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Abstract
Fakultät Physik
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Master of Science

Theory and simulation on nonlinear spin-wave dynamics in magnetic vortices

by Lukas Körber

One of the fascinating qualities of spin waves (or magnons), which are the elementary
excitations in magnetically ordered substances, is their nonlinear behavior at moder-
ate excitation powers. This makes spin waves not only an attractive model system
to study general nonlinear systems, but it also provides a way to utilize nonlinear
dynamics in possible technical applications. In a ferromagnetic nano disk which is
magnetized in the vortex state, the spin-wave modes meet strict boundary conditions
and therefore inherit a discrete spectrum. When driven with a large enough excitation
field, they can decay into other spin-wave modes within well-defined channels due to
a nonlinear process called three-magnon scattering. The aim of this thesis is to explore
this phenomenon within nonlinear spin-wave theory and by means of micromagnetic
simulations. For this purpose, first the linear dynamics are mapped out and the
possible scattering channels are predicted. The stability of these channels with respect
to static external fields is studied. Within this context, exotic spin-wave modes which
arise in a broken cylindrical symmetry are found. Moreover, a model to predict the
temporal evolution of the spin-wave modes is developed within the classical Hamil-
tonian formalism for nonlinear spin-wave dynamics. Together with micromagnetic
simulations, this model is then applied in order to study the power-dependence
of three-magnon scattering as well as to uncover a phenomenon called stimulated
three-magnon scattering, which may allow for an integration of this nonlinear pro-
cess in magnonics circuits. The results are compared with Brillouin light-scattering
experiments which were conducted prior to this thesis or were motivated by it.
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Kurzfassung in deutscher Sprache
Eine der faszinierenden Eigenschaften von Spinwellen (oder Magnonen), den ele-
mentaren Anregungen in magnetisch geordneten Substanzen, ist ihr nichtlineares
Verhalten bei moderaten Anregungsleistungen. Dies macht Spinwellen nicht nur zu
einem attraktiven Modellsystem zur Untersuchung von nichtlinearen Systemen im
allgemeinen, sondern bietet auch die Möglichkeit, nichtlineare Dynamik in möglichen
technischen Anwendungen zu nutzen. In einer ferromagnetischen Nano-Disk, die
im Vortex-Zustand magnetisiert ist, erfüllen die Spinwellenmoden strenge Randbe-
dingungen und weisen daher ein diskretes Spektrum auf. Wenn sie mit einem ausre-
ichend großen Anregungsfeld getrieben werden, können sie aufgrund eines nichtlin-
earen Prozesses, der Drei-Magnonen-Streuung genannt wird, in wohldefinierten
Kanälen in andere Spinwellenmoden zerfallen. Ziel dieser Arbeit ist es, dieses
Phänomen innerhalb der nichtlinearen Spinwellentheorie und mittels mikromag-
netischer Simulationen zu untersuchen. Dazu wird zunächst die lineare Dynamik
ausgearbeitet und die möglichen Streukanäle werden vorhergesagt. Daraufhin wird
die Stabilität dieser Kanäle in Bezug auf statische externe Felder untersucht. In diesem
Zusammenhang werden exotische Spinwellenmoden gefunden, die durch eine ge-
brochene Zylindersymmetrie entstehen. Darüber hinaus wird innerhalb des klas-
sischen Hamilton-Formalismus für nichtlineare Spinwellendynamik ein Modell zur
Vorhersage der zeitlichen Entwicklung der Spinwellenmoden entwickelt. Dieses Mod-
ell wird anschließend zusammen mit mikromagnetischen Simulationen angewendet,
um die Leistungsabhängigkeit der Drei-Magnonen-Streuung zu untersuchen und das
Phänomen der stimulierten Drei-Magnonen-Streuung aufzudecken, das wiederum
eine Integration dieses nichtlinearen Prozesses in magnonischen Schaltungen er-
möglichen könnte. Die Ergebnisse werden mit Brillouin-Lichtstreu-Experimenten
verglichen, die vor dieser Arbeit durchgeführt oder durch sie motiviert wurden.
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Chapter 1

Motivation

“Productive stupidity means being ignorant by choice. Focusing on important
questions puts us in the awkward position of being ignorant. One of the beautiful
things about science is that it allows us to bumble along, getting it wrong time after
time, and feel perfectly fine as long as we learn something each time.”

– Martin A. Schwartz, The importance of stupidity in scientific research [1]

The study of nonlinear dynamical systems is both a fascinating as well as a challenging
one. A number of interesting phenomena can emerge in nonlinear systems – such as
solitons, multi-stability, wave turbulence and chaos [2–5] – all of which are not present
in their linearized counterparts. It is hardly surprising, that predicting the evolution
of such a system may be cumbersome, as the underlying equations of motion are
of course nonlinear. As a consequence, basic ideas of linear theory, like for instance
the superposition principle, do not hold anymore. Nevertheless, it is important
to overcome this impediment, because our world is full of nonlinear systems (e.g.
fluid dynamics, weather and climate, gravitational waves, social dynamics, neuronal
systems [6–10]). In general, all of these systems can be quite different from each other.
However, understanding and developing methods for a particular nonlinear system
may be very fruitful for studying others.

In the study of spin waves (or magnons), which are the elementary wave-like
excitations in magnetically ordered substances, nonlinearities are sometimes treated
as a necessary evil. But in fact, a ferromagnet is a perfect model system to study
nonlinear dynamics, because almost all important (material) parameters can be
obtained experimentally and dynamics can be documented using state-of-the-art
magnetic imaging techniques [11, 12]. Moreover, recent advances in patterning nano-
sized magnetic structures pave the way for utilizing nonlinear phenomena in possible
technical applications which could not be realized in a linear system (at least on a
hardware level). On top of that, the excitation power needed to drive spin waves in the
nonlinear regime is relatively low. The history of nonlinear magnetization dynamics
already started in the 1950s, when Bloemergen, Damon and Wang experimentally
investigated the para- and ferromagnetic resonance at large excitation powers [13–
15]. Since then, a lot of progress has been made in this field. Today, a number
of implementations of nonlinear magnetization dynamics (e.g. auto-oscillations
or intensity-dependent spin-wave switching) have been proposed and are under
investigation [16–19]. In particular, the nonlinear mode conversion in ferromagnets
(multi-magnon scattering) could be of great interest in the development of nonlinear
networks. To summarize, the study of nonlinear spin-wave dynamics is not only
interesting in terms of fundamental physics but also from a technical point of view.

Recently, it has been shown – with the involvement of the author – that spin-wave
modes in magnetic nano disks magnetized in the vortex state can decay into other
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secondary modes by obeying special selection rules [20], if they are excited above a
certain threshold power using an oscillating external magnetic field. These selections
rules put constraints on the frequency and structure of the secondary modes, resulting
in well-defined decay channels. Moreover, the confinement of the spin-wave modes
in small magnetic elements leads to an increased stability of the nonlinear precession
[21] as well as the appearance of standing waves, further reducing the power needed
to drive dynamics into the nonlinear regime. The presence of resonant three-magnon
scattering channels in the gigahertz range lead to a rich nonlinear response within
magnetic vortices, with certain signals arising directly from the secondary modes,
others from second harmonics or frequency mixing. Naturally, these dynamics show
a peculiar temporal evolution which can change depending on the input power.

The present work builds on the experimental works by Wehrmann [22], Hula [23]
and Schultheiß et al. [20] with the aim of painting a concise picture of the nonlinear
spin-wave dynamics at hand. Namely, the scattering channels, their dependence on
changing parameters such as excitation power or external fields, as well as the tempo-
ral evolution of the concerned spin-wave modes are to be studied. In order to achieve
this, theoretical as well as numerical methods will be utilized, comparing the results
with experimental data obtained on micrometer-sized ferromagnetic disks made of
Ni81Fe19 (also referred to as permalloy). Following the theoretical background in
Chap. 2, the methods being used will be described in Chap. 3.

In order to understand the nonlinear dynamics, we will first need to find the
mode profiles as well as the dispersion of the spin-wave modes in a vortex (Chap. 4).
Following up in Chap. 5, we will map the possible scattering channels and discuss
which ones will be activated for low excitation powers above a certain nonlinear
threshold. The knowledge of these resonant three-magnon channels is important for
possible technical applications. After that, we will examine the influence of static
external magnetic fields on these channels in Chap. 6.

In Chap. 7, a theoretical model will be developed which will allow to model the
temporal evolution of the spin-wave modes that are part of three-magnon scattering
processes. After that, this model as well as the acquired knowledge from before is
put to use in order to explore the power-dependence of the nonlinear dynamics in
Chap. 8 and to touch the idea of possible technical applications in Chap. 9.

In addition to the scientific objectives set out above, the author had several per-
sonal goals which will hopefully be shown to be achieved in the course of this thesis.
Namely, the author wanted to deepen his knowledge in the theory of magnetism and
nonlinear phenomena in general. Furthermore, one goal was to acquire theoretical
as well as numerical methods. Last but not least, the author wanted to learn how
to connect the dots, that is, to explore a research topic in an overarching way while
attempting to stand more and more on one’s own scientific feet.
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Chapter 2

Theoretical background

Before tackling the scientific objectives layed out in the previous chapter, it is nec-
essary to introduce the basic notions of magnetization dynamics, both linear and
nonlinear. For this purpose, we will first cover the interactions which lead to the
emergence of ferromagnetism, the vortex ground state and ultimately constitute the
characteristics of spin waves. After having discussed their quantum mechanical
origin, we will quickly employ a very important framework – the micromagnetic
limit – which allows us to discuss the vortex ground state, as well as the spin-wave
excitations, very elegantly. Following up, the equation of motion of magnetization
will be introduced, finally leading to the concept of spin waves. We will discuss their
linear as well as some of their nonlinear characteristics in the important exemplary
case of thin magnetic film. In order to discuss nonlinear phenomena, it will be useful
to introduce the classical Hamiltonian formalism for nonlinear spin-wave dynamics.

A much more detailed introduction into the basics of magnetism is found in
the excellent book by Blundell [24], whereas the theory of magnetization dynamics
and spin waves is covered in great detail in the works of reference by Stancil and
Prabhakar [25] or Gurevich and Melkov [26]. A very comprehensive investigation
of nonlinear spin-wave dynamics was written by Victor S. L’vov [4] and will be
referenced a couple of times during the course of this thesis.

As a personal statement: It was the author’s intention to present the following
theoretical chapter as deductive as possible. Several steps along the way (such as
carrying out the micromagnetic limit) are typically taken for granted and left out
for good reasons. However, for the sake of epistemology as well as for personal
education, the author decided to explicitly include such steps.

2.1 Magnetic interactions and equilibrium

2.1.1 Quantum mechanical origin of ferromagnetism

Substances which exhibit a spontaneous magnetization in the absence of an external
magnetic field are called magnetically ordered [26]. In materials of this nature,
the uncompensated elementary magnetic moments of the electrons µ̂i within the
respective lattice align with each other spontaneously due to the so-called exchange
interaction. This interaction is a consequence of the Pauli exclusion principle and can
be expressed using the effective Hamiltonian operator

Ĥexch = −∑
〈ij〉

Jijŝi · ŝj. (2.1)

Here, ŝi and ŝj are the electron spin operators at lattice site i and j, respectively. The
exchange integral Jij is in the simplest case dependent on the overlap of the electronic
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wave functions.1 In most cases, this overlap is only large for nearest neighbors
〈ij〉. For this reason, it is often enough to reduce the summation over all lattice-site
combinations to a nearest neighbor sum. The Hamiltonian operator defined by Eq. 2.1
is also called the Heisenberg Hamiltonian. Strictly speaking, it only describes insulating
materials, where the spin carriers (electrons) are localized. The exchange interaction
in metallic alloys (such as Ni81Fe19) is more properly treated within the Hubbard
model, more specifically the Stoner mean-field theory [27, 24, pp. 141-163]. However,
in certain cases the exchange can be described in a form very similar to the Heisenberg
Hamiltonian. In the sense of a tight-binding approximation and for the sake of this
argument, we will assume that the electrons travel within the metal only by hopping
from one lattice site to the other such that each site is singly occupied at all times. As a
result, we may use the Heisenberg Hamiltonian again, at least in a phenomenological
manner.

In a substance, in which Jij > 0, a parallel alignment of the electronic spins
is preferred. The material is then called ferromagnetic and can be described by a
spontaneous magnetization M within a certain unit volume ∆V, which is constituted
by all magnetic moments

M =
1

∆V ∑
i∈∆V
〈µ̂i〉 , (2.2)

with 〈. . .〉 denoting the expectation value of a quantum mechanical operator. For the
sake of simplicity and to streamline the present theoretical introduction to some extent,
we will assume that the total magnetic moment of an electron can be approximated
by only considering the magnetic moment produced by the electron spin,

µ̂i ≈ −
gµB

h̄
ŝi, (2.3)

with the anomalous g-factor of the electron, the Bohr-magneton µB and the reduced
Planck constant h̄. This approximation is allowed for example if the orbital magnetic
moment is quenched (its expectation value is almost zero due to the symmetry of the
respective crystal). This spin-only approximation is reasonable e.g. for crystals of the
transition metals nickel, iron or cobalt (and their alloys) [24, pp. 48-50, 28, p. 406], all
of which are ferromagnetic at room-temperature.

