinguishes the symmetric from asymmetric
mode and quali�es as an order parameter. Employing the generating property of the charge,
Eq. (2.99), this order parameter reads

〈Ω| [iQa(x0),Φ(x)] |Ω〉 = 〈Ω|δaΦ(x)|Ω〉 . (2.104)

Composing the �eld Φ from elementary �elds φ allows for the evaluation of the abstract
commutator (2.104) by common equal-time (anti-)commutation relations leading to QCD
condensates which can be interpreted as order parameters of spontaneous symmetry break-
ing.

The essential property of an order parameter, as de�ned in Eq. (2.104), is its sensitivity
on the symmetry of the ground state. It vanishes if the system is in the symmetric Wigner-
Weyl phase and acquires a non-zero value if the system resides in the asymmetric Nambu-
Goldstone phase, i. e. it allows to distinguish the realizations of the considered symmetry.
This distinction is caused by the ground state alone, while the Lagrangian and therefore the
action obey the considered symmetry in any case.

The above digression on order parameters is not restricted to speci�c symmetries. Work-
ing in this approach the chiral condensate serves as an example for an order parameter
of spontaneous SU(Nf)A symmetry breaking. This symmetry is a sub-group of the chiral
symmetry group U(Nf)L ×U(Nf)R speci�ed in App. B.

38



2.3 Nature of condensates

Utilizing the equal-time anti-commutation relations of the quark operators (with Dirac
indices i, j, color indices α, β and �avor indices q, q′ (fundamental representation))

{
ψi,α,q(x), ψ†j,β,q′(y)

}
= δijδαβδqq′δ

(3)(~x− ~y) , (2.105a)
{
ψi,α,q(x), ψj,β,q′(y)

}
=
{
ψ†i,α,q(x), ψ†j,β,q′(y)

}
= 0 (2.105b)

and the relation [AB,C] = A{B,C} − {A,C}B the variations (2.99) of the quark �eld
generated by the SU(Nf)A charge (with �avor index a in the adjoint representation)

QaA(x0) =

∫
d3x ψ̄(x)γ0γ5τ

aψ(x) (2.106)

are readily obtained:
[
QaA(x0), ψ(x)

]
= −γ5τ

aψ(x) , (2.107a)
[
QaA(x0), ψ†(x)

]
= ψ†(x)γ5τ

a . (2.107b)

In order to identify the chiral condensate in Eq. (2.104) we chose the local �eld Φ to be the
pseudo-scalar current Φb(x) = ψ̄(x)γ5τ

bψ(x). The commutator in (2.104) can be evaluated
by means of Eqs. (2.107). For Nf = 2, i. e. 2τa = σa are Pauli matrices with {σa, σb} =
2δab12, one recovers in

〈Ω|
[
iQaA(x0),Φb(x)

]
|Ω〉 = − i

2
δab〈Ω|ψ̄(x)ψ(x)|Ω〉 (2.108)

the (local) chiral condensate 〈Ω|ψ̄ψ|Ω〉 as an order parameter in the spirit of Eq. (2.104).
Setting b = a, the �eld Φb directly induces the chiral condensate as an order parameter
of DχSB associated with the charge QaA. Its non-zero numerical value can be deduced
from the GOR relation (B.23) with the pion mass mπ ' 140 MeV, the pion leptonic decay
constant fπ ' 93 MeV and the combined light-quark masses mu + md ' 11 MeV resulting
in 〈Ω|q̄q|Ω〉 ' (−0.249 GeV)3, where q denotes either up- or down-quark operators.

However, chiral order parameters may acquire a zero numerical value due to residual
symmetries although SU(Nf)A is broken. Hence, it is important to choose EVs 〈Ω|δaΦ(x)|Ω〉
that are insensitive to further symmetries, i. e. they are to be invariant under other symmetry
transformations to possess discriminating potential. In particular, they must be invariant
under parity and time reversal transformations as well as Lorentz scalars and color singlets
previously introduced as the assumed symmetries of the QCD ground state. A speci�c
example of a chiral symmetry breaking pattern with vanishing chiral condensate due to
center symmetry, but with broken axial-vector symmetry, is outlined in Subsec. 4.3.2. In
this scenario, chirally odd four-quark condensates can serve as meaningful order parameters.
The procedure described above for the chiral condensate has been thoroughly applied to
four-quark operators in Ref. [Tho08a] to identify such potential order parameters in the
spirit of Eq. (2.104) among the light four-quark condensates.

2.3.3 Condensates in a strongly interacting medium

In the common perception on QCD condensates, cf. Subsec. 2.3.1, these quantities enter
the QSRs as universal parameters which determine hadronic properties. Thus, changing
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condensates are presumed to govern changes of the spectral density of hadrons which are
embedded in a strongly interacting medium. To accounted for in-medium e�ects in the QSR
framework, the current-current correlator (2.1) is evaluated in Gibbs averaged form (2.9)
leading to Gibbs averaged operators 〈〈O〉〉 in the OPE eventually [Boc86]. Thus, formally,
in-medium changes are caused by deviations of the Gibbs average 〈〈O〉〉 from the ground
state EV 〈Ω|O|Ω〉 as well as by the advent of further operators with vanishing ground state
EV in vacuum.

The dependence of the in-medium condensates 〈〈O〉〉 on temperature T and chemical
potentials µh (for particular hadron species h) could be estimated in several ways: the direct
`QCD computation, or calculations based on low-energy e�ective theories, or within QSRs
from modi�cations of hadron spectra, or the low-temperature expansion etc. However, `QCD
results are available for few of the needed quantities only and they su�er from problems
at �nite chemical potentials. Estimates from e�ective theories inhere model dependences.
While the extraction of the medium dependences from QSRs might be feasible for a few
condensates, ambiguities arise for the multitude of condensates.

In this thesis, the approach based on low-temperature (T ) and low-baryon density (n)
approximations is pursued in accordance with the conceptional limitation of QSRs to small
deviations from the vacuum case. Since the QSR relies on the power counting of hadron mo-
menta, high temperatures and baryo-chemical potentials compatible with these momenta
would require a complete rearrangement of the OPE.10 With the restriction to low tem-
peratures and low densities the assumption of medium-independent Wilson coe�cients is
justi�ed as well as the expansion of the condensate changes to leading order (LO) in these
parameters. Extrapolations of condensate modi�cations and QSR results, e. g. to the phase
transition boundary in the QCD phase diagram, must be taken with care.

In the low-temperature approximation the strongly interacting medium is assumed to
be a thermal gas of free hadrons [Gas87]. Due to its partial Goldstone boson character
the pion is the lowest hadronic excitation above the QCD ground state. As long as T is
moderate and the thermal pion gas is dilute the temperature dependent condensates 〈O〉T
are approximated by [Hat93]

〈O〉T ' 〈O〉0 +

3∑

a=1

∫
d3p

2Ep(2π)3
〈πa(~p)|O|πa(~p)〉 nB(Ep/T ) (2.109)

with adapted notation for the ground state EV 〈O〉0 = 〈Ω|O|Ω〉 which are used inter-
changeably throughout this thesis. The pion energy is given by Ep = (~p 2 + m2

π)1/2, a
denotes the iso-spin state and nB(x) = (ex − 1)−1 is the Bose-Einstein distribution. The
pion states are covariantly normalized, i. e. 〈πa(~p)|πb(~p ′)〉 = 2Ep(2π)3δabδ(3)(~p − ~p ′). If
the pion matrix element is diagonal in iso-spin and independent of the pion momentum,
〈πa(~p)|O|πb(~p)〉 = δab〈π|O|π〉, the integral further reduces to

〈O〉T ' 〈O〉0 +
T 2

8
B1(mπ/T )〈π|O|π〉 (2.110)

with the function B1(z) = 6
π2

∫∞
z dy

√
y2 − z2/(ey−1) converging to 1 for z → 0. Especially

in the chiral limit, mπ = 0, the condensate scales as T 2.

10Feynman diagram techniques in the Matsubara representation should be considered to determine the QCD
expression of the correlator (2.1) at high temperatures [Boc86].
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2.3 Nature of condensates

For some purposes, (cold) nuclear matter can be approximated by a non-interacting Fermi
gas of nucleons [Dru91]. The density dependence of condensates is governed by spin-averaged
and iso-spin-averaged nucleon matrix elements taken for nucleons at rest [Coh92] and has
yet to be found for particular operators, especially condensates with dimm ≥ 6. Analogous
to Eq. (2.109) the nucleon density dependent condensates 〈O〉n are approximated by

〈O〉n ' 〈O〉0 +

∫
d3k

2Ek(2π)3
〈N(~k)|O|N(~k)〉 nF([Ek − µN ]/T ) , (2.111)

where the Fermi-Dirac distribution nF(x) = (ex + 1)−1 reduces to the step function Θ(µN −
Ek) in the zero temperature limit. The nucleon energy is given by Ek = (~k 2+m2

N )1/2 and the

nucleon states are normalized as 〈N(~k)|N(~k ′)〉 = 2Ek(2π)3δ(3)(~k−~k ′). Thus, if the nucleon
matrix element is independent of the nucleon momentum the remaining integral equals the
number density of nucleons, i. e. the baryon density n =

∫
dE nF([E − µN ]/T )D(E) with

the density of states D(E) =
∫

d3k
(2π)3 δ(E − Ek). Accordingly, the condensates

〈O〉n ' 〈O〉0 +
n

2mN
〈N |O|N〉 (2.112)

change linearly with density n.

The combination of the two approximations gives the leading terms to the Gibbs average

〈〈O〉〉 = 〈O〉0 +
T 2

8
B1(mπ/T )〈π|O|π〉+

n

2mN
〈N |O|N〉+ · · · . (2.113)

For larger temperatures and baryon densities, the e�ects of higher powers of pion and baryon
densities supplementing the leading terms in Eqs. (2.109) and (2.111) as well as further mas-
sive excitations, i. e. K, η, etc., start to become important [Hat93]. While for a general
operator O it is hard to make model independent predictions for higher order density correc-
tions [Leu06], contributions beyond linear density approximation to the chiral condensate
can be systematically studied by an application of the Hellmann-Feynman theorem [Coh92].
The resonance gas approximation partly accounts for many-body correlations of the stable
hadronic states forming the medium, in this way going beyond linear density approxima-
tion [Leu06]. We rely on the LO temperature and baryon density terms, which give an
adequate description of the medium modi�cations of condensates up to T ∼ 150 MeV and
nuclear matter saturation density n0 = 0.17 fm−3 ' (110 MeV)3. To deduce the in-medium
behavior of the condensate 〈〈O〉〉 the pion and nucleon matrix elements are to be evaluated.
They dictate the in-medium changes of condensates, which will be explicated in the following
for the famous chiral and gluon condensates.

The pionic matrix element 〈π|q̄q|π〉 is estimated by applying the soft-pion theorem twice
[Hat93]:

lim
~p,~p ′→0

〈πa(~p)|q̄q|πb(~p ′)〉 = − 1

f2
π

〈
[
QaA,

[
QbA, q̄q

]]
〉0 , (2.114)

where QaA is the iso-vector axial charge (2.106), fπ is the pion decay constant and a = 1, 2, 3.
Using the anti-commutation relations of the quark operators (2.105) one obtains

〈π|q̄q|π〉 = lim
~p,~p ′→0

〈πa(~p)|q̄q|πb(~p ′)〉 = −δ
ab

f2
π

〈q̄q〉0 (2.115)
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resulting in the temperature dependence

〈q̄q〉T ' 〈q̄q〉0
(

1− T 2

8f2
π

)
. (2.116)

Comparison of this result with the three-loop calculation in chiral perturbation theory
[Ger89] exhibits deviations up to 5 % only, even at T = 160 MeV. For temperatures be-
low 140 MeV, the thermal `QCD results [Bor10] agree with the hadronic resonance gas
model, whose leading non-trivial term is given in Eq. (2.116), but show a stronger fall o�
beyond this temperature [Hoh14].

The nucleon matrix element 〈N |q̄q|N〉merely de�nes the nucleon sigma term σN = (mu+
md)〈N |q̄q|N〉/(2mN ). Using the Hellmann-Feynman theorem ∂

∂mq
mN = 〈N |q̄q|N〉/(2mN )

it can be expressed by σN = (mu +md)
∂

∂mq
mN . Application of the GOR relation (B.23) to

eliminate the light-quark masses yields

〈q̄q〉n ' 〈q̄q〉0
(

1− σN n

m2
πf

2
π

)
, (2.117)

i. e. a decreasing magnitude of the chiral condensate for growing density analogous to the
low-temperature approximation (2.116).

The behavior of the chiral condensate at �nite temperature (2.116) or baryon density
(2.117), where the modulus of the chiral condensate is diminished for an increase in the
intensive thermodynamic quantity, has far-reaching implications. Due to its role as an
order parameter of chiral symmetry, a reduced magnitude of the chiral condensate may be
interpreted as a signal of (partial) chiral restoration at higher temperatures and/or densities.
In a chiral restoration scenario, where the system falls back into the Wigner-Weyl realization
of chiral symmetry, the chiral condensate would vanish.

The hadronic matrix elements 〈h|(αs/π)G2|h〉 of the gluon operators can be evaluated
using the trace anomaly (2.97). Hence, for the hadron h one arrives at

〈h|Tµµ |h〉 = 2m2
h (2.118)

= −1

8

(
11− 2

3
Nf

)
〈h|αs

π
G2|h〉+

∑

f

mf 〈h|f̄f |h〉 , (2.119)

where we chose the number of quark �avors Nf = 6, thus the sum runs over the three light
(q = u, d, s) and the three heavy (Q = c, b, t) quark �avors. By means of the heavy-quark
expansion (HQE) the heavy-quark matrix elements are related to the gluon matrix element.
Thus, they are eliminated by employing Eq. (3.17). The hadronic gluon matrix element then
reads

〈h|αs

π
G2|h〉 = −8

9

(
2m2

h −
∑

q

mq〈h|q̄q|h〉
)
. (2.120)

Utilizing the Hellmann-Feynman theorem ∂
∂mq

mπ = 〈π|q̄q|π〉/(2mπ) for the pion with

the GOR relation (B.23) inserted (expressed as a function mπ(mq)) one obtains [Hat92a]

〈π|ūu|π〉 = 〈π|d̄d|π〉 =
m2
π

mu +md
and 〈π|s̄s|π〉 = m2

π

∂

∂ms
ln

( |〈ūu〉0|
f2
π

)
, (2.121)
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2.4 Evaluation of QCD sum rules

where 〈π|s̄s|π〉 in Eq. (2.121) can be explicitly calculated in the Nambu�Jona-Lasinio model.
Substituting the pionic quark matrix elements in Eq. (2.120) yields the desired quantity

〈π|αs

π
G2|π〉 = −8

9

(
m2
π −ms〈π|s̄s|π〉

)
(2.122)

which vanishes in the chiral limit, mπ → 0. Thus, to LO the gluon condensate

〈αs

π
G2〉T ' 〈

αs

π
G2〉0 −

T 2

9

(
m2
π −ms〈π|s̄s|π〉

)
(2.123)

is temperature independent in that limit.

Applying nucleon states in Eq. (2.120) and introducing the nucleon sigma term σN as well
as an analogous quantity SN = ms〈N |s̄s|N〉/(2mN ), measuring the strangeness contribution
to the nucleon mass, the matrix element reads [Jin93]

〈N |αs

π
G2|N〉 = −16

9
mN (mN − σN − SN ) . (2.124)

The quantity SN is commonly parametrized as SN = (σN − σ0
N )ms/(mu +md), where one

takes σN = 45 MeV, σ0
N = 35 MeV (from second order perturbation theory in ms −mq),

and ms/(mu +md) ' 13. These numerical estimates suggest mN > σN + SN resulting in a
mildly decreasing gluon condensate

〈αs

π
G2〉n ' 〈

αs

π
G2〉0 −

8

9
(mN − σN − SN )n (2.125)

for growing baryon density n, i. e. at nuclear matter saturation density 〈(αs/π)G2〉n drops
to 90− 95 % of its vacuum value.

In order to study the temperature and baryon density dependences of four-quark con-
densates 〈〈q̄Aqq̄′Bq′〉〉, where A and B denote certain Dirac and color matrices to ensure
parity and time reversal invariance, the corresponding pion and nucleon matrix elements
are needed, i. e. 〈π|q̄Aqq̄′Bq′|π〉 and 〈N |q̄Aqq̄′Bq′|N〉. While the pion matrix elements can
be calculated by means of the soft-pion theorem (2.114) [Hat93,Dru02], the nucleon matrix
element has to be computed from the overlap of the four-quark operator with an assumed
quark structure of the nucleon [Dru03]. Intermediate steps of the computation rely on the
factorization hypothesis which is questionable in QCD, cf. Subsec. 3.3.3. Also the medium
dependence of many further condensates can only be estimated utilizing model assumptions
or from comparison to deep inelastic scattering (DIS) data [Jin93].

2.4 Evaluation of QCD sum rules

QCD sum rules o�er two evaluation strategies due to the two representations of the current-
current correlator (2.1). On the one hand, known phenomenological spectral information
or, preferably, the actual spectral density can be utilized to determine QCD parameters
such as the condensates, quark masses or the strong coupling constant and, on the other
hand, the QCD parameters entering the OPE can be employed to deduce hadronic spectral
properties.11

11Furthermore, QSRs can serve as a consistency check for theoretical hadronic models requiring reasonably
small deviations of the QSR's l. h. s. and r. h. s. in a su�ciently wide Borel window [Leu98], see the details
below.
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Figure 2.6: Sketches of generic spectral densities ρ comprising the lowest resonances and
the continua for vacuum (left panel) and in-medium (right panel) situations.

In order to estimate the spectral properties of the lowest hadronic resonance ρres coupling
to the current j, it is separated from higher excitations forming a continuum ρcont which
emerges from the continuum threshold parameter12 s0 onwards, i. e. the vacuum spectral
density, cf. left panel of Fig. 2.6, is of the form

ρ(s) = Θ(s0 − s)ρres(s) + Θ(s− s0)ρcont(s) . (2.126)

The continuum threshold parameter is chosen to be located above the resonance. Represen-
ting the higher excitations by a continuum is adequate as higher hadronic states are increas-
ingly short-lived, thus, acquiring large widths which smear out the individual resonances.13

While for large momenta ρcont(s) = ImΠOPE(s)/π may be considered a valid representa-
tion of the continuum, it is mainly justi�ed by its successful application in numerous QSRs.
According to Eq. (2.126), the dispersion integral splits into a low-momentum and a high-
momentum part and the vacuum QSR reads

ΠOPE(q2)−
N−1∑

n=0

Π(n)(s)
∣∣
s=0

n!
q2n

=

s0∫

0

ds

(
q2

s

)N
ρres(s)

s− q2
+

1

π

∞∫

s0

ds

(
q2

s

)N
ImΠOPE(s)

s− q2
. (2.127)

A further assumption is often employed in QSRs to simplify the structure of the con-
tinuum part of the spectral density [Rei85, Col01]. In the limit q2 → −∞, the dispersion
integral satis�es the relation

∞∫

s0

ds

(
q2

s

)N
ImΠ(s)

s− q2
≈
∞∫

s0

ds

(
q2

s

)N
ImΠpert(s)

s− q2
, (2.128)

which is dubbed global (or semi-local) quark-hadron duality. The quantity ImΠpert denotes
the perturbative part of the OPE of the current-current correlator. This assumption is the

12The continuum threshold parameter must not be confused with s0 in Sec. 2.1, which was introduced there
to de�ne the radius of a circle around the origin wherein the current-current correlator is analytic.

13See Ref. [Shi98] for a detailed discussion of the transition from comb-like toy spectral densities to more
realistic ones considering �nite width resonances.
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2.4 Evaluation of QCD sum rules

attenuated form of the local quark-hadron duality, i. e. ImΠ(s) → ImΠpert(s) for s → ∞.
Presuming quark-hadron duality the continuum term ImΠOPE in Eq. (2.127) is replaced by
ImΠpert.

Depending on the evaluation strategy pursued, a phenomenological hadronic model is
employed for the resonant part of the spectral density, ρres, in order to determine hadron
properties from the QSR, or the experimentally accessible low-energy spectrum may be used
directly to gain information about the QCD parameters. While often ansätze are utilized to
shape the lowest excitation of the spectral density, cf. Subsec. 2.4.2, moments of the spectral
density below the continuum threshold s0 can provide some model-independent information
on the spectral distribution function, cf. Subsec. 2.4.1.

Also in a medium, the spectral density is split into low-energy and high-energy parts.
However, the spectral density contains two resonances and continua situated to the left and
the right of the origin on the real q0 = ω axis, cf. right panel of Fig. 2.6, representing
excitations of the currents j and j†, i. e. hadrons and anti-hadrons. Accordingly, the in-
medium QSR for the even and odd parts of the correlator are obtained:

Πeven
OPE(q0, ~q)−

1

2

N−1∑

n=0

Π(n)(ω, ~q)
∣∣
ω=0

n!
(q0)n

(
1 + (−1)n

)

=
1

2

ω+
0∫

ω−0

dω ρres(ω, ~q)
qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)

ω2 − q2
0

+
1

2π




ω−0∫

−∞

+

∞∫

ω+
0


dω ImΠOPE(ω, ~q)

qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)

ω2 − q2
0

,

(2.129a)

Πodd
OPE(q0, ~q)−

1

2

N−1∑

n=0

Π(n)(ω, ~q)
∣∣
ω=0

n!
(q0)n−1 (1− (−1)n

)

=
1

2

ω+
0∫

ω−0

dω ρres(ω, ~q)
qN−1

0

ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)

ω2 − q2
0

+
1

2π




ω−0∫

−∞

+

∞∫

ω+
0


dω ImΠOPE(ω, ~q)

qN−1
0

ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)

ω2 − q2
0

.

(2.129b)

Often, the continuum threshold parameters are chosen symmetrically w. r. t. the origin, i. e.
one takes ω+

0 = −ω−0 as an ad hoc assumption.

The major inherent malaise of the QSR framework is that only integrated hadronic spec-
tral properties are probed and only combinations of QCD condensates enter. The accuracy
of extracted spectral parameters is therefore limited and isolation of a single condensate,
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e. g. a particularly interesting order parameter, is hampered.14 To improve the sensitivity of
QSRs to the lowest excitation of the spectrum a Borel transformation can be applied convert-
ing the momentum dependence to a dependence on the Borel mass M . Thus, the spectral
integrals as given in Eqs. (2.127) and (2.129) comprise Laplace transformed integrands, i. e.
the spectral densities are integrated with an exponential weight. While subtraction terms
are eliminated by virtue of the Borel transformation, higher order power corrections are
factorially suppressed improving the convergence of the OPE. The result is a Borel sum of
the OPE, where Borel summation is a technique to sum divergent series. The de�nition and
properties of the Borel transformation as well as the relevant expressions are presented in
App. D. Applying the Borel transformation to the vacuum QSR (2.127) employing Eq. (D.16)
with Q2 = −q2, a = s, k = 1 and m = N yields

B
[
ΠOPE(Q2)

]
(M2) ≡ Π̂OPE(M2)

=

s0∫

0

ds e−s/M
2
ρres(s) +

1

π

∞∫

s0

ds e−s/M
2
ImΠOPE(s) (2.130)

and similar expressions for the in-medium sum rules (2.129) with Q2 = −q2
0, where the

subtraction terms are eliminated and the polynomial weight in the spectral integral replaced
by the exponential. However, one may apply the Borel transform to a N -fold subtracted
dispersion relation Π/Q2m with m < N in order to further suppress the continuum part
by 1/sm in the spectral integral as commonly employed in twice subtracted ρ meson QSRs
with m = 1. Of course, in the Borel transform of Π/Q2m, m subtraction terms remain
which can be easily understood from the point of view of subtracted dispersion relations:
the suppression of high-energy contributions has to be compensated for by a more detailed
knowledge of the function at the subtraction point [Leu98].15

Although the Borel transformation attenuates shortcomings of the QSR method by sup-
pressing the continuum states and higher order power corrections, su�ciently reliable spec-
tral information about the lowest resonance can be extracted only within a certain Borel
mass range. This range is a compromise as particularly small or large numerical values of the
Borel massM in�uence the sum rule in a two-fold way. While for largeM higher order power
corrections are strongly suppressed, contributions to the spectral integral of higher hadronic
excitations, only grossly modeled by the continuum, are enhanced ultimately exceeding the
contribution of the lowest resonance of the spectrum. The bene�cial enhancement of the
lowest resonance and the exponential suppression of the continuum for small M are coun-
teracted by increasing numerical impact of higher order power corrections worsening the
convergence behavior of the OPE.

In order to ensure the validity of the QSR, criteria for a maximal and minimal Borel
mass are selected. The Borel mass interval estimated on grounds of those criteria is referred
to as the Borel window. The commonly chosen criteria on the upper and lower limit of
the Borel window are the following [Lei97]: The upper limit Mmax is selected such that
the integral over the lowest excitation contributes at least 50 % to the integral over the

14Weinberg sum rules, introduced below in this thesis, can overcome this limitation to some extent, because
they are only sensitive to order parameters of DχSB.

15Care needs to be taken here, because a naive approach may lead to opposite medium modi�cations of the
very same hadron from the sum rules of Π and Π/Q2 [Koi95, Hat95], i. e. suppressed in-medium OPE
information must be compensated by a relation constraining the in-medium spectral parameters [Koi97].
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full spectral function. The lower limit Mmin is evaluated requiring that the highest mass-
dimension condensate term considered contributes less than 10 % to the complete OPE. The
actually used percentages for individual QSR analyses may vary, but the result should be
robust with respect to slight changes of that �gures. The existence of a Borel window is
a priori not guaranteed. One may face a QSR with very narrow Borel window worsening
accuracy of the method, or even a closed Borel window, i. e.Mmax < Mmin, causing a failure
of the QSR framework.

This method of deducing the Borel window for a certain con�dence level associated
with the chosen percentage criteria might be contrasted by an approach based on Hölder
inequalities [Ben95]. Using these inequalities one can construct fundamental constraints
on the QSR that must be satis�ed if the sum rule is consistent with its phenomenological
relation to the integral over the spectral density. The constraints can be viewed as a test of
both the validity of the continuum hypothesis, i. e. the quark-hadron duality above s0, and
of the lower bound on the Borel mass, i. e. Mmin, beyond which the neglected or unknown
e�ects in the QSR become substantial. Thus, these constraints shift the notion of QSR
validity from the Borel window, being an Borel mass range with an associated con�dence
level, to an admissible region in the M -s0 plane, providing a minimal Borel mass Mmin for
every continuum threshold s0.

Having outlined the concept of QSRs, let us summarize the essential content: The cor-
relator (2.1) (the l. h. s.) is cast in a dispersion relation form, where an integral of the
discontinuity (or the spectral density) appears as the relevant quantity, while the r. h. s. of
(2.1) employs the OPE. Within this thesis, we take the attitude to assume that the r. h. s.
quantities (Wilson coe�cients and condensates) are known and study the implications for
the l. h. s. which encodes hadron properties.

2.4.1 Model-independent resonance properties

Extraction of the integrated spectral information concealed in hadronic Green's functions,
e. g. the current-current correlator (2.1), calculated by means of an OPE or in the `QCD
framework is limited. Model-independent estimates about the shape of the particularly
interesting low-energy part of the spectral density ρres may be obtained from moments of
the spectral distribution,16 if multi-resonance structures can be excluded. The center of
gravity of the distribution is provided by the �rst weighted moment

m̄2 =

∫ s0
0 ds s e−s/M

2
ρres(s)∫ s0

0 ds e−s/M2ρres(s)
, (2.131)

where the spectral integrals of the denominator and the numerator can be expressed by the
OPE employing the QSR (2.130) and the derivative of Eq. (2.130) w. r. t. −1/M2, dubbed
derivative sum rule, respectively. Higher central moments

m̄2
(n) =

∫ s0
0 ds (s− m̄2)n e−s/M

2
ρres(s)∫ s0

0 ds e−s/M2ρres(s)
(2.132)

16Note that not the bare spectral function but ρres(s) weighted by the Borel exponential e−s/M
2

enters the
spectral integral of the QSR (2.130).
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may be used to estimate the shape of the spectral distribution, i. e. variance m̄2
(2), skewness

m̄2
(3)/m̄

3
(2) and kurtosis m̄2

(4)/m̄
4
(2) measuring width, asymmetry and �atness of the distribu-

tion, respectively. Further odd (even) central moments would give additional information on
the asymmetry (�atness) of the spectral distribution. Such higher central moments would
be evaluated by means of higher derivative sum rules which have inherent shortcomings as
we will dwell on in the following Subsec. 2.4.2.

Euclidean time correlators of hadrons are successfully computed within the scope of
`QCD. As also these correlators incorporate the integrated spectral density, the same di�cul-
ties in deducing the hadronic spectral properties are encountered. In the lattice community,
the maximum entropy method, based on Bayesian inference theory, has been introduced to
extract the spectral density from the correlators [Nak99]. These ideas have been adopted
to QSR analyses [Gub10], recently. The maximum entropy method which does not �x the
functional form of the spectral density seems to be less restrictive than a model ansatz for
the resonance, but it relies on a 'default model', used to �x the value of the spectral function
at low and high energies, which might in�uence the results as well. The pending problem of
deducing the spectral density from the correlator deserves intense investigations, cf. [Bur13]
for a slightly improved Bayesian approach based on reassessed axioms.

2.4.2 Resonance properties from a spectral density ansatz

The parametrization of the lowest excitation of the spectrum by a pole,

ρres(s) = Rhδ(s−m2
h) , (2.133)

is suggested by the spectral density (2.8), where one can identify Rh = (2π)3|〈Ω|j(0)|h〉|2
for a hadron h at rest, i. e. ph = (mh,~0), and for pΩ = 0. This simple parametrization of the
lowest resonance has been employed to QSR evaluations to estimate hadron masses since
the advent of the method. Although application of the admittedly rough model seems not
suitable for short-lived states or brought resonances, e. g. the ρ meson, it yields acceptable
results building con�dence in the framework.

The center of gravity m̄ (2.131) of a general spectral function ρ(s) in the low-energy
region, i. e. s < s0, coincides with the mass parameter mh of the pole ansatz (2.133). Thus,
the standard QSR evaluation procedure utilizes the normalized �rst moment of the spectral
integral over the low energies, dubbed ratio sum rule by some authors. A further advantage
of the pole + continuum ansatz is its small number of parameters. The hadron mass mh, the
residuum Rh and the continuum threshold parameter s0 can be determined from the QSR
(2.130) and its derivative w. r. t. −1/M2 alone, because the continuum threshold parameter
is �xed by the requirement of maximal �atness of the mass Borel curve

mh(M) =

√
1

Π̃(M)

dΠ̃(M)

d(−1/M2)
(2.134)

and the residuum Borel curve

Rh(M) = em
2
h/M

2
Π̃(M) (2.135)
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in the Borel window with Π̃ = Π̂OPE − Π̂cont and Π̂cont(M) =
∫∞
s0

ds e−s/M
2
ρcont(s). The

spectral parameters are extracted consecutively from these equations, where the �atness can
be quanti�ed as17

d(s0) =
1

Mmax(s0)−Mmin

Mmax(s0)∫

Mmin

dM [mh(M ; s0)−mh(s0)]2 , (2.136)

where mh(s0) is obtained from Eq. (2.134) averaged within the Borel window. Once the
continuum threshold parameter s0 is �xed by requiring maximal �atness, i. e.

d(s0) = min
s′0>mh

d(s′0) , (2.137)

the corresponding mh provides the hadron mass parameter. Subsequently, the Borel window
averaged residuum parameter Rh is estimated from Eq. (2.135) employing the average Borel
mass parameter mh or the mass Borel curve mh(M).

The requirement of �atness in the Borel window emerges from the derivation of the mass
Borel curve (ratio QSR) using

d

d(1/M2)
Π̃(M2) =

d

d(1/M2)
Rhe

−m2
h/M

2
(2.138)

= −m2
hΠ̃(M2) +

∂Π̃

∂mh

dmh

d(1/M2)
+

∂Π̃

∂Rh

dRh
d(1/M2)

. (2.139)

If this requirement cannot be met for a physical continuum threshold parameter s0, the ratio
QSR might give wrong results. In this case, one should not rely on the ratio QSRs [Lei97],
especially not on higher derivative QSRs, where exemplarily the n-th derivative QSR of the
ρ meson in generic form is given by [Hil12c]18

Rhm
2n
h e
−m2

h/M
2

=

s0∫

0

ds sn−1ImΠ̃(s)e−s/M
2

= n!c0M
2

[
1− e−s0/M2

n∑

k=0

(s0/M
2)k

k!

]
+ (−1)n

∞∑

k=0

ck+n+1

k!M2(k+n)
,

(2.140)

because of three main reasons [Jin95, Lei97]: (i) The importance of the perturbative term
increases for increasing n, due to the n! factor, implying that higher derivative QSRs probe
the continuum instead of the resonance. (ii) Power corrections proportional to c1, . . . , cn
do not contribute to the n-th derivative sum rule, i. e. if one truncates the OPE, part or

17While the presented criterion utilizes the deviation d(s0) from mean in the L2 norm an extension to the
Lp norm is conceivable producing the supremum norm for p→∞.

18The here introduced OPE coe�cients ci of the power corrections are related to the Wilson coe�cients
Cj and the condensates 〈Ω|Oj |Ω〉 in Eq. (2.26). In order to keep track of the derivatives w. r. t. −1/M2,
the expansion in condensates is rewritten in a power series in 1/M2 such that the coe�cients ci con-
tain all condensates of mass dimension 2i and the momentum independent factors of the corresponding
coe�cients Cj .
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2 QCD sum rules

all of the non-perturbative information will be lost in this derivative sum rule. (iii) In the
original QSR, the power correction ci is suppressed by a factor of 1/(i− 1)!, while it is only
suppressed by 1/k! = 1/(i−n− 1)! in the n-th derivative sum rule (i > n) implying a much
slower convergence of the OPE and thus, making it even more restrictive to de�ne the lower
Borel window boundary. Following the same reasoning, the accuracy of the information on
the spectral shape from higher moments of the spectral distribution (2.132) must be doubted,
because they build on higher derivative sum rules as well.

One may also evaluate QSRs by expanding the exponential in the spectral integral and
a term-by-term comparison in Eq. (2.130) giving a set of QSRs for moments of the spectral
density. The �rst moments obtained this way are advocated by some authors [Wei00] due to
their independence of the auxiliary parameter M and the absence of higher mass dimension
condensates with notoriously poorly known numerical values. However, these moments are
essentially derivative sum rules evaluated at 1/M2 = 0 which is far above the actual Borel
window, i. e. the continuum is probed instead of the resonance. The sensitivity of these
moments on the spectral shape of the lowest resonance seems to be insu�cient, such that
extracted spectral properties must be questioned as well as the discriminating potential of
the moments whether the QSRs are compatible with a particular hadronic model.

The Monte-Carlo QSR analysis suggested in Ref. [Lei97] does genuinely rely on the orig-
inal QSR (2.130) avoiding the shortcomings of derivative sum rules (2.140) altogether. This
analysis procedure, where hadronic parameters of the spectral density ansatz are extracted
by means of a maximum likelihood method for Gaussianly distributed input parameters,
allows for a rigorous uncertainty analysis. The details of the Monte-Carlo QSR method are
outlined in App. E. So far, the Monte-Carlo analysis has been done for the ρ meson and the
nucleon only, which feature well-performing QSRs and have been extensively studied. The
ρ channel is most favorable from the point of view of applications of the SVZ sum rules. In
a sense, this is a dream case: the role of the continuum with respect to ρ is as tempered as
it can possibly be, and higher (unknown) condensates in the truncated condensate expan-
sion show up at remarkably low values of M2 so that the working window is comfortably
wide [Shi98]. The successful application of the Monte-Carlo QSR analysis to a wider range
of hadrons is still pending. We follow the conservative approach using the �rst derivative
sum rule for the mass Borel curve being aware of its limited reliability if the mass Borel
curve is not su�ciently �at in the Borel window, but we refrain from using higher order
derivative sum rules. Nonetheless, the Monte-Carlo QSR analysis is a promising tool for
extracting spectral properties of hadrons which are not biased from derivative sum rules
given that a reliable minimization procedure is employed.

In a strongly interacting medium, a�ecting hadrons and anti-hadrons di�erently, e. g.
non-self-adjoint mesons embedded in nuclear matter, the odd OPE does not vanish a priori
and the spectral parameters double:

ρres(ω,~0) = R+δ(ω −m+) +R−δ(ω +m−) (2.141)

(cf. the schematic in-medium spectral density in Fig. 2.6 right panel). Hence, the Borel

transformed even sum rule (e ≡ Π̂even(M2) = m+R+e
−m2

+/M
2

+ m−R−e−m
2
−/M

2
) and odd

sum rule (o ≡ Π̂odd(M2) = R+e
−m2

+/M
2 −R−e−m

2
−/M

2
) are coupled, cf. Eqs. (2.129). Intro-

ducing a mass centroid m̄h = (m+ +m−)/2 and mass splitting ∆mh = (m+ −m−)/2 they
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2.4 Evaluation of QCD sum rules

can be disentangled by a generalization of Eq. (2.134) [Hil09]

∆mh(M) =
1

2

oe′ − eo′
e2 + oo′

, (2.142)

m̄h(M) =

√
∆m2

h −
ee′ + (o′)2

e2 + oo′
, (2.143)

where here, for brevity, a prime denotes the derivative w. r. t. 1/M2. If one furthermore
decomposes R± = R̄h ±∆Rh, the even sum rule ∝ m̄hR̄he

−m̄2
h/M

2
exhibits its dependence

on averaged h+h properties while the odd sum rule ∝ (∆Rh−2∆mhR̄h
m̄h
M2 )e−m̄

2/M2
reveals

its relation to the h−h splitting which vanishes for self-adjoint hadrons h and at zero nucleon
density. Obviously, the residuum Borel curves R±(M) can be conveniently deduced from
the original even and odd sum rules.

A broad resonance in the low-energy region of the spectral density may be adequately
parametrized by a Breit-Wigner distribution [Hat93]

ρres(s) =
Fh
π

mhΓh(
s−m2

h

)2
+m2

hΓ2
h

. (2.144)

In contrast to the pole ansatz characterized by a residuum Rh (here: Fh) and the hadron
mass mh, this distribution contains a further parameter Γh describing the width of the
spectral distribution. However, QSRs are hardly sensitive on the width Γh of the distribution
(2.144), because it probes the integrated spectral density. One may circumvent this problem
by calculating the decay constant f2

h = Rh/m
2
h from the pole ansatz �rst and subsequently

computing the rate for the related decay of the hadron using fh [Hat93,Nar99]. This rate
coincides with the desired (partial) width Γh for Γh � mh [Pes95].

