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Motivation

Dynamical systems theory provides robust mathematical tools for the
study of any phenomena modeled in terms of ordinary (partial)
differential equations such as the experiments at HZDR −→

Kuznetsov, 1998

Transition to turbulence usually takes place following a sequence of
bifurcations: basic state, periodic orbit, quasiperiodic orbit and chaos
−→ Ruelle and Takens, CMP 1971. Eckmann, RMP 1981.

Fluid flow transitions are best understood taking into account the
symmetries of the system −→ Crawford and Knobloch, ARMA 1991.

HEDGEHOG experiment: Instabilities observed in differentially
rotating flows in the presence of a magnetic field (magnetized
spherical Couette flows (MSC)) were attributed to the
magnetorotational instability (MRI), which is presently considered the
most promising candidate to explain the transport mechanism of
angular momentum in accretion disks around black holes and
protostars −→ Balbus and Hawley, AJ 1991.



Bifurcations
and waves in

SO(2)
symmetry

systems: The
HEDGEHOG
experiment as
an example

Ferran Garcia
Gonzalez

HEDGEHOG Experimental Device

(b)
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The Model

• B = êz + Rm b, terms O(Rm) neglected, Rm = Ωi rid/η ≪ 1 magnetic Reynolds

Re = Ωi rid
ν Reynolds, Ha = B0d

√

σ
ρν Hartmann, χ = ri

ro
aspect ratio

0 = ∇× (v × êz) +∇2b, ∇ · b = 0

∂tv +Re (v · ∇) v = −∇p∗ +∇2v +Ha
2(∇× b)× êz , ∇ · v = 0

Inductionless approximation (Ωo = 0)

• Characteristic scales r → d , t → d2/ν, v → ri∆Ω, p → ρν2/d , B → B0

• uniform axial magnetic field B0 = B0êz = B0 cos(θ)êr − B0 sin(θ)êθ

∇ · v = 0, ∇ ·B = 0

∂tB = ∇× (v× B) + η∇2B

∂tv + (v · ∇) v + 2Ωo × v +Ωo × (Ωo × r) = ν∇2v − 1
ρ∇p + 1

ρµ0
(∇×B)× B

Navier-Stokes and induction equations
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Expansion in Spherical Harmonics

Toroidal/Poloidal decomposition of the velocity field (magnetic field)

v = ∇× (Ψr) +∇×∇× (Φr)

Spherical harmonics expansion up to degree (l) and order (m) Lmax

(Ψ,Φ)(t, r , θ, ϕ) =
∑Lmax

l=0

∑l
m=−l
m=ṁd

(Ψm
l ,Φ

m
l )(t, r)Y

m
l (θ, ϕ)

Ym
l (θ, ϕ) =

√

2l+1
2

(l−m)!
(l+m)!P

m
l (cos θ)e imϕ, l ≥ 0, −l ≤ m ≤ l

Ψ−m
l = Ψm

l , Φ
−m
l = Φm

l , with Ψ0
0 = Φ0

0 = 0.

The unknowns are Ψm
l (t) and Φm

l (t) for 0 ≤ l ≤ Lmax and 0 ≤ m = ṁd ≤ l ,

at a mesh of Nr + 1 Gauss-Lobatto points −→ n = (2L2max + 4Lmax)(Nr − 1)

♠❞ ♠❞✷ ♠

❧
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Numerical Methods

The pseudospectral method is used for the computation of the
advection (nonlinear) terms. Transformation of scalars from
spherical harmonics amplitudes (spectral domain) to values on a
mesh in spherical coordinates (physical domain).

The code is paralellized in the spectral as well as physical space
by using OpenMP directives.

Optimized libraries (FFTW3) for the FFTs in ϕ (longitude) and
matrix-matrix products (dgemm MKL/OpenBlas) for the
Legendre transforms in θ (colatitude) are implemented.

High order (k = 2, .., 5) variable size and variable order (VSVO)
Implicit-Explicit and fully implicit (DLSODPK) schemes based
on backward differentiation formulae are used for time
integration. Also exponential time integration methods
(EXPOKIT) are implemented.
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Basic flow

The system of equations is written as

∂tu = Lu + B(u, u),

where u is a vector containing the values of the amplitudes at the mesh of
collocation points in the radius, and L and B are, respectively, linear L = L(Ha)
and bilinear operators B = B(Re).