FIGURE 2.1: Schematic magnetization and stray field of a magnetic
element which is a) unsaturated and divided into domains or b) has

been saturated into the single-domain state by an external field.

If a magnet is fully saturated, meaning that all magnetic moments are aligned, it
has reached its so-called saturation magnetization MS which is the maximum possible

1This simple case is referred to as direct exchange.
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modulus of magnetization for the material at hand. However, most ferromagnetic
bodies of finite size are observed to be not fully magnetized, but are rather divided
into smaller regions in which the magnetic moments are parallel again (see Fig.
2.1a). The formation of these domains is a consequence of the dipolar interaction (or
dipole-dipole interaction) between the magnetic moments,

Ĥdip =
g2µ0µ2

B

4πh̄2 ∑
ij

3(ŝi · rij)(ŝj · rij)− r2
ijŝi · ŝj

r5
ij

(2.4)

which favors an anti-parallel alignment of the spins to minimize the overall stray
field – or in other words – to close the magnetic flux. This demagnetizing effect of
the dipolar interaction can be overcome by applying an external magnetic field Bext
described the by Zeemann interaction

ĤZ =
gµB

h̄ ∑
i

ŝi · Bext. (2.5)

If the external field is strong enough, the magnetic moments will align parallel with
the field until the magnet reaches saturation again (see Fig. 2.1b).2

The dipolar interaction is much weaker than exchange, but is – in contrast to
the latter – a long-range interaction. It will therefore play an important role in the
formation of ground states in larger magnetic structures as well as in the dynamics of
long-wavelength spin waves.

In certain cases, other phenomena such as crystal anisotropy, magnetostriction
or the asymmetric exchange interaction between electrons (known as Dzyaloshin-
skii–Moriya interaction) may be of importance, too, and need to be added to the
Hamiltonian Ĥ = Ĥexch + Ĥdip + ĤZ. As this is not the case in the present thesis,
such interactions remain only mentioned.

2.1.2 Micromagnetic limit

On the length scales of magnetic elements which can span several nanometers or
even micrometers, it is often not necessary to treat the magnetic properties of a solid
on the level of individual quantum mechanical spins. In fact, it will be more practical
to treat magnetization dynamics in the micromagnetic limit which is both classical on
the one hand and a continuum theory on the other hand.

In a solid body, where the number of electrons is macroscopic (∼ 1023), the
modulus of the total spin S becomes very large. In the limit of S→ ∞, the uncertainty
of the spin components become negligible and one can replace the operators with real
three-dimensional vectors si ∈ R3.3 Due to the strengh of the exchange interaction,
one can assume the angle βij between neighboring spins to be small and write for the
exchange interaction

Hexch = −Js2 ∑
〈ij〉

cos βij ≈ const. +
Js2

2 ∑
〈ij〉

β2
ij. (2.6)

2The usual minus sign is missing in the expression of the Zeemann energy, because we have defined
the magnetic moment to be anti-parallel to the spin.

3One can rescale the spin operators ŝi by S and then show that the well known commutation relations
for quantum mechanical angular momenta vanish for S→ ∞.
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The constant term is the energy of the equilibrium state. As it will not affect the
dynamics, we can ignore it at this point. The next approximation towards micromag-
netism is taking the continuum limit and ignoring the discrete nature of the lattice.
The summation becomes an integral over the whole volume V of the lattice. The
angle βij can be replaced by a vector gradient of the reduced magnetization M/Ms
which is now a continuous function of real space,

Hexch =
Aex

M2
s

∫
V

d3r (∇M(r))2 =
µ0λ2

ex
2

∫
V

d3r (∇M(r))2, (2.7)

where Aex = 2Js2Z/a is the so-called exchange stiffness constant (a is the lattice constant
and Z is the coordination number of the lattice). It is also quite common to express
the exchange energy using the exchange length λex =

√
2Aex/µ0M2

s , which defines
the characteristic length scale of the micromagnetic exchange. For Ni81Fe19, which is
the material used in this thesis, this length scale is approximately 5 nm. In a similar
fashion the micromagnetic dipolar energy becomes

Hdip =
1
2

µ0

4π

∫∫
V

d3r d3r′
(∇rM(r))(∇r′M(r′))

|r− r′| . (2.8)

Finally, the continuum limit of the Zeemann energy is simply

HZ = −
∫
V

d3r M(r) · Bext(r). (2.9)

The strength of the micromagnetic limit is that the microscopic origins of the magnetic
interactions are abstracted into the continuous vector field M(r) as well as the material
parameters Aex, Ms and so forth. In particular, in the rudimentary micromagnetic
energy functionals, there is no difference between magnetic insulators or metallic
ferromagnets such as permalloy. Moreover, magnetic ground states or dynamic
properties can be obtained using methods of vector calculus.

2.1.3 The vortex state

p = 1, χ = 1 p = 1, χ = −1 p = −1, χ = 1 p = −1, χ = −1

FIGURE 2.2: Examples for different vortices with varying polarity p
and vorticity χ. The color code illustrates the out-of-plane-component

Meq,z from negative extremum (blue) to positive extremum (red).

Depending on its geometry and size, a ferromagnetic body can have various equi-
librium configurations Meq(r). In the case of thin micrometer-sized disks (which are
relevant for this thesis), the most probable spontaneously forming ground state is
a (circular) magnetic vortex.4 In such a configuration, the static equilibrium mag-
netization continuously rotates around the center of the disk and is in-plane almost
everywhere, which allows for almost zero stray field. The sense of rotation is denoted

4It can be noted that depending on the dimensions and aspect ratio the magnetic disk, different
configurations other than the vortex state might be favored (e.g. as presented in [29]).
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by the vorticity χ = ±1. Due to the presence of the exchange interaction, the magne-
tization must be sufficiently continuous and therefore, to avoid a point of singularity,
has to point out of the disk plane in a small region around the center of the disk,
called the vortex core. The size of this core is determined by the interplay between
exchange and dipolar interaction and is usually in the order of the exchange length
λex. The direction in which the core points is denoted by the vortex polarity p = ±1.
In Fig. 2.2, we see the four possible states of a circular vortex in a small magnetic disk.

These four states are energetically degenerate except with respect to the ap-
plication of an external out-of-plane field B = Bzez. In this case, the two pos-
sible vortex polarities will be energetically split. The equilibrium magnetization
can be obtained in the continuum limit by minimizing the energy functional H =
Hexch +Hdip +HZ + . . . with the terms given in the previous sections. In cylindrical
coordinates (with z-axis oriented along the symmetry axis of the disk), it can be
written as

Meq(r) = Ms(χ sin θ(ρ)eφ + p cos θ(ρ)ez). (2.10)

Here, θ(ρ) is the spherical angle denoting the vortex core profile. It takes the value of
π/2 almost everywhere except in the small vortex core region. An exact expression
for this function in the case of soft magnetic materials, such as permalloy, is for
example given approximately by the Usov-Peschany ansatz [30]. A proper numerical
study describing the exact vortex profile was performed by Ha, Hertel and Kirchner
[31].

2.2 Equation of motion of magnetization

Due to the strong contribution of the exchange interaction the modulus of the magne-
tization vector M(r, t) must – at least for sufficiently low temperatures – be constant
in time [32, p. 44]. As a consequence, the variation of magnetization in time can only
be of a precessional character (in leading order),

∂M
∂t

= −γ[M× Beff], (2.11)

where γ = gµB/h̄ is the modulus of the gyromagnetic ratio of the electron and
Beff(r, t) is the effective magnetic field. This torque equation of motion can be seen
as a continuum limit of the precessional motion an elementary magnetic moments
in an effective magnetic field.5 This effective field Beff(r, t), which at this point has
come out of the blue, is given by the fact that the torque equation Eq. 2.11 must
be conservative. In other words, the total energy H, which is a functional of the
magnetization, must be constant in time,

∂H
∂t

=
∫
V

d3r
δH

δM(r, t)
· ∂M(r, t)

∂t

= −γ
∫
V

d3r
δH

δM(r, t)
· [M× Beff]

≡ 0

(2.12)

5For the curious reader: The micromagnetic torque equation can be seen as the classical continuum
limit of the equation of motion of the spin operator ŝi in the Heisenberg picture, which is dŝi

/
dt =

i/h̄
[
Ĥ, ŝi

]
(with [·, ·] being the commutator of two operators on a Hilbert space).
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In order for this integral to vanish for all possible M(r, t), the varation δH/δM and the
effective field Beff must be parallel. The exact proportionality factor can be determined
to be −1 [4]. This means that the effective field is

Beff = −
δH

δM(r, t)
, (2.13)

and one can also write,
∂M
∂t

= γ

[
M× δH

δM(r, t)

]
. (2.14)

However, considering the effective field Beff = Bext + Bexch + Bdip + . . ., which is
constituted of the external field as well as the fields produced by the magnetization
itself, allows for a much more intuitive understanding of the equation of motion of
magnetization. For example, we observe, that in equilibrium, M and Beff must be
parallel to each other. Only when there is a component of the effective field – for
example an oscillatory external field – which is non-parallel to the magnetization, it
will start to precess. In a real magnetic sample, the magnetization will not maintain
its precessional motion but rather spiral on a loxodrome back into its equilibrium
configuration due to the presence of damping (see Fig. 2.3). The reason of this energy
dissipation is the coupling of the magnetic oscillations to thermal baths such as the
photonic or the electronic system. The influence of viscous damping was included in
phenomenological manner by Gilbert [33, 34] as

∂M
∂t

= −γ[M× Beff] +
αG

Ms

[
M× ∂M

∂t

]
. (2.15)

with the dimensionless phenomenological Gilbert damping constant αG. The torque
equation Eq. 2.15 is called the Landau-Lifshitz and Gilbert (LLG) equation of motion
and is widely used in magnetization dynamics.

FIGURE 2.3: Illustration of the precessional motion of magnetization
at a certain point in space, according to the LLG equation of motion.

The damping of individual oscillation modes (spin waves) will lead to a finite life
time as well as a nonzero line width of these modes. Moreover, it will be of great
importance for the nonlinear phenomena studied in this thesis. Therefore, we will
address this point again in more detail in Sec. 2.3.3 as well as in Chap. 5 and Chap. 7.
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2.3 Spin waves in ferromagnets

We have already discussed in the previous chapter that the magnetization M(r, t) of
a ferromagnetic body will locally perform a precessional motion around the effective
field if it is brought out of its equilibrium. This precessional motion can propagate as a
wave-like excitation within the ferromagnet. These low-energy excitations are called
spin waves. Their quantum mechanical origin are the quasi-particle magnons, which
are found as the low-energy excited states of the Hamiltonian operator discussed in
Sec. 2.1.1. Although, spin waves described in micromagnetism are only the classical
long-wavelength limit of quantum mechanical magnons, it is common to use both
terms equivalently and, within the course of this thesis, the term magnon instead
of spin wave will sometimes be used for the sake of brevity. Moreover, in order to
discuss nonlinear spin-wave dynamics, it is quite useful to call upon the quasi-particle
picture.

2.3.1 Linear spin-wave dynamics

In order to obtain a dispersion for the spin-wave modes in a ferromagnet, one has
to linearize the lossless LLG equation (αG = 0) by splitting the magnetization into a
static part and a dynamical component

M(r, t) = Meq(r) + m(r, t), (2.16)

and then keep only the terms up to first order in the dynamical component m, which
is perpendicular to Meq. The effective field is split in the same fashion. Finally, the
resulting linearized LLG equation

∂m
∂t

= −γ
[
Meq × b(t) + m(t)× Beq

]
(2.17)

can be solved by expanding the dynamical component into a serious of harmonic
waves,

m(r, t) = ∑
k
(mk(r)e−iωkt + c.c.) (2.18)

Here, k is the wave vector, mk(r) is the spatial mode profile and ωk is the angular
frequency of the respective spin-wave mode. The abbreviation "c.c." denotes the
complex conjugate of the term in front of it.6

Here, we will discuss the important case of spin waves propagating in a thin-
film ferromagnet, which is homogeneously magnetized in-plane. An approximate
dispersion for this case was first calculated by Kalinikos and Slavin [36],

ω2
l (k) =



[
ω0 + ωMλ2

exk2
l

]
for k ‖Meq

×
[
ω0 + ωMλ2

exk2
l + ωM(1− Kll)

]
[
ω0 + ωMλ2

exk2
l + ωMKll

]
for k ⊥Meq

×
[
ω0 + ωMλ2

exk2
l + ωM(1− Kll)

]
(2.19)

6The solutions of the linearized equation of motion always come in complex conjugated pairs (see
e.g. [35]).
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with

ω0 = γBext,
ωM = γµ0Ms,

k2
l = k2 +

(
lπ
d

)2

,

Kll =
k2

k2
l

[
1−

(
2

1 + δ0l

)
k2

k2
l

(
1− (−1)le−|k|d

|k|d

)]
.