Anyway, the three parameters of the above ansatz (2.144) can not be extracted from the
standard procedure employing the original QSR and its �rst derivative sum rule alone (anal-
ogous to Eqs. (2.135) and (2.134), respectively). In order to actually �x three resonance
parameters one is forced to use a further derivative sum rule. Otherwise, only relations
among the spectral parameters can be obtained, e. g. mass-width correlations [Hil12c]. Uti-
lizing a more complex spectral ansatz one faces the same problems in an enhanced manner,
where even more spectral parameters are to be determined from the same set of equations.
Thus, relying on the original QSRs and their �rst derivatives alone, does not allow for the
evaluation of even and odd in-medium sum rules with complicated spectral ansätze which
produce unique results for the doubled parameters, analogous to Eq. (2.141). However, if the
QSR study focuses on in-medium changes of hadronic spectral properties one might choose
a sophisticated ansatz, e. g. Breit-Wigner distributions with energy dependent widths and
taking production thresholds into account. If good reasons can be provided one may al-
low for only two of the parameters, optimized to reproduce experimental vacuum data, to
deviate from their vacuum values.
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3 Medium modi�cations of D mesons

The D meson has been considered the 'hydrogen problem' of QCD. Its characteristics resem-
ble those of a hydrogen atom, because it is a bound state with vastly di�erent mass scales � a
particularly light quark (q) of up or down �avor and a heavy charm quark (Q) � albeit with
strongly interacting particles. Exposing a hydrogen atom to electromagnetic �elds alters the
properties of the level scheme known as Stark and Zeeman e�ects. Similarly, the D meson
is expected to exhibit changing properties in a strongly interacting environment. Medium
modi�cations of D mesons have become an interesting topic in recent years, since open charm
mesons and charmonium serve as probes of hot nuclear matter and decon�nement e�ects
[Fri11]. Mesons with charm (or bottom) can serve equally well as probes of dense or even sat-
urated nuclear matter (cf. [Tol09,Tol13,Kum10,Kum11,Bla12,He13,Yas13a,Yas13b,Yas14]
for recent works and further references). For such theoretical investigations the �nite-density
QSRs look promising [Hay00, Hil09, Zsc11,Wan11,Wan13]. However, these studies are re-
stricted hitherto to condensate contributions up to mass dimension 5. Motivated by the
signi�cant contributions of four-quark condensate terms to the ρ meson QSR we aim for
higher order contributions of mass dimension 6 to study their impact on the in-medium D
meson QSR. This chapter is based on the results presented in Ref. [Buc15b] as well as in
Ref. [Buc16b] dealing with a vital technical aspect and its implications.

3.1 Motivation

Among the central issues of hadron physics in the light-quark sector are chiral symmetry and
its breaking pattern. If one relates spontaneous chiral symmetry breaking with the non-zero
value of the chiral condensate in vacuum, 〈q̄q〉0 ' (−245 MeV)3, one is tempted to ask for ob-
servable consequences of chiral restoration, i. e. to which extent do hadron observables change
under a change of the chiral condensate [Wei94]. In LO, at non-zero temperature T and/or

density n, the chiral condensate is modi�ed according to 〈q̄q〉T,n ' 〈q̄q〉0
(

1− T 2

8f2
π
− σN n

m2
πf

2
π

)

(cf. Eqs. (2.116) and (2.117)), i. e. it is diminished relative to its vacuum value. Chiral restora-
tion may be understood accordingly as being necessarily accompanied by 〈q̄q〉T,n → 0. Also
further condensates, especially four-quark condensates, exhibit non-invariant behavior un-
der chiral transformations [Leu06,Tho07,Hil11]. Such condensates are candidates for order
parameters of spontaneous chiral symmetry breaking and restoration, similarly to the chiral
condensate, cf. Subsec. 2.3.2. While decon�nement accompanied by dissolving hadron states
is the obviously strongest medium modi�cation of hadrons, more modest modi�cations are
envisaged during the last two decennia (cf. [Hat93,Jin93,Coh95] for surveys on medium mod-
i�cations of hadrons). The seminal paper by Hatsuda and Lee [Hat92b] devices a scenario
where spectral properties of mesons (most notably condensed into moments characterizing
masses and widths) do change in a strongly interacting medium. Clearly, there are further
condensates which change at non-zero temperature and density [Hat93,Jin93].



3 Medium modi�cations of D mesons

In order to judge the impact of particular condensates on the hadronic spectral function,
we estimate their contributions to the OPE side of the QSR (2.130). For the ρ meson at
rest the Borel transformed OPE series reads1

Π̂(ρ)(M2) = C
(ρ)
0 M2 +

C
(ρ)
1

M2
〈q̄q〉+

C
(ρ)
2

M2
〈αs
π
G2〉+

C
(ρ)
3

M4
〈O3〉+ · · · , (3.1)

where the superscript '(ρ)' is a reminder that, for the moment, we are talking about the ρ
meson which has been analyzed extensively [Fri11]. Writing schematically 〈O3〉 = κ〈q̄q〉2
with a fudge factor κ one observes in fact that, for Borel masses M ∼ 1 GeV, the chiral

condensate term ∝ C
(ρ)
1 /M2 is numerically suppressed, and the gluon condensate term

∝ C
(ρ)
2 /M2 as well as the four-quark condensate combinations ∝ C

(ρ)
3 /M4 are of the same

order of magnitude for a typical choice κ ∼ 2 [Rap10]:

Π̂(ρ)(M2) =
1 + αs

π

8π2
M2 +

mq

M2
〈q̄q〉 +

1

24M2
〈αs
π
G2〉 − 112παs

81M4

κ

2
〈q̄q〉2 + · · ·

=
M2

8π2

(
1.11 − 0.006

GeV 4

M4
+ 0.039

GeV 4

M4
− 0.026

GeV 6

M6
+ · · ·

)
, (3.2)

where αs = 0.35, mq = 0.005 GeV, 〈q̄q〉 = (−0.245 GeV)3 and 〈(αs/π)G2〉 = 0.012 GeV4

have been used.

While the separation of scales in the OPE seems unproblematic in the light-quark sector
extra e�ort is required to include heavy quarks, because their masses enter the scheme as
additional scales. Nevertheless, since other methods (such as `QCD evaluations, Schrödinger
equation approaches with potentials, Dyson-Schwinger�Bethe-Salpeter equations, etc.) are
at our disposal, a mutual judging is of interest. In the qQ sector2 the chiral condensate
appears in the scale-dependent combination3 mQ〈q̄q〉, i. e. the heavy-quark mass mQ acts
as an ampli�cation factor of the chiral condensate term with sizable impact on spectral
properties of qQ mesons [Hil11]. Furthermore, the in-medium sum rule has an even and
an odd part w. r. t. the meson energy p0, cf. Eqs. (2.20), since particles and anti-particles
are to be distinguished and the corresponding dispersion integrals run over positive and
negative frequencies. In the light chiral limit, mq → 0, the �rst known terms have the
structure [Hil09,Zsc11]

Π̂even(M2) = C0 + e−m
2
Q/M

2
6∑

k=1

cevenk (M2) 〈Ok〉even , (3.3a)

Π̂odd(M2) = e−m
2
Q/M

2
3∑

k=1

coddk (M2) 〈Ok〉odd (3.3b)

with the perturbative term C0 and the condensates 〈O1〉even = 〈〈q̄q〉〉, 〈O2〉even = 〈〈q̄gσGq〉〉,
〈O3〉even = 〈〈(αs/π)G2〉〉, 〈O4〉even = 〈〈(αs/π)

[
(vG)2/v2 −G2/4

]
〉〉, 〈O5〉even = 〈〈q†iD0q〉〉 and

1The ellipses in the displayed series denote higher power corrections which may break down the expansion,
thus, requiring a careful evaluation of the OPE's convergence behavior.

2We use henceforth the shorthand notation qQ for q̄Q and Q̄q mesons. The correlators of mesons q̄Q and
anti-mesons Q̄q satisfy the relation Πq̄Q(p) = ΠQ̄q(−p) [Zsc11]. The D meson four-momentum is denoted
by p instead of q in this chapter in order to obtain a clear distinction from the light-quark operator q.

3Although, the running heavy-quark mass (2.77) compensates the scale-dependence of the running chiral
condensate (2.89) to one-loop order, we tentatively refer to mQ〈q̄q〉 as a scale-dependent combination in
contrast to mq〈q̄q〉 since mq and mQ might have di�erent anomalous dimensions in higher loop orders.
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3.2 QCD sum rules for qQ mesons

〈O6〉even= 〈〈q̄
[
D2

0 − gσG/8
]
q〉〉 as well as 〈O1〉odd= 〈〈q†q〉〉, 〈O2〉odd= 〈〈q†D2

0q〉〉 and 〈O3〉odd=

〈〈q†gσGq〉〉. The coe�cients ceven,oddk (M2) are the Wilson coe�cients modulo a common fac-

tor e−m
2
Q/M

2

. Without knowledge of the Wilson coe�cients of the four-quark condensates
it is hardly possible to estimate their impact on Π̂ in the sum rule and a simple order-of-
magnitude comparison can be misleading. (For example, in the above ρ meson sum rule
(3.2), 〈(αs/π)G2〉 = 0.012 GeV4 and 〈q̄q〉2 = 0.00022 GeV6 would one lead to guess that
the latter condensate contribution is negligible at M ∼ 1 GeV. However, it is the Wilson

coe�cient C
(ρ)
2 = 1/24 which makes the gluon contribution comparable to the four-quark

condensate term with C
(ρ)
3 = (112/81)παs.) Therefore, a calculation of Wilson coe�cients

of the in-medium four-quark condensates entering QSRs for qQ mesons is mandatory. This
is the goal of the present chapter. Equipped with these four-quark condensate contribu-
tions one can extend previous OPE/QSR studies of spectral properties of pseudo-scalar qQ
mesons. Furthermore, and more importantly, one is able to identify four-quark condensate
contributions which are not invariant under chiral transformations and, thus, may serve as
elements of order parameters of spontaneous chiral symmetry breaking. As pointed out in
Sec. 4.1 and Ref. [Hil11], also in qQ meson systems, the splitting of the spectral densities
between parity partners is driven by such order parameters.

Although four-quark condensates can in�uence the in-medium properties signi�cantly,
as recalled above for the ρ meson, no light four-quark condensate contributions of the OPE
have been used so far to improve the evaluation of in-medium modi�cations of qQ mesons.
Accordingly, we are going to include here light four-quark condensate contributions, thus,
extending the previous studies.

The common problem of presently poorly known numerical values of four-quark con-
densates requires a further treatment of these contributions. Thus, we resort here to the
argument that heavy quarks are static and do not condense, i. e. one neglects all contri-
butions of condensates containing heavy-quark operators [Rei85]. To arrive at an order of
magnitude estimate of their impact, light four-quark condensates are eventually factorized
and equipped with fudge factors to correct potential failure of the ground state saturation
hypothesis.

Including four-quark condensates is a di�cile task and has only been done in vacuum qQ
systems employing factorization up to now. In vacuum, the number of terms involves only
a small amount of the possible in-medium contributions. Furthermore, assuming vacuum
saturation from the very beginning in order to factorize four-quark condensates simpli�es
evaluations drastically. This is the reason why even in vacuum only few papers deal with
non-factorized four-quark condensates [Hil12c,Hoh14], whereby even factorized four-quark
condensates have never been considered in qQ systems in the medium.

3.2 QCD sum rules for qQ mesons

We consider the causal current-current correlator (2.1) in LO perturbation theory ∝ α0
s

Π(p) = i

∫
d4x eipx〈〈T

[
j(x)j†(0)

]
〉〉 (3.4)
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3 Medium modi�cations of D mesons

Π(0) =

1

(a)

+

1

(b)

+

1

(c)

+

1

(d)

+

1

(e)

+

1

(f)

+

1

(g)

+

1

(h)

+ · · ·

Figure 3.1: Diagrammatic representation of the contribution (3.7a) to the current-current
correlator, where a selection of topologically relevant diagrams is displayed. Solid lines
stand for free quark propagators, wiggly lines are for gluons and crosses symbolize local
quark or gluon condensation. In our expansion scheme, we retain only the diagrams (a)�(c)
contributing to the perturbative term C0, (a), and yielding the Wilson coe�cients ceven3

and ceven4 , (b) and (c), in Eq. (3.3a) since the other ones, (d)�(h), are of higher order in g.

with the interpolating pseudo-scalar current

j(x) = iq̄(x)γ5Q(x) . (3.5)

The Wilson coe�cients are calculated using the background �eld method in Fock-Schwinger
gauge xµAµ(x) = 0. The general ideas of the calculus are provided in Sec. 2.2, while a
compact description in LO perturbation theory is given in [Zsc11,Hil11]. Utilizing Wick's
theorem the correlator (3.4) decomposes as

Π(p) = Π(0)(p) + Π(2)(p) (3.6)

=

1

+

1with

Π(0)(p) = −i
∫

d4x eipx〈〈:Trc,D [Sq(0, x)γ5SQ(x, 0)γ5] :〉〉 , (3.7a)

Π(2)(p) = +

∫
d4x eipx〈〈:Q̄(0)γ5Sq(0, x)γ5Q(x) + q̄(x)γ5SQ(x, 0)γ5q(0) :〉〉 , (3.7b)

where terms associated with disconnected diagrams are omitted. The notation Trc,D means
traces over color and Dirac indices respectively. Π(0)(p) denotes the fully Wick-contracted
term and Π(2)(p) is the two-quark term, i. e. the superscript number in parentheses refers
to the number of Wick-uncontracted quark �eld operators of the interpolating currents.
The full light-quark propagator in the gluonic background �eld is de�ned as Sq(x, y) =
−i〈T [q(x)q̄(y)]〉 (and with q −→ Q for the full heavy-quark propagator, cf. App. C.3 for
further details). In the diagrammatic representation of the decomposition (3.6), dashed lines
denote the pseudo-scalar current, double lines symbolize full quark propagators whereas
single lines are for free quark propagators, and circles denote non-local quark condensation.

Employing the expansion (2.44) in (3.7a) generates a series of terms where a (few) soft
gluon(s) couple to quark, gluon and quark-gluon condensates (cf. Fig. 3.1), while an analog
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3.3 Four-quark condensate contributions

Π(2) =

1

(a)

+

1

(b)

+

1

(c)

+

1

(d)

+

1

(e)

+ · · ·

Figure 3.2: Diagrammatic representation of the contribution (3.7b), where a selection of
topologically relevant diagrams is displayed as in Fig. 3.1, too.

series emerges from (3.7b) utilizing the covariant expansion (2.35) of the quark operator
additionally, see Fig. 3.2.

Up to mass dimension 5 the corresponding infra-red stable Wilson coe�cients can be
found in [Hil09, Zsc11], providing coe�cients for the vacuum- and medium-speci�c quark,
gluon and mixed quark-gluon condensates listed below Eq. (3.3). These refer to diagrams
(a)�(c) in Fig. 3.1 and (a)�(c) in Fig. 3.2 as well as diagrams associated to non-local con-
densation. Using the formulae in [Zsc11,Hil11] one also obtains Wilson coe�cients of light
four-quark condensates, where the corresponding tree-level diagrams (cf. Fig. 3.2, diagrams
(d) and (e)) contain one soft-momentum gluon line.

Since we truncate here the series expansion of (3.7a) and (3.7b) at order g2, light four-
quark condensate contributions arise only from (3.7b), i. e. diagrams (d) and (e) in Fig. 3.2.
The other diagrams in Fig. 3.2 refer to the two-quark (a) and the quark-gluon condensate
contributions (b) and (c), respectively.

3.3 Four-quark condensate contributions

3.3.1 Wilson coe�cients

We focus now on the evaluation of the light-quark condensate contributions in mass di-
mension 6 containing the particularly interesting four-quark condensates.4 For a handy
notation, we denote by Πdim6 those contributions to Π(2), cf. (3.6), where dimension-6 light-
quark condensates are involved (e. g. the four-quark condensate contributions in diagrams
(d) and (e) in Fig. 3.2). We note that the gluon in the contributions to Π(2) may have an
arbitrarily small momentum, and thus they are dubbed soft-gluon contributions. However,
also tree-level four-quark contributions exist, where the gluon must carry the full momen-
tum p of the meson (cf. Fig. 3.3). These contributions are dubbed hard-gluon ones, and
they arise with the NLO interaction term inserted into the correlator [Shi79,Pas84,Nar07].
However, their corresponding condensates contain heavy-quark operators and are neglected
according to arguments in [Rei85,Nar05]: heavy quarks do hardly condense. In principle,
heavy-quark condensates could be considered rigorously using the HQE, where the conden-
sate is expanded in inverse powers of the heavy-quark mass. Unfortunately, for in-medium
condensates of mass dimension 6 this procedure leads to numerous unknown condensates
which are merely used to approximate the magnitude of the heavy-quark condensate, i. e. an

4In medium, four-quark condensates can not be considered solely, but inclusion of corresponding light-quark
condensates in mass dimension 6, which can not be reduced to four-quark condensates, is required in
order to ensure a continuous transition to the vacuum (cf. App. C.3 for technical details).
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3 Medium modi�cations of D mesons

ΠNLO
dim6 =

1

(a)

+

1

(b)

Figure 3.3: Diagrammatic representation of hard-gluon contributions giving tree-level
four-quark condensate terms for the correlator in NLO perturbation theory ∝ α1

s .

inherently small quantity compared to light-quark condensates. Therefore, we neglect such
heavy-quark terms in the present analysis, but provide the description how to generalize
the original vacuum HQE to in-medium situations in Sec. 3.6. Note that we also disregard
higher order light four-quark condensate contributions ∝ g2n with n ≥ 2, such as diagram
(h) in Fig. 3.1.

In the light chiral limit, mq → 0, the exact result reads

Πdim6(p) =
1

3

1

(p2 −m2
Q)2

(
1 +

1

2

m2
Q

p2 −m2
Q

− 1

2

m4
Q

(p2 −m2
Q)2

)
g2〈〈:O1 :〉〉

+
1

9

1

(p2 −m2
Q)3

(
p2 − 4

(vp)2

v2

)[
〈〈:g2O1 −

2

v2

(
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)
:〉〉
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2

v2

(
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)
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2
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2
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g2O2 + 2gO4 − gO7

)
:〉〉
]

− 2

15

1

(p2 −m2
Q)4

(
p4 − 7p2 (vp)2

v2
+ 6

(vp)4

v4

)[ 2

v2
g〈〈:O3 :〉〉

+ 〈〈:g2O1 −
2

v2

(
g2O2 − 2gO3 + 6gO4

)
:〉〉
]

+
1

30

1

(p2 −m2
Q)4

(
p4 − 12p2 (vp)2

v2
+ 16

(vp)4

v4

)
〈〈:g2O1 −

48

v4
O8 :〉〉

− 2
mQ

(p2 −m2
Q)3

(vp)

v2

[
g2〈〈:O9 :〉〉+ 2g (〈〈:O10 :〉〉+ 〈〈:O11 :〉〉)

− 1

3
g〈〈:O12 :〉〉+

1

3
g〈〈:O13 :〉〉

]

+
8

3

mQ

(p2 −m2
Q)4

(vp)

v2

(
p2 − (vp)2

v2

)[
g2〈〈:O9 :〉〉+

3

2
g〈〈:O10 :〉〉

]

− 8
mQ

(p2 −m2
Q)4

(vp)

v4

(
p2 − 2

(vp)2

v2

)
〈〈:O14 :〉〉 , (3.8)

where the operators Ok are listed in Tab. 3.1. The incorporated four-quark operators are
obtained from the perturbative quark propagator exploiting the gluonic EoM (A.19). Even
in medium, the number of such operators is limited, because the EoM predetermines Dirac
and color structures. Current-current correlators with a single quark �avor q form three
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3.3 Four-quark condensate contributions

Table 3.1: List of light-quark operators of mass dimension 6 forming condensates which
enter the results for soft-gluon diagram contributions to Π(2) (cf. Fig. 3.2) emerging from
(3.7b).

∑
f means summing over light-quark �avors u, d(, s). The quantity /v denotes the

medium four-velocity contracted with a Dirac matrix and (vD) its contraction with the
covariant derivative.

k Ok k Ok k Ok

1 q̄γνtAq
∑

f

f̄γνt
Af 6 q̄/vσνµ [(viD), Gνµ] q 11 q̄(vi

←
D)σGq

2 q̄/vtAq
∑

f

f̄ /vtAf 7 q̄i
←
Dµγ5/vGνλqε

µνλτvτ 12 q̄σµν [iDµ, Gνλ] vλq

3 q̄(vi
←
D)σG/vq 8 q̄(vi

←
D)3/vq 13 q̄σνµ [(viD), Gνµ] q

4 q̄(v
←
D)γµGνµv

νq 9 q̄tAq
∑

f

f̄ /vtAf 14 q̄(vi
←
D)3q

5 q̄γν [(vD), Gνµ] vµq 10 q̄σG(viD)q

Table 3.2: List of medium-speci�c light-quark operator combinations in mass dimension
6 incorporating operators related to O1 which already occurs in vacuum.

g2O1 − 2
v2

(
g2O2 − 2gO3 + 6gO4

)

g2O1 − 2
v2

(
g2O2 + gO5

)

2
v2

(
g2O2 + 3gO5 − gO6

)

2
v2 gO3

3g2O1 − 4
v2

(
g2O2 + 2gO4 − gO7

)

g2O1 − 48
v4O8

di�erent four-quark operators (of this origin) according to Eq. (C.118) which are invariant
under parity and time reversal transformations. The corresponding condensates, i. e. 〈〈Ok〉〉
with k = 1, 2 and 9, are classi�ed as full condensates with indices 2v, 2v′ and 2vs in Tab. 1
(for q = f) and with indices 4v, 4v′, 4vs and 6vs in Tab. 2 (for q 6= f) of Ref. [Tho07] which
provides an exhaustive list of independent light four-quark condensates.

Only the �rst line in (3.8) contains the vacuum contribution whereas the remaining
terms are medium-speci�c and consequently must vanish in vacuum [Buc15a]. Furthermore,
it can be shown by consistency arguments alone that the particular linear combinations of
operators collected in Tab. 3.2 must vanish identically in vacuum. This imposes vacuum
constraints as interrelations among the operators of Tab. 3.1, in particular also between
terms which already occur in vacuum, i. e. O1, and those which additionally and exclusively
enter in the medium [Buc16b]. Note that vacuum-speci�c terms additionally exhibit an own
medium dependence. These ideas are presented in Sec. 3.7, while the details on this rather
technical aspect are relegated to App. C.2.
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3 Medium modi�cations of D mesons

In order to test our computational procedure we consider the light four-quark condensate
contributions of pseudo-scalar D mesons in vacuum. Employing the Borel transformation
and a factorization of the four-quark condensates (cf. Section 3.3.3), we recover the result
�rst calculated by Aliev and Eletsky [Ali83] and con�rmed by Narison [Nar01]:

Π̂vac
4q (M) = −16π

27

e−m
2
Q/M

2

M2

{
1− 1

4

m2
Q

M2
− 1

12

m4
Q

M4

}
αsκ0〈q̄q〉20 . (3.9)

The result of Hayashigaki and Terasaki [Hay04] di�ers by a factor of −2 in the second of the
three terms in { · · · } forming the Wilson coe�cient. It is conceivable that they missed one
of the three terms of mass dimension 6 leading to light four-quark condensate contributions
eventually (cf. [Pas84] and the details in App. C.3). In fact, omitting the four-quark term
in (C.116) would recover the result in [Hay04].

Having accomplished the evaluation of the OPE for light-quark condensates in mass
dimension 6, one has to note that, in our expansion scheme, further diagrams contribute in
LO. These are, for example, the gluon condensates depicted in Fig. 3.1 by diagrams (d), (e)
and (f) which deserve separate elaborations beyond the scope of this work.

3.3.2 Chirally odd four-quark condensate in D meson QSR

As stressed in Sec. 3.1, the chiral condensate 〈〈q̄q〉〉 may serve as an order parameter of
spontaneous chiral symmetry breaking (or can constitute an element thereof), since it is not
invariant under chiral transformations. Other quark condensates reveal invariant as well as
non-invariant behavior under chiral transformations, thus, they are dubbed chirally even or
chirally odd condensates, respectively. Four-quark condensates entering the OPE (3.8) are
of both kinds. Since these condensates (cf. Tab. 3.1) are �avor singlet structures, such four-
quark condensates containing exclusively γµ and/or γ5γµ as Dirac structures are invariant
under chiral transformations (B.5). Therefore, the �rst two entries in Tab. 3.1, i. e. 〈〈:O1 :〉〉
and 〈〈:O2 :〉〉, are invariant under chiral transformations (B.5), whereas the condensate

〈〈:O9 :〉〉 ∝ 〈〈: ψ̄RtAψLψ̄L/vtAψL :〉〉+ 〈〈: ψ̄LtAψRψ̄L/vtAψL :〉〉+ (L←→ R) (3.10)

is chirally odd, i. e. it can be turned into its negative, e. g. for |Θa
R−Θa

L|/
√

2Nf = (2k+ 1)π
with integer k and vanishing of the remaining rotation parameters Θb

R,L with b 6= a, cf.
Eq. (B.10). We note that this chirally odd four-quark condensate is medium-speci�c con-
trary to the chiral condensate. The chirally odd nature of 〈〈:O9 :〉〉 can be also deduced from
the di�erence of chiral partner spectra (Weinberg-type sum rules), where the dependence on
chirally symmetric condensates cancels out [Hil11]. Furthermore, the operator O9 emerges
from the commutator (2.104) with the generator of the axial-vector transformation [Tho08a],
similarly to operators providing potential order parameters, e. g. the chiral condensate. Thus,
the chirally odd four-quark condensate contributions may give insight to the breaking pat-
terns of chiral symmetry as well as symmetry restoration scenarios [Hoh12,Hol13,Hoh14].

3.3.3 Estimates of four-quark condensates � factorization

Once the evaluation of the OPE is completed, even in a truncated form and according to
a particular organization of the nested multiple expansion schemes, one needs numerical
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3.3 Four-quark condensate contributions

Table 3.3: List of light four-quark condensates 〈〈:Ok :〉〉, with k = 1, 2 and 9, entering the
result (3.8) in genuine and factorized form. Resulting from the two-quark condensates in
linear density approximation, the third column depicts the density dependent and factorized
four-quark condensates 〈:Ok :〉n, utilized in Sec. 3.4.

〈〈:Ok :〉〉 factorization density dependence

〈〈: q̄γνtAq
∑

f

f̄γνt
Af :〉〉 −2

9
κ0

[
2〈〈: q̄q :〉〉2− 1

v2
〈〈: q̄/vq :〉〉2

]
−4

9
κ0

[
〈: q̄q :〉20

(
1− σN n

m2
πf

2
π

)2
− 9

8
n2

]

〈〈: q̄/vtAq
∑

f

f̄ /vtAf :〉〉 −1

9
κ1

[
v2〈〈: q̄q :〉〉2+〈〈: q̄/vq :〉〉2

]
−1

9
κ1

[
〈: q̄q :〉20

(
1− σN n

m2
πf

2
π

)2
+

9

4
n2

]

〈〈: q̄tAq
∑

f

f̄ /vtAf :〉〉 −2

9
κ2〈〈: q̄q :〉〉〈〈: q̄/vq :〉〉 −1

3
κ2〈: q̄q :〉0

(
1− σN n

m2
πf

2
π

)
n

values of the various condensates. The low mass dimension condensates are constrained
fairly well, even with some debate on the gluon condensates [Shu04]. The mass dimension-6
four-quark condensates are less well investigated. They enter QSRs in di�erent combinations,
as exempli�ed, for instance, in [Tho07] for the nucleon and in [Hil12c] for the ρ meson.

To arrive at some numerical estimates of the impact of the light four-quark condensates
we employ tentatively the factorization hypothesis, being aware of its limited reliability
and lacking foundation [Lau84, Koi93, Leu05, Dru12, Bra15]. Despite the validity of the
factorization ansatz for an in�nite number of colors, its accuracy for QCD is still questionable.
Factorization of four-quark condensates is based on the ground state saturation hypothesis.
Accordingly, only the ground state is assumed to yield a relevant contribution after insertion
of a complete set of hadronic states into the four-quark condensate. In Ref. [Shi79] the
contribution of the lightest hadronic state, the pion state, is estimated as 1/20 of the ground
state contribution. Thus, the four-quark condensate is assumed to factorize into two ground
state EVs of two-quark operators. In a medium, two di�erent two-quark condensates exist,
〈〈: q̄q :〉〉 and 〈〈: q̄γµq :〉〉, where the latter one is employed as 〈〈: q̄/vq :〉〉vµ/v2 after projection
of the Lorentz index. Factorization formulae for in-medium contributions can be found
in [Jin93]. Our investigation uses

〈〈: q̄Γ1t
Aqq̄Γ2t

Aq :〉〉 = −κ(Γ1,Γ2)

36

{
〈〈: q̄q :〉〉2TrD [Γ1Γ2]

+ 〈〈: q̄q :〉〉〈〈: q̄γµq :〉〉 (TrD [Γ1γ
µΓ2] + TrD [γµΓ1Γ2])

+ 〈〈: q̄γµq :〉〉〈〈: q̄γνq :〉〉TrD [γµΓ1γ
νΓ2]

}
, (3.11)

〈〈: q̄Γ1t
Aqq̄′Γ2t

Aq′ :〉〉 = 0 , (3.12)

where Γ1 and Γ2 denote the Dirac structures of the condensates and q 6= q′ = f in Eq. (3.12).
The factors κ(Γ1,Γ2) may be introduced to account for deviations from strict factorization,
which is recovered for κ(Γ1,Γ2) = 1. The relevant expressions are listed in Tab. 3.3.

However, Tab. 3.3 exhibits further issues which arise due to factorization of four-quark
condensates. Condensates originally considered chirally even, such as 〈〈:O1 :〉〉 and 〈〈:O2 :〉〉,
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3 Medium modi�cations of D mesons

factorize into powers of the chiral condensate 〈〈: q̄q :〉〉 which is genuinely chirally odd. Since
factorization changes the behavior of four-quark condensates under chiral transformations,
the transformation properties of the OPE and, therefore, of the (operator product) expanded
correlator are altered. Apart from lacking accuracy, factorization is also disputable with
respect to chiral symmetry. A procedure analog to the one in [Hil12c] can overcome such
artifacts.

3.4 Numerical evaluation

The Borel transform [Fur92,Coh95], cf. App. D, of the light-quark condensate contributions
in the meson's rest frame, pµ = (p0,~0), vµ = (1,~0), and after a Wick rotation p0 = iω, reads

Π̂even
dim6(M

2) =
1

3

e−m
2
Q/M

2

M2

(
1− 1

4

m2
Q

M2
− 1

12

m4
Q

M4

)
g2〈〈:O1 :〉〉

− 1

3

e−m
2
Q/M

2

M2

(
1− 1

2

m2
Q

M2

)[
〈〈:g2O1 − 2

(
g2O2 − 2gO3 + 6gO4

)
:〉〉

− 〈〈:g2O1 − 2
(
g2O2 + gO5

)
:〉〉+ 2〈〈:g2O2 + 3gO5 − gO6 :〉〉

+ 2g〈〈:O3 :〉〉 − 3

2
〈〈:3g2O1 − 4

(
g2O2 + 2gO4 − gO7

)
:〉〉
]

+
1

6

e−m
2
Q/M

2

M2

(
1−

m2
Q

M2
+

1

6

m4
Q

M4

)
〈〈:g2O1 − 48O8 :〉〉 , (3.13a)

Π̂odd
dim6(M

2) =
e−m

2
Q/M

2

mQ

M4

[
g2〈〈:O9 :〉〉+ 2g (〈〈:O10 :〉〉+ 〈〈:O11 :〉〉)

− 1

3
g〈〈:O12 :〉〉+

1

3
g〈〈:O13 :〉〉

]

− 4
e−m

2
Q/M

2

mQ

M4

(
1− 1

3

m2
Q

M2

)
〈〈:O14 :〉〉 (3.13b)

which is the basis of the following numerical evaluation in nuclear matter, i. e. in a particle�
anti-particle asymmetric environment. Accordingly, even and odd parts w. r. t. p0 have been
separated. As described in Subsec. 3.3.1 the medium-speci�c condensates entering the results
(3.13) must vanish for zero nucleon density per construction. This can be satis�ed for the
odd OPE (3.13b) by vanishing of the square bracketed terms and 〈〈:O14 :〉〉, and it implies
non-trivial constraints on the vacuum EVs of operators in the even OPE (3.13a) containing
the medium velocity vµ. These vacuum constraints can be formulated in terms of a system
of linear equations which can be solved and which ensures vanishing of all medium-speci�c
condensates in vacuum, cf. Eqs. (3.24).

As, however, the density dependence of the medium-speci�c light-quark condensates in
mass dimension 6 is still unrestricted, we assume that it is dominated by the four-quark
condensate contribution whose medium dependence can be estimated by factorization (cf.
Tab. 3.3), i. e. only Oi with i = 1, 2 and 9 exhibit a medium dependence 〈〈:Oi :〉〉 = 〈:Oi :〉n.
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3.4 Numerical evaluation

The other condensates are constant w. r. t. density (and temperature) and remain at their
vacuum values dictated by the vacuum constraints (3.24). This reduces the numerical val-
ues of the medium-speci�c condensates to the density dependent terms of the four-quark
condensate contributions of the third column in Tab. 3.3. Furthermore, the factorization
parameters κi are also related via such constraints (C.88). One has κ0(n = 0) = κ1(n = 0).5

In order to indicate the numerical evaluation of Π̂dim6 under these assumptions we introduce
the notation Π̂4q-dom.

Note that we utilize four-quark condensates beyond linear density approximation with the
following reasoning. Taking into account only the linear density terms in the third column
of Tab. 3.3 yields a chirally odd condensate, namely 〈:O9 :〉n, which does not vanish at
higher densities, i. e. exhibits no signals of chiral restoration, in contradiction with the chiral
condensate (2.117). However, employing the linear density approximation to the two-quark
condensates entering the factorized four-quark condensates provides a quadratic density
dependence which overcomes such issues. (It turns out that imposing the above described
constraints and using the linear density dependence of factorized four-quark condensates,
only the odd term carries a medium dependence, whereas the medium dependence of the
even term � including the vacuum speci�c term � completely cancels out.)

Assuming constant κ's w. r. t. density and using the notation 〈Oni 〉 = 〈Oi〉n − 〈O0
i 〉 with

the vacuum part 〈O0
i 〉 = −5−i2

9 κi−1〈q̄q〉20 for i = 1 and 2 the Borel transformed density
dependent result reads

Π̂even
4q-dom(M2) =

1

3

e−m
2
Q/M

2

M2

(
1− 1

4

m2
Q

M2
− 1

12

m4
Q

M4

)
g2〈O1〉n

− 1

3

e−m
2
Q/M

2

M2

(
1− 1

2

m2
Q

M2

)[
2g2〈On2 〉 −

3

2
g2〈3On1 − 4On2 〉

]

+
1

6

e−m
2
Q/M

2

M2

(
1−

m2
Q

M2
+

1

6

m4
Q

M4

)
g2〈On1 〉 , (3.14a)

Π̂odd
4q-dom(M2) =

e−m
2
Q/M

2

mQ

M4
g2〈O9〉n , (3.14b)

where condensates are displayed without normal ordering, since we introduce physical con-
densates by renormalization of the normal-ordered condensates to one-loop level as described
in [Jam93]. According to arguments in [Jam93, Zsc11] for gluon condensates we obtain no
further terms upon renormalization since four-quark condensate contributions are already
of order αs. Note that the vacuum constraints are the minimal requirements for a consistent
vacuum limit. Any more sophisticated medium dependence must go beyond factorization
with constant parameters and/or it also imposes medium dependence to the terms Oi with
i = 3, . . . , 8 and 10, . . . , 14 in Tab. 3.1.

5This relation di�ers from the one provided in Ref. [Buc15b], because here we additionally include the
vacuum constraints (C.72) of four-quark condensates which enter the light meson OPE of the correlator
with the NLO interaction term inserted and assumed universality of these condensates. If only the qQ
OPE is considered the relation of κ0 and κ1 is unrestricted, cf. App. C.2.2. The di�erent κ value does
not alter the meaning of our �ndings or conclusive statements on the numerical impact of four-quark
condensates.
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Figure 3.4: Various contributions to the even OPE part of the qQ sum rule at saturation
density. The red solid curve depicts the perturbative term subtracted by the continuum
contribution of the phenomenological side of the sum rule according to quark-hadron du-

ality, i. e. C̃0 = C0 − 1
π

(∫ ω−
0

−∞+
∫∞
ω+

0

)
dω ω e−ω

2/M2

ImC0(ω2) = 1
π

∫ ω2
0

m2
Q

ds e−s/M
2

ImC0(s),

where we assume ω+
0 = −ω−0 = ω0 for the second equality with the symmetric continuum

threshold parameter ω2
0 = 6 GeV2 (cf. [Hil09]). The green dashed curve is the modulus

of the power correction e−m
2
Q/M

2 ∑6
k=1 c

even
k 〈Ok〉even of the in-medium OPE (3.3a) up to

mass dimension 5 according to [Hil09]. The contribution of the chiral condensate, i. e.

−e−m2
Q/M

2

mQ〈q̄q〉n0
, is shown by the blue dotted curve. The modulus of the four-quark

condensate contribution Π̂even
4q-dom (3.14a) is displayed by the thick solid black curve. For

the curves with sign �ips in the depicted region the left branches originates from negative
values.

Our numerical evaluation employs the values of the condensates including their nucleon
density dependences presented in [Hil09]. We resort here to the four-quark condensate fac-
torization parameters κ0 = κ1 = κ2 = 1, bearing in mind that the actual values may consid-
erably deviate from these assumed values. We use for the heavy-quark mass mQ = 1.5 GeV
and determine the strong coupling from the one-loop result (2.75) with the renormaliza-
tion scale µ = 1 GeV, the dimensional QCD parameter Λ = 0.25 GeV and the number of
light-quark �avors Nf = 3. The nucleon saturation density is n0 = 0.15 fm−3.

Subject to the following investigation is the OPE side of the Borel transformed QSR of
qQ mesons (cf. Eq. (3.3))

Π̂even(M2) = C0 + e−m
2
Q/M

2
6∑

k=1

cevenk (M2) 〈Ok〉even + Π̂even
4q-dom(M2) , (3.15a)

Π̂odd(M2) = e−m
2
Q/M

2
3∑

k=1

coddk (M2) 〈Ok〉odd + Π̂odd
4q-dom(M2) . (3.15b)

Utilizing the spectral density ansatz (2.141), the sum rule analysis up to condensates of mass
dimension 5 shows that the density dependence of the mass centroid for D and D mesons
is mainly determined by the even part, while the mass splitting of the meson�anti-meson
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Figure 3.5: Modulus of the individual contributions to the even (left panel) and the
odd (right panel) OPE (3.3) at saturation density up to mass dimension 5 according to
[Hil09] supplemented by the four-quark condensate contributions exhibited by the solid
black curves and the contours with κ0 = κ1 = κ2 ∈ [0.5, 2]. Using the notation of the
contributions according to the condensates 〈Ok〉even,odd listed below (3.3) for the even
OPE on the left panel the following line code applies: 〈O2〉even � red solid curve, 〈O3〉even �
green dashed curve, 〈O4〉even � blue dotted curve, 〈O5〉even � magenta dot-dashed curve and
〈O6〉even � cyan dot-dot-dashed curve. For the curves with sign �ips in the depicted region,
the left branches originate from negative values. On the right panel the red solid curve
depicts the 〈O1〉odd contribution, the green dashed curve displays the 〈O2〉odd contribution,
where the right branch originates from negative values, and the blue dotted curve shows
the sign �ipped 〈O3〉odd contribution.

pair is in�uenced by the odd part of the OPE [Hil09].6 To get an estimate on the impact of
light-quark condensate contributions in mass dimension 6, especially four-quark condensate
contributions, on the meson properties we compare them to contributions of condensates up
to mass dimension 5.