For small Re and all Ha, the solution u0 is time independent and axisymmetric
(m = 0). This is the basic flow.

By increasing Re it becomes unstable against nonaxisymmetric (m > 0)
perturbations and the flow pattern depends strongly on Ha. These are the
magnetic instabilities:
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Basic flow marginal stability curves: χ = 0.5

From Kasprzyk et al., MJ 2017, and Hollerbach, PRSA 2009.
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Rotating Waves

The system is SO(2)×Z2-equivariant, SO(2) generated by azimuthal
rotations, and Z2 by reflections with respect to the equatorial plane.

The basic axisymmetric (m = 0) flow is unstable to nonaxisymmetric
perturbations via Hopf bifurcation and thus the emerging solution is a
rotating wave −→ Ecke et al., EL 1992.

RWs are solutions in which a fixed flow pattern with m1-fold azimuthal
symmetry is rotating at a frequency ω in the azimuthal direction
u(t, r , θ, ϕ) = ũ(r , θ, ϕ̃), ϕ̃ = ϕ− ωt −→ Rand, ARMA 1982
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RW bifurcation diagrams: Re = 103, χ = 0.5

Garcia and Stefani, PRSA 2018.
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Rotating wave patterns

• Radial Jet Instability
Ha = 4.32 Ha = 9.29
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• Return Flow Instability −→ Shear Layer Instability
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RW and dominant eigenfunctions (Floquet modes)
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Modulated Rotating Waves

Secondary Hopf bifurcations of rotating waves RW (periodic flows) −→ branches
of modulated rotating waves MRW (quasiperiodic flows)

MRW are τ -periodic solutions of the MSC system in a reference frame rotating
with frequency ω:

∂tu = Lu + B(u, u) + ω∂ϕu.

There exist a basic (minimal) time τmin > 0 and an integer 0 ≤ n < m1/s:

u(t, r , θ, ϕ) = u(t + τmin, r , θ, ϕ+ 2πn/m1) ∀t, ∀ϕ.

The spatio-temporal symmetry of MRW described by (m1, n, s) ∈ Z3:

• m1-fold azimuthal symmetry of the parent RW
• n related with τmin (angle of azimuthal rotation)
• s-fold azimuthal symmetry of the MRW

Alternative (rough) classification: RW/MRWmmax
s , s the azimuthal symmetry of

the waves and mmax 6= 0 their most energetic azimuthal wave number.

The dominant Floquet multiplier (of a RW with m1) has m2 azimuthal symmetry
−→ the azimuthal symmetry of the bifurcated MRW is s = GCF(m1,m2).
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Radial velocity patterns of MRW
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MRW bifurcation diagrams: Re = 103, χ = 0.5

Garcia et al., JNS 2019 submitted.
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Poincaré Section Concept
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Time series and Poincaré sections
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Ongoing work

Bifurcation diagrams for chaotic solutions at small magnetic forcing (absent
at large forcing). We have found several Ruelle-Takens and period doubling
scenarios for obtaining chaotic flows.

By decreasing Ha → 0 several quasiperiodic and chaotic purely
hydrodynamic attractors coexist at Re = 1000.

The azimuthal drifting behaviour is strong and persist for all the types of
flows found.

Simulation of the HEGDEGOG UDV measurements −→ Preliminary
comparisons of flow velocities are in good agreement, both in amplitudes
and time dependence.

Time scales of the azimuthal drift range from roughly 0.007 to 0.01 Hz,
(around 2 min) depending on the main azimuthal symmetry of the flow.

For the radial jet instability MRW the time scales of the modulation can be
around 10−3 − 10−4 Hz, i. e. ∼ 15− 60 min. Could be experimentally
detected?

Computation of electric potential differences for estimating voltages in the
HEGDGEHOG experiment −→ Preliminary results point to 10−7 − 10−6 V
in the latitudinal direction and 10−8 − 10−9 V in the azimuthal direction.

Analyse experiments with different magnetic forcing Ha ∈ [25, 80] (the
return flow/shear layer regimes) to see if the behaviour of the rotating
frequency seen on the bifurcation diagrams is reproduced.
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