(2.20)

Here, k is the wave-vector component in the film plane, l denotes the index of
quantization along the film thickness d. The exchange length is again given by
λex =

√
2Aex/µ0M2

s .

FIGURE 2.4: Approximate spin-wave dispersion in an infinitely ex-
tended film which is in-plane magnetized. a) shows the two possible
species in the dipolar regime, the surface waves (k ⊥ Meq) and the
backward-volume waves (k ‖Meq), for the lowest order modes (l = 0)
in a film with 75 nm thickness. Higher order modes in the exchange
regime are presented in b) in a film with 20 nm thickness. All curves
were obtained using the formulas 2.19 with typical material parame-
ters for Permalloy: saturation Ms = 830 kA m−1, exchange stiffness
Aex = 16 pJ m−1, gyromagnetic ratio γ/2π = 29 GHz T−1 and static

external field Bext = 100 mT.

Although, this dispersion describes the waves propagating in an infinitely extended
film, it will introduce some important qualities of spin waves which we will observe
for the spin-wave modes in a finite magnetic disk, as well.

(i) For small wave vectors, the dispersion is strongly anisotropic, with its origin
in the dipolar interaction. For the case of k ‖ Meq (called backward-volume
waves), the dispersion has a negative slope, whereas for k ⊥Meq (called mag-
netostatic surface waves or sometimes Damon-Eshbach waves) the frequency
increases strongly with the wave vector (see Fig. 2.4a).

(ii) Depending on the external field, there is a band gap in the spin-wave spectrum.
In a vortex disk, this band gap will be present even without an external field, as
it arises from the confinement of the possible spin-wave modes. It will play a
crucial role in the set of possible three-magnon scattering channels.
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(iii) With increasing wave vector, neighboring magnetic moments will be more and
more tilted to each other, leading to an increase in exchange energy. This in
return leads to an increase of the frequency ω ∝ k2 (see Fig. 2.4b).

(iv) Over the film thickness, only a discrete set of wave-vectors is allowed due to the
confinement in this dimension. These perpendicular standing spin waves with
quantization index l > 0 are much higher in frequency (see Fig. 2.4b). Because
of this, they can be ignored during the course of this thesis.

2.3.2 Nonlinear spin-wave dynamics

The LLG equation is a nonlinear differential equation which means that spin-wave
dynamics are inherently nonlinear, too. Physically speaking, an individual spin wave
will always perturb the medium it is propagating in. As a consequence, it will change
the effective field that itself and other spin-wave modes experience. Such a feedback
loop can lead to interesting effects such as frequency shift or multi-magnon scattering.

By linearizing the torque equation, the dispersion as well as the mode profiles
can be obtained. However, all nonlinear effects have been neglected taking this
step. Describing dynamics for which the dynamical component of the magnetization
m(r, t) is not small makes analytical considerations cumbersome because the initial
torque equation is nonlinear. In this case, terms proportional to O(m2) can not be
neglected anymore. Although, numerical integration of the full torque equation
can still be of use, any attempt to include higher-order terms into the linearized
LLG is very difficult (but neither impossible nor uncommon for k = 0 [37, 38, 26,
pp. 234-237]).

A very helpful solution to study nonlinear spin-wave dynamics is to make use
of the quasi-particle picture and express all nonlinear processes as interactions of
different linear spin-wave modes. In quantum mechanics, this would correspond to
writing the Hamiltonian from Sec. 2.1.1 in second quantization, meaning in terms
of creation and annihilation operators of the different spin-wave modes. Before we
formalize this idea within the continuum limit, we briefly introduce some of the
phenomena which will be important for this thesis.

Multi-magnon scattering

FIGURE 2.5: Examplary processes of a) three-magnon scattering and
b) four-magnon scattering.

Processes of multi-magnon scattering refer to the conversion of different spin-wave
modes into others. It is often enough to restrict considerations to processes of three
or four waves interacting with each other. All scattering processes that include more
spin-wave modes will contribute less and less to the total magnetic energy, that is, to
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the Hamiltonian. All processes of multi-magnon scattering have to conserve both the
total energy as well as the total momentum,

∑
in

ωi = ∑
out

ωj and ∑
in

ki = ∑
out

kj. (2.21)

This is the reason, why three-magnon scattering can be forbidden or non-resonant in
some parts of the spin-wave spectrum, whereas four-magnon scattering is always
allowed.

Multi-magnon scattering processes are also often called parametric. Due to the in-
trinsic damping of the spin-wave modes, often a certain threshold in wave amplitude
needs to be overcome, in order for these processes to happen (we will come back to
this point in Sec. 5.2).

Nonlinear frequency shift

FIGURE 2.6: Fold-over effect in the resonance
curve of a certain spin-wave mode due to
the nonlinear frequency shift. The resonance
curve was obtained by solving Eq. 2.24 for the
frequency of the excitation field ωRF and then
plotting the resulting two possible solutions
for the toy parameters Γ, W = 100 MHz as a

function of the magnitude |c(k)|.

Much like in a driven classical pendu-
lum for larger angles, the frequency of
a spin-wave mode will change with in-
creasing amplitude, leading to a fold-over
of the resonance curve of the wave (see
Fig. 2.6). Moreover, a large amplitude of
a certain spin-wave mode can also influ-
ence the frequency of other modes, as it
changes the effective field. The latter phe-
nomenon is also referred to as nonlinear
cross-shift. Under the assumption, that for
weakly nonlinear excitation, the preces-
sional motion of the magnetization will
still be harmonic and only its frequency
will be shifted, the nonlinear frequency
of a spin-wave mode is often written as

ωNL(k) = ω(k) + ∆ωNL(k) (2.22)

with

∆ωNL(k) = ∑
i

Wi|c(ki)|2. (2.23)

Moreover, c(ki) are the yet-to-be-defined complex amplitudes of the spin waves in
the system and Wi are certain frequency-cross-shift parameters. Within the classical
Hamiltonian formalism, which will be introduced in the next section, these frequency-
shift parameters can be identified in lowest order of approximation as the four-
magnon-scattering efficiencies of the spin-wave modes in the system scattering with
the mode that is shifted.

For example, the resonance curve of a spin-wave mode which is excited by an
external radio-frequency (RF) field, including only the nonlinear self-shift (here W)
[39, 40], is given by

|c(k)| = P(k)bRF√
Γ2 + (ω(k) + W|c(k)|2 −ωRF)2

, (2.24)



2.3. Spin waves in ferromagnets 13

with the coupling P(k) of a the mode to a RF field with magnitude bRF. The damping
rate of mode is denoted by Γ. We will cover these parameters later in detail in Chap.
7, when constructing rate equations to describe the temporal evolution of spin-wave
modes.

2.3.3 Classical Hamiltonian formalism for nonlinear spin-wave dynamics

In reminiscence of second quantization, within the classical Hamiltonian formalism
for spin waves, the total magnetic energy is expressed in terms of the time-dependent
spin-wave amplitudes ck(t) = c(k, t) and c∗k(t) = c∗(k, t) with a given dispersion
law ωk = ω(k). These complex amplitudes are classical analoga of the bosonic
annihilation and creation operators ĉk and ĉ†

k of magnons. We will cover, how they
are obtained from the continuum magnetization, shortly. The spin-wave Hamiltonian
(which we will call U ), is then written as a pertubative expansion in terms of increasing
number of spin-wave amplitudes,

U = U (0) + U (1) + U (2) + Uint, (2.25)

with U (0) = const and not important for the following dynamical equations. The
term U (1) is often set nil due to the assumption to be in equilibrium in the absence of
spin-waves. However, it will be nonzero in the presence of external pumping. The
second-order term,

U (2) = ∑
k

ωkc∗kck (2.26)

represents the linear spin-wave dynamics. It looks identical to the Hamiltonian of
a system of non-interacting bosons, written in diagonal form. All higher-order pro-
cesses, such as three-wave or four-wave interactions, are contained in the interaction
Hamiltonian,

Uint = U (3) + U (4) + . . . (2.27)

The dynamics of the different k-modes can then by obtained by the corresponding
canonical equations,

dck(t)
dt

= −i
∂U

∂c∗k(t)
and

dc∗k(t)
dt

= i
∂U

∂ck(t)
. (2.28)

These canonical equations (or rate equations) for the spin-wave amplitudes ck(t)
and c∗k(t) take the role of the equation of motion for the magnetization M(r, t). In
accordance to the quantum mechanical description of many-particle systems by
creation and annihilation operators (ĉ†

k(t) and ĉk(t), respectively), different orders
of magnon interactions, such as three-magnon or four-magnon scattering, can be
efficiently described.

Such a classical Hamiltonian approach for spin waves was first introduced by
Schlömann in 1959 [41, 42] and has since then become one of the standard tools to
describe weakly nonlinear spin-wave dynamics as well as fluid dynamics [43–45] or
plasma physics [46, 47], to begin with. It has been formulated in numerous reviews
[48–50], books [4, 25], and more recently by Krivosik and Patton [39]. It played an
important role in this thesis to derive rate equations for the nonlinear interaction of
spin waves in a magnetic vortex. As the formalism is presented in great detail in the
aforementioned literature, only a short derivation of the spin-wave Hamiltonian will
be presented here.
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Derivation of the Hamiltonian

Recall, that in a non-dissipative system (that is, without Gilbert damning), the effec-
tive magnetic field is connected to the total magnetic energy H by the variational
derivative

Beff = −
δH
δM

(2.29)

In principle, this H (later expressed in canonical variables) can be taken as the
spin-wave Hamiltonian. However, following the convention in [39], it proves more
apparent to convert the magnetic energy to frequency units

U =
γH
MsV

, (2.30)

with again the modulus of the gyromagnetic ratio γ and the saturation magnetization
of the sample Ms. Then, the complex spin-wave amplitudes ck(t), c∗k(t) will later be
dimensionless. After the conversion, one proceeds with the following steps:

Step 0. This step is only necessary, if the equilibrium magnetization Meq(r) is not
collinear. In this case, the local components of the total magnetization Mx, My, Mz in
the lab system must first be expressed in the spatially dependent coordinate system
of Meq(r) as M1, M2 (orthogonal to Meq) and M3 (parallel to Meq). Of course, for
samples with inhomogeneous magnetic textures such as vortices or domain walls,
this step is important.

Step 1. The total magnetization is then expressed in the canonical variables a(r, t)
and a∗(r, t) using the Schlömann transformation

iM1 + M2

Ms
= a(r, t)

√
2− a∗(r, t)a(r, t)

≈
√

2a(r, t)
(

1− 1
4

a∗(r, t)a(r, t)
)

M3

Ms
= 1− a∗(r, t)a(r, t).

(2.31)

This corresponds to a classical version of the well-known Holstein-Primakoff trans-
formation [51], where the total operator Ŝ is expressed in bosonic creation and
annihilation operators â and â†. Each created magnon then reduces the total spin by
one h̄. The latter approach can be used to derive magnons in the quantum mechanical
Heisenberg model.

Step 3. Now, the canonical variables are expanded into the eigenmodes of the
magnetic system. For example, in an unbound ferromagnet, this expansion is simply
a Fourier transformation,

a(r, t) = ∑
k

ck(t)eik·r. (2.32)

In more complex magnetic textures, the spin-wave normal modes will not be plane
waves anymore and their spatial profile eik·r can be different. However, the spatial
information of the modes will disappear in the integration over the sample volume.7

7Recall, that for exampleHZ = −
∫

V dV M(r, t) · Bext(r, t).
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This information will be contained in the coefficients of the Hamiltonian. Only the
time-dependence will remain.

Step 4. At this point, the different terms can be collected and ordered by their
appearance of the spin-wave amplitude (i.e. U (3) will contain only terms containing
products of three amplitudes, etc.). If the two-magnon term U (2) is not diagonal which
means that terms such as ckc−k or c∗kc∗−k appear in it, a Bogoliubov transformation is
required to switch to the circularly polarized modes

dk(t) = ukck(t) + vkc−k(t) (2.33)

with appropriate uk and vk [39]. This step is important, if the eigenmodes ck(t) are
elliptically polarized.

Step 5. In certain regions of the spectrum ω(k), three-magnon scattering might not
be allowed in terms of conservation of momentum and energy, meaning that U (3) = 0
for the corresponding modes. However, these non-resonant terms can still account
significantly in the four-magnon scattering processes U (4) as initially described by
Zakharov [52].