The QSRs of qQ mesons are governed by the perturbative and the chiral condensate
contributions (cf. Fig. 3.4). The purely perturbative contribution is even more prominent
than displayed in Fig. 3.4, where we already subtracted the continuum contribution of the
spectral density of the sum rule employing the quark-hadron duality (2.128). The continuum
threshold ω2

0, which needs to be chosen to meet stability criteria of the sum rule, is set to the
typical value of 6 GeV2 in our investigation (cf. [Nar05]). The chiral condensate contribution
(blue dotted curve) has the strongest impact on the sum rule among the power corrections
(green dashed curve). However, at typical Borel masses M = 0.9 − 1.3 GeV [Hil09] further
condensates contribute weakly.

The absolute numerical values of light four-quark condensate contributions Π̂even
4q-dom (thick

black solid curve) are two orders of magnitude below the chiral condensate contribution in the
presumed Borel window, due to the heavy-quark mass accompanying the chiral condensate
acting as an ampli�cation factor. Evaluation of individual contributions to the even and odd
OPE exhibited in Fig. 3.5 shows the tendency of decreasing values of the contributions of

6If four-quark condensates are included in linear density approximation into the sum rule their medium
modi�cation e�ects only the odd OPE, and thus only the mass splitting of D and D. The mass centroid
remains una�ected by such four-quark condensate contributions.
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3 Medium modi�cations of D mesons

the condensates with increasing mass dimension. The four-quark condensate contributions
are of mass dimension 6 and therefore the highest order contribution of the evaluated OPE.
Despite varying κ0 = κ1 = κ2 between 0.5 and 2 they are more than one order of magnitude
smaller than most other contributions of the OPE up to mass dimension 5 yielding small
absolute values which supports the convergence of the OPE. Moreover, trusting the order of
magnitude of light four-quark condensate contributions exhibited in Fig. 3.4 lends credibility
to the previous analyses, e. g. [Hil09], which were truncated at mass dimension 5.

Besides four-quark condensates also gluonic condensates contribute additionally to the
in-medium OPE (3.15) in mass dimension 6. Their contributions may numerically in�uence
the OPE as strongly as the presented light-quark condensate terms, thus, they deserve
separate further investigation. We choose the light four-quark condensates to serve as the
starting point for the analysis of the OPE in mass dimension 6, because they are especially
important in other meson sum rules, as stressed above.

3.5 Comparison of four-quark condensates in ρ meson and D
meson sum rules

To compare with the ρ meson OPE neglecting higher-twist terms, where the gluon and four-
quark condensate contributions are of similar magnitude (cf. upper left panel in Fig. 3.6),
we consider the vacuum four-quark condensate term of the D meson (cf. upper right panel
in Fig. 3.6). Its contribution is up to one order of magnitude smaller than the vacuum gluon
condensate term. This order of magnitude di�erence arises from the ρ meson OPE where
the soft-gluon diagrams (d) and (e) in Fig. 3.2 are supplemented by hard-gluon diagrams
(a) and (b) in Fig. 3.3 whose numerical contributions exceed the soft-gluon contributions by
a factor of �ve (cf. left panels in Fig. 3.6) and the gluon condensate term contributes half
as much as the gluon condensate contribution in the D meson sum rule. We argue that this
can be disentangled as follows. While terms proportional to positive integer powers of the
light-quark mass squared are neglected in the ρ meson OPE, analogous heavy-quark terms
signi�cantly contribute to the D meson OPE, where additionally the chiral condensate as
well as the quark-gluon condensate are rede�ned to render the gluon condensate term free
of infra-red mass singularities which is necessary in heavy-light systems [Jam93].

Wilson coe�cients of the OPEs for qQ meson systems exhibit a non-monotonic behavior
for varying Borel mass parameters in contrast to light meson systems, due to the non-
zero heavy-quark mass entering QSRs of heavy-light systems as an additional scale. Non-
negligible terms proportional to positive integer powers of the heavy-quark mass squared (cf.
Eq. (3.9)) lead to roots of the Wilson coe�cient in the Borel mass region near M = 1 GeV
(cf. Fig. 3.5), which is in the Borel window of D meson sum rules resulting in small OPE
contributions for terms with altering Wilson coe�cients, such as light four-quark condensate
contributions.

Studying the ρ meson sum rule in the VOC (Vanishing of chirally Odd Condensates)
scenario (cf. Ref. [Hil12c]), where the mass and/or width of the ρ meson are evaluated in a
hypothetical chirally symmetric world, the omission of medium-speci�c contributions7 is jus-

7Medium-speci�c contributions of the ρ meson OPE are usually denoted non-scalar or higher-twist
terms [Leu98].
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Figure 3.6: Comparison of ρ meson (left panels) and D meson (right panels) contributions
in vacuum (upper panels) and at nucleon saturation density (lower panels). Dashed green
curves denote the gluon condensate contributions and thick solid black curves display the
modulus of light four-quark condensate contributions containing the soft-gluon diagrams
(d) and (e) in Fig. 3.2. The modulus of the four-quark condensate contribution of the ρ
meson from hard-gluon diagrams in Fig. 3.3 is depicted by the dotted red curve.

ti�ed. In such a clear-cut scenario, the chirally odd objects, e. g. the chiral condensate, do not
vanish due to their medium modi�cations, but are set to zero, while the chirally symmetric
condensates retain their vacuum values. In contrast, investigating signals of chiral restora-
tion in the chirally broken world, chirally odd condensates are diminished due to an ambient
medium. Thus, the inclusion of medium-speci�c contributions to the ρmeson OPE is manda-
tory for a consistent in-medium description. Four-quark condensate contributions without
their medium-speci�c parts exhibit an arti�cially strong medium dependence in comparison
with the complete D meson four-quark terms which show a minor medium dependence only
(cf. Fig. 3.6 lower panels compared to upper ones). Furthermore, these medium-speci�c
contributions also contain chirally odd objects, e. g. 〈(ψ̄/vγ5λ

aτ3ψ)2 − (ψ̄/vλaτ3ψ)2〉 trace-
able to the Gibbs averaged twist-4 operator 〈ST (ψ̄γµγ5λ

aτ3ψ)(ψ̄γνγ5λ
aτ3ψ)〉 (with adopted

notation from [Hil12c]). However, identi�cation of such chirally odd objects requires the
decomposition of the non-scalar terms analogous to the procedure presented here for the D
meson and deserves further investigations.
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3.6 Heavy-quark expansion

The heavy-quark expansion (HQE), originally introduced in [Shi79] for the heavy two-quark
condensate 〈Q̄Q〉 in vacuum, is extended here to four-quark condensates and to the in-
medium case, thus going beyond previous approaches to D and B meson QSR analyses,
e. g. [Nar13]. Speci�c formulas are derived and presented in Ref. [Buc14a] which provide
important pieces to a complete QSR analysis of qQ mesons in a strongly interacting medium,
which includes the contributions of the �rst term in Eq. (3.7b) and the four-quark condensate
contributions depicted in Fig. 3.3. While the calculation of the former contribution proceeds
along the lines of App. C.3 the latter contributions originating from the NLO correlator are
derived in Ref. [Buc12].

3.6.1 HQE in vacuum. A recollection

In [Gen84], a general method is developed for vacuum condensates involving heavy quarks
Q with mass mQ. The heavy-quark condensate is considered as the one-point function

〈Ω|Q̄Q|Ω〉 = −i
∫

d4p

(2π)4
〈Ω|Trc,D SQ(p)|Ω〉 (3.16)

expressed by the heavy-quark propagator SQ in a weak, classical, gluonic background �eld
in Fock-Schwinger gauge, cf. Eq. (2.44), which interacts with the complex QCD ground state
via soft gluons generating a series expansion in the inverse heavy-quark mass. The compact
notation (3.16) di�ers from [Gen84], but provides a comprehensive scheme easily extendable
to in-medium condensates. The �rst HQE terms of the heavy two-quark condensate (3.16)
reproduce [Gen84]:

〈Ω|Q̄Q|Ω〉 = − g2

48π2mQ
〈G2〉 − g3

1440π2m3
Q

〈G3〉 − g4

120π2m3
Q

〈(DG)2〉+ · · · (3.17)

=

1

+




1

+

1


 +

1

+ · · ·

with the notation

〈G2〉 = 〈Ω|GAµνGAµν |Ω〉 , (3.18a)

〈G3〉 = 〈Ω|fABCGAµνGB νλGC λµ|Ω〉 , (3.18b)

〈(DG)2〉 = 〈Ω|
(∑

f

f̄γµt
Af

)2

|Ω〉 . (3.18c)

The diagrammatic interpretation of the terms in (3.17) is depicted too: the solid lines denote
the free heavy-quark propagators and the curly lines are for soft gluons whose condensation is
symbolized by the crosses, whereas the heavy-quark condensate is symbolized by the crossed
circles [Bag86]. An analogous expression for the mixed heavy-quark gluon condensate can
be obtained along those lines which contains, however, a term proportional to mQ. The LO
term in (3.17) was employed already in [Shi79] in evaluating the sum rule for charmonia.
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The vacuum HQE method was rendered free of ultra-violet divergent results for higher
mass-dimension heavy-quark condensates by requiring at least one condensing gluon per
condensed heavy-quark [Shi79,Bag85], which prevents unphysical results, where the conden-
sation probability of heavy-quark condensates rises for an increasing heavy-quark mass.

3.6.2 Application of HQE to in-medium heavy-light four-quark condensates

The above method can be extended to in-medium situations. Our approach contains two
new aspects: (i) formulas analogous to equation (3.16) are to be derived for heavy-quark
condensates, e. g. 〈〈Q̄/vQ〉〉, 〈〈Q̄/vσGQ〉〉, 〈〈q̄/vtAqQ̄/vtAQ〉〉, which additionally contribute to
the in-medium OPE and (ii) medium-speci�c gluonic condensates, e. g. 〈〈G2/4− (vG)2/v2〉〉,
〈〈G3/4−fABCGAµνGB νλGC λκvµvκ/v2〉〉, enter the HQE of heavy-quark condensates for both,
vacuum and additional medium condensates.

We are especially interested in heavy-light four-quark condensates entering the OPE of
qQ mesons, inter alia, in terms corresponding to the NLO perturbative diagrams in Fig. 3.3
with one light-quark (q) and one heavy-quark (Q) line cut. There are 24 two-�avor four-
quark condensates in the nuclear medium [Tho07] represented here in a compact notation
by 〈〈q̄ΓTAqQ̄Γ′TAQ〉〉, where Γ and Γ′ denote Dirac structures and TA with A = 0, . . . , 8
are the generators of SU(Nc = 3) supplemented by the unit element (A = 0). We obtain
the analogous formula to (3.16) for heavy-light four-quark condensates:

〈〈q̄ΓTAqQ̄Γ′TAQ〉〉 = −i
∫

d4p

(2π)4
〈〈q̄ΓTAq Trc,D

[
Γ′TASQ(p)

]
〉〉 . (3.19)

The LO terms of this HQE are obtained for the heavy-quark propagators S
(1)

Q (Ã(1))
andS

(2)

Q (Ã(0))

with NLO and LO background �elds, respectively:

〈〈q̄ΓTAqQ̄Γ′TAQ〉〉

= −i
∫

d4p

(2π)4
〈〈q̄ΓTAq Trc,D

[
Γ′TA

(
S

(1)

Q (Ã(1))
(p) + S

(2)

Q (Ã(0))
(p) + · · ·

)]
〉〉

≡ 〈〈q̄ΓTAqQ̄Γ′TAQ〉〉(0) + 〈〈q̄ΓTAqQ̄Γ′TAQ〉〉(1) + · · · (3.20)

=

1

+

1

+ · · · .

Evaluation of the �rst term of the expansion (3.20) for the complete list of two-�avor four-
quark condensates in [Tho07] gives three non-zero results:

〈〈q̄γνtAqQ̄γνtAQ〉〉(0) = −2

3

g2

(4π)2

(
ln

µ2

m2
Q

+
1

2

)
〈〈q̄γνtAq

∑

f

q̄fγνt
Aqf 〉〉 , (3.21a)

〈〈q̄/vtAqQ̄/vtAQ〉〉(0) = −2

3

g2

(4π)2

(
ln

µ2

m2
Q

+
1

3

)
〈〈q̄/vtAq

∑

f

q̄f/vt
Aqf 〉〉 , (3.21b)

〈〈q̄tAqQ̄/vtAQ〉〉(0) = −4

3

g2

(4π)2

(
ln

µ2

m2
Q

− 1

8

)
〈〈q̄tAq

∑

f

q̄f/vt
Aqf 〉〉 , (3.21c)
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where logarithmic singularities are calculated in the MS scheme, µ is the renormalization
scale, and tA = TA for A = 1, . . . , 8. The non-zero contributions for the second term of
(3.20) read

〈〈q̄qQ̄Q〉〉(1) = −1

3

g2

(4π)2

1

mQ
〈〈q̄qGAµνGAµν〉〉 , (3.22a)

〈〈q̄tAqQ̄tAQ〉〉(1) = −1

6

g2

(4π)2

1

mQ
〈〈dABC q̄tAqGBµνGC µν〉〉 , (3.22b)

〈〈q̄γ5qQ̄γ5Q〉〉(1) = −1

4

g2

(4π)2

1

mQ
〈〈iq̄γ5qG

A
µνG

A
αβε

µναβ〉〉 , (3.22c)

〈〈q̄γ5t
AqQ̄γ5t

AQ〉〉(1) = −1

8

g2

(4π)2

1

mQ
〈〈idABC q̄γ5t

AqGBµνG
C
αβε

µναβ〉〉 , (3.22d)

〈〈q̄/vqQ̄Q〉〉(1) = −1

3

g2

(4π)2

1

mQ
〈〈q̄/vqGAµνGAµν〉〉 , (3.22e)

〈〈q̄/vtAqQ̄tAQ〉〉(1) = −1

6

g2

(4π)2

1

mQ
〈〈dABC q̄/vtAqGBµνGC µν〉〉 , (3.22f)

〈〈q̄σµνtAqQ̄σµνtAQ〉〉(1) = −5

6

g2

(4π)2

1

mQ
〈〈fABC q̄σµνtAqGB νλGC λµ〉〉 , (3.22g)

〈〈q̄σµνtAqQ̄σαβtAQgµαvνvβ〉〉(1) = −5

3

g2

(4π)2

1

mQ
〈〈fABC q̄σµνtAqGB ναGC αβvµvβ〉〉 ,

(3.22h)

〈〈q̄γ5γλt
AqQ̄σµνt

AQεµνλτvτ 〉〉(1) = −5

6

g2

(4π)2

1

mQ
〈〈fABC q̄γ5γλt

AqGBαβG
C β

γε
γαλτvτ 〉〉 ,

(3.22i)

where fABC is the anti-symmetric structure constant of the color group and the correspond-
ing symmetric object dABC is de�ned by the anti-commutator (A.5).

3.7 Algebraic vacuum limits of QCD condensates from
in-medium projections of Lorentz tensors

The decomposition of operators with non-trivial Lorentz structure is a crucial step in setting
up any in-medium QSR, as only there the di�erence between vacuum and medium in the
scope of an OPE comes into play. The framework presented in App. C.2 builds on ideas �rst
considered in �nite-density nucleon QSRs [Coh91, Coh92, Fur92, Jin93], where the authors
realized that a tensor decomposition of local operators as needed in OPE evaluations depends
on the available tensors, e. g. the metric tensor gµν and the Levi-Civita symbol εµνκλ. In
a strongly interacting medium the ground state is not Poincaré invariant, but there is an
additional four-vector, the medium velocity vµ, which must be transformed when comparing
observations in di�erent reference frames, and must be included to build tensors or invariants
[Jin93]. Thus, additional condensates give non-zero in-medium contributions which vanish
in vacuum.

The number of Lorentz indices to be projected and the number of decomposition terms
tends to increase with the mass dimension of the operator. As a consequence, one faces the
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Figure 3.7: Left panel: The net-nucleon density dependences of the vacuum-speci�c
condensate 〈〈gq̄γµtAq

∑
f f̄γ

µtAf〉〉 (blue dashed curve) and the medium-speci�c con-

densate 〈〈gq̄γµtAq
∑
f f̄γ

µtAf − 2
v2

(
q̄γα[(vD), Gαβ ]vβq + gq̄/vtAq

∑
f f̄ /vt

Af
)
〉〉 (red solid

curve). Right panel: The individual contributions to the medium-speci�c condensate,
−2〈〈gq̄/vtAq

∑
f f̄ /vt

Af〉〉/v2 (magenta dotted curve), −2〈〈q̄γα[(vD), Gαβ ]vβq〉〉/v2 (green
band, generated by an assumed linear density dependence cn n with cn ∈ [−2, 2]) and
vacuum-speci�c condensate 〈〈gq̄γµtAq

∑
f f̄γ

µtAf〉〉 (blue dashed curve, as in left panel),
which add up to the red solid curve displayed in the left panel for cn = 1.

problem of an increasing number of numerically yet unknown condensates. To overcome this,
condensates may be neglected, if good reasons could be provided, or the corrected vacuum
saturation hypothesis may be employed from the very beginning. However, for the D meson
this naive approach leads to an OPE which does not correctly reproduce the vacuum limit
and consequently would not lead to a continuous dependence of the spectral properties on
density and/or temperature [Hil12b, Buc15a, Buc15b]. The reason is that the additional
medium contribution contains scalar operators that are also contained in the vacuum OPE.
Retaining not the full additional medium contribution prevents a proper cancellation of
terms and destroys the clean vanishing of the medium-speci�c contribution in vacuum. In
this context, it is important to clearly distinguish between the notions of 'medium-speci�c
scalar operator or condensate' on one side and, on the other side, the 'medium dependence of
a condensate': A medium-speci�c scalar operator has a vanishing ground state EV; it only
occurs in the medium. In contrast, a vacuum-speci�c condensate has a non-zero ground
state EV; it already occurs in vacuum. Both have a medium dependence.

To illustrate this important point let us consider an example which is detailed below. In
Fig. 3.7, left panel, the vacuum-speci�c condensate 〈〈gq̄γµtAq

∑
f f̄γ

µtAf〉〉 is exhibited as
a function of the net-nucleon density n by the blue dashed curve. At n = 0 it takes the
value −2.42× 10−4 GeV6. According to our de�nition, this condensate obeys a density de-
pendence, which is deduced here from the squared chiral condensate in nuclear matter. The
according additional in-medium contributions only enter via the medium-speci�c conden-

sate, 〈〈gq̄γµtAq
∑

f f̄γ
µtAf − 2

v2

(
q̄γα[(vD), Gαβ]vβq + gq̄/vtAq

∑
f f̄ /vt

Af
)
〉〉, which vanishes

at n = 0. The individual contributions to the medium-speci�c condensate are the medium
four-quark condensate 〈〈gq̄/vtAq

∑
f f̄ /vt

Af〉〉/v2 = g〈〈O2〉〉/v2, the quark-gluon condensate

〈〈q̄γα[(vD), Gαβ]vβq〉〉/v2 = 〈〈O5〉〉/v2 and the already mentioned vacuum four-quark con-
densate 〈〈gq̄γµtAq

∑
f f̄γ

µtAf〉〉 = g〈〈O1〉〉, cf. the operator combination in the second line

71



3 Medium modi�cations of D mesons

of Tab. 3.2. These contributions, depicted as magenta dotted, green solid and blue dashed
curves, respectively, in the right panel of Fig. 3.7 add up to the medium-speci�c condensate
shown in the left panel (red solid curve).

This example should illustrate how the vacuum-speci�c and medium-speci�c condensates
are interwoven in the formalism presented in App. C.2 which has the bene�t of displaying a
transparent limit T, n→ 0.

Requiring zero ground state EVs of medium-speci�c condensates entering the even qQ
meson OPE, i. e. the operator combinations in Tab. 3.2, imposes constraints on the ground
state EVs of these constituting operators. The obtained interrelations of the components
of medium-speci�c condensates build on an unambiguous identi�cation of these operator
combinations by means of the algebraic decomposition of their Lorentz tensor structure.
Setting the ground state EVs of the medium-speci�c operator combination in Tab. 3.2 to
zero one yields a set of equations which corresponds to the general system (C.65) in the light
chiral limit mq → 0. The solution of the underdetermined qQ meson system of equations,
where we choose the ground state EV

g2〈Ω|O2|Ω〉/v2 = x (3.23)

to be the free parameter of the solution, can be read o� Eq. (C.67) for mq → 0:

g〈Ω|O3|Ω〉/v2 = 0 , (3.24a)

g〈Ω|O4|Ω〉/v2 =
1

12

(
g2〈Ω|O1|Ω〉 − 2x

)
, (3.24b)

g〈Ω|O5|Ω〉/v2 =
1

2

(
g2〈Ω|O1|Ω〉 − 2x

)
, (3.24c)

g〈Ω|O6|Ω〉/v2 =
1

2

(
g2〈Ω|O1|Ω〉 − 4x

)
, (3.24d)

g〈Ω|O7|Ω〉/v2 = − 1

12

(
−7g2〈Ω|O1|Ω〉 − 8x

)
, (3.24e)

〈Ω|O8|Ω〉/v4 =
1

48
g2〈Ω|O1|Ω〉 . (3.24f)

The heretofore unknown condensates 〈Ω|Ok|Ω〉 with k = 3, . . . , 8 are related to the vacuum
four-quark condensate 〈Ω|O1|Ω〉 known from the vacuum QSR. As argued in App. C.2.2
one may choose on grounds of universality of condensates the arbitrary parameter to be
x = g2〈Ω|O1|Ω〉/4 as dictated by the algebraic vacuum limits (C.72) from in-medium light
meson OPEs.

Numerical estimates employing factorization

In order to bene�t from the algebraic vacuum relations (3.24) one might employ the factor-
ization formulae in Tab. 3.3 to arrive at a tentative numerical estimate of the previously
unknown ground state EVs (only non-zero EVs are displayed)

g〈Ω|O4|Ω〉/v2 = − 1

54
(2κ0 − κ1) g2〈Ω|q̄q|Ω〉2 , (3.25a)

g〈Ω|O5|Ω〉/v2 = −1

9
(2κ0 − κ1) g2〈Ω|q̄q|Ω〉2 , (3.25b)
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g〈Ω|O6|Ω〉/v2 = −2

9
(κ0 − κ1) g2〈Ω|q̄q|Ω〉2 , (3.25c)

g〈Ω|O7|Ω〉/v2 =
1

27
(7κ0 − 2κ1) g2〈Ω|q̄q|Ω〉2 , (3.25d)

〈Ω|O8|Ω〉/v4 = − 1

108
κ0g

2〈Ω|q̄q|Ω〉2 , (3.25e)

while the medium dependence of these condensates remains unrestricted.

In Fig. 3.7 we employ the factorization formulae in Tab. 3.3 and Eq. (3.25b) to illustrate
the numerical estimates of the vacuum-speci�c and medium-speci�c condensates occurring
in the in-medium decomposition of the Gibbs average 〈〈q̄γµ[Dν , Gκλ]q〉〉 which enters the
OPE of qQ mesons, cf. App. C.3. After transformation to canonical condensates utilizing
Eq. (C.58) the vacuum-speci�c condensate contained in Eq. (C.56) reads

〈〈gq̄γµtAq
∑

f

f̄γµtAf〉〉

while the medium-speci�c condensate contained in Eq. (C.57) is

〈〈gq̄γµtAq
∑

f

f̄γµtAf − 2

v2

(
q̄γα[(vD), Gαβ]vβq + gq̄/vtAq

∑

f

f̄ /vtAf
)
〉〉

= 〈〈gq̄γµtAq
∑

f

f̄γµtAf〉〉 − 2

v2

(
〈〈q̄γα[(vD), Gαβ]vβq〉〉+ 〈〈gq̄/vtAq

∑

f

f̄ /vtAf〉〉
)
.

(3.26)

The factorized expressions in Tab. 3.3 denote in-medium relations suitable to deduce the
medium dependences of the four-quark condensates from the medium behavior of the two-
quark condensates. In the rest frame, where vµ = (1,~0), one obtains the LO net-nucleon
density dependences of the chiral condensate (2.117) and the in-medium two-quark con-
densate 〈〈q̄/vq〉〉 = 〈〈q†q〉〉 = 3

2n [Jin93]. Accordingly, the involved four-quark terms acquire
the density dependences listed in the last column of Tab. 3.3. However, the EV of the
third constituent of the medium-speci�c condensate (3.26), i. e. the quark-gluon condensate
〈〈q̄γα[(vD), Gαβ]vβq〉〉/v2, is only known in vacuum from the algebraic vacuum limit (3.25b).
We introduce 'by hand' a linear density dependence of this medium condensate modifying
its vacuum value 〈〈q̄γα[(vD), Gαβ]vβq〉〉/v2 = 〈Ω|q̄γα[(vD), Gαβ]vβq|Ω〉/v2 (1 + cn n) with
cn ∈ [−2, 2] to exemplify a potential medium dependence of this particular condensate. The
range of cn is approximately in numerical agreement with the linear density dependences
of the two-quark condensates. Accordingly, the quark-gluon condensate in (dense) nuclear
matter reads

〈〈q̄γα[(vD), Gαβ]vβq〉〉/v2 = −1

9

(
2κ0(0)− κ1(0)

)
g〈Ω|q̄q|Ω〉2 (1 + cn n) . (3.27)

For the parameters we choose κi(n) = κi(0) = 1 for i = 0 and 1 in accordance with relation
(C.88a). The vacuum EV of the chiral condensate 〈Ω|q̄q|Ω〉 = (−0.245 GeV)3 is employed as
well as g =

√
4παs with αs = 0.5. The above derived formulae (3.26) and (3.27) are utilized

to illustrate the important features of vacuum-speci�c and medium-speci�c condensates in
Fig. 3.7.

73



3 Medium modi�cations of D mesons
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Figure 3.8: The modulus of c de�ned in (3.30) as a function of mQ. The red solid, green
dashed and blue dotted curves correspond to µ2 = 0.5, 1 and 2 GeV2, respectively.

Discussion of heavy-quark expansion

Besides light-quark condensates also heavy-quark condensates enter D meson QSRs contain-
ing a light and a heavy quark [Zsc11,Buc12]. Although, these contributions are expected to
have little numerical impact they can be included by means of a HQE, cf. Sec. 3.6. In order
to check the compatibility of the HQE with the full set of algebraic vacuum limits, inter alia
containing heavy-quark condensates with covariant derivatives, the approach presented in
Ref. [Gro95] has to be extended to medium condensates.

We choose the algebraic vacuum constraint (C.72), with Γ′ = 14, T
A = tA and one

q̄ · · · q pair substituted by a Q̄ · · ·Q pair, entering the qQ meson OPE from the correlator
with inserted NLO interaction term [Buc12]

〈Ω|q̄/vtAqQ̄/vtAQ|Ω〉/v2 =
1

4
〈Ω|q̄γµtAqQ̄γµtAQ|Ω〉 (3.28)

as the �rst algebraic vacuum limit deduced by the above formalism to be checked for the com-
patibility with HQE. Utilizing the LO HQE formulae for both sides of Eq. (3.28) separately,
i. e. Eqs. (3.21a) and (3.21b), one obtains from (3.28) upon lim

T,n→0
〈〈· · · 〉〉 = 〈Ω| · · · |Ω〉

〈Ω|q̄/vtAq
∑

f

f̄ /vtAf |Ω〉/v2 =
1 + c

4
〈Ω|q̄γµtAq

∑

f

f̄γµtAf |Ω〉 (3.29)

with HQE compatibility

c =
1

2

(
3 ln

µ2

m2
Q

+ 1

)−1

. (3.30)

However, the algebraic vacuum constraint (C.72), with Γ′ = 14 and TA = tA, entering
the light-quark current OPE is satis�ed solely for c = 0. Instead, c = c(mQ) runs only
logarithmically to zero for increasing heavy-quark masses mQ, as exhibited in Fig. 3.8. Only
in the limit of an in�nite heavy-quark mass the algebraic vacuum limits deduced from
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medium-speci�c condensates are compatible with LO HQE for this speci�c example, albeit
showing strong deviations from c = 0 for experimentally constrained values caused by the
logarithmic HQE terms.

3.8 Interim summary

A systematic evaluation of the current-current correlator within the framework of QSRs leads
to a series of EVs of combined QCD operators multiplied by Wilson coe�cients. The seminal
analysis of the ρ meson [Hat92b] points to the crucial impact of light four-quark operator
structures (cf. [Hil12c,Hoh12,Hol13,Hoh14]). Driven by this insight we have evaluated the
in-medium QSR for pseudo-scalar q̄Q and Q̄q mesons up to mass dimension 6 with emphasis
on light four-quark condensate contributions, thus extending previous studies for vacuum
[Shu82a,Ali83,Nar88,Nar94,Nar99,Nar01,Nar05,Nar13,Hay04] and medium [Hil09,Zsc11].

Due to lacking information on precise numerical values of four-quark condensates, we em-
ployed tentatively the factorization hypothesis to estimate the numerical importance of light
four-quark condensate contributions. In contrast to the ρ meson sum rule, the power cor-
rections of higher mass dimension are obviously consecutively smaller, as mentioned already
in [Rei85] for vacuum and highlighted in [Hil09] for in-medium situations. The heavy-quark
mass in the combination mQ〈q̄q〉 provides a numerically large contribution to the OPE
making it dominating. Having now the exact Wilson coe�cients for light four-quark con-
densates at our disposal their impact for in-medium situations can be quanti�ed: Within
the previously employed Borel window relevant for pseudo-scalar q̄Q and Q̄q excitations the
individual contributions to the even part are one to two orders of magnitude smaller than
most of the other known terms at saturation density. A similar statement holds for the
contributions of the odd part. By comparing to the ρ meson OPE terms we are able to
locate the origin of these order of magnitude di�erences in the D meson contributions: (i)
the absence of light four-quark terms from hard-gluon diagrams and (ii) Wilson coe�cients
altering more strongly with changing Borel mass due to the non-negligible heavy-quark mass.
Despite the small numerical impact of these higher mass dimension contributions, they are
required for a profound estimate of the reliable Borel window: Extending the OPE up to
light-quark condensates of mass dimension 6 delivers the bonus to allow for a better deter-
mination of the Borel window, because the lower limit is constrained by the highest order
OPE terms which must not contribute more than ∼10 % to the OPE [Lei97].

Our presentation makes obvious the avenue for improvements: Insertion of the NLO
interaction term into the correlator provides loop corrections to the Wilson coe�cients for
condensates of lower mass dimension as well as further four-quark condensate contributions
with associated diagrams on tree-level. We emphasize the rapidly growing complexity of
higher order contributions, especially for in-medium situations. Our evaluation of the Wilson
coe�cients of LO αs terms related to light four-quark condensates demonstrates this already.
Including, furthermore, condensation of heavy quarks can be accommodated in the present
formalism, albeit resulting in cumbersome expressions. Probably new methods are needed
for executing the OPE and subsequent evaluation of the sum rules as a complement to `QCD
methods.

Although the numerical impact of light four-quark condensate terms on the OPE proved
to be small, they are structurally important in hadron physics due to their close connection
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to chiral symmetry. Apart from the chiral condensate which serves as an order parameter
of spontaneous chiral symmetry breaking we identify a further chirally odd condensate,
〈〈: q̄tAq∑f f̄ /vt

Af :〉〉, among the four-quark condensate contributions of the pseudo-scalar D
meson sum rule. Chirally odd condensates quantify the di�erence of chiral partner spectra
and can also be studied by Weinberg-type sum rules, proven, e. g. in [Hoh12,Hol13,Hoh14],
as extremely useful when addressing issues of chiral restoration in a strongly interacting
medium.

The physics motivation of the present investigation is clearly driven by the contemporary
interest in open charm (also bottom) mesons as probes of the hot, strongly interacting
medium created in ultra-relativistic heavy-ion collisions. Moreover, the planned experiments
of the CBM and PANDA collaborations at FAIR will study charm degrees of freedom in
proton and anti-proton induced reactions of nuclei and in heavy-ion collisions as well. For
these experimental investigations a solid theoretical basis is mandatory. Among possible
approaches with emphasis on medium modi�cations are QCD sum rules as a method with
intimate contact to QCD.
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4 Chiral partner sum rules

Chiral partner mesons are hadrons coupling to quark currents which mix under chiral trans-
formations and transform into each other under a suitable �nite chiral transformation with
a speci�c set of rotation angels. Embedded in a system that obeys chiral symmetry the spec-
tral densities of chiral partner mesons are degenerate. As chiral symmetry is (dynamically)
broken in nature the spectra may di�er. Studying the di�erences of chiral partner spectra,
thus, allows to probe the breaking pattern of chiral symmetry. Canonically, currents shar-
ing the same internal angular momentum but posses opposite parity are considered chiral
partners. Often the light spin-1 mesons of vector (V) and axial-vector (A) type, e. g. the
ρ and a1 mesons respectively, are investigated while we focus on heavy-light spin-0 mesons,
in particular on pseudo-scalar (P) and scalar (S) D mesons. This chapter is partially based
on Ref. [Buc16a] and builds on notions related to chiral symmetry which are introduced in
App. B and Subsec. 2.3.2.

4.1 Motivation

In the scope of QCD sum rules, where the integrated spectral density of a hadron is re-
lated to QCD condensates, the di�erence of chiral partner spectra is quanti�ed by chi-
rally odd condensates entering with opposite sign. In a scenario of chiral restoration,
which may be realized in a strongly interacting environment, these chirally odd conden-
sates, e. g. the chiral condensate 〈q̄q〉, must vanish. As non-vanishing chirally odd con-
densates necessitate the dynamical breakdown of chiral symmetry, their medium depen-
dence [Hat93, Jin93,Fio12,God13] is of paramount importance [Wei94,Tho06], not only in
the scope of QSRs [Rap99,Rap00,Har06]. However, as the vanishing of a single condensate
does not necessarily imply chiral symmetry restoration (cf. [Kan15] for a recent discussion
of a counter example), a more comprehensive view must be envisaged. The impact of higher
order condensates, in particular of four-quark condensates, on ρ meson and nucleon proper-
ties is well-known [Leu98,Zsc02,Tho07]. In particular chirally odd four-quark condensates
turn out to materially contribute to the spectral shape of the ρ meson [Hil12c].

While probing the degree of DχSB with chiral partners composed of up- and down-
quarks having negligible masses is a promising approach successfully applied to ρ and a1

mesons, studying patterns of DχSB with mesons containing a heavy and a light quark
seems to be superimposed by the explicit symmetry breaking due to the non-negligible
heavy-quark mass. However, the original light-quark problem can be translated into the
heavy-light sector, if the chiral symmetry transformations are restricted to the light-quark
content. As exempli�ed in App. B.3 for the D0 meson, the pseudo-scalar current jP = iūγ5c
can be transformed into the scalar current jS = ūc by a �nite chiral transformation (B.30)
with a speci�c set of rotation parameters (B.32). Thus, the pseudo-scalar and scalar D0

mesons are chiral partners, which would have degenerate spectral properties in a chirally
symmetric world. In contrast, the experimentally veri�ed masses, mP = 1.865 GeV and
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mS = 2.318 GeV, deviate about 450 MeV (in accordance with the a1-ρ mass splitting)
signaling the dynamical breakdown of chiral symmetry which is driven by order parameters
[Hil11,Hil12b,Buc16a], e. g. most prominently by the chiral condensate as well as by chirally
odd four-quark condensates. In order to obtain a comprehensive picture of the landscape
of order parameters of DχSB and their respective relations to the spectra of hadrons and
medium modi�cations thereof, four-quark condensates must also be investigated in the scope
of heavy-light quark mesons.

For instance, in the ρ and ω meson sum rules the chiral condensate contribution is sup-
pressed numerically due to the light-quark mass, i. e. the RGI combination mq〈q̄q〉, whereas
gluon and four-quark condensates are important instead [Tho08b,Rap10]. As a consequence,
numerically relevant chiral symmetry e�ects enter the QSR via chirally odd four-quark con-
densates. Due to the approximation of four-quark condensates by the squared chiral con-
densate these chiral e�ects were mistakenly viewed to by caused by the chiral condensate.
Such artifacts can be overcome if contributions from chirally odd condensate, being poten-
tial order parameters, are separated from chirally even terms [Hil12c]. However, the chiral
condensate has a sizable impact on spectral properties in the heavy-light meson sector, since
the heavy-quark mass acts as an ampli�cation factor, i. e. the scale-dependent combination
mQ〈q̄q〉 enters the QSR (3.3a) [Hil10, Rap11, Zsc11]. The chiral condensate dominates in
fact the contributions to the pseudo-scalar D meson OPE in the region of interest (Borel
window) in vacuum as well as at nucleon saturation density [Hil09, Buc15b]. Thus, the D
meson QSR is highly sensitive to chiral symmetry e�ects mediated by 〈q̄q〉. Chirally odd
four-quark terms enter the Lorentz-odd in-medium OPE of the D meson (3.3b). Although,
these condensates do not substantially contribute to the complete (Lorentz-odd) OPE as
depicted in Fig. 3.5, they have signi�cant impact on Weinberg-type sum rules which are
sensitive to chirally odd condensates only, cf. Sec. 4.3.

While spectral properties of the pseudo-scalar D mesons are experimentally well con-
strained, only limited information on scalar D mesons is currently available. QSR inves-
tigations of these particular mesons exhibit a congruent pattern. Pseudo-scalar D mesons
attracted much attention, where recent studies focus either on precise predictions of spectral
or QCD parameters in vacuum [Nar16] or on medium modi�cations [Gub16,Suz16a], cf. also
the references in Sec. 3.8; whereas scalar D meson QSRs have been rarely analyzed so far,
primarily in the vacuum [Hay04, Nar05, Sun10,Wan15b] or in cold nuclear matter [Hil10].
As the idea of heavy-light mesons as probes of DχSB gains acceptance also further inves-
tigations of chiral partners based on di�erent approaches are performed emphasizing the
role of the scalar D meson, e. g. hadronic model calculations [Sas14] exhibiting approaching
chiral partner D meson masses at high temperatures. Accordingly, we are going to set up
the in-medium QSR for the scalar D meson in order to seek for signals of chiral restoration
at �nite temperatures in a particle�anti-particle symmetric medium.

4.2 Temperature dependences of pseudo-scalar and scalar D
meson properties

The temperature dependences of the masses, residua and decay constants of pseudo-scalar
and scalar D mesons are addressed in this section, where the obtained vacuum results can be
directly compared to decay constants from recent QSR analyses if the interpolating currents
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entering the correlator (2.1) are slightly altered in comparison to Eq. (3.5), for example.
Hence, we use here

jP(x) = ∂µj
µ
A(x) = (mQ +mq)iq̄(x)γ5Q(x) , (4.1a)

jS(x) = i∂µj
µ
V(x) = (mQ −mq)q̄(x)Q(x) (4.1b)

with the canonical de�nition of vector and axial-vector currents, i. e. jµV(x) = q̄(x)γµQ(x)
and jµA(x) = q̄(x)γµγ5Q(x), both being part of weak V − A currents. As demonstrated in
Eqs. (4.1) by employing the quark EoMs, the pseudo-scalar and scalar currents overlap with
jµA and jµV, respectively, admitting a weak decay of the D mesons, e. g. D+ →W+ ∗ → `+ν`.
The pseudo-scalar D meson decay constant fP de�ned as

〈Ω|jµA(x)|P(~p)〉 = ipµfPe
−ipx , (4.2)

analogously to fπ in Eq. (B.19), reappears in

〈Ω|jP(0)|P〉 = fPm
2
P (4.3)

by virtue of Eq. (4.1a), where |P〉 denotes the pseudo-scalar D meson state with mass mP.
Accordingly, the decay constant fP contributes to the leptonic decay width of lepton �avor `

Γ(P+ → `+ν`) =
G2

F

8π
|VQq|2f2

Pm
2
`mP

(
1− m2

`

m2
P

)2

, (4.4)

the numerical value of which can be obtained from the branching ratio Γ(P+ → `+ν`)/Γtot

in [Pat16]. Analogous de�nitions and relations hold for the scalar particle, however, experi-
mental results for the wanted branching fraction of a decay into a speci�c leptonic channel,
Γ(S+ → `+ν`)/Γtot, are not yet available.

1

The Borel transformed in-medium dispersion relations as well as even and odd OPE
formulas for pseudo-scalar currents [Hil09] can be easily rewritten for scalar mesons using
Eqs. (4.20) and (4.21). At �nite temperature but zero baryon density they reduce to

∞∫

0

ds e−s/M
2
ρP,S(s;T ) tanh

(√
s

2T

)
= Π̂P,S(M2;T ) (4.5)

with the �nite-temperature OPE derived in the MS scheme and in the light chiral limit,
mq → 0,

Π̂P,S(M2;T )

=
1

π

∞∫

m2
Q

ds e−s/M
2
ImΠpert(s) + e−m

2
Q/M

2

m2
Q

{
∓mQ〈q̄q〉T +

1

12
〈αs

π
G2〉T

+

[(
7

18
+

1

3
ln
µ2m2

Q

M4
− 2γE

3

)(
m2
Q

M2
− 1

)
− 2

3

m2
Q

M2

]
〈αs

π

(
(vG)2

v2
− G2

4

)
〉T

+ 2

(
m2
Q

M2
− 1

)
〈q†iD0q〉T ±

1

2

(
m3
Q

2M4
− mQ

M2

)(
〈q̄gσGq〉T − 〈∆〉T

)}
, (4.6)

1Although, no charged scalar D meson S+ is listed in [Pat16] its mass is assumed to coincide with the
uncharged D meson mS+ ' mS0 in this work due to iso-spin symmetry. This is also in agreement with
the small SU(3) light-quark �avor breaking [Nar05], i. e. m

S+
s
' mS+ , and supported by analogy to the

pseudo-scalar channel mP+ ' mP0 .
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where the perturbative contribution ImΠpert(s) obtained from Cutkosky's cutting rules can
be found, e. g. in Ref. [Ali83,Zsc11] (mind the interpolating currents there which di�er from
Eq. (4.1a) by the quark mass factors). The quantity µ denotes the renormalization scale
and γE is the Euler-Mascheroni constant. The EVs 〈(αs/π)[(vG)2/v2 −G2/4]〉T , 〈q†iD0q〉T
and 〈∆〉T = 8〈q̄D2

0q〉T − 〈q̄gσGq〉T are medium-speci�c condensates [Buc16b], thus they
vanish at zero temperature by de�nition. Dimension-6 four-quark condensate terms do not
signi�cantly contribute to Π̂P, cf. Fig. 3.4; the same holds true for the scalar OPE. Thus,
we restrict the numerical evaluation to condensates up to mass dimension 5.

Henceforth, the pole + continuum ansatz for the spectral densities, cf. Sec. 2.4, is em-
ployed, because it adequately describes a narrow resonance, e. g. the pseudo-scalar D meson.
The spectral density reads

ρX(s) = RXδ(s−m2
X) +

1

π
ImΠpert(s)Θ(s− sX0 ) , (4.7)

where X denotes either P or S. The residue in vacuum is assumed to satisfy [Nar05,Bor05,
Luc11a]

RX = f2
Xm

4
X , (4.8)

justi�ed by comparison of Eq. (4.7) with the spectral density (2.8) entering the Källén-
Lehmann representation of the current-current correlator (2.1), where a complete set of
hadronic states has been inserted � the lowest resonance with residuum |〈Ω|jX(0)|X〉|2 and
further (multi-particle) excitations combined to the continuum here. In order to render our
results comparable with the �ndings in the above references, we resort to this assumption
at �nite temperatures as well. Employing the ansatz (4.7) the spectral integral in Eq. (4.5)
yields

∞∫

0

ds e−s/M
2
ρX(s) tanh

(√
s

2T

)

= RXe
−m2

X/M
2

tanh
(mX

2T

)
+

1

π

∞∫

sX0

ds e−s/M
2

tanh

(√
s

2T

)
ImΠpert(s) (4.9)

≡ Π̂res
X (M2;T ) + Π̂cont

X (M2;T )

conveniently split into the resonance and continuum parts, Π̂res
X and Π̂cont

X , respectively. The

ratio QSRs (2.134) are utilized to deduce the meson masses from Π̃X = Π̂X − Π̂cont
X while

the residua are obtained from RX = em
2
X/M

2
tanh−1

(
mX/(2T )

)
Π̃X , cf. Eq. (2.135).

The temperature dependence of the phenomenological side due to tanh
(√
s/(2T )

)
, cf.

Eq. (4.5), has only a minor numerical impact. Even for the lowest relevant energies
√
s and

at temperatures as high as the chiral restoration temperature Tχrest ' 0.263 GeV, estimated
by 〈q̄q〉T=Tχrest ' 0 from Eq. (2.116),2 the D meson masses and residua are e�ected on a sub-

percentage level. For Π̂cont
X entering the meson mass formula (2.134) one obtains deviations of

2To conservatively estimate the impact of the tanh-term on the QSR, we choose this rather high value
of Tχrest compared to commonly reported values of ∼ 0.15 GeV. However, it is close to the critical
temperature ∼ 0.27 GeV in pure Yang-Mills theory.
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Table 4.1: List of relevant condensates entering the �nite-temperature OPEs in Eq. (4.6).
The second column contains the vacuum values while the last column provides the tempera-
ture dependent part of the condensates at µ = 1.5 GeV using a RGI chiral condensate µ̂3

q =

(0.251 GeV)3 and the integral de�nitions Bi(z) = 3(3i−1)
π2i

∫∞
z

dy y2(i−1)
√
y2 − z2/(ey − 1)

for i = 1 and 2 [Hat93,Nar13].

condensate vacuum value temperature dependent part

〈q̄q〉T (−0.268)3 GeV
3

(0.268)3 GeV
3 T 2

8f2
π

B1

(mπ

T

)
' 0.278 GeV T 2

〈q̄gσGq〉T 0.8 · (−0.246)3 GeV
5

0.8 · (0.246)3 GeV
5 T 2

8f2
π

B1

(mπ

T

)
' 0.172 GeV3 T 2

〈αs

π
G2〉T 0.012 GeV4 −m

2
π

9
T 2B1

(mπ

T

)
' 0

〈q†iD0q〉T 0
1

8

[
π2

5
T 4B2

(mπ

T

)
− m2

π

8
T 2B1

(mπ

T

)]
· 0.92 ' 0.247 T 4

1− Π̂cont
X /[ 1

π

∫∞
sX0

ds e−s/M
2
ImΠpert(s)] ≤ 1− tanh

(√
sX0 /(2T )

)
≤ 1− tanh

(
mQ/(2Tχrest)

)
'

0.7 % for mQ ∼ 1.5 GeV. The numerical values of the pole residuum RX are altered by

RX/(e
m2
X/M

2
Π̃X) − 1 = tanh−1

(
mX/(2T )

)
− 1 ≤ tanh−1

(
mQ/(2Tχrest)

)
− 1 ' 0.7 % for

mQ ∼ 1.5 GeV. Considering the inherent uncertainties of the QSR framework the factor
tanh

(√
s/(2T )

)
may be safely neglected in the spectral integral kernel.

The numerical evaluations of the QSRs below utilize running QCD parameters in the
MS scheme on two-loop level with µ = 1.5 GeV, i. e. the strong coupling, quark mass and
condensates according to Ref. [Nar13] and the derivations in Subsec. 2.2.2. The needed
RGI quantities are deduced from experimental results listed in Ref. [Pat16]. In partic-
ular, the QCD scale Λ is directly determined from αs(µ = mZ = 91.2 GeV) = 0.1184
and the RGI quark mass m̂Q from mQ(µ = 2 GeV) = 1.275 GeV while the RGI chiral
condensate µ̂3

q employs the GOR relation (B.23) with fπ = 0.093 GeV, mπ = 0.14 GeV
and (mu + md)(µ = 2 GeV) = 0.008 GeV. The temperature behavior of the contributing
condensates, estimated for an ambient non-interacting pion gas, have a sizable impact on
the QSRs. The temperature dependences of numerically relevant condensates are listed in
Tab. 4.1 whereas the medium-speci�c condensates 〈(αs/π)

[
(vG)2/v2 −G2/4

]
〉T and 〈∆〉T

are negligible [Hat93]. The above decay constant fπ and the pion mass in the chiral limit,
mπ = 0, have been used to produce the numerical coe�cients in the last column in Tab. 4.1.

4.2.1 Conventional Borel analysis

In the QSR framework meson masses are evaluated as the average of the particular meson
mass Borel curve (2.134) which shows maximum �atness in the corresponding Borel window.
This window is the Borel mass range where the phenomenological and OPE sides of the
QSR can be reliably matched (to some extent), since it is constructed such that higher
OPE terms do not contribute signi�cantly and the phenomenological spectral density is
dominated by the �rst excitation, cf. Sec. 2.4. The Borel window depends on the actual
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Figure 4.1: Comparison of pseudo-scalar (left panels) and scalar (right panels) D meson
mass contoursmP,S(M, s0) /GeV, in vacuum at T = 0 (upper panels) and at T = 0.15 GeV
(lower panels). The dashed and dotted curves denote the lower and upper Borel window
boundaries, respectively.

numerical restrictions of the particular QSR and, thus, di�ers for scalar and pseudo-scalar
D mesons as well as for distinct temperatures as exhibited in Fig. 4.1.

The pseudo-scalar D meson mass mP(M, s0), depicted in the left panels of Fig. 4.1,
does not produce a �at area within the Borel window. Thus, a standard Borel analysis as
outlined in Sec. 2.4 is not feasible which was already realized in Refs. [Hil09] and [Nar13].
While the authors of the former reference estimate the meson mass from the Borel curve
minimum, accordingly, and focus on medium e�ects, the latter reference resorts to the Borel
mass dependent renormalization scale, µ = M , in order to obtain stable mass Borel curves.
Here, no �nal conclusion about the numerical value of the pseudo-scalar D meson mass is
drawn. However, the contour pattern of the meson mass hardly changes with increasing
temperature (cf. left panels of Fig. 4.1) which might suggest only minor medium e�ects on
the pseudo-scalar D meson mass in a heat bath consisting of non-interacting pions, thus,
pointing to a pseudo-scalar D meson mass which approximately resides in the vicinity of its
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Figure 4.2: Scalar D meson mass contours mS(M, s0) /GeV (left panels), in vacuum at
T = 0 (upper panels) and at T = 0.15 GeV (lower panels). The dashed and dotted curves
denote the lower and upper Borel window boundaries, respectively. For both temperatures,
the maximally �at mass Borel curves (together with the associated Borel averaged masses)
are depicted in the right panels corresponding to the white cuts in the contour plots, where
the optimal continuum threshold parameter can be read o�.

experimentally con�rmed vacuum value of mP = 1.865 GeV, also at �nite temperatures. In
contrast, the scalar D meson mass mS(M, s0), depicted in the right panels of Fig. 4.1, is
exploitable, i. e. there are contour lines displaying approximately horizontal sections within
the Borel window. The relevant contour lines are well above the closing Borel window,
preventing a Borel analysis for s0 < 5 GeV2 in vacuum and s0 < 4.4 GeV2 at T = 0.15 GeV.
The contour plot exhibits changing patterns for �nite temperatures, where the contour lines
with pronounced horizontal section within the Borel window signal a clear downshift of the
scalar D meson mass.

A quantitative more robust analysis can be provided by the conventional approach re-
quiring maximal �atness of the mass Borel curve within the Borel window, cf. Eq. (2.137).
However, the lower limits of the standard Borel window, where the highest order condensate
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Figure 4.3: Temperature dependences of the spectral properties of the scalar D meson,
where the upper panel depicts the mass parameter mS, the lower left panel displays the
residuum RS and the lower right panel shows the decay constant fS from our analysis
(orange solid curve) as well as the temperature dependence of the decay constant deduced
from Eq. (4.10) (brown dashed curve).

term is required to contribute less than 10 % to the OPE, are close to the steep slopes in the
contour plots in Fig. 4.1, i. e. close to the poles of the Borel curves. Hence, they can signi�-
cantly in�uence the meson masses mP,S averaged within the Borel window, because it has a

sizable impact on the value of the continuum threshold sP,S
0 resulting from an optimization of

the Borel curve for maximal �atness. In order to reduce the impact of the steep Borel curve
section spoiling the extraction method of the spectral meson parameters, we choose Mmin

requiring the highest order OPE term to contribute less than 5 % to the complete OPE,
while Mmax is extracted as usually by requiring the continuum to contribute less than 50 %
to the QSR. The results exhibit a mass drop of the scalar D meson. As depicted in the right
panels in Fig. 4.2, calculating the average of the mass Borel curve with optimal continuum
threshold parameter, corresponding to the white cuts in the left panels in Fig. 4.2, yields
the scalar D meson mass mS = 2.355 GeV (experimentally, mexp

S = (2.318± 0.029) GeV, cf.
Ref. [Pat16]) in vacuum which drops to mS = 2.210 GeV at T = 0.15 GeV.

A numerical Borel analysis for continuous temperatures up to 0.15 GeV, where the low-
temperature expansion is assumed to hold [Hat93], yields temperature dependent scalar D
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4.2 Temperature dependences of pseudo-scalar and scalar D meson properties

meson masses mS and residua RS averaged within the Borel window as depicted in Fig. 4.3.
These results exhibiting a scalar D meson mass drop, while the pseudo-scalar D meson
mass remains unaltered, point to approaching chiral partner meson masses for increasing
temperatures, signaling chiral restoration.

The temperature behavior of the scalar D meson mass mD depicted in Fig. 4.3 deviates
from the result calculated from a hadronic e�ective theory incorporating chiral symmetry
breaking terms [Sas14], cf. Fig. 4.7 below. Although, both approaches predict a signi�cant
mass drop at high temperatures, the D meson mass deduced from the e�ective theory remains
almost constant before falling rapidly at T = 0.12 GeV while our QSR evaluations points to
a parabolic temperature dependence. Such behavior is transferred to the respective residuum
RS and decay constant fS which approximately obeys

fS(T ) = fS(0)

(
1− T 2

12[fS(0)]2

)
, (4.10)

cf. Fig. 4.3. In the framework of chiral perturbation theory, this functional form has been
distilled from the LO temperature dependence of the axial-vector correlator at large space-
like momenta determining the pion decay constant fπ, where massless pions have been
assumed, i. e. a two-�avor system which imposes the factor 1/12 [Gas87].

Naively, the di�erent temperature behaviors of the chiral partners may be regarded to
canceling temperature dependences of the condensates in the pseudo-scalar OPE contrasted
by accumulating temperature dependent contributions in the scalar OPE, i. e.

Π̃P,S(M2;T ) = ΠP,S
0 (M2) + ΠP,S

T (M2) (4.11)

with

ΠP,S
0 (M2) =

1

π

sP,S0∫

m2
Q

dω e−ω/M
2
ImΠpert(ω) + e−m

2
Q/M

2

m2
Q

[
∓mQ〈q̄q〉0

+
1

12
〈αs

π
G2〉0 ±

1

2

(
m3
Q

2M4
− mQ

M2

)
〈q̄gσGq〉0

]
, (4.12a)

ΠP,S
T (M2) = T 2B1

(mπ

T

)
e−m

2
Q/M

2

m2
Q

[
± mQ

8f2
π

〈q̄q〉0 +
m2
π

18
+

1

4

(
m2
Q

M2
− 1

)
· 0.92

×
(
π2

5
T 2B2

(
mπ
T

)

B1

(
mπ
T

) − m2
π

8

)
∓ 1

2

(
m3
Q

2M4
− mQ

M2

)
1

8f2
π

〈q̄gσGq〉0
]
, (4.12b)

cf. Tab. 4.1. In the light chiral limit, mπ → 0, the only relevant terms at low temperatures
in Eq. (4.12b) arise from the chirally odd contributions, i. e. the chiral condensate and the
mixed quark-gluon condensate. Hence, no signi�cant cancellation of terms occurs, but the
relevant temperature dependent terms enter the pseudo-scalar and scalar OPEs Π̃P,S with
opposite sign. Since the di�erent temperature behaviors of pseudo-scalar and scalar mesons
cannot be understood by comparing the temperature dependent OPE contributions ΠP,S

T ,
one needs to disclose intermediate steps of the Borel analysis to explain the phenomenon in
the scope of QSRs.
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Figure 4.4: OPE Borel curves of pseudo-scalar (left panel) and scalar (right panel) D
mesons containing condensate contributions up to mass dimension 5 and with �xed con-
tinuum threshold parameters sP,S0 = 7 GeV2 at di�erent temperatures: blue solid curve �
vacuum; green dashed, red dotted, cyan dot-dashed and magenta dot-dot-dashed curves
are at T = 0.05, 0.1, 0.15 and 0.2 GeV, respectively.

In this framework, meson masses are evaluated as the average of the particular meson
mass Borel curve (2.134), which shows maximum �atness in the corresponding Borel window.
The meson mass Borel curves of pseudo-scalar and scalar D mesons feature poles slightly be-
low the Borel window, which lift the mass Borel curve in the Borel window and subsequently
increase the averaged meson mass. These poles originate from zeros of the OPE, entering
the denominator of the mass Borel curve formula (2.134), and are subject to changes at
higher temperatures, which turn out very di�erently for pseudo-scalar and scalar mesons, cf.
Fig. 4.4. While the pole in the pseudo-scalar curve persists, shifted slightly towards lower
Borel masses, the poles of the scalar meson mass Borel curve vanish at high temperatures.
Due to the vicinity of the Borel window the scalar D meson mass is e�ected by such a drastic
temperature behavior of the pole structure of the scalar meson mass Borel curve. Vanishing
of the poles at higher temperatures can be understood from the scalar OPE which drifts
upwards for increasing temperatures featuring no zeros above a particular temperature, cf.
Fig. 4.4.

The vanishing and persistence of zeros of the pseudo-scalar and scalar OPEs can also be
understood if the major OPE contributions at the relevant Borel mass ranges are considered.
In Fig. 4.5 the main contributions to the OPE are depicted: the perturbative term, the chiral
condensate term and the mixed quark-gluon condensate term. The perturbative contribution
remains the same while the condensate contributions decrease with increasing temperature.
In vacuum, the dominant contribution to the OPE at high Borel massM is the perturbative
term consecutively superseded by the chiral and mixed condensate term for lower values ofM .
Due to the downshift of the condensate curves at high temperatures, e. g. T = 0.25 GeV2,
the perturbative term as the dominating term of the OPE is directly superseded by the
mixed condensate term for decreasing M . Depending on the particular signs of the single
condensate contributions this leads to di�erent numbers of zeros of the OPE, as exhibited
in Fig. 4.4.

86



4.2 Temperature dependences of pseudo-scalar and scalar D meson properties

0.4 0.6 0.8 1.0 1.2 1.4

M /GeV

10−4

10−3

10−2

10−1

100

101

102

103
|Π̃

P
|/

(1
0−

4
G

eV
6
)

P D OPEBc contrib

0.4 0.6 0.8 1.0 1.2 1.4

M /GeV

10−4

10−3

10−2

10−1

100

101

102

103

|Π̃
S
|/

(1
0−

4
G

eV
6
)

S D OPEBc contrib

Figure 4.5: Modulus of the major OPE contributions of pseudo-scalar (left panel) and

scalar (right panel) D mesons with �xed continuum threshold parameters sP,S0 = 7 GeV2:
the blue solid curve depicts the perturbative contribution, the green dashed and dot-dashed
curves are the chiral condensates contributions in vacuum and at T = 0.25 GeV, respec-
tively, while the red dotted and dot-dot-dashed curves display the mixed condensate term
in vacuum and at T = 0.25 GeV, respectively. The branches with bullet markers originate
from negative values.

4.2.2 Borel analysis with given meson mass input

The conventional Borel analysis as performed in the previous subsection can be contrasted by
an analysis which utilizes the given meson mass as input and aims for deducing the hadron's
residuum and decay constant. This approach has attracted much attention in recent years
[Bor04,Bor05,Luc11a,Luc11b,Luc14,Gel13,Nar13,Nar16,Wan15b], not only in the realm of
QSRs [Suz16b,Fah16,Dür16], because accurate numerical values of open �avor meson decay
constants could be used to constrain, inter alia, o�-diagonal CKM matrix elements from
weak decays of these mesons, cf. Eq. (4.4). For a pole + continuum ansatz, the continuum
threshold parameter s0 is adjusted to reproduce the given meson mass parameterm from the
respective mass Borel curve (2.134) employing the �atness criterion (2.137). Subsequently,
the Borel averaged residuum R is calculated from Eq. (2.135) with the extracted continuum
threshold parameter and the meson mass. The corresponding decay constant f is readily
obtained from Eq. (4.8).

In order to improve the �atness of the mass Borel curve within the Borel window one
may introduce a Borel mass dependent continuum threshold parameter [Luc10]

s0(M) =

nmax∑

n=0

s
(n)
0

M2n
, (4.13)

where the coe�cients s
(n)
0 are chosen to minimize deviations of the mass Borel curve from

the known actual meson mass according to the requirement (2.137). This approach has
been checked for toy models with potentials, where the spectral information of the lowest
resonance as well as the OPE are precisely known. As an e�ective continuum threshold (4.13)
produces more accurate results than a �xed continuum threshold parameter in these test
cases [Luc09] one may infer that the Borel mass dependent s0 reduces the contamination
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4 Chiral partner sum rules

of the lowest resonance by continuum states, thus, rendering the semi-local quark-hadron
duality (2.128) exact if the �xed value of s0 on the r. h. s. of Eq. (2.128) is substituted by
the M -dependent one [Luc11b]. Due to the M -dependent continuum threshold parameter,
further terms contribute to the derivative sum rule used to determine the mass Borel curve,
i. e. for an original QSR of the form

s0(M)∫

0

ds e−s/M
2
ρres(s) =

1

π

s0(M)∫

m2
Q

ds e−s/M
2
ImΠpert(s) + power corrections (4.14)

the derivative sum rule reads

s0(M)∫

0

ds se−s/M
2
ρres(s)− ρres

(
s0(M)

)
e−s0(M)/M2 ds0(M)

d(1/M2)

=
1

π

s0(M)∫

m2
Q

ds se−s/M
2
ImΠpert(s)− 1

π
ImΠpert

(
s0(M)

)
e−s0(M)/M2 ds0(M)

d(1/M2)

− d

d(1/M2)

(
power corrections

)
. (4.15)

While ρres
(
s0(M)

)
= 0 for a pole ansatz, because we assume m2

h < s0, the continuum
contribution merged with the perturbative term is altered if the derivative of the continuum
threshold parameter w. r. t. 1/M2 does not vanish.

Vacuum

Our studies show that the minimization method yields acceptable results only for a �xed
Borel window and fails for continuum threshold parameter dependent upper Borel window
boundaries Mmax(s0). In Ref. [Luc11b], the �xed Borel window [1.4 GeV, 3.2 GeV] for the
pseudo-scalar D meson QSR is determined requiring that the power corrections do not exceed
a contribution of 30 % to the OPE (sets Mmin) and that the resonance contribution to the
spectral integral does not fall below 10 % (sets Mmax). However, at the lower boundary the
continuum already contributes 50 % to the spectral strength causing a closed Borel window
determined from standard criteria [Lei97].

Table 4.2: Continuum threshold coe�cients s
S(n)
0 of the Borel mass dependent continuum

threshold parameter sS0 obtained from minimization requirement (2.137) with the actual
scalar D meson mass input. The corresponding Borel curves are depicted in Fig. 4.6.

nmax s
S(0)
0 /GeV2 s

S(1)
0 /GeV4 s

S(2)
0 /GeV6 s

S(3)
0 /GeV8

0 7.4371
1 7.5009 0.00012
2 7.4755 −0.00026 0.00029
3 7.3781 −0.00661 0.01040 −0.00535
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Figure 4.6: Vacuum scalar D meson mass Borel curves (left panel) for M -dependent
continuum threshold parameters (4.13) with minimized deviations from the actual meson
mass depicted by the solid horizontal line. The blue solid, green dashed, red dotted and cyan
dot-dashed curves correspond to continuum thresholds with the degree of the polynomial
ansatz nmax = 0, 1, 2 and 3, respectively, where the numerical values of the coe�cients
are listed in Tab. 4.2. The residuum and decay constant Borel curves depicted in the right
panel are associated with the mass Borel curves in the left panel, i. e. the same color code
applies. The vertical dashed and dotted lines denote the lower and upper Borel window
boundaries.

To reduce the impact of the continuum on the spectral properties of the scalar D meson
resonance the Borel window from the conventional analysis, [1.2 GeV, 2 GeV], cf. Fig. 4.2
upper left panel, has been utilized to obtain the results in Fig. 4.6. The mass Borel curves
for increasing degree polynomials contributing to the M -dependent continuum threshold
parameter adapt closer to the actual scalar D meson mass, indeed. However, the tendency
of rising residuum and decay constant values for increasing nmax as reported in [Luc11a] for
pseudo-scalar D mesons do not occur in the scalar channel. While vacuum scalar D meson
decay constants deduced from a QSR with perturbative term in order α2

s are reported to
reside in the range of fS = 0.217 − 0.221 GeV in Refs. [Nar05, Nar16] the determination
[Col91] building on the perturbative term in order αs, used throughout this thesis, yield
fS = 0.17 GeV which is compatible with our �ndings depicted in the (lower) right panel of
Fig. 4.6 (Fig. 4.7).

Medium

Extracting the decay constant from a �xed meson mass by adjusting multiple coe�cients of
a Borel mass dependent continuum threshold is also viable in a strongly interacting medium
if the temperature and/or net-baryon density dependence of the respective meson is at our
disposal. Due to lacking experimental information available temperature dependent D meson
masses may serve as input, which are calculated from an e�ective theory comprising chiral
symmetry breaking terms [Sas14].
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Figure 4.7: Temperature dependences of the scalar D meson mass (upper panel), residuum
(lower left panel) and decay constant (lower right panel). The blue solid, green dashed, red
dotted and cyan dot-dashed curves correspond to continuum thresholds with the degree of
the polynomial ansatz nmax = 0, 1, 2 and 3, respectively. The light gray thick curve in the
upper panel depicts the input mass parameters calculated in Ref. [Sas14].

We studied various Borel window con�gurations building on the vacuum and T =
0.15 GeV Borel windows from the 'orthodox analysis',3 cf. Fig. 4.2, e. g. temperature in-
dependent intersection and union of the two Borel windows, or a simple construction where
the lower boundary changes linearly from its vacuum value Mmin(T = 0) ' 1.2 GeV to
Mmin(T = 0.15 GeV) ' 1.1 GeV and Mmax alike. The extracted numerical values are sensi-
tive to the de�nition of the temperature dependent Borel window or even produce implausible
optimization results for the degree nmax = 3 of the polynomial ansatz (4.13). Reliable nu-
merical results, displayed in Fig. 4.7, are obtained with the temperature independent Borel
window adopted from the evaluation in vacuum.

The temperature dependent scalar D meson masses mS are well reproduced from the
QSR analysis, where the curves adapt more closely to the input meson mass for increasing
nmax. For rising temperatures the residuum RS increases 5 % at T = 0.12 GeV before falling

3In accordance with the vacuum evaluation, s0-dependent upper Borel boundaries Mmax(s0) obstruct the
optimization procedure also at �nite temperatures. Hence, a �xed Borel window has to be deployed for
each temperature. The Borel windows from the conventional analysis can provide a rough estimate only,
because they refer to an optimized continuum threshold parameter at a given temperature.
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4.3 Weinberg sum rules

o� rapidly. The associated temperature behavior of the decay constant fS exhibits a similar
pattern, but with more pronounced increase up to T = 0.12 GeV. While the decreasing
residuum RS = |〈Ω|jS(0)|S〉|2 � signaling the decoupling of the quark current from the
meson states � is a prerequisite for decon�nement at high temperatures, the decrease of the
decay constant fs seems counter-intuitive, because it dominates the temperature behavior
of the decay rate ΓS, cf. Eq. (4.4), corresponding to the meson's (partial) width which is
expected to grow in a strongly interacting environment, cf. the ρ meson in [Rap97,Kli97,
Fri97, Pet98, Pos04, Kwo08]. Considering the relation (4.8) one may attribute the fall of
the decay constant for rising temperatures to the scalar D meson mass, decreasing not fast
enough to counteract the decreasing residuum; or vice versa, a too rapid fall of the residuum
which can not be compensated by the decreasing meson mass causes the dropping decay
constant.

4.3 Weinberg sum rules

The Weinberg sum rules (WSRs), originally deduced from current algebra [Wei67b],

∞∫

0

ds s−1ρV−A(s) = f2
π , (4.16a)

∞∫

0

ds ρV−A(s) = −2mq〈q̄q〉 , (4.16b)

∞∫

0

ds sρV−A(s) = 2παs〈Oχodd
4q 〉 (4.16c)

link moments of the di�erence of vector and axial-vector meson spectra, ρV−A = ρV−ρA, to
order parameters of chiral symmetry, i. e. the pion decay constant fπ, the chiral condensate
〈q̄q〉 and chirally odd four-quark condensates 〈Oχodd

4q 〉. In this spirit, chirally odd condensates
being order parameters of DχSB quantify the di�erence of chiral partner spectra. The
moments (4.16) are sensitive to single order parameters and hence overcome the shortcomings
of channel-speci�c QSRs where a multitude of condensates enters blurring the contribution
of a particular order parameter, i. e. allowing for its extraction with limited accuracy only.
Since the WSRs solely quantify DχSB e�ects whereas the standard QSRs are channel-speci�c,
they provide independent information [Hoh14].

WSRs at �nite temperature T were �rst formulated in Ref. [Kap94] by subtracting the
vector and axial-vector in-medium QSRs from one another, Taylor-expanding the Borel
exponential, and equating powers of the squared Borel mass M2 on each side of the sum
rule. Such di�erence sum rules attract much attention, because they can be utilized to
investigate the medium behavior of vector and axial-vector spectral functions in the light-
meson sector building on the well constrained ρ and a1 vacuum spectral densities [Bar98] and
the (in principle) experimentally accessible ρ spectrum in a strongly interacting environment
[Aga12, Sal13]. Thus, the WSRs of the chiral partner mesons ρ and a1 have been studied
extensively, e. g. to study chiral restoration driven by the order parameters of chiral symmetry
[Hoh14, Aya14], to further restrict spectral functions containing more than one low-lying
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4 Chiral partner sum rules

resonance [Hoh12] as well as to check their compatibility with chiral mixing [Hol13] and
hadronic models [Kwo10].

4.3.1 Extending Weinberg-type sum rules for spin-0 heavy-light mesons

According to the arguments of Sec. 4.1, one can derive in-medium Weinberg-type sum rules
along the lines of Ref. [Kap94] as di�erences of chiral partner QSRs of heavy-light mesons
in the V −A (spin-1) as well as in the P− S (spin-0) channels [Buc16a]

∞∫

−∞

dω
ρc.p.(ω, ~p)

ω − p0
tanh

( ω
2T

)
= Πc.p.(p0, ~p) , (4.17)

where the subscript 'c.p.' symbolizes either V −A or P− S, and ΠV−A,P−S = ΠV,P − ΠA,S

with contracted Lorentz indices in the spin-1 channels is understood. The quantities ΠV,A,P,S

denote current-current correlators (2.1) de�ned with vector, axial-vector, pseudo-scalar and
scalar interpolating currents, jX = q̄1ΓXq2 with ΓX ∈ {γµ, γµγ5, iγ5,14}, respectively, cf.
Eqs. (B.15)�(B.18) with a suitable combination of �avor matrices τa and 1Nf

.

Considering the di�erence of chiral partner QSRs considerably reduces computational
e�orts, because chirally even terms cancel in the chiral di�erence OPE Πc.p., in particular
perturbative contributions and gluon condensates, cf. Fig. 3.1 diagrams (a)�(f). Thus, to

LO in the strong coupling the fully Wick-contracted term Π
(0)
c.p. does not yield chirally odd

terms but they exclusively enter from the two-quark term Π
(2)
c.p., where the notation Πc.p. =

Π
(0)
c.p. + Π

(2)
c.p. is adopted from the decomposition of the pseudo-scalar correlator due to the

application of Wick's theorem (3.6). Furthermore, the projection of the Dirac structure of
occurring anti-commutators incorporating the quark propagators S1,2 and the Dirac matrix
γ5 onto basis elements Γ of the Cli�ord algebra yields vanishing projection coe�cients, cf.
App. C.1.1. Hence, the chiral partner two-quark terms read [Hil11]

Π
(2)
V−A(p) = −

∑

n

(−i)n
n!

2

{14,iγ5}∑

Γ

〈〈: q̄1

←
D~αnΓ∂~αn

(
TrD[ΓS2(p)]

)
q1

+ q̄2Γ∂~αn
(
TrD[ΓS1(−p)]

)
D~αnq2 :〉〉 , (4.18)

Π
(2)
P−S(p) = −

∑

n

(−i)n
n!

1

2

{14,σα<β ,γ5}∑

Γ

〈〈: q̄1

←
D~αnΓ∂~αn

(
TrD[ΓS2(p)]

)
q1

+ q̄2Γ∂~αn
(
TrD[ΓS1(−p)]

)
D~αnq2 :〉〉 , (4.19)

where the full quark propagators S1,2 are approximated by the perturbative propagators
according to Eq. (2.44). As we are particularly interested in spin-0 chiral partner D mesons
we exploit Eq. (4.19) with q1 = q and q2 = Q, as well as S1,2 = Sq,Q correspondingly, in the
light chiral limit, mq → 0.

Evaluation of in-medium sum rules distinguishes even and odd parts of the OPE with
respect to the meson energy p0, cf. Eqs. (2.19) and (2.20), allowing for a Borel transformation
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4.3 Weinberg sum rules

Πeven,odd
c.p. (Q2) −→ Π̂even,odd

c.p. (M2) after a Wick rotation p0 = iQ. In the mediums's rest frame,
vµ = (1,~0), for qQ mesons at rest, we are able to extend the previous �ndings in the P− S
channel contributing solely to the even OPE [Hil11,Hil12b]

∞∫

−∞

dω ωe−ω
2/M2

tanh
( ω

2T

)
ρP−S(ω) = Π̂

(2) even
P−S (M2)

= e−m
2
Q/M

2

[
− 2mQ〈〈q̄q〉〉+

(
m3
Q

2M4
− mQ

M2

)(
〈〈q̄gσGq〉〉 − 〈〈∆〉〉

)]
(4.20)

to mass dimension 6 by adding the chirally odd four-quark condensate contribution occurring
in the odd OPE

∞∫

−∞

dω e−ω
2/M2

tanh
( ω

2T

)
ρP−S(ω) = Π̂

(2) odd
P−S (M2)

=
2e−m

2
Q/M

2

mQ

M4
g2〈〈q̄tAq

∑

f

f †tAf〉〉 . (4.21)

The expectation value 〈〈q̄gσGq〉〉 is the mixed quark-gluon condensate of mass dimension 5
and 〈〈∆〉〉 = 〈〈q̄gσGq〉〉 − 8〈〈q̄D2

0q〉〉 [Hil11] stands for a medium-speci�c condensate [Buc15a]
of mass dimension 5. In contrast to the original WSRs (4.16) for light spin-1 chiral partner
mesons, moments of the spectral density ρc.p of qQ mesons do in general not depend on a
single order parameter, but higher spectral moments contain the full set of chirally odd con-

densates of the previous moments, due to the common exponential factor e−m
2
Q/M

2

entering
the OPE of qQ mesons. Thus, if heavy-light mesons are considered, an analysis of the Borel
mass dependent chiral partner sum rules in a reasonable Borel range is to be preferable to an
evaluation of the corresponding Weinberg-type sum rules, which are derivatives of the chiral
partner sum rules w. r. t. 1/M2 evaluated at 1/M2 = 0 and lack the bene�cial sensitivity to
single order parameters.

4.3.2 Comments on chirally odd condensates

Pseudo-scalar D and B meson sum rule analyses in the nuclear medium [Hil09] show that
the odd OPE drives the mass splitting of D(B) and D(B) mesons. However, at zero nucleon
density, particles and anti-particles are degenerate even at �nite temperature involving a
vanishing odd OPE (4.21). Although, this requires a zero chirally odd four-quark condensate,
chiral symmetry is not restored since the chirally odd condensates entering the even OPE
(4.20) do not vanish per se. Therefore, chiral symmetry restoration does not emerge by
vanishing of a single chirally odd condensate, but requires vanishing of all chirally odd
condensates. A recent study [Kan15], which is based on a particular DχSB pattern described
below, substantiates this insight.

Inspired by spontaneous magnetization e�ects in (anti-)ferromagnets breaking the rota-
tion symmetry of the spin systems [Kne94], an alternative pattern of DχSB in QCD has
been outlined in Ref. [Ste98] leading to a vanishing chiral condensate while further order
parameters, e. g. the pion decay constant and the mixed quark-gluon condensate, remain

93



4 Chiral partner sum rules

non-zero. The regime considered in [Ste98] is natural if the pattern of DχSB is not the
conventional SU(Nf)V × SU(Nf)A → SU(Nf)V but rather the unorthodox [Kog99]

SU(Nf)V × SU(Nf)A → SU(Nf)V × Z(Nf)A , (4.22)

where Z(Nf)A denotes the axial center symmetry group associated with the transformations
ψ −→ ψ′ = e2πiγ5k/Nfψ and k = 1, . . . , Nf . As the chiral condensate is not invariant under
these transformations, the vanishing of 〈q̄q〉 in the chiral limit is ensured by the unbroken
Z(Nf)A symmetry [Kog99]. At this point it is evident that, to obtain a discriminating
order parameter, probing solely a single symmetry, it must be invariant under all further
symmetry transformations. In a scenario resembling the DχSB pattern (4.22) particular
four-quark condensates can serve as meaningful chiral order parameters [Kog99]. Although,
this explicit breaking pattern can not be ruled out by means of rigorous QCD inequalities,
based on Cauchy-Schwarz inequalities of correlators composed of axial and pseudo-scalar
currents, it is unlikely to be realized in nature as the inequalities are not satis�ed for all
energies, also at non-zero temperatures [Kog99]. However, at �nite net-baryon densities the
breaking pattern (4.22) is conceivable [Kan15]. Although, these studies address particular
phases with zero chiral condensate but further non-vanishing order parameters, while we
are concerned with zero chirally odd condensates, vanishing due to their medium-speci�c
character, they still emphasize the vital point that vanishing of single order parameters is
insu�cient to verify chiral restoration.