Both the fourth and the fifth step are quantitatively important in certain situations,
but they will go well beyond the scope of this thesis and will therefore not be carried
out as for most situations, we will start at the finished Hamiltonian which takes the
form

U (2) = ∑
k

ωkc∗kck

U (3) =
1
2 ∑

0,12
[V0,12c∗0c1c2 + c.c.]δ(0− 1− 2)

+
1
6 ∑

123
[U123c1c2c3 + c.c.]δ(1 + 2 + 3)

U (4) =
1
2 ∑

12,34
W12,34c∗1c∗2c3c4 + . . .

(2.34)

Here, the short form 0 = k0 (and so forth) is used for the sake of brevity. The first
sum in the three-magnon Hamiltonian U (3) describes the decay of one magnon into
two other magnons 0→ (1, 2) with the scattering amplitude V0,12 (in units of angular
frequency) as well as the inverse processes indicated by the complex conjugate term
"+c.c.". The second sum describes the creation of three magnons from the vacuum
��O→ (1, 2, 3) and vice versa. Usually these terms are only nonzero in active media [4].
The δ-functions assure the conservation of momentum. The terms in U (4) describe
four-magnon processes in which two existing magnons scatter into two new magnons.

The classical Hamiltonian formalism presented here has the advantage that it
is expressed in linear spin-wave modes. All the linear information is encoded in
the dispersion law ω(k) and the spatial profiles of the normal modes. Both can be
obtained for example by the linearized LLG equation. All the coupling coefficients of
higher-order processes (i.e. V0,12 or W12,34) are then derived from the mode profiles
together with the corresponding interactions at hand (dipolar interaction, exchange
and so forth). Albeit being only of an algebraic nature, this procedure can be very
cumbersome for four-magnon scattering and higher orders (e. g. see the expression of
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the full W12,34 for unbound media in [39]). But at some points, useful approximations
can be made. The reader is advised to not confuse the symbol V0,12 with V (for
constant volume). The author has chosen to follow this overloaded naming conven-
tion, because unfortunately both notations are common in the theory of nonlinear
spin-wave interactions [4, 25, 39, 40, 53].

Spin-wave occupation numbers & relation to second quantization

In repeated analogy with quantum mechanics, we call Nk = c∗kck = |ck|2 the spin-
wave occupation number or spin-wave number with wave vector k. The analogy between
both formalisms is presented for the exemplary case of k = 0 in Fig. 2.7. Taken, that
there is no interference between different waves, the spin-wave occupation number
is the real quantity, which can be directly compared to experimental data found e.g.
by means of Brillouin light-scattering spectroscopy (BLS) as it is directly proportional
to the average measured photon counts in such an experiment – we will cover the
details for this briefly in the next chapter.

FIGURE 2.7: Schematic comparison of the roles of a) the quantum
mechanical annihilation and creation operators ck and c†

k which reduce
the z-component of the total spin S, as well as the magnon particle
number N(qm)

k (here, h̄ = 1) against b) the micromagnetic spin-wave
amplitudes ck and c∗k as well as the occupation number Nk within
the classical Hamiltonian formalism. For simplicity, the magnet is
assumed to be saturated in z-direction and the only mode which is

populated is k = 0.

In some publications [17, 54–57], especially in the theory of auto-oscillations, the
modulus square of a complex mode amplitude |c|2 is also called the dimensionless
oscillator power p. However, in order to not confuse this quantity with the power of the
external excitation field on the one hand and to avail ourselves of the quasi-particle
vocabulary on the other hand, the above-mentioned terminology will be used in this
thesis, although Nk hardly takes the values of natural numbers. This is because we
have rescaled the Hamiltonian in micromagnetic units. We could have also boldly
rescaled it with the reduced Planck constant h̄ if we were to convert the total magnetic
energy to units of angular frequency. Following this argument, the here-introduced
micromagnetic spin-wave occupation number Nk can be related to the expectation
value of the quantum mechanical particle number operator N(qm)

k = 〈ĉ†
kĉk〉 by

N(qm)
k ≈ MsV

γh̄
Nk if N(qm)

k � 1. (2.35)
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Within the rate equation calculations in the nonlinear regime performed later, the
micromagnetic spin-wave numbers will be in order of Nk ∼ 10−4, which – for the
micrometer-sized permalloy disks addressed in this thesis – corresponds to a quantum
mechanical number of magnons of about N(qm)

k ∼ 106. This, in return, justifies the
use of a classical theory to describe magnetization dynamics.8

8To be precise, even in the classical case, we would have to define Nk = 〈|ck|2〉 as an average over
chaotic wave phases (see e.g. [4]). However, during this thesis, we assume a coherent excitation of the
modes taking part.
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Chapter 3

Overview of methods

For this thesis, a mixture of experiments, simulation and theory was utilized to study
the nonlinear dynamics in magnetic vortices. On the experimental side, results of
Brillouin light-scattering microscopy (µBLS) experiments [12] conducted prior to
this thesis by Franziska Wehrmann [22], Kai Wagner, Katrin Schultheiß [20, 58] and
Tobias Hula [23] (among others) as well as experiments conducted during this thesis
(mostly by Katrin Schultheiß, with the humble involvement of the author) are used to
compare with the results of this thesis. Micromagnetic simulations were conducted
using a custom version of MuMax3 [59, 60], a micromagnetic solver which is widely
used to study magnetization dynamics. In order to predict the temporal evolution
of nonlinear interactions at hand, a theoretical model consisting of rate equations
for the spin-wave modes in a magnetic vortex was developed using the classical
Hamiltonian formalism for nonlinear spin-wave dynamics [39].

All methods presented here motivated and stimulated each other. Although the
present work is more of numerical as well as theoretical nature, it also produced
results which motivated and/or were confirmed later in experiments (with involve-
ment of the author). In the following, an overview of the experimental, numerical
and theoretical techniques will be given. The specific details will be explained when
needed in the corresponding sections.
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3.1 Micro-focused Brillouin light-scattering spectroscopy

FIGURE 3.1: Schematics of the creation (Stokes) and annihilation (anti-
Stokes) of a spin wave using monochromatic light which is scattered

at a ferromagnetic medium.

The experiments presented in this thesis rely on the inelastic scattering of monochro-
matic light at ferromagnetic materials, commonly referred to as BLS [61, 62]. When
an incident photon with frequency ωi and wave vector ki is scattered at the surface
of a ferromagnetic medium,1 it may either create (Stokes process) or annihilate (anti-
Stokes process) a spin-wave (see Fig. 3.1). The difference in frequency and wave
vector of the scattered photon (ks, ωs) to the incident light is equal to that of the spin
wave (kSW and ωSW).

ωs = ωi ±ωSW

ks = ki ± kSW
(3.1)

The frequency of the scattered light – and with it the frequency of the spin wave – is
measured using a Tandem-Fabry-Pérot interferometer [63], with the frequency of the
incident light ωi serving as a reference signal. The incoming photons are detected
using a photo detector. In the resulting frequency spectrum, one can see both the
Stokes as well as the anti-Stokes signal as photon counts at that particular frequency
(see Fig. 3.2).
In a conventional (or wave-vector selective) BLS measurement performed on thin mag-
netic films, the in-plane component of the spin-wave wave vector can be obtained
from conservation of momentum by choosing the incident angle of the light accord-
ingly. However, in the µBLS experiments relevant for this thesis the wave-vector
resolution is exchanged for a spatial resolution by focusing the beam of the incident
light down to a 300 nm spot size (without a well-defined incident angle).

Spin waves in magnetic nanostructures can be excited using a patterned mi-
crowave antenna, connected to an external microwave source, which generates a
magnetic RF field at the site of the sample. In our case the antenna is an Ω-shaped
current loop [20] around the vortex disk. In order to allow for a time-resolved mea-
surement up to 50 ps precision, this external RF field is applied in a stroboscopic
fashion, synchronized with the photo detector. The detected photons can then be
related to scattering events on the disk using a time-of-flight technique.
The author would like to point out again, that although experimental results are
shown, the present thesis does not have its focus on the experimental realization

1Strictly speaking, the photon is diffracted by the periodic change in the optical properties of the
ferromagnet, caused by the spin wave and magneto-optical effects.
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FIGURE 3.2: Schematic frequency spectrum of a BLS experiment, with
spin waves at frequency ωSW.

and results of that nature, which are not already published, will be elsewhere in the
future. For a detailed description of the µBLS system used to produce the presented
experimental data (regarding optics, software, etc.) the reader is kindly directed to
the experimental works described in [20, 22, 23] as well as to the review on µBLS by
Sebastian et al. [12].

3.2 Micromagnetic simulations

Micromagnetic simulations are often used in the field of magnetization dynamics
to help explain experimental observations or to predict new experimental designs.
They rely on solving the equation of motion of the magnetization M(r, t), namely the
LLG equation of motion from Sec. 2.2 on a discrete grid. Essentially, micromagnetic
simulations allow to conduct virtual experiments in an idealized system in which all
interactions and material parameters are known and the magnetization can be probed
with an arbitrary high spatio-temporal precision. All further dynamic properties
such as spectra, mode profiles, dispersions, damping rates, etc. are – like in most real
experiment – acquired in post-processing.

For this thesis, a custom version of the popular GPU-accelerated micromagnetic
solver MuMax3 [59, 60] was used which solves the LLG equation on a rectangular grid
using a Runge-Kutta Dormand-Prince method [64]. To allow for such a numerical
integration, the torque equation is evaluated in its explicit form

∂M
∂t

= − γ

1 + α2
G
[M× Beff]−

γαG

(1 + α2
G)Ms

M× [M× Beff], (3.2)

which can be obtained by left-crossing M into Eq. 2.15. At each step in time, the
effective field Beff is calculated and the magnetization is subsequently integrated for-
ward in time. The resulting time-dependent magnetization at each grid point, M(r, t),
as well as other figures of merit, such as the total magnetic energy or external field
amplitudes, can be sampled at a given time step and stored for post-processing. Mag-
netic oscillations such as spin-wave modes are usually retrieved from micromagnetic
simulation by employing a fast Fourier transform (FFT) at each grid point.
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3.3 Classical Hamiltonian formalism

The classical Hamiltonian formalism outlined in 2.3.3 has been utilized to derive rate
equations for the complex spin-wave amplitudes c∗k(t) and ck(t), which are again
classical analoga to the quantum mechanical Bose creation and annihilation operators.
With such rate equations, the nonlinear interaction of the spin waves that take part in
a scattering event can be described on a mode level. The derivation of these equations
for the three-magnon scattering in magnetic vortices was a major part of this thesis
and will be described in detail in Chap. 7.
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Chapter 4

Mapping of the mode spectrum

As the excitations in a vortex have been examined in experiments [20, 40, 65], theory
[40, 66–73], as well as simulations [20, 74–76] in countless works, there exists a good
understanding of these modes. Much like the magnonic excitations in infinitely
extended thin films, the spin waves in a vortex disk will be characterized by their
wave vector. However, the spin-wave manifold for thin films was continuous in the
direction of propagation. Even in narrow waveguides, where there is an additional
quantization along the width of the waveguide, continuous sets of modes can be
found. This will not be the case anymore for magnetic nanodisks in the vortex
state. Here, we have dominant boundary conditions in every direction resulting in a
completely discrete set of modes. This chapter will deal with the mapping of this set.
First from a conceptual view and then via micromagnetic simulations. A knowledge
of the dispersion law ω(k) will be essential for understanding the linear as well as
the nonlinear phenomena discussed later.

4.1 Initial considerations

The equilibrium magnetization in a vortex state is obviously not collinear. The
orientation of the magnetization vector is a very local quantity. However, waves
are global in that sense. In order to effectively describe the dynamics of the time
dependent magnetization M(t) = Meq + m(t), one must first transform from the
lab system, expressed in cylindrical coordinates (M$, Mφ, Mz), to the local reference
frame, that consists of two components M1 and M2 perpendicular and one component
M3 parallel to the equilibrium. The two types of reference frame are illustrated in Fig.
4.1a,b. The analytic details for this transformation can be found in Appx. A.2. In the
linear approximation (M3 = const.) we can decompose the dynamics into normal
modes via

iM1 + M2

Ms
= ∑

k
ck(t)Ψk($)Φk(φ) (4.1)

with the time-dependent spin-wave amplitudes ck(t), the radial profiles Ψk($) and
the azimuthal profiles Φk(φ). The wave vector k needs yet to be defined at this
point. As we consider a thin magnetic disk, the magnetization can be viewed as
translational invariant along the thickness direction (z). This is substantiated by
the fact that higher order modes, such as perpendicular-standing spin waves are
much higher in frequency for thin magnetic elements (see again Fig. 2.4b). Thus, the
canonical wave vector can be seen as the two-dimensional quantity k = (k$, kφ) with
a component in $-direction and an angular-momentum-like component in φ-direction
(see Fig. 2.4c for an illustration). The possible values for canonical wave vector
components are set by the boundary conditions in each coordinate together with the
linearized LLG. The azimuthal part must obey a periodic boundary condition in φ
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and – for pinned spins at the edge – the radial part must vanish at the edge of the
disk.1 As a consequence, only a discrete set of spin-wave modes is allowed, counted
by n ∈N in the radial and m ∈ Z in the azimuthal direction. The mode profiles (for
m > 1) can be approximated as

Φk(φ) ≡ Φm(φ) = eimφ (4.2)
Ψk($) ≡ Ψn($) = κn J1(knρ) (4.3)

with the azimuthal part following from the cylindrical symmetry. The radial part is
constituted by the first-order Bessel function J1 and some unimportant normalization
constant κn. The possible effective radial wave vectors kn are obtained using the above-
mentioned boundary conditions. The expression for Ψn was found by Buess et al.
[77], but unfortunately, is only a good approximation in the dipolar regime (for small
wave vectors). With the exception of m = ±1, the modes for ±m share approximately
the same radial profile. The former anomaly stems also from the interaction with the
vortex core [66, 67, 78–80]. In Fig. 4.2, we see exemplary mode profiles for the first
five radial modes of m = ±8, calculated by means of micromagnetic simulations. The
details are discussed in the next sections.
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FIGURE 4.1: Schematics of a magnetic
nanodisk in the vortex state showing a)
the equilibrium magnetization. The color
code illustrates the out-of-plane compo-
nent Meq,z from zero (gray) to maximum
value (red). The unit vectors are not true to
scale. b) shows examples for the spatially
dependent local coordinate system which
is useful for describing the dynamics such
as the magnon modes which are charac-
terized c) by their canonical radial wave
vector k$ and their azimuthal wave vector
kφ (or mode index n and m, respectively).

FIGURE 4.2: Intensity plots (squared mode amplitudes) for the first
five radial modes with an azimuthal index m = ±8. The profiles
were obtained for a permalloy disk with 5.1 µm diameter using mi-
cromagnetic simulations. All material parameters is found in Tab.

4.1.

1To be precise, that radial part must also satisfy Ψ′nm(0) = 0.
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4.2 Calculation of vortex state

To obtain the spin-wave modes in a disk using micromagnetic simulations, one must
first calculate the equilibrium magnetization Meq. In MuMax3, this was done by mod-
eling different permalloy disks of 50 nm thickness and various radii on a rectangular
grid of 512×512×1 cells. The material parameters are summarized in Tab. 4.1. For
most simulations in this thesis, a disk of 5.1 µm diameter was used. This choice was
made in order to achieve a comparison with measurements based on real samples
with the same dimensions and material parameters.

Material parameters

exchange stiffness, Aex 13 pJ/m
saturation, Ms 810 kA/m
reduced gyromagnetic ratio, γ/2π 29.6 GHz/T
Gilbert damping, αG 0.008
thickness, L 50 nm
diameter, 2R 1 µm, 2 µm, 5.1 µm

Mesh parameters

mumber of cells (x, y, z) 512×512×1
cell size over thickness (z) 50 nm
lateral cell size (x, y) 1.95 nm, 3.90 nm, 9.96 nm

TABLE 4.1: Material and mesh parameters for the permalloy disks
used in the simulations.

At this point a crucial reason for the nature of these simulations has to be made.
In principle, if one had the task to perform micromagnetic simulations on a (rigid)
vortex, one would initially not turn to a finite-difference approach (rectangular grid),
like the approach used in this thesis, but instead rather use a finite-element approach.
Software solutions include TetraMag [81], magpar [82], NMag [83], and FinMag [84],
among others. These solutions model the magnetization using polygons, such as
tetraheders, which in this case would allow for a finer modeling both of the vortex
core as well as of the edge of the disk. However, using a finite-difference approach
provides the striking advantage of making the computation of the dipolar field much
faster. On a polygonial grid, the demagnetizing field has to be calculated by solving
the Poisson equation of the magnetostatic potential. So, for each cell and for each time
step, one has to integrate over the whole sample. This can be taken care of much faster
on a rectangular grid, for which the calculation of the dipolar field can be simplified to
a FFT [59]. If one is to perform studies on nonlinear behavior or carry out simulations
covering a wide parameter space, a large number of simulations has to be made.
This is simply not possible in a reasonable amount of time using a polygonial grid.
The point of simulation time together with the economical reason of not producing
unnecessary large amounts of data has led to the decision to limit the mesh size for
the disks to 512×512×1 cells. For the largest disk size, this leads to a lateral cell
size of approximately 10 nm (see again Tab. 4.1). This is larger than the exchange
length in permalloy which is about 5 nm. However, we will see, that in the dipolar
spin-wave regime and even at the beginning of the exchange reqime, this will not be
of a great concern as there will be a very good agreement with results obtained from
other techniques such as semi-analytics or BLS experiments. To make the numerics
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consistent over the whole thesis, the same mesh is used for all simulations for which
th same disk is of concern. The disadvantage of having not as precise numerics
is overcompensated by having the possibility to perform a very large number of
simulations.

To calculate the equilibrium magnetization, a template vortex with given chirality
and polarity can be initialized in MuMax3 at the center of the disk. From this starting
point, the magnetic system is then allowed to relax into its equilibrium. In general, for
this purpose the built-in relax() method may be used. However, in some cases, as
well as in this one, this method does not find the right equilibrium and it proves more
sufficient to relax manually by setting the Gilbert damping to αG = 0.5 and letting the
magnetization evolve for a period of 20 ns.

Finally, modes in the system are excited by applying an external magnetic RF
field. In particular, a homogeneous out-of-plane (OOP) field is used. For example,
an OOP field exciting such a disk can be set up by patterning an Ω-shaped antenna
around it [20]. In Fig. 4.3, we see the schematics of the mesh housing the equilibrium
magnetization Meq in the vortex state together with the orientation of the external RF
field bext(t). The excitation field can either be pulsed to contain a broad frequency
spectrum or it can be a continuous-wave (CW) excitation with a fixed frequency.
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FIGURE 4.3: Schematics of the mesh used to simulate the vortex disks.
The cells are not true to scale.
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4.3 Calculation of the dispersion relation

The dispersion of the spin-wave modes in a vortex up to |m| = 30 was recently
calculated semi-analytically by Dr. Roman Verba, a collaborator on this project from
Kyiv , for a 5.1 µm diameter disk. For this, a projection method similar to the one
presented in [77] was used with the difference that exchange was also included.

In an effort to be more flexible and being able to calculate the dispersion in-
house for different parameters and higher azimuthal wave vectors, a method was
developed to extract the dispersion by means of micromagnetic simulations. The
result presented in this section will be shown to have very good agreement with the
dispersion calculated by Dr. Verba.

Method Obtaining the dispersion relation of the spin-wave modes with micro-
magnetic simulations comes down to exciting these modes at the same time using
an external field and then isolating them by means of FFT of the time dependent
magnetization. One transformation is performed in the time domain to acquire the
frequency response, and a transformation in the spatial domain is made to obtain
the wave-vector response. This works for all the propagation directions in which
the normal modes are propagating as plane waves proportional to exp(ikr) (e.g. in
a infinitely extended thin film, this works for all in-plane directions or in a domain
wall for the direction parallel to the wall).

In the case of a vortex, the situation is a little bit more complicated as it is not
directly clear how to perform a FFT due to the geometry of the problem. And of
course, the normal modes are not plane waves. Therefore, the approach will be a little
different yet somehow similar. In order to calculate the dispersion for a vortex, OOP
RF fields with a particular spatial symmetry have to be used. To excite azimuthal
modes, one can use a field with the corresponding profile proportional to cos(m′φ),
with m′ being a principal number and representing the azimuthal index of the field.
Such a field can easily be implemented in micromagnetic simulations. Fig. 4.4
illustrates snapshots of the OOP component of such a field for different m′.

FIGURE 4.4: Spatial profiles of an out-of-plane RF field with a spatial
dependence of cos(m′φ) for different indeces m′.

In fact, a field with a particular m′ can only couple to modes with the same or the
negated azimuthal index m = ±m′. This will be shown explicitly in Sec. 7.2 when
deriving the rate equations for the spin-wave normal modes.
In order to excite all the duplets (n,±m‘) for different radial indices n in one simula-
tion, a pulsed OOP field proportional to sinc(ωmaxt) is used to equally excite a wide
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range of frequencies. In summary, the field may be written as

bext(φ, t) = bpulse · cos
(
m′φ

)
· sinc(ωmax(t− t0)), (4.4)

with the amplitude of the pulse bpulse = 1 mT, the cut-off frequency ωmax/2π =
40 GHz and a shift of the pulse with respect to zero t0 = 50 ps to avoid a rapid
switch on of the field. The system is allowed to evolve for 25 ns and the resulting
time-dependent magnetization is sampled at 10 ps and then Fourier transformed into
the frequency domain at each cell separately. The resulting amplitudes and phases
are then spatially averaged yielding the power spectrum of the whole disk. To carry
out these calculations, a program based on the work by Attila Kákay was used.

Last but not least, only to calculate, the dispersion, the damping was slightly
tweaked. With a reduced Gilbert damping parameter αG = 0.0007 the line widths are
much smaller allowing for a better peak extraction. This is justified as long as we are
only interested in the linear resonance frequencies of the modes.

In Fig. 4.5, we see the power spectrum of the time-dependent magnetization when
excited with a pulsed field of azimuthal index m′ = 8. By performing a windowed
backwards Fourier transform around the frequency of each peak, one obtains the
mode profiles as well as the phases of these Fourier components.

FIGURE 4.5: Spectrum of a permalloy disk with a diameter of 5.1 µm
that is excited with a sinc-pulse in time and an azimuthal profile with
m′ = 8 in space. The insets show the amplitudes and phases of the

first five duplets with m = ±8.

The mode profiles seen in Fig. 4.5 confirm that indeed each peak corresponds to one
radial index. From the step-like behavior of the phases one can see that standing
waves are excited. This, of course, are the respective duplet modes that are excited by
the azimuthal field m′ = ±m.

Finally, to calculate the full dispersion one needs to redo this whole procedure
for all desired azimuthal indices. Given the computational load, this is a rather
time-consuming task. To reduce the overhead, the author wrote several scripts to
automatize the generation of MuMax3 problem definitions as well as calculating the
power spectrum for a large number of simulations. As a result, the computation of a
full dispersion takes about one day.
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Results & discussion Exemplary dispersion relations calculated using the method
described above are seen in Fig. 4.6 for 50 nm thick permalloy disks with 1 µm, 2 µm
and 5.1 µm diameter. Each column of the heatmaps is the power spectrum of one
pulsed simulation with the corresponding azimuthal field. For the 5.1 µm diameter
disk shown in Fig. 4.6c, there is a very good agreement with the result calculated by
Dr. Verba (drawn as red data points with lines to guide the eye).

FIGURE 4.6: Dispersion
relation of the vortex nor-
mal modes calculated by
micromagnetic simulation (col-
ormap) for a permalloy disk of
50 nm thickness and a) 1 µm,
b) 2 µm and c) 5.1 µm diameter.
The results in c) are compared
as with a diagonalization
approach (red points) for the
first six radial indices. The
dispersion shows a backward-
volume character in azimuthal
direction (varying m) and
a surface-wave character in
radial direction (varying n).
Additionally, one can observe
that the duplets for m = ±1
are split in frequency. With
decreasing disk diameter, the
dispersion becomes steeper
(more quadratic) for the
same |m| and the band gap

increases.

To begin with, several features reminiscent of the thin-film spin-wave dispersion are
recovered. It can be seen that with increasing azimuthal mode number, the dispersion
shows a backward-volume-like behavior. This is expected, as increasing |m|means
increasing the canonical wave vector kφ in azimuthal direction, that is parallel to the
equilibrium magnetization. For small m, this result was already found in [77], where
modes with negative dispersion were observed in a vortex. In radial direction, of
course increasing index n increases the canonical wave vector kρ that is perpendicular
to the magnetization. As a consequence we observe an increase in frequency with
each branch.

Overall, comparing different disk sizes, the mode frequencies go down for larger
disks. However, looking closer, we see two trends. Of course, with increasing disk
diameter the mean inter-branch distance becomes smaller similar to the convergence
of the mode frequencies in any potential well with extending size.

At the same time, the minima of the dispersion branches shift towards higher
|m| for larger disk diameters. This is due to the fact that, for larger disks, the modes
can save exchange energy at higher azimuthal wave vectors by shifting the intensity
towards the perimeter of the disk. This mechanism leads to the appearance of
whispering gallery magnons [20].
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Another feature that can be observed in the dispersion is the splitting of the m = ±1
duplets. This splitting becomes larger for smaller disks and is due to hybridization
with the gyrotropic mode [66, 67, 78–80]. It is only mentioned here for the sake of
completeness.
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Chapter 5

Prediction of the scattering
channels

After we have mapped out the necessary linear information (mode profiles and
dispersion) in the previous chapter, we are able to move forward by mapping the
nonlinear dynamics. More specifically we want to study the possible resonant three-
magnon-scattering channels. In anticipation of Chap. 9, a knowledge about these
channels is essential in the design of technical applications.