All chirally odd condensates of a certain mass dimension dimm appear either in the even
or in the odd OPE of the LO correlator, i. e. they have either an even or odd Lorentz tensor
rank n. The four-quark condensate given e. g. in Eq. (4.21) is a particular example of a
condensate which is characterized by its non-trivial chiral transformation properties, similar
to the famous chiral condensate 〈q̄q〉, as an order parameter of DχSB. However, as it is a
Lorentz-odd condensate, it must be zero at any temperature for zero net density if particle
and anti-particle are to remain degenerate (see App. C.2.2). This exempli�es why the vanish-
ing of a chirally odd condensate, such as the chiral condensate, is not a su�cient condition
for chiral symmetry restoration if only the non-trivial chiral transformation properties of
such a condensate are taken into account [Hil16].

The exclusive occurrence of chirally odd condensates with �xed mass dimension either
in the even or in the odd OPE can be deduced from chiral partner OPEs, where chirally
even condensates cancel. In the EVs of Eqs. (4.20) and (4.21), only elements of the Cli�ord
algebra Γ with an even number of Lorentz indices enter:

Π(2)
c.p. ∝

∑

k,l,m

{14,σα<β ,γ5}∑

Γ

〈q̄
←
Dα1 · · ·

←
DαkΓS(Dµ1 , . . . , Dµl ;Gν1λ1 , . . . , Gνmλm)q〉 , (4.23)

where the mass dimension dimm of the EV is given by dimm = 3+k+ l+2m.4 In the above
relation S denotes a term of the expansion of the perturbative quark propagator (2.44) in
a classical, weak, gluonic background �eld speci�ed by l and m. It is merely a function of
the �eld strength tensor and derivatives thereof. Thus, the Dirac matrices Γ do not alter

4A more detailed mass formula which is based on the order of the quark �eld expansion and the expansion
of the perturbative quark propagator can be found in [Hil12a]. Note that Eq. (4.23) holds true solely for
quark condensates from the correlator in LO αs.
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the spin parity of the EV. Since the number of Lorentz indices and the order of the mass
dimension are increased by the same integer if Gµν and Dµ are added, one can stick with the
mass dimension of the individual operators contributing to the EV to determine the rank
of this Lorentz tensor. Hence, the Lorentz tensor rank of the EV is n = dimm−3, where 3
is the mass dimension of the two quark operators. From relation (4.23) we, therefore, infer
that all chirally odd condensates of the �xed mass dimension dimm enter the odd (even)
OPE with respect to the meson energy p0, due to their odd (even) tensor rank n. At this
point it becomes apparent, that chirally odd condensates in mass dimension 6 originating
from the LO correlator must enter the chirally odd OPE. Hence, these contributions do not
directly extend the open �avor chiral sum rule (4.20) calculated in [Hil11], which includes
even OPE contributions with condensates of mass dimension 3 and 5, but they establish
an associated open �avor chiral sum rule (4.21) containing condensates with even mass
dimension originating from the correlator in LO αs.

4.4 D meson properties from chiral partner sum rules

In order to assess the compatibility of chiral partner sum rules with qQ meson phenomenol-
ogy, we need the pseudo-scalar and scalar D meson spectral functions, provided by experi-
mental data or hadronic models. As chiral partner sum rules quantify the degree of DχSB
one is tempted to check whether the temperature dependences of the involved spectral
functions are consistent with the in-medium P−S sum rule (4.20) which exhibits signals of
chiral restoration for increasing temperatures. Currently, there are no experimental �nite-
temperature spectral functions of D mesons available. However, the recent hadronic model
of chiral partner heavy-light mesons from Ref. [Sas14] provides temperature dependent D
meson masses, but no further information about the spectral functions. The incomplete
spectral information obstructs the desired consistency check, i. e. even if we resort to the
pole + continuum ansatz (4.7) for both particles employing the given meson masses mX

and degenerate continuum threshold parameters sX0 residing at high energies, where chi-
ral symmetry is assumed to hold, the unrestricted chiral partner residua RX prohibit the
quanti�cation of the phenomenological side of the chiral partner sum rule.5

Although the temperature dependence of the chiral partner D meson masses [Sas14]
is insu�cient to check the compatibility of the underlying hadronic model with the chiral
partner sum rules they can be utilized to determine the meson residua and corresponding
decay constants from the P−S sum rule and its �rst derivative w. r. t. 1/M2. To derive
comparable results for the decay constants extracted in recent vacuum QSRs we consider
also here the spin-0 currents (4.1) deviating from the ones de�ned below Eq. (4.17) by the
quark mass factors. The experimental value of the relevant leptonic branching fraction
(listed in Ref. [Pat16]), which corresponds to the decay constant and the residuum of the
pseudo-scalar D meson in vacuum, agrees with the results in Ref. [Nar13]. However, such
valuable experimental information is not available for the broad scalar D meson. In order
to treat scalar as well as pseudo-scalar particles on the same footing, in particular at �nite

5Extraction of the needed parameters from channel-speci�c QSRs does not cure the problem, because these
parameters always yield spectral functions which perfectly satisfy the chiral partner sum rules, displaying
the consistency of the QSR framework, thus, obscuring the compatibility check provided by chiral partner
sum rules.
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temperatures, where no data is available, we use the pole + continuum ansatz (4.7) and
the continuum threshold parameters are determined from channel-speci�c QSRs for pseudo-
scalar and scalar D mesons separately. Hence, the �nite-temperature P− S sum rule (4.20)
reads

RPe
−m2

P/M
2 −RSe

−m2
S/M

2
+

sS0∫

sP0

ds e−s/M
2
ImΠpert(s) = Π̂

(2) even
P−S (M2)

= m2
Q e
−m2

Q/M
2

[
−2mQ〈q̄q〉T +

(
m3
Q

2M4
− mQ

M2

)(
〈q̄gσGq〉T − 〈∆〉T

)]
, (4.24)

where the temperature dependent tanh-term in the spectral integral kernel has been ne-
glected as argued in Sec. 4.2. After taking the derivative w. r. t. 1/M2 of the phenomenolog-
ical and OPE sides, solving for the residua yields

RP(M) = m2
Qe

(m2
P−m2

Q)/M2

[
− 2mQ

m2
Q −m2

S

m2
P −m2

S

〈q̄q〉T

+

(
m3
Q

2M4

m2
Q −m2

S

m2
P −m2

S

− mQ

M2

2m2
Q −m2

S

m2
P −m2

S

+
mQ

m2
P −m2

S

)(
〈q̄gσGq〉T − 〈∆〉T

)]

− 1

π

sS0∫

sP0

ds
s−m2

S

m2
P −m2

S

e(m2
P−s)/M2

ImΠpert(s) , (4.25a)

RS(M) = −m2
Qe

(m2
S−m2

Q)/M2

[
− 2mQ

m2
Q −m2

P

m2
S −m2

P

〈q̄q〉T

+

(
m3
Q

2M4

m2
Q −m2

P
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P
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Q −m2
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+
1

π

sS0∫

sP0

ds
s−m2

P

m2
S −m2

P

e(m2
S−s)/M2

ImΠpert(s) . (4.25b)

Using the numerical condensate values in Tab. 4.1 as well as the temperature dependences
of mP,S from Ref. [Sas14], these chiral partner sum rule is evaluated in the overlap Borel
window of the channel-speci�c P and S sum rules, i. e. we average the resulting residuum
Borel curves (4.25) in

[MP−S
min ,M

P−S
max ] = [MP

min,M
P
max] ∩ [MS

min,M
S
max] (4.26)

to obtain the residua for the pseudo-scalar and scalar D mesons, which can be readily
converted to the respective decay constants by virtue of Eq. (4.8).

We obtain the results depicted in Fig. 4.8. The pseudo-scalar D meson residuum RP

hardly changes with rising temperature as suggested by the conventional QSR analysis
demonstrating an insensitivity against temperature e�ects. However, the corresponding
decay constant fP being the mP(T )-rescaled square root of the residuum seems to acquire a
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Figure 4.8: Temperature dependences of residua (left panel) and decay constants (right
panel) of pseudo-scalar (blue solid curve) and scalar (green dashed curve) D mesons from
chiral partner sum rules.

mild temperature dependence. Its vacuum value, fP(T = 0) = 0.201 GeV, is in agreement
with previous �ndings [Luc11b,Nar13]. In contrast, the scalar D meson residuum RS and
decay constant fS exhibit stronger temperature dependences. In fact, the resulting curves
are similar to the ones with M -dependent continuum threshold, cf. Fig. 4.7, as these evalu-
ations share the same input parameters, albeit a less pronounced fall of the residuum above
T = 0.12 GeV leads to a higher decay constants towards the upper end of the depicted tem-
perature range. Although, the approaching chiral partner D meson masses have been used
as an input to the chiral sum rules (4.25) the corresponding decay constant curves diverge
for T > 0.12 GeV after showing signals of partial chiral restoration. However, the residua
directly entering the pole ansatz of the spectral density exhibit approaching curves for higher
temperatures in accordance with the D meson masses. Thus, their behavior accumulates
indications for chiral symmetry restoration in a strongly interacting medium which would be
characterized by degenerate chiral partner spectra. The discrepancy might be attributed to
the decay constant quantifying a speci�c leptonic decay mode while modi�cations of spectral
densities due to chiral symmetry restoration a�ect all decay channels contributing to the
total width of the respective meson. Thus, as the leptonic decay constants do not dominate
the decay properties of the D mesons, the residua parameterizing the spectral densities in a
comprehensive manner are better suited to judge implications of the medium modi�cations
of D mesons.

4.5 Interim summary

Besides con�nement, chiral symmetry is the central phenomenon of QCD because it provides
a mass generating mechanism giving essentially mass to the light hadrons. As this mechanism
is based on a spontaneous symmetry breaking principle the chiral symmetry breaking pattern
as well as its restoration in a strongly interacting medium are subject to a large variety of
investigations. While previous studies often consider chiral e�ects on light mesons [Dom89,
Dom04,Dom15b,Kap94,Kwo08,Kwo10,Hoh12,Hoh14,Aya14], we shift the focus to the heavy-
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light sector evaluating pseudo-scalar and scalar D meson QSRs, because the notions of chiral
symmetry can be translated into the heavy-light sector if the symmetry transformations are
restricted to the light-quark content. While pseudo-scalar D mesons have already been
investigated in the framework of QSRs in the vacuum [Ali83, Luc11b, Nar13] and in the
medium [Hay00, Hil09, Suz16a,Wan16a], the investigations in this chapter provides QSR
results in vacuum and at �nite temperatures for pseudo-scalar as well as scalar D mesons,
allowing for insights into the DχSB phenomenology.

While the conventional QSR analysis is inadequate to extract the pseudo-scalar D meson
mass, its scalar counterpart can be treated successfully. However, from intermediate steps
of the analysis a particular insensitivity of the pseudo-scalar QSR to temperature changes
is evident, suggesting negligible modi�cation of the pseudo-scalar D meson spectral proper-
ties. As the scalar QSR evaluation yields a decreasing mass for growing temperatures the
channel-speci�c chiral partner sum rules signal partial chiral restoration up to T = 0.15 GeV
(conservatively) limiting the range of validity of the employed low-temperature approxima-
tion. This qualitative behavior is in agreement with the �ndings of Ref. [Sas14], but the
parabolic temperature curve deviates from the scalar D meson mass curve presented there.
Interestingly, the scalar D meson mass and decay constant approximately follows the tem-
perature dependence adapted from chiral perturbation theory.

Although, medium modi�cations of the D meson masses do not lead to measurable
changes of the D meson production in a statistical hadronization model [And08], the D meson
yields in heavy-ion collisions may be sensitive to their altered decay properties in an ambient
strongly interacting medium. Accordingly, we have extracted the temperature dependences
of the pseudo-scalar and scalar D meson decay constants utilizing channel-speci�c as well
as chiral partner QSRs. Due to their connection to particular leptonic branching fractions
these decay constants are of large interest allowing for the determination of the o�-diagonal
CKM matrix element |Vcd|2 at T = 0 as a bonus.

The growing interest in decay constants of open charm mesons has led to QSRs for
these quantities using the experimentally determined vacuum masses as phenomenologi-
cal input [Nar01, Luc11b]. Hence, employing the estimated temperature behavior of these
masses [Sas14] allows for the prediction of their in-medium decay constants. An improve-
ment of the QSR analysis by introduction of a Borel mass dependent continuum threshold
parameter, which is supposed to suppress contaminations of the lowest resonance from con-
tinuum excitations of the spectral density, results in residuum and decay constant tempera-
ture curves deviating from the ones of the conventional analysis, i. e. albeit showing signals
of chiral restoration at high temperatures the scalar residuum and decay constant do not
decrease monotonically.

The di�erence of chiral partner spectra can be quanti�ed by WSRs, i. e. in the light-
meson sector, they are sensitive to single chiral order parameters, e. g. the chiral condensate
and chirally odd four-quark condensates. As promising experiments measured the dilepton
spectra of decaying light vector mesons in a strongly interacting medium [Sal13] the in-
medium WSRs of ρ and a1 chiral partner mesons are eligible to test the contemporary
understanding of the DχSB pattern. As open charm chiral partner sum rules are equally
well suited to study chiral e�ects driven by these order parameters they are extended to four-
quark condensate contributions of mass dimension 6 which turn out to contribute to the odd
OPE, i. e. they are of relevance at �nite baryon densities only. Evaluating �nite-temperature

98



4.5 Interim summary

chiral partner sum rules with spectral input from Ref. [Sas14] one can deduce the residua
and subsequently the decay constants of pseudo-scalar and scalar D mesons. While the
residua parameterizing the spectral density resemble the expected partial chiral restoration
signature at high temperatures the decay constants of the chiral partner D mesons diverge
suggesting that the associated leptonic decays do not dominate the D meson widths but
other decay modes are important instead. This counter-intuitive behavior elucidates the
conceptional distinction of decay-channel speci�c decay constants and spectral parameters,
e. g. width and residuum.

While the planned facilities at NICA, FAIR and J-PARC are going to address charm
DoF in a baryonic dense medium, the running collider experiments at LHC and RHIC are
delivering at present a wealth of data on charm and bottom DoF in a high-temperature
environment at very small net-baryon density. The �rm application of QSRs on these quite
di�erent experimental conditions and the relation to observables, in particular such ones
supporting the quest for chiral restoration signatures, deserve much more dedicated investi-
gations on the theory side.
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5 Summary and outlook

QSRs are a powerful, contemporary tool to determine spectral properties of hadrons in
an active �eld of research [Nar13, Nar15, Dom14, Dom15a, Che15, Jia15, Wan15b, Zho15,
Mao15, Luc15, Far16, Zan16] competing with the growing success of `QCD which is pre-
dictably facing a dominant role in the realm of hadron spectroscopy due to increasing com-
putational capabilities. A major advantage of the QSR approach over other methods is
its comprehensive and unproblematic generalization to hadrons embedded in a strongly
interacting environment. Thereby, the approach demonstrates its conceptional strength
allowing for testable predictions of medium modi�cations of hadrons at �nite tempera-
ture [Wan15a, Wan16a, Kim16], nucleon density [Buc15b, Gub15b, Suz16a] and magnetic
�elds [Mac14, Cho15, Gub16]. The evaluation of the impact of higher order contributions
on in-medium D meson QSRs is one of the main goals of this thesis. Furthermore, the
QSR framework bene�ts from its easy application to exotic states, because it can be used
to uncover the internal structure of the newly observed hadrons with exotic quantum num-
bers [Dia13,Nie14,Alb16,Wan16b,Wan16c,Dia16,Aga16a,Aga16c,Aga16b,Che16].

This work grounds on a careful introduction to the in-medium QSR framework which is
an inevitable prerequisite for a rigorous application of OPE techniques to higher mass di-
mension in-medium contributions envisaged in this thesis. By virtue of a dispersion relation,
integrated spectral properties of hadrons are linked to QCD condensates which are EVs of
quark and gluon operators. As the strongly interacting matter breaks Poincaré invariance
its characteristic velocity vµ must be used to build invariants resulting in a multitude of
additional in-medium condensates which obey the assumed symmetries of the in-medium
ground state. Apart from the occurrence of new terms in the medium, a medium dependence
is inherent to all condensates, the additional in-medium contributions as well as the con-
densates already occurring in the vacuum. This is of particular interest, because there are
order parameters of chiral symmetry among these condensates o�ering the opportunity to
study chiral dynamics within the framework of QSRs and WSRs. A recent discussion on the
origin and meaning of condensates has been launched by the consideration of cosmological
arguments favoring in-hadron condensates with restricted spatial support over space-time
independent quantities.

As QSRs are capable of probing integrated spectral properties only, assumptions about
the spectral shape are to be speci�ed. In order to enhance the sensitivity on the lowest
resonance a Borel transformation can be employed simultaneously reducing the impact of
the continuum region. To go beyond ansätze for the spectral density of the hadron under
consideration, Bayesian methods may be applied or model-independent information can be
derived from moments of a spectral function with a single peak structure.

One of the main results presented in this thesis is the �rst in-medium evaluation of the
pseudo-scalar D meson OPE for light-quark operators of mass dimension 6 [Buc15b]. It
requires the introduction of medium-speci�c condensates [Buc14b, Buc15a] de�ned to ob-
tain a smooth transition from medium to vacuum. These medium-speci�c condensates bear
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implications for the vacuum EVs of the contributing operator combinations [Buc16b]. The
calculation of the respective Wilson coe�cients is performed and the numerical impact of
the complete light-quark mass dimension 6 condensate terms with a density dependence
dominated by four-quark condensates is estimated. In contrast to the ρ meson sum rule,
these contributions are numerically small which can be attributed to the heavy-quark mass
entering the D meson OPE as a new scale and to the absence of light four-quark terms
originating from diagrams with hard gluons, i. e. from the NLO correlator, substituted in
the D meson sum rule by four-quark condensates containing heavy quarks. These contribu-
tions are assumed to be negligible due to the static heavy quark which hardly condenses.
Although leading to cumbersome expressions, four-quark condensate from the NLO heavy-
light correlator with heavy-quark content could be included into the heavy-light QSR [Hil12b]
performing a HQE [Buc14a].

Aside from their numerical impact, four quark condensates posses relevance due to their
close connection to chiral symmetry. By virtue of its non-trivial behavior under chiral
transformations, we can identify the chirally odd four-quark condensate 〈q̄tAq∑f f̄ /vt

Af〉 as
a potential order parameter quantifying the degree of chiral symmetry breaking, similar to
the famous chiral condensate 〈q̄q〉.

In this work, we advocate pseudo-scalar and scalar D mesons as probes of chiral dynamics,
because such e�ects can be translated into the heavy-light sector if the related chiral trans-
formations are restricted to the light-quark content [Buc16a]. As pseudo-scalar D mesons
have been frequently studied we shift the focus on its scalar counterpart. A conventional
sum rule analysis yields di�erent temperature behaviors of pseudo-scalar and scalar D meson
masses which can be explained to some extent in the scope of QSRs by a comparison of the
temperature dependences of the dominant OPE contributions. While the pseudo-scalar D
meson mass hardly changes, the scalar mass and decay constant decrease parabolically, in
agreement with results from chiral perturbation theory. There is growing interest from the
hadron physics community in decay properties of heavy-light mesons, as they may in�uence
open �avor meson production rates in contrast to the negligible impact of their mass modi-
�cations. In particular, decay constants attracted much attention, as they provide access to
o�-diagonal CKM matrix elements in the vacuum. Accordingly, we determine the tempera-
ture dependence of the scalar D meson residuum and decay constant from channel-speci�c
QSRs using temperature dependent masses as input.

Although, the D meson OPE is dominated by the chiral condensates 〈q̄q〉, being an order
parameter of DχSB, the sensitivity on further potential order parameters can be enhanced if
the di�erence of chiral partner sum rules is considered, which would lead to the well known
Weinberg sum rules for light spin-1 mesons. Due to cancellation of chirally even contribu-
tions chiral partner sum rules establish a relation between the di�erence of the integrated
chiral partner spectra and potential order parameters. We extend these sum rules to mass di-
mension 6, which enter the odd OPE and, thus, are relevant to �nite-density situations only.
Evaluations of the in-medium chiral partner sum rules with temperature dependent input
masses in order to deduce residua and decay constants disclose their conceptional di�erences.
These studies of pseudo-scalar and scalar D mesons in a heat bath yield approaching meson
residua which exhibit signals of chiral restoration at higher temperatures approving also
heavy-light spin-0 mesons as adequate probes of partial chiral symmetry restoration.
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Driven by the desire for understanding the thermodynamics of strongly interacting mat-
ter, a series of current and forthcoming large scale experiments is set up to explore the
QCD phase diagram. As they produce a plenitude of open charm and bottom states at
�nite temperatures or net-baryon densities, many e�orts are made to treat heavy open �a-
vor hadrons under these circumstances theoretically. While one branch of research focuses
on the medium modi�cations of the hadrons themselves, another branch deals with the
in�uence of penetrating, open �avor particles on the �reball of a heavy-ion collision, e. g.
transport properties are determined or their impact on the hadronization process towards
the end of a collision is studied. By evaluation of the in-medium QSRs up to high orders,
we deduce changing spectral properties of D mesons which may also involve and indicate
chiral dynamics. Hence, this thesis contributes to the understanding of open charm mesons
as probes of hot and dense strongly interacting matter allowing for a mutual judging of the
di�erent approaches.

As has been already stressed in the introduction, low-energy QCD faces multiple prob-
lems: The large coupling denies perturbative expansions. Con�nement is not yet derived
from QCD. Although `QCD looks promising for the calculation of many Green's functions
it has resistant issues with reproducing the pion mass and �nite chemical potentials, due
to the sign problem in the Metropolis algorithm. Many approaches are model calculations
covering only certain aspects of full QCD, e. g. the linear sigma model, or rely on conjec-
tures, e. g. holographic methods. In this di�cult milieu, QSRs seem an appealing analytic
approach with intimate contact to QCD, i. e. hadronic properties are traced to quark and
gluon DoF by means of a dispersion relation, where a rigorous separation of scales allows
for perturbative methods supplemented by a few condensate values encoding the long-range,
i. e. non-perturbative, e�ects.

A key to reliable results determined from QSRs are the evaluational strategies. Parame-
terizing the shape of hadronic spectral functions requires the extraction of several parameters
from a single equation calling for derivative sum rules in order to arrive at a system of equa-
tions which can be solved for the wanted spectral information. However, the reliability of
higher order derivative sum rules is questionable, which is the reason we do not proceed
beyond the �rst derivative following the orthodox approach. An evaluational strategy that
overcomes the shortcomings of derivative sum rules is provided by the Monte-Carlo sum rule
analysis based solely on the genuine QSR. This analysis procedure, where hadronic parame-
ters of the spectral density ansatz are extracted by means of a maximum likelihood method
for Gaussianly distributed input parameters, allows for a rigorous uncertainty analysis. How-
ever, it heavily relies on sophisticated optimization routines capable of producing credible
results. Once a reliable optimization is obtained the results genuinely re�ect low-energy QCD
as intended by Shifman, Vainshtein and Zakharov, the inventors of the framework. Thus,
the Monte-Carlo sum rule analysis might be a promising tool to extract hadron properties
from QCD with the bene�t of a statistical analysis of input uncertainties.

In the scope of this thesis, we pushed QSRs to the frontiers of its applicability in the
spirit of their inventors. In particular, in-medium OPEs in higher orders are �ooded with
numerous condensates with yet unknown numerical values. While we could show from alge-
braic relations that the ground state EVs of additional in-medium light-quark condensates
of mass dimension 6 can be related to known condensates of lower mass dimension or to four-
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quark condensates, the details of their medium dependences remain unsettled. Aiming for
even higher mass dimension terms further increases the complexity of entering in-medium
contributions with presumably small numerical impact. However, if the involved Wilson
coe�cients suggest a sizable impact of such contributions they would spoil the predictive
power of the sum rule. This very dilemma discloses one of the shortcomings inherent to the
QSR framework which lacks control over higher order power correction such that the in�u-
ence of these condensate contributions on the extracted spectral properties of the hadron
under consideration is a priori unclear. In contrast, the rigorous power counting rules in ef-
fective theories avoid any of these di�culties. The crux of these approaches, however, is the
knowledge of the exact numerical values of the involved low-energy constants, e. g. particle
couplings, which are accessible in QSRs. Although, the applicability of the QSR framework
is limited to low-temperature/density approximations of lower order mass dimension conden-
sates its value beyond that may be strengthened when QSRs are used to extract low-energy
constants leaving the thermodynamics to an e�ective model.
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A Quantum chromodynamics. An overview

This chapter must not be understood as an introduction to QCD, but it speci�es the no-
tation employed throughout this thesis and collects the essential de�nitions and relations.
In particular, no details of the quantization and BRS transformations are provided. A re-
view of the Lagrangian density1 of classical chromodynamics su�ces to introduce the used
conventions. The gauge invariant Lagrangian density, which is the basis of QCD, reads

L = ψ̄ (iγµDµ −M)ψ − 1

4
GAµνG

Aµν (A.1)

with the following notation:

Dαβ
µ (x) = ∂µ(1Nc)

αβ − igAαβµ (x) gauge covariant derivative, (A.2a)

Aαβµ (x) = (tA)αβAAµ (x) gluon �eld, (A.2b)

Gµν(x) =
i

g
[Dµ(x), Dν(x)] = tAGAµν(x) gluon �eld strength tensor, (A.2c)

ψαi (x) quark �elds, (A.2d)

(γµ)ij Dirac matrices, (A.2e)

tA =
1

2
λA generators of gauge group SU(Nc), (A.2f)

λA Gell-Mann matrices for Nc = 3, (A.2g)

where Lorentz indices are denoted by Greek letters µ, ν, λ, . . . , Dirac indices by Latin
letters i, j, k, . . . , color indices by Greek letters α, β, γ, . . . (fundamental representation)
and generator indices by Latin capitals A, B, C, . . . (adjoint representation). Nc is the
number of colors; in QCD one has Nc = 3. Generator indices which occur twice are to be
summed over from 1 to N2

c − 1 and Einstein's summation is applied to contracted Lorentz
indices. The generators of the symmetry group SU(Nc) satisfy the following relations:

[
tA, tB

]
= ifABCtC , (A.3)

Trc

[
tA
]

= 0 , Trc

[
tAtB

]
=

1

2
δAB , Trc

[
tAtBtC

]
=

1

4

(
dABC + ifABC

)
, (A.4)

where fABC is the totally anti-symmetric structure constant of SU(Nc), while the symmetric
quantity dABC is de�ned by the anti-commutator

{
tA, tB

}
=

1

Nc
δAB1Nc + dABCtC . (A.5)

1The Lagrangian density is often referred to as simply the Lagrangian in quantum �eld theory and in
particular in this work, keeping in mind that an integration over the spatial coordinates gives the ac-
tual Lagrangian, i. e. the quantity which is related to the Hamiltonian of the system by a Legendre
transformation.
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Thus, the gluon �eld strength tensor (A.2c) can be expressed as

GAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν and GAµν = −GAνµ . (A.6)

The gluon �eld strength tensor ful�lls the Bianchi identity

[Dλ, Gµν ] + [Dµ, Gνλ] + [Dν , Gλµ] = 0 . (A.7)

Equation (A.6) exhibits the gluon self-interaction, i. e. three- and four-gluon vertices, enter-
ing in the last term of the Lagrangian (A.1).

The Dirac matrices satisfy the relations

{γµ, γν} = 2gµν14 , (A.8)

TrD [γµ] = 0 , TrD [γµγν ] = 4gµν , TrD [odd number of γµ] = 0 (A.9)

with Minkowski metric gµν = diag(1,−1,−1,−1). Traces with a higher number of Dirac
matrices can be calculated with Eq. (A.8) exploiting cyclicality of the trace operation. The
Feynman slash notation /a = γµaµ of four-vectors aµ is often used, e. g. the gauge invariant
Lagrangian can be expressed with the covariant derivative /D. The Levi-Civita symbol

εµνλκ =





+1 (µνλκ) is an even permutation of (1234)

−1 (µνλκ) is an odd permutation of (1234)

0 otherwise

(A.10)

may be used to de�ne the Dirac matrix γ5 = i
4!εµνλκγ

µγνγλγκ = iγ0γ1γ2γ3 which satis�es
the relations

{γµ, γ5} = 0 , (A.11)

TrD[γ5] = TrD[γµγνγ5] = 0 , TrD[γµγνγλγκγ5] = 4iεµνλκ (A.12)

as well as the identity

iερµνλγ5γρ = γµγνγλ − gµνγλ − gνλγµ + gµλγν = gµλγν − gνλγµ − iσµνγλ , (A.13)

where the Dirac matrices σµν are de�ned by

σµν =
i

2
[γµ, γν ] = i (γµγν − gµν) . (A.14)

The quark �eld ψ = (u, d, c, s, t, b)T is a vector in the quark �avor space with diagonal
mass matrix M. Thus, the quark �eld also carries a �avor index suppressed in the above
de�nition (A.2d). The �avor symmetries of the Lagrangian (A.1) are an integral part of
this work and are detailed in App. B. According to the quark masses, which are reviewed in
Ref. [Pat16], light and heavy quarks can be distinguished. While the up- and down-quarks
are approximately massless, followed by the heavier strange-quark, the masses of the heavy
quarks of charm-, bottom- and top-type are orders of magnitude larger. Throughout this
thesis, quark �elds of an individual �avor are denoted by q, f or Q depending on their
respective masses.
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The coupling strength g of QCD entering the interaction part

Lint(x) = gψ̄(x)γµtAψ(x)AAµ (x)

− 1

2
gfABC

[
∂µA

A
ν (x)− ∂νAAµ (x)

]
AB µ(x)AC ν(x)

− 1

4
g2fABCfADEABµ (x)ACν (x)ADµ(x)AE ν(x) (A.15)

of the Lagrangian (A.1) is de�ned as

g =
√

4παs , (A.16)

where αs is the running coupling given to one- and two-loop order by Eqs. (2.75) and (2.74),
respectively. Due to the decreasing coupling for growing momentum transfer QCD is referred
to as asymptotically free.

The quark and gluon EoMs may be inferred from Euler-Lagrange equations (or the
Heisenberg EoMs on quantum level) using Eq. (A.1):

γµDµq = −imq , (A.17)

q̄γµ
←
Dµ = imq̄ , (A.18)

[Dµ, Gµν ] = −gtA
∑

f

f̄γνt
Af , (A.19)

where for soft gluons the sum over quark �avors f is restricted to light quarks, i. e. f = u,
d(, s). Utilizing the EoM one can show

D2 ≡ gµνDµDν = γµDµγ
νDν +

1

2
gσµνGµν , (A.20)

D2q =

(
1

2
gσµνGµν −m2

q

)
q . (A.21)

The Green's functions of the di�erential operators contained in (A.1) yield (as 2-point
functions in momentum space) the free quark propagator

S(0)(p) =
/p+m

p2 −m2 + iη
(A.22)

and the free gluon propagator

D(0)
µν (k) =

1

k2 + iη

[
−gµν + (1− ξ) kµkν

k2 + iη

]
(A.23)

with gauge �xing parameter ξ and η → 0+. The gauge is �xed by including the term
− 1

2ξ (DµAAµ )2 into the Lagrangian (A.1) in order to satisfy canonical commutation relations
of the �elds with their canonically conjugated momenta. Without the gauge �xing term the
zeroth component of the canonically conjugated momentum, associated with the gluon �eld,
vanishes and an important step in the canonical quantization procedure of the Lagrangian
of chromodynamics would fail. Throughout this thesis, the Feynman gauge with ξ = 1 is
used.
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The Lagrangian (A.1) is deduced from requiring invariance of L under the local gauge
transformation

ψα(x) −→ ψ′α(x) = Uαβ(x)ψβ(x) (A.24)

with a unitary (Nc ×Nc) matrix

U(x) = e−igt
AΘA(x) , (A.25)

where ΘA(x) are the space-time dependent rotation parameters. Therefore, one obtains the
following transformations in color space:

ψ̄(x) −→ ψ̄′(x) = ψ̄(x)U †(x) , (A.26a)

Dµψ(x) −→ D′µψ
′(x) = U(x)Dµψ(x) , (A.26b)

Dµ(x) −→ D′µ(x) = U(x)Dµ(x)U †(x) , (A.26c)

Aµ(x) −→ A′µ(x) = U(x)Aµ(x)U †(x) +
1

ig
[∂µU(x)]U †(x) , (A.26d)

Gµν(x) −→ G′µν(x) = U(x)Gµν(x)U †(x) . (A.26e)

Particular gauge invariants occurring in QCD condensates are usually abbreviated through-
out this work, i. e.

G2 = GAµνG
Aµν , (A.27a)

q̄σGq = q̄σµνGµνq , (A.27b)

G3 = fABCGAµνG
B ν

λG
C λµ . (A.27c)

Among the discrete symmetries of the Lagrangian (A.1) are parity and time reversal,
which are assumed to be manifested in the QCD ground state as well as in the in-medium
ground state throughout this thesis. A parity transformation (P ) changes sign of the spatial
components, while a time reversal transformation (T ) inverts sign of the temporal component
of xµ = (x0, ~x), i. e.2

P ~x −→ ~x′ = −~x , (A.28)

T x0 −→ x′0 = −x0 . (A.29)

The P transformation is mediated by a unitary operator P satisfying

Pψ(x0, ~x)P† = ηPγ
0ψ(x0,−~x) (A.30)

with |ηP | = 1, where γ0ψ(x0,−~x) satis�es the parity transformed Dirac equation (A.17).
Analogously, the action of the time reversal operator T can be inferred from rewriting the
time reversed Dirac equation into its usual form (A.17) yielding

T ψ(x0, ~x)T † = ηT iγ
1γ3ψ(−x0, ~x) (A.31)

2The symbol T denoting the time reversal transformation is employed only within this Appendix and must
not be confused with the temperature T used frequently in the thesis' main body.
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with |ηT | = 1 in standard representation of the Dirac matrices. However, the T transfor-
mation requires an anti-unitary operator T to preserve time-translation invariance, i. e. the
operator obeys 〈T ψ|T φ〉 = 〈φ|ψ〉 and in particular T iT † = −i. Utilizing these transfor-
mations on quark spinors, the transformation properties of further QCD operators may be
deduced from the invariance of L. The behavior of fermion bilinears and further operators
entering QCD condensates under parity and time reversal transformations is summarized in
Tab. A.1.

Table A.1: Transformation properties of quark and gluon operator combinations as well
as further components of in-medium condensates under parity (P ) and time reversal (T )
transformations, where the shorthand notation (−1)µ = 1 for µ = 0 and (−1)µ = −1 for
µ = 1, 2, 3 is employed.

ψ̄ψ iψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄σµνψ Dµ Gµν vµ

P +1 −1 (−1)µ −(−1)µ (−1)µ(−1)ν (−1)µ (−1)µ(−1)ν (−1)µ

T +1 −1 (−1)µ (−1)µ −(−1)µ(−1)ν −(−1)µ −(−1)µ(−1)ν (−1)µ
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B Chiral symmetry

The purpose of this chapter is the introduction of the terms and notions of chiral symme-
try which provides the essential mass generating mechanism for light hadrons. Hence, the
in�uence of chiral symmetry and its breaking patterns on the observable world is of utmost
interest. Chiral symmetry aspects in the heavy-light sector are non-standard, thus, the
related notions and formulae frequently used throughout this thesis, especially in Chap. 4,
deserve a careful introduction specifying our notation simultaneously.

B.1 Chiral symmetry group, related transformations and
currents

The classical chromodynamic Lagrangian (A.1), which QCD is based on, obeys a set of global
�avor symmetries in the massless quark limit M = 0 manifested in the chiral symmetry
group U(Nf)L ×U(Nf)R. Since the gauge �elds are insensitive to the quark �avor, relevant
considerations involve the quark part of the Lagrangian (A.1) only. Upon introduction of
the left and right handed projectors

PL,R =
1

2
(1∓ γ5) , (B.1)

satisfying P 2
L,R = PL,R, PLPR = PRPL = 0 and PL + PR = 1, the quark �elds can be

decomposed in two chiral sectors

ψL,R = PL,Rψ (B.2)

building the Nf -dimensional light-�avor vector ψ = ψL + ψR. The free fermion Lagrangian
in terms of left and right handed spinors reads

L = ψ̄Li/∂ψL − ψ̄LMψR + L←→ R . (B.3)

The independence of the symmetries U(Nf)L and U(Nf)R expresses the decoupling of left
and right helicity states. In the assumed chiral limit, M = 0, where helicity and chirality
coincide (similarly in the in�nite momentum frame), this corresponds to the decoupling of
left and right handed quark �eld dynamics, cf. Eq. (B.3).

Employing the decomposition of an unitary group U(N) ' U(1) × SU(N),1 the chiral
symmetry group may be rewritten U(1)L×U(1)R×SU(Nf)L×SU(Nf)R with the correspond-
ing transformations

U(1)L,R ψL,R −→ ψ′L,R = e−iΘL,RψL,R , (B.4)

SU(Nf)L,R ψL,R −→ ψ′L,R = e
−iΘaL,RτaψL,R (B.5)

1One may not consider the given decomposition as an exact equality, because the center symmetry group
Z(N), with associated transformation ψ −→ ψ′ = e2πik/Nψ for k = 1, . . . , N , is a subgroup of SU(N)
but also contained in U(1), and thus, redundant in this expression [Fuk13].
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in a matrix representation characterized by arbitrary angles ΘL,R or sets of angles Θa
L,R with

implicit summation over a = 1, . . . , N2
f − 1, respectively. The matrices τa = λa/2 acting

on the �avor indices are the N2
f − 1 traceless generators of the special unitary group being

normalized by Trf [τ
aτ b] = δab/2 and satisfying the equivalent relations to (A.3)�(A.5) for

the generators of the gauge group.

Using the in�nite transformations ψ′C ' (1 − iΘC)ψC ≡ ψC + δψC and ψ′C ' (1 −
iΘa

Cτ
a)ψC ≡ ψC + Θa

Cδ
aψC , where C denotes a common subscript for either L or R, one

can deduce the Noether currents

j
(a)µ
C =

∂L
∂(∂µψC)

δ(a)ψC (B.6)

from the assumed invariance of the Lagrangian, i. e. δ
(a)
C L = L(ψC + δ(a)ψC) − L(ψC) = 0.

They read

jµC = ψ̄Cγ
µψC and jaµC = ψ̄Cγ

µτaψC . (B.7)

However, for �nite quark masses, M 6= 0, these currents are not conserved and their diver-

gence can be read o� the change of the Lagrangian δ
(a)
C L under these transformation, i. e.

∂µj
µ
L,R = δL,RL = −i

(
ψ̄L,RMψR,L − ψ̄R,LMψL,R

)
, (B.8a)

∂µj
aµ
L,R = δaL,RL = −i

(
ψ̄L,Rτ

aMψR,L − ψ̄R,LMτaψL,R

)
. (B.8b)

These relations explicitly show how the symmetry breaking term of the Lagrangian is related
to the non-conservation of the current.

As various objects built from quark operators, e. g. bilinears or QCD condensates, ex-
hibit invariant or non-invariant behavior under the chiral transformations, we introduce the
notions of chirally even and chirally odd objects, respectively. If a quark operator object
is invariant under the transformations (B.5) for arbitrary angles Θa

L,R it is dubbed chirally
even, otherwise it is considered chirally odd, although this very term is apparent only for
suitable chiral transformations, i. g. for a speci�c choices of rotation parameters Θa

L,R, which
transform the operator object into its negative.

While utilizing in�nite transformations are su�cient to deduce the Noether currents
(B.7) they are inadequate to unveil the chirally odd nature of various objects explicitly, i. e.
in general they do not transform chirally odd objects into their negatives. For Nf = 2 the
�nite chiral transformations (B.5) can be cast into a matrix analogon to Euler's formula
which considerably simpli�es the search for angles Θa

L,R transforming chirally odd QCD
condensates into their negatives or parity partner currents into each other. Expanding
the exponential into a power series separating the even and odd polynomials and multiple
application of the Pauli matrix algebra {σa, σb} = 2δab yields

e
−iΘaCσa/2 = cos

|ΘC |
2
− iΘ

a
Cσ

a

|ΘC |
sin
|ΘC |

2
(B.9)

with |ΘC | =
√∑3

a=1(Θa
C)2. Analogously, also for Nf > 2 one can use �nite transformations

in
.
a-direction (no summation over dotted indices)

e
−iΘ

.
a
C τ
.
a

= cos
Θ
.
a
C√

2Nf
− i
√

2Nf τ
.
a sin

Θ
.
a
C√

2Nf
, (B.10)
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which might su�ce to exhibit chirally odd behavior. In order to derive Eq. (B.10) the �avor
equivalent to Eq. (A.5) with daab = 0 has been employed.

The above provided chiral symmetry group based on the decomposition of quark states
into left and right handed parts can be equivalently expressed U(1)V ×U(1)A × SU(Nf)V ×
SU(Nf)A, i. e. in terms of the well known vector and axial-vector transformations

U(1)V ψ −→ ψ′ = e−iΘVψ , U(1)A ψ −→ ψ′ = e−iΘAγ5ψ , (B.11)

SU(Nf)V ψ −→ ψ′ = e
−iΘaVτaψ , SU(Nf)A ψ −→ ψ′ = e

−iΘaAτaγ5ψ , (B.12)

choosing the vector and axial-vector angles to be

Θ
(a)
V =

1

2

(
Θ

(a)
R + Θ

(a)
L

)
, (B.13a)

Θ
(a)
A =

1

2

(
Θ

(a)
R −Θ

(a)
L

)
, (B.13b)

respectively. Thus, invariance under the transformations (B.4) and (B.5) for arbitrary left
and right handed angles is equivalent to invariance under the transformations (B.11) and
(B.12) for arbitrary vector and axial-vector angles, i. e. they are related by

ψ = ψL + ψR −→ ψ′ = e−i(Θ
a
V−ΘaA)τaPLψ + e−i(Θ

a
V+ΘaA)τaPRψ

= e−iΘ
a
Vτ

a
e−iΘ

a
Aτ

aγ5

[
e+iΘaAτ

a(1+γ5)PL + e−iΘ
a
Aτ

a(1−γ5)PR

]
ψ

= e−iΘ
a
Vτ

a
e−iΘ

a
Aτ

aγ5

{[
1 + PR

∞∑

n=1

1

n!
(2iΘa

Aτ
a)n
]
PL

+
[
1 + PL

∞∑

n=1

1

n!
(−2iΘa

Aτ
a)n
]
PR

}
ψ

= e−iΘ
a
Vτ

a
e−iΘ

a
Aτ

aγ5 (PL + PR)ψ

= e−iΘ
a
Vτ

a
e−iΘ

a
Aτ

aγ5ψ , (B.14)

where the inverted Eqs. (B.13), Θa
L = Θa

V − Θa
A and Θa

R = Θa
V + Θa

A, as well as the three
projector relations, given above, have been employed. An analogous relation holds for the
U(1) transformations, too.

The conserved Noether currents of the transformations (B.11) and (B.12), which can be
deduced analogously to (B.6) from invariance of the QCD Lagrangian, are the (iso-vector-)
vector and (iso-vector-)axial-vector currents

U(1)V jµV = ψ̄γµψ , U(1)A jµA = ψ̄γµγ5ψ , (B.15)

SU(Nf)V jaµV = ψ̄γµτaψ , SU(Nf)A jaµA = ψ̄γµγ5τ
aψ , (B.16)

respectively. The vector and axial-vector currents can be related to the corresponding left

and right handed currents (B.7) via j
(a)µ
V = j

(a)µ
L +j

(a)µ
R and j

(a)µ
A = j

(a)µ
L −j(a)µ

R . According

to the behavior of j
(a)µ
V and j

(a)µ
A under Lorentz transformation, they are currents with

internal angular momentum 1. Analogously one may de�ne (iso-vector-)scalar and (iso-
vector-)pseudo-scalar currents

jS = ψ̄ψ , jP = iψ̄γ5ψ , (B.17)

jaS = ψ̄τaψ , jaP = iψ̄γ5τ
aψ (B.18)
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B Chiral symmetry

with internal angular momentum 0. They can be also expressed in terms of left and right
handed currents jLR = ψ̄LψR and jRL = ψ̄RψL or jaLR = ψ̄Lτ

aψR and jaRL = ψ̄Rτ
aψL,

yielding the relations j
(a)
S = j

(a)
LR + j

(a)
RL and j

(a)
P = i(j

(a)
LR − j

(a)
RL).

For currents that share the same internal angular momentum but have opposite parity
we introduce the notion chiral partner currents, because they can be transformed into each
other by suitable, �nite chiral transformations. Thus, if the system is invariant under such
transformations the exchange of chiral partners does not alter observables. The appropriate
angles to convert chiral partner currents into each other are conveniently obtained from the
representation in left and right handed currents to which the �nite transformations (B.5)
are applied employing Eq. (B.9), cf. the speci�c example in App. B.3.

Evaluating the divergence of (iso-vector-)vector and (iso-vector-)axial-vector currents by

virtue of Eqs. (B.8), where ∂µj
(a)µ
V,A are to be expressed in terms of ∂µj

(a)µ
L,R , allows to infer

the requirements under which the classical theory obeys the chiral symmetries U(1)V,A and
SU(Nf)V,A. While the U(1)V symmetry causing the conservation of the vector current jµV
and thus the total baryon number is always realized, even for arbitrary quark masses, the
classical U(1)A symmetry is preserved only in the massless quark limit, M = 0. It is special,
because it is not conserved on quantum level due to the QCD axial anomaly. The discussion
on the behavior of condensates under chiral transformation mainly focuses on the remaining
SU(Nf)V × SU(Nf)A symmetry.

In the presence of identical �nite masses for all quark DoF, where the diagonal mass
matrix reduces to M = m1Nf

, the theory obeys iso-vector�vector symmetry SU(Nf)V, often
abbreviated iso-spin symmetry, because the reduced mass matrix and the generator of the
vector symmetry commute, [M, τa] = 0. In contrast, the iso-vector�axial-vector symmetry
SU(Nf)A is violated by any non-zero quark mass. Even if the generator of the symmetry,
τaγ5, commutes with the quark mass matrix, it does not commute with the Dirac matrix γ0

of the conjugate quark �eld ψ̄ = ψ†γ0, i. e. from the in�nite iso-vector�axial-vector transfor-
mation ψ′ ' (1−iΘa

Aτ
aγ5)ψ one obtains ∂µj

aµ
A = δaAL = −(iψ†γ5γ0τ

aMψ−iψ̄Mτaγ5ψ) 6= 0.
Thus, the mass matrix must vanish in order to obtain an invariant Lagrangian.

Although the up- and down-quark masses deviate slightly they are both negligible in
comparison to hadronic mass scales. Hence, iso-spin symmetry is approximately realized in
nature, e. g. the neutron and proton masses coincide nearly (in terms of hadronic scales).
However, the masses of mesons which couple to di�erent chiral partner currents, e. g. the
vector meson ρ and the axial-vector meson a1, posses vastly di�erent masses, mρ ' 776 MeV
and ma1 ' 1240 MeV. This mass splitting is not caused by the explicit breaking of the
SU(Nf)A symmetry due to the tiny quark masses, because the meson mass di�erence is
of the order of hadronic scales, but rather points to a spontaneous symmetry breaking
mechanism. This mechanism can generate the essential part of light hadron masses. As
this symmetry violation is not manifest in the Lagrangian but is due to a non-symmetric
ground state of the theory one relies on order parameters to quantify the degree of violation.
Chirally odd QCD condensates which appear in QSR evaluations are candidates for such
order parameter. Thus, they are subject to more detailed considerations in Subsec. 2.3.2.
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B.2 Derivation of the GOR relation

The notions of order parameters, as presented in Subsec. 2.3.2, allow for the derivation of
the famous Gell-Mann�Oakes�Renner (GOR) relation [GM68] relating the chiral condensate
to pion properties [Hil12a]. This relation was known before the introduction of QSRs and is
used to estimate the numerical value of the chiral condensate from known pion properties.

The Goldstone theorem ensures that the Goldstone bosons, interpreted as pions de-
scribed by the one-pion state |πb(~p)〉 with momentum p, couple to the current jaµA (x) =
ψ̄(x)γµγ5τ

aψ(x) of the charge QaA (2.106), i. e.

〈Ω|jaµA (x)|πb(~p)〉 = iδabpµfπ(p2)e−ipx , (B.19)

where the coordinate dependence has been extracted employing the unitary space-time trans-
lation operator, and the projection of the Lorentz structure has been performed, cf. App. C.2.
The decay constant fπ(p2) is de�ned as (no summation over dotted indices)

ifπ(p2) =
1

m2
π

〈Ω|pµj
.
aµ
A (0)|π

.
a(~p)〉 , (B.20)

which may be veri�ed by multiplying Eq. (B.19) by pµ evaluated at x = 0 with a = b =
.
a. By

applying ∂µ to Eq. (B.19), the pseudo-scalar current is introduced which has the quantum
numbers of the pion. Thus, employing the quark EoMs (A.17) and (A.18) yields

〈Ω|∂µjaµA (x)|πb(~p)〉 = 〈Ω|iψ̄(x)γ5 {M, τa}ψ(x)|πb(~p)〉 = iδabm2
πfπ(p2)e−ipx (B.21)

for a diagonal mass matrix M. This relation is often considered to exhibit partial con-
servation of the axial-vector current (PCAC), because the violation scales with the pion
mass squared being a very small quantity compared to other hadronic scales; and in the
chiral limit, where pions are massless, the current is conserved. For the light two-�avor
systems, i. e. 2τa = σa are Pauli matrices, the diagonal mass matrix is readily expressed by
M = 1

2 [mu(12 + σ3) +md(12 − σ3)] leading to {M, τa} = (mu +md)σ
a + (mu −md)δ

a3
12,

and therefore the commutator (2.104) reads

〈Ω|[QaA(x0), ∂µj
b µ
A (x)]|Ω〉 = −iδabmu +md

2
〈Ω|ψ̄ψ|Ω〉

− iδb3mu −md

2
〈Ω|ψ̄σaψ|Ω〉 , (B.22)

where the second term on the r. h. s. may be neglected due to iso-spin symmetry. Inserting a

complete set of covariantly normalized one-pion states 1 =
∑

c

∫ d3p
(2π)32Ep

|πc(~p)〉〈πc(~p)| into
Eq. (B.22), using the de�nition of the charge (2.98) together with (B.19) for µ = 0 and the
PCAC relation (B.21) as well as taking the trace w. r. t. �avor indices, one arrives at the
GOR relation

−m2
πf

2
π =

mu +md

2
〈Ω|ūu+ d̄d|Ω〉 , (B.23)

which is also often expressed in terms of iso-spin averaged quantities mq = (mu+md)/2 and
〈Ω|q̄q|Ω〉 = 〈Ω|ūu+ d̄d|Ω〉/2 as −m2

πf
2
π = 2mq〈Ω|q̄q|Ω〉.
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B.3 Finite chiral transformations in the heavy-light sector

General pseudo-scalar and scalar two-quark currents read

jτP = iψ̄γ5τψ and jτS = ψ̄τψ (B.24)

with �avor matrix τ . They are decomposable into the (iso-vector) currents (B.17) and (B.18).
One can rewrite these general currents as follows:

jτP = iψ̄Lγ5τψR + iψ̄Rγ5τψL

= iψ̄Lγ5τ
1

2
(1 + γ5)ψR + iψ̄Rγ5τ

1

2
(1− γ5)ψL

=
i

2

(
1

i
jτP + ψ̄LτψR − ψ̄RτψL

)

= i
(
ψ̄LτψR − ψ̄RτψL

)
(B.25a)

≡ i (jτLR − jτRL) (B.25b)

and

jτS = ψ̄LτψR + ψ̄RτψL (B.26a)

≡ jτLR + jτRL (B.26b)

in terms of the left-right and right-left handed currents jτLR and jτRL, respectively.

Heavy-light meson currents are recovered, e. g., for ψ = (u, d, c)T and the choice τ = τ̃ =
(λ4 + iλ5)/2. Accordingly, we obtain

j τ̃P = iψ̄γ5τ̃ψ = i(ū, d̄, c̄)γ5




0 0 1

0 0 0

0 0 0







u

d

c


 = iūγ5c

= i(ūLcR − ūRcL) (B.27)

and

j τ̃S = ψτ̃ψ = ūc

= ūLcR + ūRcL . (B.28)

General chiral transformations restricted to the light parts of the left and right handed
�avor vectors ψL,R read

ψL,R =




u

d

c




L,R

−→ ψ′L,R = e−iΘ
a
L,Rλ

a/2ψL,R (B.29)

with the rotation parameters Θa
L,R = (Θ1

L,R,Θ
2
L,R,Θ

3
L,R, 0, . . . , 0) and the Gell-Mann matri-

ces λa. Applying the SU(Nf = 2) �nite chiral transformation formula (B.5) expressed by
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B.3 Finite chiral transformations in the heavy-light sector

Eq. (B.9) to the light-�avor components ϕ = (u, d)T we can explicate the desired �nite
transformations

ψC =


 ϕC

cC


 −→ ψ′C =


 ϕ′C

cC


 =



[
cos |ΘC |2 − iΘaCσ

a

|ΘC | sin |ΘC |2

]
ϕC

cC


 ,

ψ̄C = (ϕ̄C , c̄C) −→ ψ̄′C =
(
ϕ̄′C , c̄C

)
=

(
ϕ̄C

[
cos
|ΘC |

2
+ i

Θa
Cσ

a

|ΘC |
sin
|ΘC |

2

]
, c̄C

)
,

(B.30)

where again C is a common label for either L or R, ϕC = (uC , dC)T, σa are the Pauli matrices
and Θa

C the three non-vanishing rotation parameters. Employing the �nite transformations
restricted to the light part of the �avor vector ψ we aim for a set of rotation parameters Θa

L,R

which transforms the pseudo-scalar into the scalar heavy-light current, i. e. j τ̃P −→
(
j τ̃P
)′

=
j τ̃S = ūLcR + ūRcL:

(
j τ̃P

)′
= i
(
ψ̄′Lτ̃ψ

′
R − ψ̄′Rτ̃ψ′L

)

= i
(
ūL, d̄L, c̄L

)




[
cos
|ΘL|

2
+ i

Θa
Lσ

a

|ΘL|
sin
|ΘL|

2

]
0

0

0 0 1







0 0 1

0 0 0

0 0 0




×




[
cos
|ΘR|

2
− iΘ

a
Rσ

a

|ΘR|
sin
|ΘR|

2

]
0

0

0 0 1







uR

dR

cR


− (L←→ R)

= i

(
ūL

[
cos
|ΘL|

2
+ i

Θ3
L

|ΘL|
sin
|ΘL|

2

]
cR + d̄L

[
i
Θ1

L + iΘ2
L

|ΘL|
sin
|ΘL|

2

]
cR

)

− (L←→ R) . (B.31)

Choosing

Θ1
L = Θ2

L = 0 , Θ3
L = (4k − 1)π , |ΘL| =

∣∣Θ3
L

∣∣ ,
Θ1

R = Θ2
R = 0 , Θ3

R = (4k + 1)π , |ΘR| =
∣∣Θ3

R

∣∣ (B.32)

with integer k we obtain

(
j τ̃P

)′
= i

[
ūL

(
cos

π

2
+ i
−π
π

sin
π

2

)
cR + d̄L

(
i
0

π
sin

π

2

)
cR

]

− i
[
ūR

(
cos

π

2
+ i

π

π
sin

π

2

)
cL + d̄R

(
i
0

π
sin

π

2

)
cL

]

= ūLcR + ūRcL

= j τ̃S , (B.33)

where k = 0 has been used, exemplarily.
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The chiral transformation (B.29) speci�ed by the rotation parameters (B.32) also exhibits
the chirally odd nature of the chiral condensate

〈ϕ̄ϕ〉′ = 〈ϕ̄′Lϕ′R + ϕ̄′Rϕ
′
L〉

= 〈ϕ̄Le
iπσ3

ϕR〉+ 〈ϕ̄Re
−iπσ3

ϕL〉
= −〈ϕ̄LϕR + ϕ̄RϕL〉
= −〈ϕ̄ϕ〉 , (B.34)

i. e., as expected, it turns the chiral condensate into its negative.
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In this chapter, further important details of an OPE evaluation are provided bridging the
gap from the basic ideas of the expansion to the resulting expressions presented in Chaps. 3
and 4. While the cornerstones of the computation, building on Wick's theorem and the
background �eld expansion, are provided in Sec. 2.2, the physical implications of the con-
densates involved are outlined in Sec. 2.3. To arrive at operator combinations which form
meaningful condensates a sequence of manipulations is in order. The intricate calculation
of contributions to the in-medium OPE with higher order mass dimension condensates, as
employed in this thesis, require a thorough application of these computation steps given
below.

C.1 Technicalities on condensates

QCD condensates introduced in Sec. 2.2 and described in Sec. 2.3 are to be color singlets as
well as Dirac and Lorentz scalars to share the assumed symmetries of the QCD ground state.
They emerge as decomposition coe�cients of non-scalar operator products. However, in
intermediate steps of the OPE one naturally encounters the EVs of quark and gluon operators
which are color, Dirac and Lorentz matrices, i. e. non-scalars. Therefore, the projection of
color, Dirac and Lorentz indices is needed to obtain non-zero ground state EVs of these
operators which can be interpreted as QCD condensates. Thereby, the decomposition into
Lorentz scalars is special, as only there the di�erence between vacuum and medium in the
scope of an OPE comes into play.

C.1.1 Projection of Dirac indices

The projection of Dirac indices builds on the basis elements of the Cli�ord algebra. Thanks
to the 16 basis elements with lower Lorentz indices Γa ∈ {14, γµ, σµ<ν , iγ5γµ, γ5} and upper
Lorentz indices Γb ∈ {14, γ

µ, σµ<ν , iγ5γ
µ, γ5} each (4× 4) matrix in Dirac space Oij can be

decomposed into

Oij =
∑

a

da (Γa)ij . (C.1)

Multiplication with (Γb)ji and summation over i and j yields

da =
1

4
TrD [ΓaO] , (C.2)

where the normalization of the basis elements of the Cli�ord algebra with the Dirac trace
TrD

[
ΓaΓ

b
]

= 4δba is employed. Interpreting this trace as a scalar product reveals that the
basis elements Γa and Γb form an orthogonal basis of the Cli�ord algebra. The normalization
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relation can be expressed in that simple manner only if the basis elements are chosen as above.
(In the literature, one often encounters an inconvenient notation of the basis elements of the
Cli�ord algebra Γa and Γb without '<' in the element σµ<ν and without the imaginary unit
in the element iγ5γµ. In this case a further factor εa is necessary in Eq. (C.1), which acquires
the value εa = 1/2 for projections with σµν and εa = −1 for projections with γ5γµ.)

For typical structures entering the OPE, 〈q̄i · · · qj〉, which are to be projected, one ob-
tains (with suppressed color indices)

〈q̄i · · · qj〉 =
∑

a

dOPE
a (Γa)ji , (C.3)

with

dOPE
a =

1

4
〈q̄Γa · · · q〉 . (C.4)

In comparison with Eq. (C.1) the Dirac indices of the basis element Γa are interchanged,
because a Dirac scalar has to appear in the coe�cient dOPE

a , which is commonly not expressed
as a trace. Thus, the basis element of the Cli�ord algebra needs to be placed in-between
the spinors q̄ and q.

C.1.2 Projection of color indices

The projection of color indices also relies on an orthogonal basis. For (Nc × Nc) matrices,
this basis is provided by the generators of the symmetry group SU(Nc) supplemented by the
Nc-dimensional identity matrix. To reduce notation the identity matrix is included into the
generator notation:

TA =




1Nc/

√
2Nc for A = 0 ,

tA otherwise ,
(C.5)

where the generators tA = λA/2 incorporate the Nc-dimensional generalization of the Gell-
Mann matrices λA and satisfy the normalization relation Trc

[
TATB

]
= δAB/2. Therefore,

each color matrix Oαβ can be decomposed as

Oαβ =
∑

A

cA
(
TA
)
αβ

. (C.6)

Multiplication with
(
TB
)
βα

and summation over α and β yields the coe�cients

cA = 2Trc

[
TAO

]
. (C.7)

For structures entering the OPE up to mass dimension 5, which are to be projected, one
obtains with Nc = 3 the single color singlet structure (with suppressed Dirac indices)

〈q̄α · · · qβ〉 =
1

3
〈q̄ · · · q〉 (13)βα . (C.8)

If four-quark condensates and condensates of mass dimension 6 or higher are considered,
further color singlet structures arise. Two color singlet structures formed by contraction
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with the identity matrix of color space or the generators tA exist for four-quark condensates
leading to the projection formula (with suppressed Dirac indices and implicit summation
over generator indices)

〈q̄α1 qβ2 q̄γ3 qδ4〉 =
1

9
〈q̄1q2q̄3q4〉 (13)βα (13)δγ +

1

2
〈q̄1t

Aq2q̄3t
Aq4〉(tB)βα(tB)δγ , (C.9)

where the subscript labels potentially di�erent quark �avors. This is the corrected projection
formula of Eq. (39) in [Tho07] which contained a typographical error and was included for
pedagogical purposes only [Tho12].

C.1.3 Fierz transformations

In this subsection, general Fierz transformations [Pes95, Nie04] are presented as well as
Fierz transformations with symmetry restrictions [Zha10]. Despite the di�erent notation
for the sums over basis elements of the Cli�ord algebra or generators of the symmetry
group SU(Nc) the close connection between Fierz transformations and the projections of
Dirac and color indices of four quark condensates is obvious. The considered quark �elds
carry Dirac and color indices, i. e. the Fierz rearrangement in Dirac and color space must
be applied to transform the four-quark condensates with the structures 〈: q̄1Γaq2q̄3Γbq4 :〉
and 〈: q̄1t

AΓaq2q̄3t
AΓbq4 :〉 to condensates with interchanged quark �elds q2 and q4, i. e.

〈: q̄1Γcq4q̄3Γdq2 :〉 and 〈: q̄1t
AΓcq4q̄3t

AΓdq2 :〉.
In Dirac space, the relation between (Γa)ij(Γb)kl and (Γc)il(Γd)kj is wanted. In general

it is given by the linear combination

(Γa)ij(Γb)kl =
∑

c,d

Cab
cd(Γc)il(Γd)kj , (C.10)

where Γa ∈ {14, γµ, σµ<ν , iγ5γµ, γ5} is the basis of the Cli�ord algebra with the scalar
product TrD [ΓaΓb] = 4δab ≡ ηab which induces a metric ηab with Γa =

∑
b ηabΓ

b, thus, one
has 4Γa ∈ {14, γ

µ, σµ<ν , iγ5γ
µ, γ5}. Multiplication of Eq. (C.10) with (Γe)li(Γf )jk yields

Cab
cd =

1

16
TrD [ΓaΓdΓbΓc] . (C.11)

The general Fierz transformation (C.10) with the coe�cients Cabcd = Tr [ΓaΓdΓbΓc] is
not restricted to the Cli�ord algebra of the Dirac space, but is valid for all groups with basis
elements which can be represented by matrices Γa and with a scalar product that induces
an invertible metric ηab = Tr [ΓaΓb].

The Fierz transformation in color space is a special case of the transformation (C.10)
due to the required invariance of four-quark condensates under symmetry transformations of
SU(Nc = 3). Not all combinations of matrices which form color space meet this requirement.
Invariants of a particular irreducible representation A of an arbitrary symmetry group are
of the form

∑
a(Γ
A
a )mn(ΓAa)rs (a = 1, . . . ,dimA). Therefore, a Fierz transformation which

obeys a particular symmetry is a rearrangement of invariants of the symmetry group (instead
of components of basis matrices):

∑

a

(ΓAa )ij(Γ
Aa)kl =

∑

B
CAB

∑

b

(ΓBb )il(Γ
Bb)kj , (C.12)
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where the Fierz coe�cients CAB depend only on the associated representations. Summation
of Eq. (C.10) with a = b over a and considering that coe�cients (C.11) do not vanish for
c = d only, yields

CAB =
∑

a

Ca
ab
b =

∑

a

Tr
[
ΓAa ΓBb ΓAaΓBb

]
. (C.13)

In color space of SU(Nc), the one-dimensional representation I and the fundamental repre-
sentation T (dim T = N2

c − 1) with generators ta exist, which are normalized by the scalar
product Trc

[
tatb
]

= δab/2.1 To harmonize notation and in accordance with the generalized
Fierz transformation the generator index a instead of A is used here and the sums over
generator indices are written explicitly. The �nal transformation formulae are provided in
standard notation with indices A and implicit summation. Due to the de�nition of the
metrics for the choice ΓIa = 1Nc and ΓTa = ta one has

ηIab ≡ Tr
[
ΓIaΓIb

]
= Trc [1Nc ] = Nc , (C.14a)

ηTab ≡ Tr
[
ΓTa ΓTb

]
= Trc

[
tatb
]

=
1

2
δab (C.14b)

and consequently ΓIa = 1Nc/Nc and ΓT a = 2ta. Thus, the Fierz coe�cients read

CII =
1

Nc
, CIT =

1

Nc
, CT I =

N2
c − 1

Nc
, CT T = − 1

Nc
. (C.15)

Utilizing Eq. (C.12) with the coe�cients (C.15) one obtains for the symmetry group SU(Nc)
the following Fierz transformations:

(1Nc)ij(1Nc)kl =
1

Nc
(1Nc)il(1Nc)kj + 2

∑

a

(ta)il(t
a)kj , (C.16a)

∑

a

(ta)ij(t
a)kl =

N2
c − 1

2N2
c

(1Nc)il(1Nc)kj −
1

Nc

∑

a

(ta)il(t
a)kj . (C.16b)

Setting Nc = 3 and rewriting the Fierz transformations in standard notation with the
generator indices A and implicit summation as well as color indices with Greek letters α, β,
γ and δ yields

(13)αβ(13)γδ =
1

3
(13)αδ(13)γβ + 2(tA)αδ(t

A)γβ , (C.17a)

(tA)αβ(tA)γδ =
4

9
(13)αδ(13)γβ −

1

3
(tA)αδ(t

A)γβ . (C.17b)

1The symbol T denoting the fundamental representation of the color group must not be confused with the
anti-unitary operator T mediating the time reversal transformation.
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C.2 In-medium projection of Lorentz tensors and algebraic vacuum limits

C.2 In-medium projection of Lorentz tensors and algebraic
vacuum limits of QCD condensates

Based on the notions of vacuum- and medium-speci�c condensates, introduced in Sec. 3.7
and illustrated in Fig. 3.7, we are going to present a comprehensively formalized framework
suitable to deal with the decomposition of Lorentz tensors entering higher mass dimension
condensates [Buc14b, Buc15a, Buc16b]. The framework builds on ideas �rst considered in
�nite-density nucleon QSRs [Coh91, Coh92, Fur92, Jin93], where the authors realized that
a tensor decomposition of local operators, as needed in OPE evaluations, depends on the
available tensors, e. g. the metric tensor gµν and the Levi-Civita symbol εµνκλ. In a strongly
interacting medium the ground state is not Poincaré invariant, but there is an additional four-
vector, the medium velocity vµ, which must be transformed when comparing observations in
di�erent reference frames and which must be included to build tensors or invariants [Jin93].
Thus, additional condensates give non-zero in-medium contributions which vanish in vacuum.
The goal is a decomposition scheme for tensor structures which accomplishes the smooth
transition of the OPE of current-current correlators in a medium to the vacuum.

C.2.1 General framework

QCD condensates constitute the decomposition coe�cients of ground state EVs 〈Ω|Oµ|Ω〉
and/or Gibbs' averages 〈〈Oµ〉〉 of local spin-n operators Oµ. We use the short notation 〈Oµ〉
for both in this paragraph. The label µ is understood here as a shorthand notation for n
Lorentz indices Oµ1···µn (irrespective of the number of space-time dimensions). The corre-
sponding Lorentz indices are projected onto a set of independent Lorentz tensors collected in
the projection vector ~lµ which represents the dependences of the EV under consideration.2

We now assume that the following decomposition holds:

〈Oµ〉 = ~lµ ·~a , (C.18)

where ' · ' denotes the scalar product. It follows that the desired decomposition is given by

~a =
(
~l ◦~l

)−1
~lν〈Oν〉 , (C.19a)

〈Oµ〉 = Tr

[(
~l ◦~l

)−1 (
~lµ ◦~lν

)]
〈Oν〉 , (C.19b)

where ' ◦ ' is the dyadic product, to which the trace refers to and contracted indices are

understood if omitted. The projection matrix L =
(
~lα ◦~lα

)
=
(
~l ◦~l

)
is symmetric and

Pµν = Tr

[(
~l ◦~l

)−1 (
~lµ ◦~lν

)]
(C.20)

is the wanted projection tensor, satisfying PµνP
ν
κ = Pµκ. Obviously, a valid set of Lorentz

tensors and a valid projection vector is only given if the projection matrix L is invertible.

2Note that we do not explicate the index notation as in the App. C.1. However, we do not refer to ~lµ as
an element of a vector space, but only make use of the vector notation for the sake of conciseness.
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C Operator product expansion. Addendum

Therefore, the components of ~lµ must be linearly independent. As L is symmetric, L−1 is
likewise.

In general, one writes down all possible Lorentz tensors which can be constructed from
the set on which the EV depends and performs the projection for each EV independently.
However, as can be seen from (C.19b), the procedure of decomposing an operator into a
set of Lorentz scalars only depends on the tensor rank and is, thus, actually independent of
the operator. Once Pµν is known, it is the same for all operators Oµ. On the other hand,
a speci�c operator Oµ may occur in di�erent OPEs. This in turn may impose di�erent
symmetry conditions on the operator by contraction of its Lorentz indices with symmetric
or anti-symmetric tensors. It is therefore advisable to (anti-)symmetrize the Lorentz indices
of ~lµ.

Vacuum

In vacuum, we assume that an operator Oµ decomposes as

〈Ω|Oµ|Ω〉 = 〈Ω|Oµ|Ω〉0 = ~l (0)
µ ·~a0 , (C.21)

where the metric tensor gµ1µ2 and the Levi-Civita pseudo tensor εµ1µ2µ3µ4 are the only

independent Lorentz tensors to construct the projection vector ~l
(0)
µ . From these, ~l

(0)
µ can

be constructed only for even rank tensors. Hence, the Lorentz-odd OPE vanishes.

Examples For a second-rank tensor (two Lorentz indices) 〈Ω|Oµ1µ2 |Ω〉, only the metric

tensor gµ1µ2 = ~l
(0)
µ1µ2 contributes and the decomposition tensor is trivially given by

P 0
µ1µ2 ν1ν2

=
1

4
gµ1µ2gν1ν2 . (C.22)

Clearly, only symmetric tensors can give non-vanishing condensates. For a fourth-rank
tensor (four Lorentz indices) 〈Ω|Oµ1µ2µ3µ4 |Ω〉, three combinations of metric tensors and

the Levi-Civita symbol, ~l
(0)
µ1µ2µ3µ4 = (εµ1µ2µ3µ4 , gµ1µ2gµ3µ4 , gµ1µ3gµ2µ4 , gµ1µ4gµ2µ3)T (with

~l
(0)
ν1ν2ν3ν4 analogously), serve as decomposition basis yielding

P 0
µ1µ2µ3µ4 ν1ν2ν3ν4

=
1

72
Tr







−3

5 −1 −1

−1 5 −1

−1 −1 5




(
~l (0)
µ1µ2µ3µ4

◦~l (0)
ν1ν2ν3ν4

)



. (C.23)

Due to di�erent (anti-)symmetries of the decomposition elements, the projection matrix L0

is in block-diagonal form.3 Equivalently, a set of (anti-)symmetrized tensors, ~l
(0)
{µ1µ2}{µ3µ4},

3The projection matrix L can be cast in diagonal form employing an orthogonal set of tensors for decom-

position, i. e.
(
~lµ ◦~lµ

)
= diag(b1, b2, . . .), which can be generated, e. g., by the Gram-Schmidt orthogo-

nalization. However, this merely shifts the problem from inversion of L to �nding an orthogonal set of
tensors, which themselves have no relation to the properties of the operator under consideration unlike
tensors which re�ect the (anti-)symmetries of particular index pairs of the operator.
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C.2 In-medium projection of Lorentz tensors and algebraic vacuum limits

may be employed, which simpli�es the projection tensor to

P 0
µ1µ2µ3µ4 ν1ν2ν3ν4

=
1

72
Tr







−3

3

2 −1

−1 5




(
~l

(0)
{µ1µ2}{µ3µ4} ◦~l

(0)
{ν1ν2}{ν3ν4}

)




(C.24)

with

~l
(0)
{µ1µ2}{µ3µ4} =




εµ1µ2µ3µ4

gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3

gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

gµ1µ2gµ3µ4




(C.25)

and ~l
(0)
{ν1ν2}{ν3ν4} analogously.

Medium

At non-zero density and/or temperature, the medium four-velocity vµ provides a new ele-
ment allowing for a number of additional Lorentz tensors to be projected onto (cf. [Buc14b]
for a list of tensors up to 5 Lorentz indices). We assume that in medium the following
decomposition holds for any operator Oµ:

〈〈Oµ〉〉 = 〈〈Oµ〉〉ρ = ~l (ρ)
µ ·~aρ , (C.26)

where ρ is a generalized medium parameter, i. e. ρ = 0 in vacuum, and ρ > 0 in the

medium.4 The projection vector ~l
(ρ)
µ = (~l

(ρ0)
µ ,~l

(ρ1)
µ )T contains all tensors which already

occur in vacuum, i. e. ~l
(ρ0)
µ = ~l

(0)
µ . All remaining tensors which incorporate the medium

four-velocity vµ are collected in ~l
(ρ1)
µ . Analogously, ~aρ = (~aρ0 ,~aρ1)T, but ~aρ0 6= ~a0 due to

~l (0) ◦~l (ρ1) 6= 0.

The coe�cient vectors are given as

~aρ0 = L−1
0

(
~l (0)
ν 〈〈Oν〉〉 − L0,ρ1~aρ1

)
, (C.27a)

~aρ1 = L−1
ρ1

(
~l (ρ1)
ν 〈〈Oν〉〉 − Lρ1,0~aρ0

)
, (C.27b)

and in disentangled form they read

~aρ0 =
(
L0 − L0,ρ1L

−1
ρ1
Lρ1,0

)−1
(
~l (0)
ν − L0,ρ1L

−1
ρ1
~l (ρ1)
ν

)
〈〈Oν〉〉 , (C.28a)

~aρ1 =
(
Lρ1 − Lρ1,0L

−1
0 L0,ρ1

)−1
(
~l (ρ1)
ν − Lρ1,0L

−1
0
~l (0)
ν

)
〈〈Oν〉〉 , (C.28b)

4The general medium parameter ρ, here mainly used as an distinguishing index, must not be confused with
the spectral density of a hadron introduced in Sec. 2.1.
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where the sub-matrices L0, L0,ρ1 , Lρ1,0 and Lρ1 of the projection matrix Lρ =
(
~l (ρ) ◦~l (ρ)

)

are given explicitly in Eq. (C.90) below. As can be seen, having pre-evaluated the vacuum
decomposition is of little use. Both decomposition vectors have to be evaluated and will, in
general, contain all occurring condensates, irrespective of their vacuum limit.

Naturally, one wishes to reduce evaluational e�orts in case the vacuum decomposition
is already at our disposal and only the additional medium-speci�c contribution has to be
determined. At this stage, however, the full decomposition has to be performed and the
vacuum contribution subtracted to identify the medium-speci�c term. In particular, the

construction of a medium-speci�c projection vector ~l
(1)
µ , which directly gives the additional

terms, is wanted.

We now de�ne the 'algebraic' vacuum decomposition in full analogy to (C.19a) and (C.21)
as

〈〈Oµ〉〉0 = ~l (0)
µ ·~a0 ≡ Tr

[
L−1

0

(
~l (0)
µ ◦~l (0)

ν

)]
〈〈Oν〉〉 , (C.29)

which is algebraically given by the same operators as the decomposition (C.21). However,
in general, the ground state EVs are now medium dependent. Here and in the following,
'algebraic' means that the projection vector ~lµ is speci�ed and the projection tensor Pµν is
applied to the EV irrespective if it is the ground state EV or Gibbs average. We explicitly
separate the algebraic vacuum-speci�c terms

〈〈Oµ〉〉 ≡ 〈〈Oµ〉〉0 + 〈〈Oµ〉〉1 ≡ ~l (0)
µ ·~a0 +~l (1)

µ ·~a1 , (C.30)

which, together with Eq. (C.21), de�nes the 'algebraic' medium-speci�c contribution 〈〈Oµ〉〉1.
Note that (C.30) is an algebraic separation. This means, that the vacuum-speci�c conden-

sates generated by the vacuum-speci�c decomposition (C.21) exhibit a density dependence
when entering the in-medium decomposition in (C.30). Furthermore, it is important to

emphasize that the medium-speci�c projection vector ~l
(1)
µ is not only constituted by the

medium four-velocity or tensors that contain the latter. The elements in ~l
(0)
µ are completely

contained in ~l
(1)
µ . Medium-speci�c condensates have zero vacuum limit and are contained

in ~a1.

Using (C.27) together with (C.29), equality of the de�nitions (C.30) and (C.26) leads to

the following orthogonality requirement for ~l
(0)
µ and the medium-speci�c projection vector

0 = ~l (1) ◦~l (0) . (C.31)

It can be shown that (C.30) and (C.31) are equivalent de�nitions (cf. App. C.2.4).

The according prescription is detailed in the following. From orthogonality (C.31), the

relation ~a0 = L−1
0

(
~l (0) ◦~l (ρ)

)
~aρ follows, which imposes dim(~l

(0)
µ ) constraints on the coef-

�cients ~a (ρ) and ~a (0) leaving dim(~l
(ρ)
µ ) independent elements. Substituting the obtained

constraints

~aρ0 = ~a0 − L−1
0 L0,ρ1~aρ1 (C.32)

in de�nition (C.30) allows (together with Eq. (C.21)) to construct a medium-speci�c projec-
tion vector

~l (1)
µ = Lρ1,0L

−1
0
~l (0)
µ −~l (ρ1)

µ . (C.33)
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C.2 In-medium projection of Lorentz tensors and algebraic vacuum limits

Note that ~l
(1)
µ is not unique. A constant factor and symmetry properties may be chosen

di�erently. Due to orthogonality (C.31), vacuum- and medium-speci�c parts of the tensor
decomposition can be evaluated independently of each other and the general decomposition
procedure (C.19b) can be applied utilizing the medium-speci�c projection vector (C.33).