As the three-magnon scattering in magnetic vortices obeys certain selection rules
[20], not all combinations of spin-wave modes are allowed. Consequently, the set
of possible scattering channels will have to obey a certain structure. The aim of the
present chapter is to predict this set of possible three-magnon scattering channels.

In the first part of this chapter, we will see that one can obtain a surprising
amount of clarity by only applying the selection rules of the three-magnon scattering
to the dispersion ω(k); that is, in other words, search for the resonant scattering
channels. In the second part, this search will be extended by taking into account
the individual thresholds of the different channels, narrowing down the number
of secondary spin-wave modes that will be observed for excitation powers slightly
above the threshold. But before going into this effort, the reader deserves a brief
explanation of the aforementioned selection rules.
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5.0 Selection rules of three-magnon scattering in a magnetic
vortex

FIGURE 5.1: Schematics of the selection rules of three-magnon scat-
tering in a magnetic vortex showing a) the mode profiles and b) the
mode numbers and frequencies of an exemplary resonant scattering

channel in context of the dispersion ω(k).

The three-magnon scattering process in a magnetic vortex which is of interest for
this thesis is the decay of a radial mode (n, 0) into two azimuthal modes (see Fig.
5.1). Focusing only on this class of three-wave processes is justified for the following
reasons: First, when using a current-loop microwave antenna around the ferromag-
netic disk, a spatially homogeneous RF field is produced, which can only couple
to spin-wave modes with zero azimuthal periods, m = 0. As a consequence, only
these radial modes can be pumped to achieve their threshold amplitude. Second,
the dispersion ω(k) shows a characteristic backward-volume behavior in azimuthal
direction, with a certain band gap ωmin (see Fig. 5.1b). Since the RF field directly
excites a certain spin-wave mode with ωRF, conservation of energy demands that the
frequency of the directly excited mode ωRF must be at least twice as large as the band
gap, ωRF ≥ 2ωmin. With increasing excitation frequency, this condition is satisfied
foremost for radial modes. Focusing now on the decay of a radial mode ωRF into two
other modes ω1,2, the selection rules are

(i) conservation of energy. Of course, all scattering processes must be close to
resonance. Since we already know that the two secondary modes will have
different frequencies, we can write this rule as

ω1,2 ≈ ωRF/2± ∆ω. (5.1)

In a discrete spectrum like the one of a magnetic vortex, this condition can hardly
be satisfied. In most cases, this resonance condition is only guaranteed within a
certain line width, hence the "≈". Later, this fact will lead to a renormalization
of the threshold fields.

(ii) conservation of angular momentum. The equilibrium magnetization exhibits a
rotational symmetry in azimuthal direction. As a consequence, the canonical
angular momentum kφ of a spin-wave, associated with the mode index m, is a
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conserved quantity, too. A radial mode has kφ = 0. Thus, the secondary modes
must have opposite azimuthal indices,

m1,2 = ±m. (5.2)

(iii) dipolar coupling. This particular selection rule is what makes three-magnon
scattering in a magnetic vortex quite exotic, as it leads to the a split in frequency
of the secondary modes. It is a consequence of the symmetry of the dipolar in-
teraction in such systems and was found in by Roman Verba using a qualitative
evaluation of the three-magnon scattering efficiency V0,12 of the vortex modes
within the classical Hamiltonian formalism [20]. He derived, that only the
dipolar interaction contributes to the decay channels at hand. More specifically,

Vdip
0,12 =

imωM

2
√

2R2

∫∫∫
(Jm+1(kρ)− Jm−1(kρ))Jm(kρ′)×

p(kL)Ψ0(ρ′)[Ψ1(ρ)Ψ2(ρ′)−Ψ2(ρ)Ψ1(ρ′)]ρ dρ dρ′dk ,
(5.3)

with the demagnetizing factor for thin films p(x) = 1− (1− e−|x|)/|x|, thick-
ness and radius of the vortex disk L and R, the Bessel functions of the first kind
Jm and ωM = µ0γMS. It follows that the efficiency is only non-zero, if the radial
mode profiles of the secondary modes Ψ1 and Ψ2 are distinct from each other
(note the expression within the brackets). As the azimuthal mode numbers
must be opposite and modes within one duplet±m have the same radial profile
(see again Sec. 4.1), the radial mode numbers of the secondary modes have to
be different,

n1 6= n2. (5.4)

In other words, the secondary modes must come from different branches of the
dispersion. There is no strict relation to the radial number of the directly excited
mode. Unfortunately, the explanation for this selection rule remains in its exact
form to be rather mathematical and without an intuitive picture. It appears,
that sometimes physics is not simple and beautiful. If one was to look for a
more physically sound but maybe inaccurate explanation, one could think of
this selection rule as the following: The two secondary modes by themselves do
not exhibit a magnetic moment (m 6= 0). However, together they can produce
a magnetic moment to which the dipolar field of the directly excited mode
(m = 0) can couple, but only if they have different mode profiles.

5.1 Finding the resonant channels

5.1.1 Algorithm

After having calculated the dispersion and having expressed the selection rules, the
task of finding the possible three-magnon scattering channels is straightforward. For
this purpose, a Python script was written which takes a given dispersion data set and
outputs the channels in the following way:

(i) For each excitation frequency ωRF, select all duplets (n2, |m2|) which are below
ωex/2 in frequency. This yields a set of possible secondary modes, which are
lower in frequency ω2 = ωRF/2− ∆ω2.1

1Here, the frequency split ∆ω2 is also indexed, since, at this point, we do not know yet, whether this
particular mode will contribute to a resonant channel.
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(ii) For each of these duplets, find all partner duplets (n1, |m1|) that have a different
radial index n, but the same modulus of azimuthal index |m|. The result is a set
of possible secondary modes which are higher in frequency ω1 = ωRF/2 + ∆ω1.

(iii) In the last step, only the combinations of modes are kept, which are close to
resonance. The modes must satisfy

|ωRF/2 + ∆ω−ω1| < Ω with ∆ω = |ωRF/2−ω2|. (5.5)

Here, the parameter Ω represents the word "close" as it defines how far a
channel can be from resonance and still be allowed. It is reasonable to set this
parameter to be equal to the smallest line width of the modes taking part in
that channel, which is in this case Γ2. Of course, condition 5.5 is equivalent to
|∆ω1 − ∆ω2| < Ω.

This algorithm can now be applied to any magnon system with a discrete spectrum
and structurally the same above-mentioned selection rules. For example, later we
will compare the effects of different nanodisk dimension.

However, first of a all, the resonant three-magnon channels in a 5.1 µm diameter
permalloy disk will be studied in more detail. For example, in Fig. 5.2a, we see the
resonant three-magnon channels for an excitation frequency of 6.1 GHz, acquired
by applying the algorithm to the respective dispersion from Sec. 4.3. In fact, these
are the channels for the lowest possible excitation frequency, which can be predicted
with this method. By sweeping the excitation frequency (seen in Fig. 5.2b), we find
that below 6.1 GHz, there are no resonant channels. This frequency sweep exhibits a
pattern which is already quite similar to the experimentally observed data obtained
by means of µBLS in Fig. 5.2c.

FIGURE 5.2: Result of the algorithm to find the resonant three-magnon
channels for a 5.1 µm diameter disk, showing a) the channels for an
excitation frequency of fRF = 6.1 GHz overlayed on the dispersion as
well as b) the full frequency sweep with all resonant channels in that
range. Each mode (dot) is drawn less transparent the more resonant
the respective channel is. c) shows the corresponding experimental
data obtained with µBLS. Details on the experiments are found in [20].
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5.1.2 Comparison with experiments

The first conclusion which can be drawn from the resonant channels is an observation
that has already been anticipated in the motivation in Chap. 1, where only some of the
modes in the experimental data have been identified to originate from three-magnon
scattering with the directly excited mode. In Fig. 5.2b, we see that there can be indeed
no secondary modes above fRF− fmin (at last within their line width), with fmin being
the spin-wave band gap. Having pointed it out, such an observation may occur
trivial, as it is a direct consequence of conservation of energy. Still, it substantiates
that fact that all signals in the experimental data (see again Fig. 5.2c) above that line
must either be higher harmonics and/or come from higher-order magnon-magnon
interactions. Furthermore, there are two discrepancies between experimental data
and the predicted channels:

(i) In experiments, we also observe resonant channels below 6.1 GHz. Several
reasons for this are possible. First, the set of resonant channels is very sensitive
to changes in the dispersion. For the numerical calculation of the dispersion
and therein the prediction of the channels, MuMax3 data was used. In the real
existing sample, the dispersion can be slightly different (e.g. due to changes
in the material parameters, defects in the real sample, discretization effect in
the simulation and so forth). This, in return, will alter the resonant channels.
Second, the interaction tolerance Ω = Γ2 could have been chosen to be too
small and some channels could have been missed. In fact, for the search of the
channels, we used Γ = αGω, but the real line width of the modes is slightly
increased, which will be discussed in Sec. 7.1. Third, even channels which are
more off-resonant than allowed by the tolerance Ω could be activated if their
scattering efficiency V0,12 is large enough. However, the scattering efficiency
was completely neglected in this approximate prediction. The last possible
reason is the nonlinear frequency shift, namely the cross-shift of the secondary
modes due to the directly excited mode. The first radial mode (0, 0) is at about
5.4 GHz. Closer to its resonance, the nonlinear ferromagnetic resonance could
come into play [40].

(ii) In experiments and also in simulations, we do not observe all of the resonant
channels. In a way, we predict too many channels. This is because all channels
will have different threshold amplitudes. Once the channel with the lowest
threshold is activated, the respective secondary modes will take up energy off
the directly excited mode, increasing the threshold fields for the remaining
channels. For low excitation powers, the remaining channels will stay silent.
With increasing power, they will be activated one-by-one, depending on their
threshold (see Chap. 8). In fact, these silent channels can even be activated
below their threshold by stimulating them (see Chap. 9). In the last part of the
current chapter, the scattering efficiency V0,12 and, therefore, the thresholds will
be taken into account to address the matter of having a decreased number of
scattering channels. However, even having predicted too many channels, we
can still learn a lot about the experimental data.
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5.1.3 Focus on azimuthal index

In Fig. 5.3, the predicted frequency sweep is compared with the experimental data,
with the predicted secondary modes color-coded by their modulus of the azimuthal
index |m|. This may help explain the decreased µBLS intensity highlighted by the
elliptic area. In this region, the secondary modes exhibit a large azimuthal index
|m| > 30, leading to large in-plane wave vectors for which µBLS is less sensitive [12].
This is because the wave-vector coverage of a micro-focused laser beam is ultimately
limited by the angle range that can be re-collected using an certain objective.

FIGURE 5.3: a) Predicted resonant channels color-coded with their
azimuthal index |m|, compared with b) experimental data. The large

ellipse marks a region of large |m| / reduced µBLS intensity.
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5.1.4 Focus on radial index

An even more interesting feature of these frequency sweeps are the apices that appear
for excitation frequencies of 6.1 GHz, 7.2 GHz and 8.0 GHz, among others. In the
experiments, depending on the excitation power level, we observe only the tip of
them (see 5.4a and 5.4b in comparison). Color-coding the secondary modes with their
radial index n reveals that those tips mark points for which the next branch of the
dispersion starts to take part in the scattering. In Fig. 5.4c-e, we see the respective
resonant scattering channels which mark these beginnings.

As a result of this analysis, it becomes quite obvious what defines the split in
frequency ∆ω of the secondary modes. It is, of course nothing more than the distance
between the different branches of the dispersion at that particular |m|.

FIGURE 5.4: Origin of apices in frequency sweeps. Elliptic regions
in resonant channels a) color-coded by their radial index n and b)
experimental data mark frequencies for which the next branch of the
the dispersion takes part in the scattering. c-e) show the respective

resonant channels.
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5.1.5 Effect of nanodisk dimension

The effect of changing the dimension of the nanodisk (here: the diameter D, the
thickness L = 50 nm is kept constant) on the dispersion of the spin-wave modes
has already been discussed in Sec. 4.3. As a consequence, the resonant channels are
changed accordingly. For small disk diameters, the average inter-branch distance (of
modes with same |m| but different n) is increased, leading to a more pronounced split
in frequency ∆ω of the secondary modes. Moreover, as the frequencies increase with
decreasing diameter, the resonant channels are shifted up in the dispersion. These
trends can be seen in Fig. 5.5.

For the 1 µm disk (see Fig. 5.5a,b), another effect can be observed. As the disper-
sion becomes more and more quadratic, because the exchange regime is reached for
smaller |m|, the radial modes are not far above a large number of azimuthal modes
anymore. As a consequence, one needs to excite fairly high-order radial modes in
order to exhaust the collection of channels. For example, to achieve secondary modes
with n1 = 2 and n2 = 0, one needs to directly excite radial modes with n0 ≥ 5, which
couple less effectively to an external field (see Appx. A.2) than lower-order radial
modes. In comparison, for the 5.1 µm diameter disk, this was possible with n0 = 1.