The medium-speci�c contribution 〈〈Oµ〉〉1 of a decomposed Gibbs averaged operator is
also referred to as a higher-twist contribution 〈〈ST Oµ〉〉, where ST renders the operator sym-
metric and traceless w. r. t. Lorentz indices [Hat93, Leu98]. The numerical values of these
quantities can be obtained from DIS amplitudes [Gub15a]. In the very same fashion numer-
ical values can be found for medium-speci�c condensates or at least for linear combinations
of the latter. For medium-speci�c condensates up to mass dimension 5, the corresponding
numerical values and their medium behaviors from DIS amplitudes to leading order in the
nucleon density are explicated in [Jin93].

Examples For a second-rank tensor (two Lorentz indices) 〈〈Oµ1µ2〉〉1, only the metric tensor

gµ1µ2 = ~l
(0)
µ1µ2 and vµ1vµ2/v

2 = ~l
(ρ1)
µ1µ2 contribute, and the decomposition tensor reads

P 1
µ1µ2 ν1ν2

=
1

12

(
gµ1µ2 − 4

vµ1vµ2

v2

)(
gν1ν2 − 4

vν1vν2

v2

)
, (C.34)

where non-vanishing results are obtained for symmetric Lorentz indices only. For a fourth-
rank tensor (four Lorentz indices) 〈〈Oµ1µ2µ3µ4〉〉1 fourteen tensors contribute. Four of them,
which incorporate the Levi-Civita symbol, can be evaluated separately (cf. Eq. (C.23)). Thus,
we restrict the consideration to the remaining ten tensors, giving

P 1
µ1µ2µ3µ4 ν1ν2ν3ν4

=
1

240

× Tr







7 −1
2 −1

2 2 −1
2 −1

2 −1

−1
2 7 −1

2 −1
2 2 −1

2 −1

−1
2 −1

2 7 −1
2 −1

2 2 −1

2 −1
2 −1

2 7 −1
2 −1

2 −1

−1
2 2 −1

2 −1
2 7 −1

2 −1

−1
2 −1

2 2 −1
2 −1

2 7 −1

−1 −1 −1 −1 −1 −1 4
3




(
~l (1)
µ1µ2µ3µ4

◦~l (1)
ν1ν2ν3ν4

)




(C.35)

with

~l (1)
µ1µ2µ3µ4

=

(
gµ1µ2gµ3µ4 − 4gµ1µ2

vµ3vµ4

v2
, gµ1µ3gµ2µ4 − 4gµ1µ3

vµ2vµ4

v2
,

gµ1µ4gµ2µ3 − 4gµ1µ4

vµ2vµ3

v2
, gµ3µ4gµ1µ2 − 4gµ3µ4

vµ1vµ2

v2
,

gµ2µ4gµ1µ3 − 4gµ2µ4

vµ1vµ3

v2
, gµ2µ3gµ1µ4 − 4gµ2µ3

vµ1vµ4

v2
,

gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 − 24
vµ1vµ2vµ3vµ4

v4

)T

(C.36)
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and ~l
(1)
ν1ν2ν3ν4 analogously. Decomposing the components of the projection vector into tensors

symmetric and anti-symmetric in the index pairs µ1µ2 and µ3µ4 yields

P 1
µ1µ2µ3µ4 ν1ν2ν3ν4

=
1

240

× Tr







10

20

20

8 −1 −1 −2

−1 7 2 −1

−1 2 7 −1

−2 −1 −1 4
3




(
~l

(1)
{µ1µ2}{µ3µ4} ◦~l

(1)
{ν1ν2}{ν3ν4}

)




(C.37)

with

~l
(1)
{µ1µ2}{µ3µ4} =

(
l

(1)
[µ1µ2][µ3µ4], l

(1)
(µ1µ2)[µ3µ4], l

(1)
[µ1µ2](µ3µ4),

~l
(1)

(µ1µ2)(µ3µ4)

)T

, (C.38)

l
(1)

[µ1µ2][µ3µ4] = gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3 −
2

v2
(gµ1µ3vµ2vµ4

− gµ1µ4vµ2vµ3 + gµ2µ4vµ1vµ3 − gµ2µ3vµ1vµ4) , (C.39a)

l
(1)

(µ1µ2)[µ3µ4] =
1

v2
(gµ1µ3vµ2vµ4 − gµ1µ4vµ2vµ3 − gµ2µ4vµ1vµ3 + gµ2µ3vµ1vµ4) , (C.39b)

l
(1)

[µ1µ2](µ3µ4) =
1

v2
(gµ1µ3vµ2vµ4 + gµ1µ4vµ2vµ3 − gµ2µ4vµ1vµ3 − gµ2µ3vµ1vµ4) , (C.39c)

~l
(1)

(µ1µ2)(µ3µ4) =

(
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 −

2

v2
(gµ1µ3vµ2vµ4

+ gµ1µ4vµ2vµ3 + gµ2µ4vµ1vµ3 + gµ2µ3vµ1vµ4) ,

gµ1µ2gµ3µ4 − 4gµ1µ2

vµ3vµ4

v2
, gµ1µ2gµ3µ4 − 4gµ3µ4

vµ1vµ2

v2
,

gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 − 24
vµ1vµ2vµ3vµ4

v4

)T

(C.39d)

and ~l
(1)
{ν1ν2}{ν3ν4} analogously, where the Bach bracket notation is employed to the bracketed

index pair { · · · }.
Due to the anti-symmetry of the indices of the gluon �eld strength tensor, the medium-

speci�c gluon condensate can be identi�ed by the decomposition [Zsc11]

〈〈GAµ1µ2
GAµ3µ4

〉〉1 =
1

24
〈〈
(
G2

4
− (vG)2

v2

)
〉〉
[
gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3

− 2

v2
(gµ1µ3vµ2vµ4 − gµ1µ4vµ2vµ3 + gµ2µ4vµ1vµ3 − gµ2µ3vµ1vµ4)

]
(C.40)

which features only the decomposition in Eq. (C.39a).
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Vacuum constraints

Although the (anti-)symmetrized projection vector exhibits a more complicated structure,
it considerably simpli�es the decomposition of tensors with known symmetries among the
Lorentz indices and allows for an unambiguous identi�cation of medium-speci�c condensates.

In vacuum, Gibbs averaging reduces to the ground state EV of the operators under consid-
eration, 〈〈Oµ〉〉 → 〈Ω|Oµ|Ω〉. Hence, in the vacuum limit the non-orthogonal decomposition
must satisfy

~l (0)
µ ·~aρ0 +~l (ρ1)

µ ·~aρ1 → ~l (0)
µ ·~a0 , (C.41)

which can be expressed by the following vacuum constraint

(~l (0)
µ

~l
(ρ1)
µ

)T

L−1

ρ −


 L−1

0 0

0 0





(~l (0)

ν

~l
(ρ1)
ν

)
〈Ω|Oν |Ω〉 = 0 . (C.42)

As the components of ~l
(ρ)
µ must be linearly independent, (C.42) can only be ful�lled if


L−1

ρ −


 L−1

0 0

0 0





(~l (0)

ν

~l
(ρ1)
ν

)
〈Ω|Oν |Ω〉 = 0 . (C.43)

On the other hand ~l
(ρ)
µ 〈Ω|Oµ|Ω〉 6= 0 must hold, if ~l

(0)
µ 〈Ω|Oµ|Ω〉 6= 0.5 Consequently, the

vector of condensates ~l
(ρ)
µ 〈Ω|Oµ|Ω〉 must satisfy

~l (ρ)
µ 〈Ω|Oµ|Ω〉 ∈ ker


L−1

ρ −


 L−1

0 0

0 0




 (C.44)

for all operators Oµ. Note that, in general, the kernel of the matrix is degenerate. Thus,
the imposed vacuum constraints are not unique in the sense that (C.43) is the strongest

constraint which can be deduced. In particular, because of the non-orthogonality of ~l
(0)
µ and

~l
(ρ1)
µ , the matrix in (C.43) has no block-diagonal form and possible interrelations among the
additional medium terms remain hidden.

Because the matrix in (C.43) must have a non-trivial kernel, thus being not invertible,
there is no matrix L̄ with

L̄−1 =


L−1

ρ −


 L−1

0 0

0 0




 . (C.45)

This is merely another formulation of the problem that the full decomposition has to be
reevaluated in case additional tensors enter the projection vector although the vacuum de-
composition is known.

5 In case ~l
(0)
µ 〈Ω|Oµ|Ω〉 = 0, ~l

(ρ)
µ 〈Ω|Oµ|Ω〉 = 0 must be ful�lled element-wise. For an odd number of indices

~l
(0)
µ does not exist, thus ~l

(ρ1)
µ = ~l

(1)
µ and the arguments for the orthogonal decomposition apply.
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For the orthogonal decomposition, the vacuum limit reads

0 = 〈Ω|Oµ|Ω〉1 = ~l (1)
µ ·~a1 . (C.46)

As the components of ~l
(1)
µ must be linearly independent and the kernel of the invertible

medium-speci�c projection matrix is trivial, i. e. ker
(
~l (1) ◦~l (1)

)−1
= {0}, this is equivalent

to ~a1 → 0 with element-wise vanishing of the medium-speci�c condensates

0 = ~l (1)
µ 〈Ω|Oµ|Ω〉 , (C.47)

cf. Eq. (C.19a). From (C.33) it can be seen that medium-speci�c condensates ~l
(1)
µ 〈〈Oµ〉〉

contain algebraic vacuum condensates ~l
(0)
µ 〈〈Oµ〉〉. Accordingly, the requirement of vanishing

medium-speci�c condensates gives rise to vacuum constraints as interrelations among the
~l

(ρ)
µ 〈Ω|Oµ|Ω〉 entering the medium-speci�c part of the decomposition, in particular also

between terms which already occur in vacuum, i. e. ~l
(0)
µ 〈Ω|Oµ|Ω〉. Thus, the vacuum limit

of non-vacuum condensates ~l
(ρ1)
µ 〈Ω|Oµ|Ω〉 is restricted by vacuum condensates:

~l (ρ1)
µ 〈Ω|Oµ|Ω〉 = Lρ1,0L

−1
0
~l (0)
µ 〈Ω|Oµ|Ω〉 . (C.48)

In particular, non-vacuum condensates have a non-zero vacuum limit.

Summarizing, the Lorentz tensors which enter the decomposition upon the onset of a
continuous parameter ρ, as e. g. the density, lead to additional condensates. The limit of
these condensates for ρ → 0 is however constrained by (C.48) if the transition is assumed
to be continuous. It is remarkable that these vacuum constraints are independent of the
operator Oµ, but only depend on the rank of this Lorentz tensor. Finally, the arguments
given above are not restricted to the occurrence of a medium velocity vµ and can in principle
be applied to any decomposition where additional tensors enter.

Transformation to canonical condensates

Utilizing quark and gluon EoMs, i. e. Eqs. (A.17), (A.18) and (A.19), as well as Dirac matrix
identities, e. g. Eq. (A.13), and the symmetries of the QCD ground state, the elements of
the vector of condensates can be mapped to a smaller set of (canonical) condensates,

~l (ρ)
µ 〈Oµ〉 = K ~〈q〉 , (C.49)

where K is a linear transformation matrix. It maps the canonical condensates ~〈q〉 =

( ~〈q〉(0), ~〈q〉(ρ1))T onto the contracted EVs ~l
(ρ)
µ 〈Oµ〉. Canonical condensates contain the mini-

mal number of covariant derivatives. Whereas the Lorentz decomposition of a QCD operator
depends only on its tensor rank, the operator itself might be identi�ed by its transformation
to canonical condensates. Having �xed a set of canonical condensates in the medium, any
operator O may be speci�ed by its matrix K.

Since vacuum and non-vacuum parts of the (m× n) matrix K separate according to

K =


 K0 0

0 Kρ1


 (C.50)
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the vacuum constraints (C.48) read

Kρ1
~〈q〉(ρ1) = Lρ1,0L

−1
0 K0

~〈q〉(0) , (C.51)

requiring the left inverse of Kρ1 to cast the vacuum constraints in the desired form. Since
columns and rows in K might show linear dependences the inverse K−1

ρ1
does not exist in

general. However, a left inverse K+
ρ1

can always be constructed from a matrix with linearly

independent columns which can be obtained by appropriate rede�nition of ~〈q〉. Then the
vacuum constraints of canonical condensates read

~〈q〉(ρ1) = K+
ρ1
Lρ1,0L

−1
0 K0

~〈q〉(0) . (C.52)

C.2.2 Application to four-quark condensates

The above derived formulae are essential for setting up in-medium QSRs for mesons and
baryons. Depending on the order of the OPE of the correlator, operators with an increasing
number of Lorentz indices occur. To illustrate the de�nitions of vacuum- and medium-
speci�c contributions and to shed light on the e�ect of vacuum constraints we choose four-
quark condensates as an example with up to �ve Lorentz indices. The evaluation of leading
order αs four-quark condensate terms using the Fock-Schwinger gauge method [Nov84,Pas84]
requires the computation of three distinct contributions to the meson current-current corre-

lator (cf. App. C.3): 〈〈q̄
←
Dµ

←
Dν

←
DλΓq〉〉, 〈〈q̄Γ[Dν , Gκλ]q〉〉, 〈〈q̄

←
DµΓGνλq〉〉. Specifying the Dirac

structure Γ for a light vector current, such as for the ρ or ω meson, we end up with the
following Gibbs averaged operators:

even OPE

(e1) 〈〈q̄
←
Dµ

←
Dν

←
Dλγαq〉〉

(e2) 〈〈q̄γµ[Dν , Gκλ]q〉〉
(e3) 〈〈q̄γ5γµ[Dν , Gκλ]q〉〉〉
(e4) 〈〈q̄

←
DµγαGνλq〉〉

(e5) 〈〈q̄
←
Dµγ5γαGνλq〉〉

odd OPE

(o1) 〈〈q̄
←
Dµ

←
Dν

←
Dλq〉〉

(o2) 〈〈q̄[Dν , Gκλ]q〉〉
(o3) 〈〈q̄σαβ[DσGνλq〉〉
(o4) 〈〈q̄

←
DµGνλq〉〉

(o5) 〈〈q̄
←
DµσαβGνλq〉〉

and equivalent objects with covariant derivatives acting on the right quark operator, i. e.

q̄
←
Dµ · · · q −→ q̄ · · ·Dµq. Four-quark condensates in LO of αs also occur in the NLO correla-
tor with inserted interaction term:

even OPE

(e6) 〈〈q̄γµTAqq̄′γνTAq′〉〉
(e7) 〈〈q̄γ5γµT

Aqq̄′γ5γνT
Aq′〉〉

odd OPE

(o6) 〈〈q̄TAqq̄′γµTAq′〉〉
(o7) 〈〈q̄γ5γµT

Aqq̄′σνλTAq′〉〉 ,

where q and q′ denote light-quark �avors, which may coincide, and TA with A = 0, . . . , 8
symbolize the generators of the color group SU(Nc = 3), tA, added by the unit element
for A = 0.
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C Operator product expansion. Addendum

In the following we provide vacuum- and medium-speci�c decompositions of those OPE
operators (e1)�(e7) and (o1)�(o7) which do not vanish in the light (axial-)vector meson OPE
(due to (anti-)symmetries among the Lorentz indices or vanishing Dirac trace results). The
Lorentz-contracted operators occurring in the decomposition coe�cients are transformed to
canonical condensates. The corresponding transformation matrices are presented along with
the vacuum constraints in terms of these canonical condensates.

In pseudo-scalar, scalar, vector and axial-vector meson currents the Dirac trace results
of the OPE di�er only by a constant (non-zero) factor/sign, except for traces with Dirac
projection matrix σαβ , where vector and axial-vector currents give zero results. Hence, up to
prefactors all four-quark condensate contributions in LO of αs to spin-1 OPEs already enter
spin-0 OPEs. The presented constraints are therefore valid in both channels. In particular,
they do not mutually contradict.

Even OPE

To extend conveniently the following results to mesons consisting of a light and a heavy
quark, such as D and B mesons, we �rst present the vacuum constraints set up by the
contributions of (e1)�(e5) and include additional vacuum constraints from (e6) and (e7)
originating from the NLO correlator later on.

(i) The �rst EV (e1) decomposes into vacuum- and medium-speci�c terms as (cf. (C.30))

〈〈q̄
←
Dµ

←
Dν

←
Dλγαq〉〉0

=
1

72


 gµλgνα + gµαgνλ

gµνgλα




T
 2 −1

−1 5




 〈〈q̄

←
Dµ

←
/D
←
Dµq + q̄

←
/D
←
D2q〉〉

〈〈q̄
←
D2

←
/Dq〉〉


 , (C.53)

〈〈q̄
←
Dµ

←
Dν

←
Dλγαq〉〉1

=
1

240




gµλgνα + gµαgνλ − 2
v2 (gµλvνvα

+ gµαvνvλ + gναvµvλ + gνλvµvα)

gµνgλα − 4
v2 gµνvλvα

gµνgλα − 4
v2 gλαvµvν

gµλgνα + gµαgνλ + gµνgλα − 48
v4 vµvνvλvα




T



8 −1 −1 −2

−1 7 1 −1

−1 1 7 −1

−2 −1 −1 4
3




×




〈〈q̄
←
Dµ′

←
/D
←
Dµ′q + q̄

←
/D
←
D2q − 2

v2 (q̄
←
Dµ′(v

←
D)
←
Dµ′/vq

+ q̄
←
/D(v

←
D)2q + q̄(v

←
D)
←
/D(v

←
D)q + q̄(v

←
D)
←
D2/vq)〉〉

〈〈q̄
←
D2

←
/Dq − 4

v2 q̄
←
D2(v

←
D)/vq〉〉

〈〈q̄
←
D2

←
/Dq − 4

v2 q̄(v
←
D)2

←
/Dq〉〉

〈〈q̄
←
Dµ′

←
/D
←
Dµ′q + q̄

←
/D
←
D2q + q̄

←
D2

←
/Dq − 48

v4 q̄(v
←
D)3/vq〉〉




, (C.54)

where only the part symmetric in the index pairs µν and λα contributes to the (axial-)vector
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OPE. Transformation to canonical condensates yields



〈q̄
←
D2

←
/Dq〉

〈q̄
←
Dµ

←
/D
←
Dµq〉

〈q̄
←
/D
←
D2q〉

〈q̄
←
D2(v

←
D)/vq〉

〈q̄
←
Dµ(v

←
D)
←
Dµ/vq〉

〈q̄
←
/D(v

←
D)2q〉

〈q̄(v
←
D)2

←
/Dq〉

〈q̄(v
←
D)
←
/D(v

←
D)q〉

〈q̄(v
←
D)
←
D2/vq〉

〈q̄(v
←
D)3/vq〉




=




0 i

i
2 i

0 i

0 1 0 0 0

i
2 1 0 0 0

0 0 i 0 0

0 0 i 0 0

0 0 i −i 0

0 1 0 −2i 0

0 0 0 0 1







g2〈q̄γµtAq∑f f̄γµt
Af〉

mq
2 〈q̄gσGq〉 −m3

q〈q̄q〉

g2〈q̄/vtAq
∑

f f̄ /vt
Af〉

1
2〈q̄(v

←
D)gσG/vq〉
−m2

q〈q̄(v
←
D)/vq〉

mq〈q̄(v
←
D)2q〉

g〈q̄(v
←
D)γµGµνv

νq〉
〈q̄(v

←
D)3/vq〉




,

(C.55)

where
∑

f denotes the sum over light-quark �avors.

(ii) The second EV (e2) decomposes into vacuum- and medium-speci�c terms as

〈〈q̄γµ[Dν , Gκλ]q〉〉0 =
1

12
(gµκgνλ − gµλgνκ) 〈〈q̄γα[Dβ, Gαβ]q〉〉 , (C.56)

〈〈q̄γµ[Dν , Gκλ]q〉〉1 =
1

12
l

(1)
[µν][κλ]〈〈q̄γ

α[Dβ, Gαβ]q

− 2

v2

(
q̄γα[(vD), Gαβ]vβq + q̄/v[Dα, Gβα]vβq

)
〉〉 , (C.57)

where only the part anti-symmetric in both index pairs µν and κλ contributes to the
(axial-)vector OPE. Transformation to canonical condensates yields




〈q̄γα[Dβ, Gαβ]q〉
〈q̄γα[(vD), Gαβ]vβq〉
〈q̄/v[Dα, Gβα]vβq〉


 =




1

1 0

0 1







g〈q̄γµtAq∑f f̄γµt
Af〉

〈q̄γα[(vD), Gαβ]vβq〉
g〈q̄/vtAq

∑
f f̄ /vt

Af〉


 . (C.58)

(iii) The third EV (e3) decomposes into vacuum- and medium-speci�c terms as

〈〈q̄γ5γα[Dσ, Gνλ]q〉〉0 = − 1

24
εασνλ〈〈εα′σ′ν′λ′ q̄γ5γ

α′ [Dσ′ , Gν
′λ′ ]q〉〉 , (C.59)

〈〈q̄γ5γα[Dσ, Gνλ]q〉〉1

= − 1

192


 εασνλ − 4

v2 εανλτv
τvσ

−εασνλ − 4
v2 εασλτv

τvν − (εασνλ − 4
v2 εασντv

τvλ)




T
 4 −2

−2 3




×


 〈〈εα′σ′ν′λ′ q̄γ5γ

α′ [Dσ′ , Gν
′λ′ ]q − 4

v2 εα′ν′λ′τ ′vτ ′ q̄γ5γ
α′ [(vD), Gν

′λ′ ]q〉〉
2〈〈−εα′σ′ν′λ′ q̄γ5γ

α′ [Dσ′ , Gν
′λ′ ]q − 4

v2 εα′σ′λ′τ ′vτ ′v
ν′ q̄γ5γ

α′ [Dσ′ , Gν
′λ′ ]q〉〉


 ,

(C.60)
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where only the part anti-symmetric in the index pair νλ contributes to the (axial-)vector
OPE. Transformation to canonical condensates yields




〈εασνλq̄γ5γ
α[Dσ, Gνλ]q〉

〈εανλτvτ q̄γ5γ
α[(vD), Gνλ]q〉

〈εασλτvτvν q̄γ5γ
α[Dσ, Gνλ]q〉


 =




1

−1 2i 0

0 −i i







0

〈q̄/vσνλ[(vD), Gνλ]q〉
〈q̄γλ[(vD), Gνλ]vνq〉
g〈q̄/vtAq

∑
f f̄ /vt

Af〉



.

(C.61)

(iv) The decomposition of (e4) does vanish, when contracted with the Dirac trace result of
the OPE.

(v) The �fth EV (e5) decomposes into vacuum- and medium-speci�c terms as

〈〈q̄
←
Dµγ5γαGνλq〉〉0 = − 1

24
εµανλ〈〈εµ′α′ν′λ′ q̄

←
Dµ′γ5γ

α′Gν
′λ′q〉〉 , (C.62)

〈〈q̄
←
Dµγ5γαGνλq〉〉1

= − 1

192


 εµανλ − 4

v2 εµνλτv
τvα

−εµανλ − 4
v2 εµαλτv

τvν − (εµανλ − 4
v2 εµαντv

τvλ)




T
 4 −2

−2 3




×


 〈〈εµ′α′ν′λ′ q̄

←
Dµ′γ5γ

α′Gν
′λ′q − 4

v2 εµ′ν′λ′τ ′v
τ ′ q̄
←
Dµ′γ5/vG

ν′λ′q〉〉
2〈〈−εµ′α′ν′λ′ q̄

←
Dµ′γ5γ

α′Gν
′λ′q − 4

v2 εµ′α′λ′τ ′v
τ ′vν′ q̄

←
Dµ′γ5γ

α′Gν
′λ′q〉〉


 , (C.63)

where only the part anti-symmetric in the index pair νλ contributes to the (axial-)vector
OPE. Transformation to canonical condensates yields




〈εµανλq̄
←
Dµγ5γ

αGνλq〉
〈εµνλτvτ q̄

←
Dµγ5/vG

νλq〉
〈εµαλτvτvν q̄

←
Dµγ5γ

αGνλq〉


 =




i

1 0

0 i




×




mq〈q̄σGq〉+ g〈q̄γµtAq∑f f̄γµt
Af〉

〈εµνλτvτ q̄
←
Dµγ5/vG

νλq〉
mq〈q̄vµσµνGνλvλq〉 − 1

2g〈q̄/vtAq
∑

f f̄ /vt
Af〉 − 〈q̄(v

←
D)γνGνλv

λq〉


 . (C.64)

Gathering the vacuum constraints as vanishing medium-speci�c condensates of the de-
compositions (C.54), (C.57), (C.60) and (C.63) in terms of canonical condensates yields

0 = 〈Ω|g2q̄γµtAq
∑

f

f̄γµt
Af + 2mq q̄gσGq − 4m3

q q̄q −
2

v2

(
g2q̄/vtAq

∑

f

f̄ /vtAf

− 2q̄(vi
←
D)gσG/vq + 4m2

q q̄(vi
←
D)/vq − 4mq q̄(vi

←
D)2q + 6gq̄(v

←
D)γµGνµv

νq

)
|Ω〉 ,

(C.65a)
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0 = 〈Ω|mq q̄gσGq − 2m3
q q̄q −

4

v2

(
− q̄(vi

←
D)gσG/vq + 2m2

q q̄(vi
←
D)/vq

)
|Ω〉 , (C.65b)

0 = 〈Ω|mq q̄gσGq − 2m3
q q̄q +

8

v2
mq q̄(vi

←
D)2q|Ω〉 , (C.65c)

0 = 〈Ω|g2q̄γµtAq
∑

f

f̄γµt
Af + 3mq q̄gσGq − 6m3

q q̄q −
48

v4
q̄(vi

←
D)3/vq|Ω〉 , (C.65d)

0 = 〈Ω|gq̄γµtAq
∑

f

f̄γµt
Af − 2

v2

(
q̄γµ[(vD), Gµν ]vνq + gq̄/vtAq

∑

f

f̄ /vtAf

)
|Ω〉 , (C.65e)

0 = 〈Ω|gq̄/vtAq
∑

f

f̄ /vtAf + q̄γµ[(vD), Gµν ]vνq + q̄/vσνλ[(vD), Gνλ]q|Ω〉 , (C.65f)

0 = 〈Ω|3g2q̄γµtAq
∑

f

f̄γµt
Af + 3mq q̄gσGq −

4

v2

(
− gεµνλτvτ q̄i

←
Dµγ5/vG

νλq

− 2gmq q̄vµσµνGνλv
λq + g2q̄/vtAq

∑

f

f̄ /vtAf + 2gq̄(v
←
D)γλGνλv

νq

)
|Ω〉 . (C.65g)

Equations (C.65) relate the known ground state EVs of vacuum operators, e. g. 〈Ω|q̄q|Ω〉,
〈Ω|q̄gσGq|Ω〉 and g2〈Ω|q̄γµtAq∑f f̄γµt

Af |Ω〉, or the known components of medium-speci�c

condensates up to mass dimension 5, i. e. 〈Ω|q̄(vi
←
D)/vq|Ω〉 and 〈Ω|q̄(vi

←
D)2q|Ω〉, to heretofore

unknown ground state EVs of components of medium-speci�c condensates in mass dimension
6, e. g. the medium four-quark condensate g2〈Ω|q̄/vtAq

∑
f f̄ /vt

Af |Ω〉/v2. We therefore solve
the above system of linear equations for the unknown condensates.

The system of equations is underdetermined, thus, the solution is not unique. In fact, the
relation between vacuum and medium four-quark condensate can be tuned this way. The
ground state EVs of non-vacuum operators of mass dimension 6 deduced from the algebraic
vacuum constraints, where we choose

g2〈Ω|q̄/vtAq
∑

f

f̄ /vtAf |Ω〉/v2 = xq , (C.66a)

g〈Ω|mq q̄vµσ
µνGνλv

λq|Ω〉/v2 = yq (C.66b)

to be the free parameters of the solution of the system of equations (C.65), read

g〈Ω|q̄(vi
←
D)σG/vq|Ω〉/v2 =

1

4

(
4m3

q〈Ω|q̄q|Ω〉 −mq〈Ω|q̄gσGq|Ω〉
)
, (C.67a)

g〈Ω|q̄(vi
←
D)γµGνµv

νq|Ω〉/v2 =
1

12

(
g2〈Ω|q̄γµtAq

∑

f

f̄γµt
Af |Ω〉 − 2xq

)
, (C.67b)

g〈Ω|q̄γµ[(vD), Gµν ]vνq|Ω〉/v2 =
1

2

(
g2〈Ω|q̄γµtAq

∑

f

f̄γµt
Af |Ω〉 − 2xq

)
, (C.67c)

g〈Ω|q̄/vσνλ[(viD), Gνλ]q|Ω〉/v2 =
1

2

(
g2〈Ω|q̄γµtAq

∑

f

f̄γµt
Af |Ω〉 − 4xq

)
, (C.67d)
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g〈Ω|εµνλτvτ q̄i
←
Dµγ5/vG

νλq|Ω〉/v2 =
1

12

(
6m3

q〈Ω|q̄q|Ω〉 − 8mq〈Ω|q̄gσGq|Ω〉

− 7g2〈Ω|q̄γµtAq
∑

f

f̄γµt
Af |Ω〉+ 8xq − 24yq

)
, (C.67e)

〈Ω|q̄(vi
←
D)3/vq|Ω〉/v4 =

1

48

(
− 6m3

q〈Ω|q̄q|Ω〉+ 3mq〈Ω|q̄gσGq|Ω〉

+ g2〈Ω|q̄γµtAq
∑

f

f̄γµt
Af |Ω〉

)
, (C.67f)

where the vacuum constraints

〈Ω|q̄(vi
←
D)/vq|Ω〉/v2 = −1

4
mq〈Ω|q̄q|Ω〉 , (C.68)

〈Ω|q̄(vi
←
D)2q|Ω〉/v2 = −1

8
〈Ω|q̄gσGq|Ω〉+

1

4
m2
q〈Ω|q̄q|Ω〉 (C.69)

from mass dimension-4 and -5 condensates have been used, respectively. The same solution
holds in the light chiral limit mq → 0.

(vi) Gibbs averaged light four-quark operators (e6) and (e7) from the NLO correlator
decompose into vacuum- and medium-speci�c terms as

〈〈q̄Γ′γµTAqq̄′Γ′γνTAq′〉〉0 =
1

4
gµν〈〈q̄Γ′γµ

′
TAqq̄′Γ′γµ′T

Aq′〉〉 , (C.70)

〈〈q̄Γ′γµTAqq̄′Γ′γνTAq′〉〉1 =
1

12

(
gµν −

4

v2
vµvν

)

× 〈〈q̄Γ′γµ′TAqq̄′Γ′γµ′TAq′ −
4

v2
q̄Γ′/vTAqq̄′Γ′/vTAq′〉〉 , (C.71)

where Γ′ denotes either 14 or γ5. These condensates originating from two cut quark lines in
the corresponding diagram of the NLO correlator are already in canonical form, cf. Fig. 3.3.

The vacuum constraints from vanishing medium-speci�c condensates (C.71) read

〈Ω|q̄Γ′/vTAqq̄′Γ′/vTAq′|Ω〉/v2 =
1

4
〈Ω|q̄Γ′γµTAqq̄′Γ′γµTAq′|Ω〉 (C.72)

which completes the list of Eqs. (C.67) for light-quark condensates. They con�ne the
arbitrary parameter xq in (C.67), i. e. Eq. (C.72) with Γ′ = 14 and TA = tA deter-
mines the relation between light four-quark condensates in vacuum and medium, such that
xq = 1

4〈Ω|q̄γµtAq
∑

f f̄γµt
Af |Ω〉 must be used in the above vacuum constraints (C.67) lead-

ing to a zero ground state EV in (C.67d).

This is a general result providing vacuum values for non-vacuum condensates. It is
deduced only from the requirement of a continuous transition to vacuum terms when 'turning
o� the medium', ρ→ 0.

Vacuum constraints of the even OPE of qQ meson currents can be deduced from the
results presented here. Besides Gibbs averaged light-quark operators also heavy-quark op-
erators and such quantities containing both kinds of quark operators enter the OPE of qQ
mesons. The Gibbs averages (e1)�(e5) are supplemented by similar contributions, where
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q̄
←
Dµ · · · q −→ Q̄ · · ·DµQ. The four-quark terms (e6) and (e7) are substituted by similar
contributions where one q̄ · · · q pair is changed for one Q̄ · · ·Q pair.

The decompositions of the heavy-quark terms and their vacuum constraints originating
from the LO correlator can be obtained by q −→ Q in (C.54)�(C.69), where this substitution
also refers to subscripts, e. g. further parameters enter the heavy-quark vacuum constraints,
xQ and yQ, which are absent in a light-quark current OPE. The decomposition of the heavy-
light four-quark terms originating from the NLO correlator can be obtained by the exchange
of one quark pair q̄ · · · q −→ Q̄ · · ·Q in (C.70)�(C.72). This substitution in Eq. (C.72) �xes
the parameter xQ = 1

4〈Ω|Q̄γµtAQ
∑

f f̄γµt
Af |Ω〉.

A subtlety may be mentioned regarding the parameter xq in qQ meson OPEs. Since
no light four-quark terms (e6) and (e7) but exclusively corresponding four-quark terms
containing heavy-quark and light-quark pairs enter such OPEs, xq can not be determined
by the qQ meson OPE alone. However, the assumed universality of condensates requires
identical behavior of identical condensates in di�erent OPEs. Thus, the light current OPE
�xes the parameter xq also in a heavy-light current OPE.

Odd OPE

In vacuum, the Lorentz-odd OPE is always zero. Hence, 〈〈O〉〉0 = 0 for all Lorentz-odd
operators.

(i) The �rst EV (o1) decomposes as

〈〈q̄
←
Dµ

←
Dν

←
Dλq〉〉 =

1

3v2




vµgνλ

vνgµλ

vλgµν

1
v2 vµvνvλ




T


1 0 0 −1

0 1 0 −1

0 0 1 −1

−1 −1 −1 6







〈〈q̄(v
←
D)
←
D2q〉〉

〈〈q̄
←
Dµ′(v

←
D)
←
Dµ′q〉〉

〈〈q̄
←
D2(v

←
D)q〉〉

1
v2 〈〈q̄(v

←
D)3q〉〉



,

(C.73)

where only the combination 〈〈q̄(v
←
D)
←
D2q+ 2q̄

←
Dµ(v

←
D)
←
Dµq+ q̄

←
D2(v

←
D)q〉〉 and the single term

〈〈q̄(v
←
D)3q〉〉/v2 enter the (axial-)vector OPE. Transformation to canonical condensates yields




〈q̄(v
←
D)
←
D2q〉

〈q̄
←
Dµ(v

←
D)
←
Dµq〉

〈q̄
←
D2(v

←
D)q〉

1
v2 〈q̄(v

←
D)3q〉




=




0 1 0 0

i
2 1 0 0

0 0 1 0

0 0 0 1







g2〈q̄tAq∑f f̄ /vt
Af〉

g
2〈q̄(v

←
D)σGq〉 −m2

q〈q̄(v
←
D)q〉

g
2〈q̄σG(v

←
D)q〉 −m2

q〈q̄(v
←
D)q〉

1
v2 〈q̄(v

←
D)3q〉



. (C.74)

(ii) The second EV (o2) decomposes as

〈〈q̄[Dσ, Gνλ]q〉〉 =
1

3v2
(vνgσλ − vλgσν)〈〈q̄[Dµ′ , Gν′µ′ ]v

ν′q〉〉 , (C.75)

where only the part anti-symmetric in νλ enters the (axial-)vector OPE. Transformation to
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a canonical condensate yields

〈q̄[Dµ, Gνµ]vνq〉 = g〈q̄tAq
∑

f

f̄ /vtAf〉 . (C.76)

(iii) The third EV (o3) decomposes as

〈〈q̄σαβ[Dσ, Gνλ]q〉〉

=
1

6v2




vαgβνgσλ − vαgβλgσν − vβgανgσλ + vβgαλgσν

vσ(gανgβλ − gαλgβν)

vνgασgβλ − vλgασgβν + vλgανgβσ − vνgαλgβσ
1
v2 (vαvσvνgβλ − vαvσvλgβν − vβvσvνgαλ + vβvσvλgαν)




T

×




1 0 0 −1

0 2 0 −2

0 0 1 −1

−1 −2 −1 6







〈〈q̄vα′σα
′ν′ [Dλ′ , Gν′λ′ ]q〉〉

1
2〈〈q̄σν

′λ′ [(vD), Gν′λ′ ]q〉〉
〈〈q̄σσ′λ′ [Dσ′ , Gν′λ′ ]v

ν′q〉〉
1
v2 〈〈q̄vα′σα

′λ′ [(vD), Gν′λ′ ]v
ν′q〉〉



, (C.77)

where only the combination 〈〈q̄σνλ[(vD), Gνλ]q + q̄σσλ[Dσ, Gνλ]vνq〉〉 enters the (pseudo-)
scalar OPE. Application of the gluon EoM (A.19) to the �rst condensate in (C.77) yields
the four-quark condensate 〈〈q̄vασανtAq

∑
f f̄γνt

Af〉〉 which is not invariant under parity and
time reversal transformations. The other condensates in (C.77) cannot be reduced by EoMs.

(iv) The forth EV (o4) decomposes as

〈〈q̄
←
DµGνλq〉〉 =

1

3v2
(vνgµλ − vλgµν)〈〈q̄

←
Dµ′Gν′µ′v

ν′q〉〉 , (C.78)

where only the part anti-symmetric in νλ enters the (axial-)vector OPE. Transformation to
a canonical condensate yields

〈q̄
←
DµGνµv

νq〉 =
g

2
〈q̄tAq

∑

f

f̄ /vtAf〉 . (C.79)

(v) The �fth EV (o5) decomposes as

〈〈q̄
←
DµσαβGνλq〉〉

=
1

6v2




vαgβνgµλ − vαgβλgµν − vβgανgµλ + vβgαλgµν

vµ(gανgβλ − gαλgβν)

vνgαµgβλ − vλgαµgβν + vλgανgβµ − vνgαλgβµ
1
v2 (vαvµvνgβλ − vαvµvλgβν − vβvµvνgαλ + vβvµvλgαν)




T
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×




1 0 0 −1

0 2 0 −2

0 0 1 −1

−1 −2 −1 6







〈〈q̄
←
Dλ′vα′σ

α′ν′Gν′λ′q〉〉
1
2〈〈q̄(v

←
D)σGq〉〉

〈〈q̄
←
Dα′σ

σ′λ′Gν′λ′v
ν′q〉〉

1
v2 〈〈q̄(v

←
D)vα′σ

α′λ′Gν′λ′v
ν′q〉〉



, (C.80)

where only the term containing 〈〈q̄(v
←
D)σGq〉〉 enters the (pseudo-)scalar OPE. Application

of gluon EoM (A.19) to the �rst condensate in (C.80) yields 〈〈q̄vασανtAq
∑

f f̄γνt
Af〉〉 which

is not invariant under parity and time reversal transformations. The other condensates in
(C.80) cannot be reduced by EoM.