FIGURE 5.5: Comparison of dispersion and resonant scattering chan-
nels for 50 nm thick permalloy disks with a), b) 1 µm, c), d) 2 µm and
c), f) 5.1 µm diameter. All modes are color-coded with their radial
index. the gray overlays indicates regions where the dispersion data
was not sufficient to calculate the scattering channels properly. The
horizontal gray lines mark the excitation frequencies for which the

next higher radial branches takes part in the scattering.
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5.2 Inclusion of thresholds

In order to predict the channels which will be excited for the lowest excitation powers,
one has to take into account the three-magnon scattering efficiency V0,12 to compare
the threshold fields. Theoretical values for these fields have been obtained by our
collaborator Roman Verba also using the dispersion data acquired by simulation in
Sec. 4.3. The results have been verified by experimental data as well as micromagnetic
simulations, but are – as of the submission date of this thesis – not yet published
in a journal but will be as a talk at MMM Las Vegas 2019 [85]. The contribution of
the author of this thesis to the aformentioned effort is documented in this section.
Specifically, next to calculating and supplying the dispersion, threshold fields as well
as mode numbers for the secondary modes for selected excitation frequencies were
obtained by micromagnetic simulations.

5.2.1 Theoretical threshold fields

In the case of a continuous spin-wave spectrum and ignoring nonlinear frequency
shift as well as feedback on the directly excited mode, the threshold field of a particu-
lar channel would be [4]

bcrit ∝ |c0,crit| =
√

Γ1Γ2

|V12,0|
. (5.6)

with the damping rates of the secondary modes Γ1,2. In the end, this simply means
that the secondary modes are lifted from their thermal level as soon as the energy
flux, which is supplied by the decay of the directly excited mode overcompensates
the internal losses of the secondary modes. However, we have already discussed
that in our case we have a discrete mode spectrum for which exact resonance of
the three-magnon scattering can hardly be realized. This slight detuning from the
resonance condition will renormalize the threshold fields [4]

bcrit ∝ |c0,crit| =
√

Γ1Γ2

|V12,0|

(
1 +

∆Ω2

(Γ1 + Γ2)
2

) 1
2

. (5.7)

Here, ∆Ω = ωRF − (ω1 + ω2) is the detuning of a particular channel from the reso-
nance condition. It becomes clear that the threshold fields in a discrete system are
very sensitive to the frequencies of the modes. This is the reason, why for the final
calculation of the threshold fields, the dispersion data from Sec. 4.3 was used by Dr.
Verba. Otherwise, the comparison with simulation would be ambitious, which the
reader will see soon.

The damping rates as well as the three-magnon efficiency were calculated from
the mode profiles. In particular, V12,0 was derived as one of the first exertions of a
newly developed vector-Hamiltonian formalism for nonlinear spin-wave dynamics.
Again, the details on this theoretical analysis will be submitted for publication soon.
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5.2.2 Numerical determination of threshold fields

FIGURE 5.6: Determination of the threshold field bcrit at
fRF = 8.3 GHz with a) the total-energy spectrogram of a
down-sweep of the RF field magnitude over 1 µs. The high-
lighted areas mark the frequency channels which were inte-
grated and b) plotted against field to allow for an extraction

of the critical field bcrit of the c) modes of this channel.

The procedure of determin-
ing the threshold of a partic-
ular channel using MuMax3

is quite similar to the ex-
perimental one by means of
BLS. One simply sweeps the
excitation power of the RF
field at a given excitation
frequency and then searches
for the appearance of the
secondary modes (e.g. see
Fig.3a in [20]). However, in
the experiments it is difficult
to determine the exact am-
plitude of the RF field gener-
ated by the micrometer-sized
antenna around the sample.
Only the power of the mi-
crowave generator is known
with certainty. This is the
reason, why a quantitative
comparison with theory and
simulation in terms of thresh-
old fields is not possible up
to this point2. For this the-
sis, a lightweight approach
was developed to acquire the
threshold fields using only
a single simulation per exci-
tation frequency. One starts
with a field amplitude above
the threshold (this starting
field is determined by trial
and error) and then slowly
decreases the amplitude of
the excitation field over the course of 1 µs. The reason, why we do not increase
the field from zero is the following: The secondary modes only appear after a certain
time delay with respect to the RF field which excites the direct mode. This is due
to the fact that the directly excited mode first has to build up its amplitude before it
reaches the decay instability. If we increase the field too fast, then we will miss the
threshold field. It is therefore better to decrease the field and wait for the secondary
modes to disappear. Of course, in a BLS experiment this problem does not occur since
field sweeps are performed over several seconds or even minutes. But in numerics, a
simulation time of 1 µs is already huge (typical simulation times in micromagnetics
are in the order of 10–100 ns). Additionally, performing a spatially dependent Fourier
transform over such a time span is not feasible. The effectiveness of this methods now
lies in the fact that we perform a time-frequency analysis only on the total magnetic
energy, which is a spatially independent quantity. The time-frequency analysis is

2Although in-situ field measurements using NV-centers or SiC-defects have been proposed [86, 87].
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achieved by performing a windowed FFT within smaller time slices. As a result, one
obtains a spectrogram – that is, a time-dependent FFT – of the total magnetic energy.
A more elaborate description is found in Appx. A.1. For example, in Fig. 5.6, we
see the total-energy spectrogram of a field sweep from 5 to 1.5 mT at an excitation
frequency of 8.3 GHz. After a certain amount of time, the secondary modes disappear.
This point in time approximately corresponds to the point for which the field drops
below the threshold. By integrating the spectral density over a certain interval around
the frequencies of the secondary modes and changing over from time-axis to field-axis
(see Fig. 5.6b) one can obtain the threshold field.

Finally, the modes within a channel are identified by performing an additional
100 ns long simulation at a constant RF field amplitude above the threshold. The
mode profiles (Fig. 5.6c) are then obtained using the full spatially-dependent Fourier
analysis. The threshold fields from simulation and theory can be seen in Tab. 5.1
together with the mode indices in each channel. The indices are the same for sim-
ulation, theory and, in fact, also experiment [20]. This means, that simulation and
the theoretical analysis by calculating V12,0 are successful in predicting the correct
channels with the lowest threshold. The threshold fields from simulation are slightly
higher than the ones from theory which can be due to the high sensitivity of the
threshold fields on the mode frequency as well as the fact that the vortex core was
neglected in the theoretical analysis.

fRF (GHz) b(theo)
crit (mT) b(sim)

crit (mT) n0 n1 n2 |m|
6.1 1.12 1.26 0 1 0 12
7.2 2.75 3.40 1 1 0 4
8.3 2.95 2.62 2 2 0 5
8.9 0.93 1.80 2 2 1 9
9.0 1.45 2.10 2 2 1 8

TABLE 5.1: Threshold fields (theory b(theo)
crit and simulation b(sim)

crit ) and
mode indices for the channels (n0, 0)→ (n1, |m|) + (n2, |m|) with the

lowest threshold at different excitation frequencies fRF.
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Chapter 6

Influence of static external fields

FIGURE 6.1: Schematics of the different external field orientations with
respect to the vortex disk. The resulting new equilibrium magnetiza-
tion is additionally outlined by the gray and red arrows (color-coded

with increasing out-of-plane component).

The three-magnon scattering channels within a magnetic vortex can change quite
drastically if static external fields Bext are applied. Such fields will lead to a change of
the equilibrium magnetization Meq, thereby inducing a change in the mode profiles
and frequencies. The present chapter shall take a small detour to touch on this
matter for the case of static homogeneous out-of-plane (OOP) and in-plane (IP) fields.
The former case retains the cylindrical symmetry whereas the latter case will break
it. Quite counter-intuitively, we will see that OOP fields suppress three-magnon
scattering, whereas IP fields will open up the route to completely new and exotic
vortex modes. Both of these cases will turn out to be far too extensive to cover them
here to the extend they would deserve. For the sake of completeness, the initial
section will briefly cover the case of an azimuthal in-plane field.

6.0 Azimuthal in-plane field

In addition to being the most difficult to realize experimentally, the case of an az-
imuthal in-plane field Bext = Bφeφ (see Fig. 6.1a) is also the least fascinating. Next to
a change in the vortex core radius, applying a static field anti-/parallel to the original
equilibrium magnetization will only decrease or increase the effective internal field.
The change in mode profiles and dispersion will not qualitatively change the resonant
channels. One has to admit that using an azimuthal in-plane field can be advanta-
geous, for example, if it leads to a more pronounced backward-volume character
of the dispersion, meaning that the radial modes are shifted to larger frequencies
relatively to azimuthal modes with large |m|. As a consequence, the frequency space
of possible scattering channels could be widened.
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6.1 Homogeneous out-of-plane field

Under the influence of a homogeneous OOP field Bext = Bzez (see Fig. 6.1b), a
(circular) magnetic vortex will transform into a cone-state vortex. Depending on
whether the polarity of the vortex is parallel or anti-parallel to the external field, the
core will either grow or shrink, whereas the surrounding magnetization will tend
to align itself parallel to the field. One may refer the first case (core polarity parallel
to the field) as a light vortex and to the latter case (core polarity anti-parallel to the
field) as a heavy vortex. A heavy vortex is not easily modeled in micromagnetic
simulation as the core radius can decrease down to a few lattice constants before
the core finally flips and aligns itself parallel to the field. In such an extreme case,
speaking of a continuous magnetization becomes ambitious. The terminology light
and heavy was introduced by Prof. Boris Ivanov in reminiscence of the energy barrier
between the two orientations [73]. Ivanov et al. studied both cases in great detail
from a theoretical point of view. During the work on this thesis, a collaboration with
Prof. Ivanov emerged which has its focus on the linear characteristics of spin-wave
modes in a (light) cone-state vortex. Nevertheless, there are also consequences on the
nonlinear characteristics because, as already mentioned, the three-magnon scattering
in a cone-state is suppressed.

FIGURE 6.2: a) Averaged out-of-plane Mz and in-plane component

Mφ =
〈√

Mx(r)2 + My(r)2
〉

of a light vortex as a function of applied
OOP-field. The dissappearance of the secondary modes can be seen
by comparing th the simulated RF sweeps for b) 0 mT, c) 100 mT and

c) 400 mT static OOP-field strength.

In Fig. 6.2a, we see the phase transition1 of an in-plane vortex to a light cone-state
vortex to the fully saturated state in the case of our 5.1 µm diameter permalloy
disk, expressed by the averaged out-of-plane Mz and in-plane component Mφ. This
transition in the ground state (and also in the spin-wave modes which we will discuss
in a moment) was for example also investigated by Taurel et al. in [76]. We see the disk

1The system undergoes a transition from circularity number χ = ±1 to χ = 0. Thus, the phase
transition is of a topological nature.
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is fully saturated as soon as the OOP field is equal to the saturation magnetization,
Bz = µ0Ms ≈ 1 T (for permalloy). The data for the field-dependent ground state was
acquired with MuMax3 by running an OOP-field sweep with increased αG = 0.5 to
suppress dynamics, and recording the magnetization in a given time/field interval.
If we look at simulated excitation frequency sweeps for exemplary OOP field values
(see Fig. 6.2b-d), we see that the secondary modes disappear with increasing field.
The sweeps were obtained by running a 100 ns long simulation for each RF excitation
frequency at bRF = 5 mT and subsequently taking the Fourier transform of the total
magnetic energy (see Sec. 5.2 and Appx. A.1).

There are a couple of distributions that may lead to a suppressed intensity of the
secondary modes:

(i) The most obvious but not most drastic reason is the decreased transversal
coupling of the RF field (which is also an OOP field) as the equilibrium mag-
netization points more and more out-of-plane. However, for Bz = 400 mT the
magnetization still retains a considerable in-plane component, yet the secondary
modes have completely disappeared. This holds true even if one increases the
RF power to counteract the decreased coupling efficiency.2 As a consequence,
there have to be other contributions.

(ii) The second possible reason is a change of the mode profiles (see e.g. [76]) which
leads to a change in the three-magnon efficiency V0,12. To solidify this, one
has to calculate the mode profile for a number of static OOP-fields. However,
decreasing the three-magnon efficiency is in some way equivalent to decreasing
the pumping efficiency of the direct mode - at least when it comes to threshold
fields. Thus, the same argument made at the end of the previous point holds.

(iii) The third and probably most important reason is that the degeneracy of the
duplets ±m is lifted when an OOP-field is applied, rendering the three-magnon
channels to be off-resonant. Hence, we will discuss this reason in more detail.

FIGURE 6.3: Splitting of the duplets with
|m| = 8 as a function of applied OOP field.