The OPE relevant combinations of condensates of the odd OPE must vanish in vacuum,
thus forming the algebraic vacuum constraints:

0 =
i

2
g2〈Ω|q̄tAq

∑

f

f̄ /vtAf |Ω〉+ g〈Ω|q̄(v
←
D)σGq|Ω〉

+
1

2
g〈Ω|q̄σG(v

←
D)q|Ω〉 − 3m2

q〈Ω|q̄(v
←
D)q|Ω〉 , (C.81a)

0 = 〈Ω|q̄(v
←
D)3q|Ω〉 , (C.81b)

0 = g〈Ω|q̄tAq
∑

f

f̄ /vtAf |Ω〉 , (C.81c)

0 = 〈Ω|q̄σµν [(vD), Gµν ]q|Ω〉+ 〈Ω|q̄σµλ[Dµ, Gνλ]vνq|Ω〉 , (C.81d)

0 = 〈Ω|q̄(v
←
D)σGq|Ω〉 . (C.81e)

Therefore, the condensates in (C.81) must vanish individually in vacuum except the conden-
sates in (C.81d) which need to cancel each other. Vanishing of the condensates in (C.81a)

is ensured due to (C.81c), (C.81e) and 〈Ω|q̄(v
←
D)q|Ω〉 = −imq〈Ω|q̄/vq|Ω〉, where the latter

condensate is a medium-speci�c condensate in mass dimension 4 with a zero vacuum value.

(vi) From the NLO correlator further Gibbs averaged light-quark operators (o6) and (o7)
contribute in order αs

〈〈q̄tAqq̄γµtAq〉〉 =
vµ
v2
〈〈q̄tAqq̄/vtAq〉〉 , (C.82)

〈〈q̄γ5γ
µtAqq̄σνλt

Aq〉〉 = −1

6
εµνλα

vα

v2
〈〈εµ′ν′λ′α′vα′ q̄γ5γµ′t

Aqq̄σν′λ′t
Aq〉〉 , (C.83)

originating from two cut quark lines in the corresponding diagrams, cf. Fig. 3.3. They are
already in canonical form and must vanish in vacuum.

Vacuum constraints of the odd OPE of qQmeson currents can be deduced from the results
presented here. Besides Gibbs averaged light-quark operators also heavy-quark operators
and such quantities containing both kinds of quark operators enter the OPE of qQ mesons.

The Gibbs averages (o1)�(o5) are supplemented by similar contributions where q̄
←
Dµ · · · q −→

Q̄ · · ·DµQ. The four-quark terms (o6) and (o7) are substituted by similar contributions
where one q̄ · · · q pair is changed for one Q̄ · · ·Q pair. Be aware that, for two-�avor four-
quark terms with two di�erent Dirac structures as in (o6) and (o7), the necessary substitution
yields two structures for each term.
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The decompositions of the heavy-quark terms and their vacuum constraints originating
from the LO correlator can be obtained by q −→ Q in (C.73)�(C.81), where this substi-
tution also refers to subscripts. The decomposition of the heavy-light four-quark terms
originating from the NLO correlator can be obtained for the exchange of one quark pair
q̄ · · · q −→ Q̄ · · ·Q in (C.82) and (C.83). Analogous to the odd OPE of light-quark currents
all heavy-quark condensates must vanish individually for ρ → 0. An exception bears the
analog of (C.81d), where both condensates chancel each other.

Note that the odd OPE and, thus, odd condensates drive the mass splitting of particle and
anti-particle in the medium. Such splitting may intuitively be understood in an asymmetric
ambient strongly interacting medium. First, heavy quarks are hardly generated dynamically
(at least compared to light quarks) and hardly condense (directly). Considering a strongly
interacting ambient medium consisting mainly of nuclear matter, i. e. light quarks (not anti-
quarks), a meson consisting of a heavy quark and a light anti-quark is a�ected di�erently
than its anti-meson, which consists of a heavy anti-quark and a light quark. Similarly, it
seems reasonable to assume that at zero density, meson and anti-meson, e. g. D and D, are
degenerate. As this splitting is driven by the Lorentz-odd OPE, it vanishes at zero baryon
density for arbitrary temperatures [Boc86,Hat93,Buc16a].

C.2.3 Discussion of factorization and ground state saturation hypothesis

The common problem of presently poorly known numerical values of higher mass dimension
condensates is often circumvented by a factorization into condensates of lower mass dimen-
sion, cf. Subsec. 3.3.3. The non-zero factorization results of light four-quark condensates
employed in the decompositions of (e1)�(e5) and (o1)�(o5) read

〈〈q̄γµtAq
∑

f

f̄γµt
Af〉〉 = −2

9
κq0(ρ)

[
2〈〈q̄q〉〉2 − 〈〈q̄/vq〉〉2/v2

]
, (C.84a)

〈〈q̄/vtAq
∑

f

f̄ /vtAf〉〉/v2 = −1

9
κq1(ρ)

[
〈〈q̄q〉〉2 + 〈〈q̄/vq〉〉2/v2

]
, (C.84b)

〈〈q̄tAq
∑

f

f̄ /vtAf〉〉 = −2

9
κq2(ρ)〈〈q̄q〉〉〈〈q̄/vq〉〉 , (C.84c)

in full analogy to the expressions given in Tab. 3.3 but with 'fudge factors' κqi in order to
streamline the notation in this subsection. Further light four-quark condensates with the
Dirac structures in (e6), (e7), (o6) and (o7) factorize as [Jin93]

〈〈q̄γµtAqq̄γµtAq〉〉 = −2

9
κq0(ρ)

[
2〈〈q̄q〉〉2 − 〈〈q̄/vq〉〉2/v2

]
, (C.85a)

〈〈q̄/vtAqq̄/vtAq〉〉/v2 = −1

9
κq1(ρ)

[
〈〈q̄q〉〉2 + 〈〈q̄/vq〉〉2/v2

]
, (C.85b)

〈〈q̄tAqq̄/vtAq〉〉 = −2

9
κq2(ρ)〈〈q̄q〉〉〈〈q̄/vq〉〉 , (C.85c)

〈〈q̄γ5γ
µtAqq̄γ5γµt

Aq〉〉 =
2

9
κq3(ρ)

[
2〈〈q̄q〉〉2 + 〈〈q̄/vq〉〉2/v2

]
, (C.85d)

〈〈q̄γ5/vt
Aqq̄γ5/vt

Aq〉〉/v2 =
1

9
κq4(ρ)

[
〈〈q̄q〉〉2 − 〈〈q̄/vq〉〉2/v2

]
, (C.85e)
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〈〈εµνλαvαq̄γ5γµt
Aqq̄σνλt

Aq〉〉 = −16

3
κq5(ρ)〈〈q̄q〉〉〈〈q̄/vq〉〉 , (C.85f)

〈〈q̄γµqq̄γµq〉〉 = −1

6
κq6(ρ)

[
2〈〈q̄q〉〉2 − 7〈〈q̄/vq〉〉2/v2

]
, (C.85g)

〈〈q̄/vqq̄/vq〉〉/v2 = − 1

12
κq7(ρ)

[
〈〈q̄q〉〉2 − 11〈〈q̄/vq〉〉2/v2

]
, (C.85h)

〈〈q̄qq̄/vq〉〉 =
11

12
κq8(ρ)〈〈q̄q〉〉〈〈q̄/vq〉〉 , (C.85i)

〈〈q̄γ5γ
µqq̄γ5γµq〉〉 =

1

6
κq9(ρ)

[
2〈〈q̄q〉〉2 + 〈〈q̄/vq〉〉2/v2

]
, (C.85j)

〈〈q̄γ5/vqq̄γ5/vq〉〉/v2 =
1

12
κq10(ρ)

[
〈〈q̄q〉〉2 − 〈〈q̄/vq〉〉2/v2

]
, (C.85k)

〈〈εµνλαvαq̄γ5γµqq̄σνλq〉〉 = −4κq11(ρ)〈〈q̄q〉〉〈〈q̄/vq〉〉 . (C.85l)

For condensates composed of heavy- and light-quark operators with the Dirac structures
in (e6), (e7), (o6) and (o7) containing the unit elements T 0 = 13 as color structures one
obtains [Jin93]

〈〈q̄γµqQ̄γµQ〉〉 = κQ0 (ρ)
[
〈〈q̄q〉〉〈〈Q̄Q〉〉+ 〈〈q̄/vq〉〉〈〈Q̄/vQ〉〉/v2

]
, (C.86a)

〈〈q̄/vqQ̄/vQ〉〉/v2 =
1

4
κQ1 (ρ)

[
〈〈q̄q〉〉〈〈Q̄Q〉〉+ 4〈〈q̄/vq〉〉〈〈Q̄/vQ〉〉/v2

]
, (C.86b)

〈〈q̄qQ̄/vQ〉〉 = κQ2 (ρ)〈〈q̄q〉〉〈〈Q̄/vQ〉〉 , (C.86c)

〈〈q̄/vqQ̄Q〉〉 = κQ3 (ρ)〈〈q̄/vq〉〉〈〈Q̄Q〉〉 , (C.86d)

〈〈q̄γ5γµqQ̄γ5γ
µQ〉〉 = −κQ4 (ρ)〈〈q̄q〉〉〈〈Q̄Q〉〉 , (C.86e)

〈〈q̄γ5/vqQ̄γ5/vQ〉〉/v2 = −1

4
κQ5 (ρ)〈〈q̄q〉〉〈〈Q̄Q〉〉 , (C.86f)

〈〈εµνλαvαq̄γ5γµqQ̄σνλQ〉〉 = 0 , (C.86g)

〈〈εµνλαvαq̄σµνqQ̄γ5γλQ〉〉 = 0 . (C.86h)

The same relations hold true for Q −→ q′ providing the factorization formulae for light
two-�avor condensates.

In vacuum, where 〈〈· · · 〉〉 reduces to 〈Ω| · · · |Ω〉, the medium-speci�c two-quark condensate
〈〈q̄/vq〉〉 cancels, thus further simplifying above relations and yielding zero factorization results.
The vacuum constraint (C.67) from the even OPE, where light four-quark condensates are
factorized, provide the following relations:

g〈Ω|q̄(vi
←
D)σG/vq|Ω〉/v2 =

1

4

(
4m3

q〈Ω|q̄q|Ω〉 −mq〈Ω|q̄gσGq|Ω〉
)
, (C.87a)

g〈Ω|q̄(vi
←
D)γµGνµv

νq|Ω〉/v2 = − 1

54

(
2κq0(0)− κq1(0)

)
g2〈Ω|q̄q|Ω〉2 , (C.87b)

g〈Ω|q̄γµ[(vD), Gµν ]vνq|Ω〉/v2 = −1

9

(
2κq0(0)− κq1(0)

)
g2〈Ω|q̄q|Ω〉2 , (C.87c)

g〈Ω|q̄/vσνλ[(viD), Gνλ]q|Ω〉/v2 = −2

9

(
κq0(0)− κq1(0)

)
g2〈Ω|q̄q|Ω〉2 , (C.87d)

141



C Operator product expansion. Addendum

g〈Ω|εµνλτvτ q̄i
←
Dµγ5/vG

νλq|Ω〉/v2 =
1

12

(
6m3

q〈Ω|q̄q|Ω〉 − 8mq〈Ω|q̄gσGq|Ω〉

+
4

9

(
7κq0(0)− 2κq1(0)

)
g2〈Ω|q̄q|Ω〉2 − 24yq

)
, (C.87e)

〈Ω|q̄(vi
←
D)3/vq|Ω〉/v4 =

1

48

(
− 6m3

q〈Ω|q̄q|Ω〉+ 3mq〈Ω|q̄gσGq|Ω〉

− 4

9
κq0(0)g2〈Ω|q̄q|Ω〉2

)
(C.87f)

supplemented by six relations contained in (C.72) (originating from NLO correlator)

κq1(0) = κq0(0) , (C.88a)

κq4(0) = κq3(0) , (C.88b)

κq7(0) = κq6(0) , (C.88c)

κq10(0) = κq9(0) , (C.88d)

κq
′

1 (0) = κq
′

0 (0) , (C.88e)

κq
′

5 (0) = κq
′

4 (0) , (C.88f)

relating the κ parameters for ρ = 0 and simplifying the factorized algebraic vacuum con-
straints (C.87), where (C.87d) gives a vanishing ground state EV as can be recognized
already in Eqs. (C.67d) and (C.72). The odd OPE vacuum constraints are trivial as the
contained four-quark condensates vanish individually in the vacuum.

In qQ meson OPEs, the vacuum constraints in factorized form are composed of the
relations (C.87) as well as these relations with κq0,1 = 0 and q −→ Q. The vacuum constraints
(C.88) are substituted by

κQ1 (0) = κQ0 (0) , (C.89a)

κQ5 (0) = κQ4 (0) . (C.89b)

As exhibited in Eqs. (C.87)�(C.89) factorization of four-quark condensates does not vio-
late the algebraic vacuum constraints. Instead, it relates the κ factorization parameters at
ρ = 0 and assigns numerical vacuum values to the medium dimension-6 condensates which
were previously unknown. Relating them to the known vacuum values of the chiral and the
mixed quark-gluon condensate allows for their tentative numerical estimate in vacuum.

C.2.4 Equivalence of two approaches to the medium-speci�c decomposition

One may �nd the medium-speci�c decomposition either by subtraction of the algebraic
vacuum decomposition (C.29) from the complete in-medium decomposition (C.26) using
Eq. (C.30) or by performing the projection procedure for the medium-speci�c decomposition
structures in (C.33) which are orthogonal to the vacuum decomposition structures. Following
the former approach we show that utilizing the blockwise inversion of the total projection
matrix

Lρ ≡
(
~l (ρ) ◦~l (ρ)

)
=



(
~l (0) ◦~l (0)

) (
~l (0) ◦~l (ρ1)

)

(
~l (ρ1) ◦~l (0)

) (
~l (ρ1) ◦~l (ρ1)

)


 ≡


 L0 L0,ρ1

Lρ1,0 Lρ1


 (C.90)
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yields the same medium-speci�c decomposition structures ~l
(1)
µ as the latter approach based

on orthogonality, i. e. the equivalence of both approaches to the medium-speci�c decomposi-
tion. We rearrange Eq. (C.30):

~l (1)
µ ·~a1 = ~l (ρ)

µ ·~aρ −~l (0)
µ ·~a0 = ~l (0)

µ · (~aρ0 − ~a0) +~l (ρ1)
µ ·~aρ1 . (C.91)

Using the projections

~a0 = L−1
0
~l (0)
ν 〈Oν〉 , (C.92)

~aρ = L−1
ρ
~l (ρ)
ν 〈Oν〉 (C.93)

with the sub-matrix de�nitions6 of the inverse total projection matrix

L−1
ρ =




(
L−1

)
0

(
L−1

)
0,ρ1(

L−1
)
ρ1,0

(
L−1

)
ρ1


 (C.94)

further decomposed to

~aρ0 =
((
L−1

)
0
,
(
L−1

)
0,ρ1

)
~l (ρ)
ν 〈Oν〉 and ~aρ1 =

((
L−1

)
ρ1,0

,
(
L−1

)
ρ1

)
~l (ρ)
ν 〈Oν〉 (C.95)

yields

~l (1)
µ ·~a1 = ~l (0)

µ ·
[((

L−1
)

0
,
(
L−1

)
0,ρ1

)
~l (ρ)
ν 〈Oν〉 − L−1

0
~l (0)
ν 〈Oν〉

]
+~l (ρ1)

µ ·~aρ1

= ~l (0)
µ ·

[(
L−1

)
0
− L−1

0

]
~l (0)
ν 〈Oν〉+~l (0)

µ ·
(
L−1

)
0,ρ1

~l (ρ1)
ν 〈Oν〉+~l (ρ1)

µ ·~aρ1 . (C.96)

The formula for blockwise inversion of matrices with two square sub-matrices A and D


 A B

C D



−1

=


 A−1 +A−1BV CA−1 −A−1BV

−V CA−1 V


 (C.97)

with

V =
(
D − CA−1B

)−1
(C.98)

relates the sub-matrices of the inverted matrix. We deploy this formula to the total projec-
tion matrix (C.90) and its inverse (C.94) obtaining the relations

(
L−1

)
0

= L−1
0 + L−1

0 L0,ρ1WLρ1,0L
−1
0 , (C.99)

(
L−1

)
0,ρ1

= −L−1
0 L0,ρ1W , (C.100)

(
L−1

)
ρ1,0

= −WLρ1,0L
−1
0 , (C.101)

(
L−1

)
ρ1
≡W =

(
Lρ1 − Lρ1,0L

−1
0 L0,ρ1

)−1
. (C.102)

Identifying the relevant interrelations among the sub-matrices of the inverted projection
matrix yields the desired terms

(
L−1

)
0

= L−1
0 − L−1

0 L0,ρ1

(
L−1

)
ρ1,0

, (C.103)
(
L−1

)
0,ρ1

= −L−1
0 L0,ρ1

(
L−1

)
ρ1
. (C.104)

6Note that
(
L−1

)
i
6= L−1

i for i ∈ {0; 0, ρ1; ρ1, 0; ρ1}.
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C Operator product expansion. Addendum

Substituting Eqs. (C.103) and (C.104) in Eq. (C.96) yields

~l (1)
µ ·~a1 = ~l (0)

µ ·L−1
0 L0,ρ1

((
L−1

)
ρ1,0

,
(
L−1

)
ρ1)

)
~l (ρ)
ν 〈Oν〉+~l (ρ1)

µ ·~aρ1 . (C.105)

Using Eq. (C.95) we arrive at

~l (1)
µ ·~a1 = − ~l (0)

µ ·L−1
0 L0,ρ1~aρ1 +~l (ρ1)

µ ·~aρ1 . (C.106)

Providing the �rst term in matrix notation

~l (1)
µ ·~a1 = −

(
~l (0)
µ

)T
L−1

0 L0,ρ1~aρ1 +~l (ρ1)
µ ·~aρ1 = −

(
Lρ1,0L

−1
0
~l (0)
µ

)T
~aρ1 +~l (ρ1)

µ ·~aρ1 (C.107)

�nally yields

~l (1)
µ ·~a1 =

[
Lρ1,0L

−1
0
~l (0)
µ −~l (ρ1)

µ

]
· (− ~aρ1) (C.108)

which is exactly the medium-speci�c part of the decomposition as obtained from orthogo-
nality of vacuum- and medium-speci�c parts of the decomposition (cf. Eq. (C.33)). The
orthogonality (C.31) can be easily shown:

~l (1) ◦~l (0) =
(
Lρ1,0L

−1
0
~l (0) −~l (ρ1)

)
◦~l (0) = Lρ1,0L

−1
0 L0 − Lρ1,0 = 0 , (C.109)

where the orthogonality ~l (0) ◦~l (1) = 0 can be deduced for the transposed of (C.109), due to
the handy notation of the dyadic product.

C.3 Calculation of Wilson coe�cients of light-quark
condensates of mass dimension 6

For the calculation of Wilson coe�cients of light four-quark condensates corresponding to
tree-level diagrams containing a soft-gluon line we utilize Eq. (3.7b). Using the heretofore
presented OPE techniques � projection of Dirac indices onto elements of the Cli�ord algebra,
Eqs. (C.3) and (C.4), as well as the covariant expansion of quark �eld operators exploiting
the Fock-Schwinger gauge, Eq. (2.35) � the light two-quark term Π (2) after Fourier trans-
formation reads [Hil11]

Π(2)(p) =
∑

a

1

4

∞∑

n=0

(−i)n
n!

∂~αnp 〈: q̄
←
D~αnΓaTrD [Γaγ5SQ(p)γ5] q :〉 , (C.110)

where heavy-quark condensates are neglected. Treated in a classical, weak, gluonic back-
ground �eld the interaction of the quark is modeled by soft-gluon exchange with the QCD
ground state and the full propagator SQ(p) =

∫
d4x eipxSQ(x, 0) can by approximated by

the perturbative propagator (2.44), where the subscript 'Q' refers to the heavy quark.

Light-quark condensate terms in mass dimension 6 enter Π(2) with n = 3 and SQ = S
(0)
Q ,

n = 0 and SQ = S
(1)

Q (Ã(1))
as well as n = 1 and SQ = S

(1)

Q (Ã(0))
[Nov84], where the order of the
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C.3 Calculation of Wilson coe�cients of light-quark condensates of mass dimension 6

background �eld expansion is speci�ed according to Eq. (2.49). The light-quark condensate
contribution reads

Πdim6(p) = Π
[1]
dim6(p) + Π

[2]
dim6(p) + Π

[3]
dim6(p) (C.111)

with the three terms

Π
[1]
dim6(p) =

∑

a

1

4

(−i)3

3!
〈: q̄
←
Dν

←
Dλ

←
DρΓaq :〉TrD

[
Γaγ5∂

ν
p∂

λ
p ∂

ρ
pS

(0)
Q (p)γ5

]
, (C.112)

Π
[2]
dim6(p) =

∑

a

1

4
〈: q̄ΓaTrD

[
Γaγ5S

(1)

Q (Ã(1))
(p)γ5

]
q :〉 , (C.113)

Π
[3]
dim6(p) =

∑

a

1

4

(−i)1

1!
∂νp 〈: q̄

←
DνΓaTrD

[
Γaγ5S

(1)

Q (Ã(0))
(p)γ5

]
q :〉 , (C.114)

where Π
[1]
dim6 contains contributions associated with diagram (d) and Π

[2,3]
dim6 incorporate

terms associated with diagram (e) in Fig. 3.2. Using the perturbative quark propaga-

tors S
(1)

Q (Ã(1))
(p) = −S(0)

Q (p)γρÃ
(1)
ρ S

(0)
Q (p) and S

(1)

Q (Ã(0))
(p) = −S(0)

Q (p)γρÃ
(0)
ρ S

(0)
Q (p) with

Ã
(1)
ρ = g

3 [Dν , Gρλ]∂λp ∂
ν
p and Ã

(0)
ρ = ig2Gρλ∂

λ
p , respectively, one obtains

Π
[2]
dim6(p) = − g

12

∑

a

〈: q̄Γa [Dν , Gρλ] q :〉TrD
[
Γaγ5S

(0)
Q (p)γρ

(
∂λp ∂

ν
pS

(0)
Q (p)

)
γ5

]
, (C.115)

Π
[3]
dim6(p) = −g

8

∑

a

〈: q̄
←
DνΓaGρλq :〉∂νpTrD

[
Γaγ5S

(0)
Q (p)γρ

(
∂λpS

(0)
Q (p)

)
γ5

]
. (C.116)

Subsequently, Π
[1,2,3]
dim6 are treated analogously. Utilizing the identity

∂µpS
(0)
Q (p) = −S(0)

Q (p)γµS
(0)
Q (p) (C.117)

and insertion of the free quark propagator (A.22) yields traces of products of Dirac matrices,
which stem from elements of the Cli�ord algebra Γa as well as free quark propagators and
vertex functions. The results of the Dirac trace evaluations are to be contracted with the
tensor decompositions of the Gibbs averaged operators 〈: q̄

←
Dν

←
Dλ

←
DρΓaq :〉, 〈: q̄Γa [Dν , Gρλ] q :〉

and 〈: q̄
←
DνΓaGρλq :〉, cf. App. C.2.2.

In order to obtain a continuous transition of the OPE for T, n → 0, the in-medium
decomposition into Lorentz structures composed of gµν (metric tensor), εµνλσ (Levi-Civita
symbol) and vµ (medium four-velocity) [Buc14b] requires the separation of vacuum- and
medium-speci�c condensate contributions, where the former are present in vacuum, while
the latter vanish at zero temperature and nucleon density, cf. App. C.2.1 for details. If the
(anti-)symmetries among the Lorentz indices of the operators are imposed on the decompo-
sition structures one is able to identify unambiguously medium-speci�c operators.

The resulting Gibbs averaged operators can be reduced to canonical condensates of lower
mass dimension using the quark EoMs (A.17) and (A.18), cf. App. C.2.1, or they contain
covariant derivatives which can not be eliminated by application of the EoMs, i. e. exhibit-
ing light-quark condensation in mass dimension 6. Especially, the combinations DλDνDλ,
[Dλ, Gνλ] and GνλD

λ incorporate the desired four-quark condensate terms. The �rst and
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third terms contain the second combination [Dλ, Gνλ], which allows for the application of
the gluon EoM (A.19). One obtains

〈: q̄Γ[Dλ, Gνλ]q :〉 = g〈: q̄iΓtAqi
∑

f

f̄γνt
Af :〉 , (C.118)

where Γ ∈ {vν , γν , /vvν}, because other elements of the Cli�ord algebra lead to expectation
values which are not invariant under time reversal and parity transformations, cf. Tab. A.1.
The result of these calculations is Eq. (3.8) with operators listed in Tab. 3.1 providing the
complete light-quark condensate contribution to the OPE of pseudo-scalar qQ mesons in
mass dimension 6.
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D Borel transformation

The QSRs emerging from the dispersion relations (2.17), (2.22) and (2.23) are not well
suited to estimate the lowest hadronic resonance of the spectral density. Generically, they
contain unknown subtraction terms and, apart from the lowest resonance, only limited
information about the shape of the spectral density is available. Furthermore, the OPE
is an asymptotic series, where only a �rst few terms are calculated which may not exhibit
a convergent behavior. However, the evaluation can be substantially improved utilizing a
Borel transformation which has been successfully employed since the early days of the QSR
method [Shi79]. The Borel transformation can be de�ned by [Shi79]

B̃[f(Q2)] ≡ lim
n→∞

Q2=nM2

(Q2)n

Γ(n)

(
− d

dQ2

)n
f(Q2) = F̃ (M2) , (D.1)

and slightly deviating but equivalent de�nitions are introduced in the literature, e. g. [Fur92]

B[f(Q2)] ≡ lim
n→∞

Q2=nM2

(Q2)n+1

Γ(n+ 1)

(
− d

dQ2

)n
f(Q2) = F (M2) , (D.2)

where in vacuum one has Q2 = −q2 and in the medium Q2 = −q2
0, accordingly. The new

parameterM is referred to as Borel mass and remains �nite in the limit Q2, n→∞. The two
de�nitions di�er in overall factors only, which cancel if the Borel transformation is applied
to both sides of the QSR. We proceed with the latter de�nition (D.2), commonly used in
�nite-density QSRs. For practical purposes, a catalog of Borel transforms F (M2) of typical
functions f(Q2) entering the OPE or the spectral integral is provided in the following.

Direct calculation from the de�nition (D.2) yields:

f(Q2) = (Q2)k −→ F (M2) = 0 (k = 0, 1, 2, . . .) , (D.3)

f(Q2) =
1

(Q2)k
−→ F (M2) =

1

(k − 1)!

1

(M2)k−1
(k = 1, 2, 3, . . .) , (D.4)

f(Q2) = (Q2)k lnQ2 −→ F (M2) = (−1)k+1k!(M2)k+1 (k = 0, 1, 2, . . .) . (D.5)

Although, the Borel transforms of simple functions, as they appear in the subtraction terms
or power corrections of the QSRs, are obtained easily with the de�nition (D.2), the Borel
transforms of complicated functions require much more e�ort. For complicated functions
the connection between Borel transformation and Laplace transformation is helpful.

The Laplace transform is de�ned by [Bro08]

L[g(t)] ≡
∞∫

0

dt e−ptg(t) = f(p) , (D.6)



D Borel transformation

f(Q2) F (M2)

B

= g

(
1

M2

)

L

Figure D.1: Graphical representation of Eq. (D.10) exhibiting the link between Borel and
(inverse) Laplace transformation.

where the given function f(p) (with p complex) is the Laplace transform of the function g(t)
(with t real). Further requirements are: g(t) is piecewise smooth on its domain t ≥ 0 and it
increases less than eαt with α > 0 for t→∞. The inverse Laplace transform satis�es

L−1[f(p)] =

c+i∞∫

c−i∞

dp eptf(p) = g(t) (D.7)

with t > 0. The integration path of the complex integral is parallel, i. e. Re p = c, to the
imaginary axis with c > α. An alternative inverse Laplace transformation revealing the
connection to the de�nition of the Borel transformation (D.2) is provided by Post-Widder's
inversion formula [Hil12a]:

L−1[f(p)] = lim
n→∞

1

n!

(n
t

)n+1
(
− d

dp

)n
f(p)

∣∣∣∣
p=n/t

= g(t) . (D.8)

For t = 1/M2 and n/t = nM2 = Q2 one obtains

g

(
1

M2

)
= lim

n→∞
Q2=nM2

(Q2)n+1

n!

(
− d

dQ2

)n
f(Q2) . (D.9)

Comparing with Eq. (D.2) one can identify

B[f(Q2)] = F (M2) = g

(
1

M2

)
= L−1[f(Q2)] . (D.10)

The Borel transform of function f equals the inverse Laplace transform of function f . If
a function g can be found which is the inverse Laplace transform of the given function f ,
then g is the desired Borel transform F of f (see Fig. D.1). That is, Borel transforms
of numerous function can be found which are known to be the Laplace transforms of the
wanted functions. Furthermore, the well established properties of the Laplace transform
may be employed. The property [Bro08]

L[e−atg(t)] = f(p+ a) (D.11)

simpli�es the calculation of the Borel transform of numerous function. Due to the de�nition
g(t) = L−1[f(p)] with t = 1/M2 and p = Q2 − a one has

B[f(Q2 − a)] = ea/M
2B[f(Q2)] . (D.12)

148



For functions entering the hadronic integral of the dispersion relation one obtains the Borel
transformation

f(Q2) =
1

(Q2 + a)k
−→ F (M2) =

1

(k − 1)!

e−a/M
2

(M2)k−1
(k = 1, 2, 3, . . .) . (D.13)

Employing the identity

(Q2)m

Q2 + a
= (Q2)m−1 − a(Q2)m−1

Q2 + a
(D.14)

iteratively and Eq. (D.13), the Borel transformation of Wilson coe�cients emerging from
propagators of particles with �nite masses can be obtained:

f(Q2) =
(Q2)m

(Q2 + a)k
−→

F (M2) =

m∑

i=0

(
m

i

)
(−a)i

(k −m+ i− 1)!

e−a/M
2

(M2)k−m+i−1
(D.15)

(k > m, k = 1, 2, 3, . . . , m = 0, 1, 2, . . .) .

In general, one has

f(Q2) =
(Q2)m

(Q2 + a)k
−→

F (M2) =
(−1)m

(k − 1)!

(
d

dt

)m (( 1

M2
− t
)k−1

e−a(1/M2−t)
)∣∣∣∣∣

t=0

(D.16)

(k = 1, 2, 3, . . . , m = 0, 1, 2, . . .) .

The Borel transformation is tailored to improve the extraction of the properties of the
lowest hadronic resonance from QSRs emerging from the subtracted dispersion relations
(2.17), (2.22) and (2.23) in a threefold manner: It (i) eliminates the subtraction terms, due
to Eq. (D.3), and (ii) improves the convergence of the asymptotic OPE series by suppressing
higher order contributions factorially, due to Eq. (D.4) and its generalizations (D.13), (D.15)
and (D.16). By virtue of exponential factors in the integrand of the spectral integral the
Borel transformation (iii) enhances the sensitivity of the QSR at low values of M close to
the lowest resonance, while suppressing higher hadronic excitations of the spectrum.
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E Monte-Carlo sum rule analysis

The Monte-Carlo QSR analysis introduced in Ref. [Lei97] does genuinely rely on the original
QSR (2.130) avoiding the shortcomings of derivative sum rules (2.140) given in Sec. 2.4.2.
In this approach, the parameters of the pole ansatz (2.133) of the spectral density (2.126),
i. e. s0, mh and Rh, are not evaluated consecutively, but they are �tted from the very same
chi-squared function χ2(mh, Rh, s0) measuring the deviations of the phenomenological side
of the QSR (2.130) from the OPE side. For each considered Borel mass parameterMj in the
Borel window this deviation is weighted by an OPE uncertainty σ2

OPE(Mj) emerging from
Gaussianly distributed condensate values. The presentation of this QSR analysis method
closely follows Ref. [Lei97].

An OPE in Borel space, ΠOPE
i (M), is constructed from a set (labeled by subscript 'i')

of Gaussianly-distributed randomly-selected QCD condensate values. By repeating this
procedure nC times, an uncertainty for the OPE at a �xed Borel mass Mj can be given by

σ2
OPE(Mj) =

1

nC − 1

nC∑

i=1

[
ΠOPE
i (Mj)−ΠOPE(Mj)

]2
(E.1)

with the OPE mean

ΠOPE(Mj) =
1

nC

nC∑

i=1

ΠOPE
i (Mj) . (E.2)

The uncertainties σ2
OPE are not uniform throughout the relevant Borel range. They are larger

at the lower, non-perturbative end of the Borel range, where uncertainties in the higher
dimensional vacuum condensates dominate. Hence, it is crucial to have knowledge about
the higher mass dimension condensates and to use the appropriate weight in the calculation
of χ2. Having determined the OPE uncertainty (E.1) for nB equidistantly distributed Borel
masses Mj throughout the relevant Borel region1 a χ2 measure is easily constructed. For
the OPE, ΠOPE

k (M), obtained from the k-th set of QCD parameters, the χ2
k per degree of

freedom reads

χ2
k

NDoF
=

1

n
(k)
B − nphen

n
(k)
B∑

j=1

[
ΠOPE
k (Mj)−Πphen(Mj ;m

(k)
h , R

(k)
h , s

(k)
0 )
]2

σ2
OPE(Mj)

, (E.3)

where the sum runs over the n
(k)
B Borel masses within the k-th Borel window, typically n

(k)
B ∼

50. The quantity nphen is the number of phenomenological �t parameters (nphen = 3 for

the pole + continuum ansatz), and Πphen(Mj ;m
(k)
h , R

(k)
h , s

(k)
0 ) denotes the phenomenological

spectral representation of the QSR, i. e. the r. h. s. of Eq. (2.130) with the ansatz (2.133).

1The number of evaluated Borel masses nB must not be confused with the Bose-Einstein distribution nB

used in Subsec. 2.3.3.



E Monte-Carlo sum rule analysis

The measure χ2
k is minimized by adjusting the phenomenological parameters including the

hadron mass m
(k)
h , the pole residue R

(k)
h and the continuum threshold parameter s

(k)
0 .

Distributions for the phenomenological parameters are obtained by minimizing χ2
k for N

QCD parameter sets, where N may or may not coincide with nC. Provided the resulting
distributions are Gaussian, an estimate of the uncertainty in the phenomenological results
such as the hadron mass mh is obtained from

σ2
mh

=
1

N − 1

N∑

k=1

(m
(k)
h −mh)2 (E.4)

with

mh =
1

N

N∑

k=1

m(k)
n (E.5)

being the mean hadron mass, which may be considered the result of the QSR evaluation
following the Monte-Carlo approach. Analogously, mean and uncertainty can be obtained
for further phenomenological parameters, i. e. pole residue Rh and continuum threshold
parameter s0. If the resulting distributions are not Gaussian, one may provide median and
asymmetric standard deviations. In contrast to the error of the distribution σ2/N , the
standard deviation (E.4) is roughly independent of the number N of QCD parameter sets
used in the analysis, and directly re�ects the input parameter uncertainties. While N ∼ 100
QCD parameter con�gurations are su�cient for obtaining reliable uncertainty estimates,
N ∼ 1000 should be used to explore more subtle correlations among the QCD parameters
and the phenomenological �t parameters.

Some care must be taken in the interpretation of the χ2
k/NDoF. While we are free to

choose any number of points nB along the Borel axis for �tting the two sides of the QSR,
it is important to recognize that the actual number of DoF is determined by the number of
QCD parameters in the OPE. For the χ2

k/NDoF to have true statistical meaning, a correlated
χ2
k calculation is required:

χ2
k =

n
(k)
B∑

j,j′=1

[
ΠOPE
k (Mj)−Πphen(Mj ;m

(k)
h , R

(k)
h , s

(k)
0 )
]

× C−1
jj′

[
ΠOPE
k (Mj′)−Πphen(Mj′ ;m

(k)
h , R

(k)
h , s

(k)
0 )
]
, (E.6)

where C−1
jj′ is the inverse of the covariance matrix, which may be estimated by

Cjj′ =
1

nC − 1

nC∑

i=1

[
ΠOPE
i (Mj)−ΠOPE(Mj)

] [
ΠOPE
i (Mj′)−ΠOPE(Mj′)

]
. (E.7)

Unfortunately, on many occasions the covariance matrix is ill-conditioned. Thus, inversion
of the covariance matrix leads to pathological problems [Mic95].

Even if some correlation among the data is suspected, due to n
(k)
B > number of QCD

parameters in the OPE, it is still acceptable to use the uncorrelated χ2
k �t (E.3) provided
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the errors on the �t parameters are estimated using a Monte-Carlo based procedure, like
that one presented here, rather than from the dependence of χ2

k on the �t parameters. The
only drawback of such a practice is that it may be di�cult to estimate the goodness of the
�t since the correlation among the data may not have been adequately treated [Mic94].

Sophisticated algorithms are needed to �nd the minimum of the χ2 function (E.3) in
order to genuinely extract the hadronic spectral properties from the QSRs rather than to
(re)construct results by �ne-tuning the initial values of the optimization [Lei97]. As the
parameters of the spectral density enter the QSR in the integrand of the spectral integral,
the integral value itself might not be su�ciently sensitive on the individual parameters
impeding the �tting procedure, in particular, if a large number of parameters is used to
shape the spectral density.

The Monte-Carlo QSR analysis has been successfully tested by the ρ meson and the
nucleon sum rules [Lei97]. Based on this approach also �nite-density QSRs for the ρ meson
[Jin95] and the nucleon [Fur96] have been evaluated, where the statistical analysis supports
a ρ mass drop for �nite net-baryon densities and demonstrates qualitative consistency of
the obtained nucleon self-energies close to nuclear saturation density with expectations from
mean-�eld phenomenology.
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Acronyms

AdS/CFT Anti-de Sitter/Conformal Field Theory

CBM Compressed Baryonic Matter

CERN Conseil Européen pour la Recherche Nucléaire

CKM Cabibbo-Kobayashi-Maskawa

DχSB dynamical chiral symmetry breaking

DIS deep inelastic scattering

DoF degrees of freedom

EoM equation of motion

EV expectation value

FAIR Facility for Anti-proton and Ion Research

GOR Gell-Mann�Oakes�Renner

GSI Gesellschaft für SchwerIonenforschung

HQE heavy-quark expansion

J-PARC Japan Proton Accelerator Research Complex

JLab Je�erson Laboratory

KEK K	o Enerug	� Kasokuki Kenky	u Kik	o

LHC Large Hadron Collider



Acronyms

LO leading order

`QCD lattice QCD

NICA Nuclotron-based Ion Collider fAcility

NLO next-to-leading order

OPE operator product expansion

PANDA anti-Proton ANnihilation at DArmstadt

PCAC partial conservation of the axial-vector current

QCD quantum chromodynamics

QED quantum electrodynamics

QSR QCD sum rule

RGE renormalization group equation

RGI renormalization group invariant

RHIC Relativistic Heavy Ion Collider

SPS Super Proton Synchrotron

SVZ Shifman, Vainshtein and Zakharov

WSR Weinberg sum rule
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