The last of the aforementioned reasons
makes the spin-wave modes in a cone-state
vortex quite interesting. We can see in Fig.
6.3 for the case of |m| = 8 that all mode
frequencies go down with increasing OOP
field. This is expected for in-plane materi-
als which are exposed to an OOP field and
quite common in ferromagnetic resonance
experiments [26].

However, in addition to the decrease in
frequency, the duplets split up with increas-
ing OOP-field strength. The data in Fig. 6.3
was acquired the same way like the spectra
for the dispersion in 4.3, only that the field
and not the azimuthal index was changed
from simulation to simulation. The reason
for lifting of the degeneracy is a topological
effect which was proposed for spin waves by Braun [88], Hertel [89] or Dugaev [90]
and is the subject of the collaboration with Boris Ivanov. The situation is that the
azimuthal modes acquire a Berry phase in the presence of a static OOP field. This

2Tobias Hula performed BLS experiments to support this. The results are not published yet.
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Berry phase, in return, intrinsically leads to a non-reciprocity in φ-direction. The
lifting of the duplet degeneracy together with the fact that all mode frequencies
decrease (generally in a quite individual way) makes it increasingly more difficult for
the three-magnon channels to maintain resonance. For Bz = 100 mT the duplets are
already split but the respective channel are still resonant within line width. However,
at Bz = 400 mT, the resonance is gone completely.

6.2 Homogeneous in-plane field

As already mentioned, the situation is very different if a homogeneous in-plane field
applied which breaks the cylindrical symmetry. Against intuition, three-magnon
scattering will not be suppressed. On the contrary, it will uncover rather exotic
spin-wave modes. Consider the case of the IP-field Bext = Byey being applied in the
y-direction as in Fig. 6.4.

FIGURE 6.4: Displacement of the vortex in a 50 nm thick permalloy
disk of 5.1 µm diameter as a function of applied IP field By compared
with the ratio My/Ms. The vortex position was acquired using peak-
fitting of the simulation data along line scans. The insets show the
color-coded polar angle of the equilibrium magnetization Meq for

exemplary IP-field values.

The data was again acquired by means of micromagnetic simulation performing
a sweep of the external field with increased damping. We see that the vortex is
displaced transversal to the IP-field, with the exact direction being defined by the
circularity of the vortex. At a field of By = 20 mT, the vortex is almost completely
pushed towards the edge of the disk. Furthermore, we see that the ratio My/Ms (with
the averaged component parallel to the IP-field My) provides a good estimate for the
relative displacement for the vortex.

In the following, we will take a look at what happens to the nonlinear dynamics
– in particular the scattering channels – with increasing IP-field for the exemplary
case of fRF = 6.1 GHz at bRF = 3 mT. For this purpose, a series of micromagnetic
simulations was performed using a RF excitation. In Fig. 6.5a, we see the respective
power spectra for increasing IP-field By. First of all, the secondary modes do not
disappear if the IP-field is increased. On the contrary, at some critical field By ≈
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2.5 mT the signal of the secondary modes splits into two branches each. On top of it,
we will shortly see that the secondary modes will be divided into two qualitatively
very different sets.

Recall, that the splitting of the azimuthal modes for OOP-fields in the previous
section was a purely linear effect. Here, we observe a splitting of the secondary modes
which are produced by a nonlinear effect.

FIGURE 6.5: Frequency spectra of the three-magnon channel(s) at
fRF = 6.1 GHz as a function of applied IP field By acquired with a)
micromagnetic simulation and b) micro-focused BLS. The insets in
both subfigures show the mode profiles at the respective frequencies,
obtained from simulation or by µBLS. The experimental data was ob-
tained by scanning over a ring-shaped area on the disk and integrating
the respective Stokes and Anti-Stokes signal. The circles and butterfly
shapes indicate the branches of the two different classes of vortex
modes, as well as the points for which the mode profiles shown later

in Fig. 6.6 were taken.

The micromagnetic simulations described in this section motivated the experimental
realization by means of µBLS, performed by Katrin Schultheiß on 5.1 µm iameter
permalloy disks as well. The experimental results are in a gratifying qualitative
agreement with numerics (see Fig 6.5b). Discrepancies could be related to the lack of
knowledge of the exact RF power level LP in the experiments, as well as discretization
effects in the numerical data. It could be, that in the experiment, the excitation field is
slightly higher than in the simulation. Additionally, at the time of the experiments,
there was a setup-related asymmetry between Stokes and Anti-Stokes signal. This is
why in all the measurements presented here, both sides are always accumulated.

If we take a look at the mode profiles (see insets in Fig. 6.5), we find that the
secondary modes split into two classes of modes, one type located on the far sight
of the displaced vortex, which are the usual vortex modes associated modes in an
undisplaced vortex.

It has to be noted that azimuthal modes in a displaced vortex have been studied
both numerically as well as experimentally e.g. in [91, 92], however only for modes
up to |m| ≤ 2, due to limitations by computational power or experimental design. In
extension to the undisplaced case presented [20], three-magnon scattering provides
the means to excite higher-order azimuthal modes (|m| � 2) in a displaced magnetic
vortex.

Coming back to the present analysis, we see that the other branches in the IP-field
sweep belong to secondary modes with a more exotic profile. These butterfly vortex
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modes (as we will call them for the lack of a better term) have their main amplitude
right next to the vortex, generating a butterfly pattern (see Fig 6.6).
Notably, both the regular vortex modes as well as the butterfly vortex modes gener-
ated by three-magnon scattering in a displaced vortex still obey the same selection
rules which we have discussed for the undisplaced case in Sec. 5.0. In other words,
the selection rules of the decay of a radial vortex mode into other modes in a magnetic
vortex are robust against displacement of the vortex.

FIGURE 6.6: Mode profiles of the two different classes of regular (circle)
and butterfly vortex modes acquired by a) micromagnetic simulation
and b) micro-focused BLS. The respective IP fields were set to a value
for which all modes are in co-existence (see Fig. 6.5). As a consequence,
the vortex displacement for simulation and experiment is slightly
different. The experimental profiles were acquired by integrating in a
certain line width and adding up the respective Stokes and Anti-Stokes

peaks.

In order to fully understand the transition of the secondary modes even only for the
exemplary case presented in Figs. 6.5 and 6.6, it is vital to gain knowledge about
the dispersion ω(k, By) and mode profiles also for higher order azimuthal modes
as a function of applied the IP field. Unfortunately, theoretical approaches such as
the projection method [77] or the numerical approach developed in Sec. 4.3 must
fail as we cannot make a priori assumptions about the mode profiles (such as the
azimuthal dependence ∝ eimφ) in order to transform the LLG equation of motion to
an ordinary differential equation on the one hand, or to find suitable excitation fields
on the other hand. The only way out may be the rigorous numerical diagonalization
of the linearized LLG equation of motion using a dynamics matrix approach such
as the one introduced by Grimsditch et al. [93] (which has already been used in the
aforementioned publication [91] to calculate lower azimuthal modes) or the even
more recently extended one by d’Aquino et al. [94]. Such an effort would go far
beyond the scope of this thesis but is a project envisaged for the future.
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Chapter 7

Rate equations for nonlinear
dynamics

In the previous chapters, we have shed light on the linear characteristics of the spin-
wave modes in a vortex, discussed the possible three-magnon-scattering channels,
and obtained their threshold for exemplary cases. In order to take the next step
and study the time- and power-dependence of the three-magnon scattering – that is,
understanding the evolution of the spin-wave numbers Nk(t) involved in a particular
channel – one needs to engage into nonlinear spin-wave theory. During the work on
this thesis, a considerable amount of time was spent in literature research and practice
in order to be able to apply this theory to the nonlinear dynamics that were observed
experimentally [20] as well as in simulations. The objective was to develop rate
equations which describe the evolution and interaction of the complex amplitudes
ck(t) of the spin waves taking part in the scattering, using the classical Hamiltonian
formalism presented in Sec. 2.3.3. After having developed the rate equations in this
chapter, we will use them to further study the nonlinear spin-wave dynamics in the
following chapters. The reader which is eagerly waiting for the next physical results
is encouraged to skip this chapter and continue with Chap. 8.

Recall, that a complex spin-wave amplitude ck(t) (and its complex conjugate c∗k(t))
is a classical analogon to the quantum mechanical annihilation and creation operators
ck and c†

k. Accordingly, the modulus square Nk = |ck|2 of the respective spin-wave
amplitude is analogous to the magnon occupation number and proportional to the
measured intensity in a BLS experiment, therein. A particular rate equation for a
given complex spin-wave amplitude ck(t) will be of the form

dck

dt
= −iωkck − Γk(ck︸ ︷︷ ︸

(i)

− ck,th)︸ ︷︷ ︸
(ii)

+ iPkbRFe−iωRFt︸ ︷︷ ︸
(iii)

− i
∂Uint

∂c∗k︸ ︷︷ ︸
(iv)

, (7.1)

with the damping rate Γk and the coupling Pk to an external microwave field with
magnitude bRF and angular frequency ωRF.

For each mode taking part in the nonlinear dynamics, we will acquire such an
equation. After having obtained the numerical solutions, the modulus square of these
can be compared with experimental data. The numerical solutions for the equations
are obtained by an implementation in Python [95, 96]. Several revisions of the code
were done to improve performance. The curious reader is encouraged to visit Appx.
A.3 which documents this matter.

In the rate equations (such as Eq. 7.1), we have included (i) linear mode damping,
(ii) thermal spin waves, (iii) pumping by external microwave fields, as well as (iv) the
nonlinear interaction with other spin-wave modes. In the following sections of this
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chapter, the development as well as the implementation of these different terms will
be described and justified in detail.

7.1 Linear mode damping

Not only does the damping of a spin-wave mode influence the linear dynamics, as
it leads to an attenuation of its propagation, but it also plays a crucial role in the
nonlinear regime. For example, the instability threshold of a directly excited mode
crucially depends on the damping of the secondary modes (see again Sec. 5.2). In the
rate equations derived by a classical spin-wave Hamiltonian U , damping is typically
included in the following way [4]:

If we neglect all nonlinear processes and set U = U (2), then the canonical equa-
tions for the different modes are completely decoupled and we obtain[

d
dt

+ iωk

]
ck(t) = 0. (7.2)

The solutions are of the form ck(t) ∝ e−iωkt. In order to include linear damping, an
imaginary part−iΓk is added to the frequency ωk. This is done in a phenomenological
manner in anticipation of an exponential decay. This can also be understood by
looking at the LLG equation since Gilbert damping is proportional to dM

/
dt . The

origin of wave damping can be of various natures. Thus[
d
dt

+ Γk + iωk

]
ck(t) = 0. (7.3)

Now, the solutions are exponentially decaying ck(t) ∝ e−Γkte−iωkt. This procedure is
only valid as long as the damping rates Γk � ωk are small. Large dampings must
be treated differently, since adding an imaginary part to the frequency leads to a
complex value of the spin-wave Hamiltonian U .

In principle, the damping of a spin-wave mode is nonlinear, i.e., it depends on
the spin-wave numbers Nk = |ck|2 of the excited modes in the system,

Γk = Γk,0 + ∑
k′

µ(k, k′)Nk + . . . (7.4)

This fact is very important, for example, in the theory of spin-torque oscillators, for
which the power of the spin-wave mode that corresponds to the auto-oscillation is
typically not limited by a decay into other modes.1 In that case, the power of this
mode can grow very large and lead to a nonlinear damping [17]. However, in the case
of three-magnon scattering in a vortex, it is reasonable to assume that the spin-wave
numbers are limited by the decay processes such that damping remains in the linear
regime – at least for excitation powers not far above the threshold. It is possible that
for excitation powers which are far above threshold, an extension of the presented
theory has to be made in order to account for nonlinear damping.

In general, the linear damping of a spin-wave mode ck in a thin magnetic element
is described by

Γk = αGεkωk, (7.5)

with the Gilbert damping αG. The coefficient εk is related to the elliptic precession of
the dynamic magnetization and can depend on the spatial mode profiles. In the case

1Usually, auto-oscillations build up from the lowest mode of the spin-wave spectrum at hand [17].
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of spatially uniform precession in a bulk material, this factor is equal to one and leads
to Γ = αGω but is usually larger in thin elements, leading to an increased damping.
The origin and determination of this coefficient εk is found in great detail e.g. in [68]
by Verba et al. In fact, Dr. Verba provided the ellipticity coefficients for the spin-wave
modes in the 5.1 µm diameter disk. The coefficients as well as the resulting damping
rates which were calculated using the dispersion data from Sec. 4.3 can be seen in Fig.
7.1 for the first three radial branches (n = 0, 1, 2).

FIGURE 7.1: Dispersion, ellip-
ticity and damping rate of the
spin-wave modes with n =
0, 1, 2 in a 50 nm thick permal-
loy disk with 5.1 µm diameter.
a) The dispersion was acquired
by micromagnetic simulation,
as described in Sec. 4.3. b)
The ellipticity εk, which con-
tributes to the damping of the
modes, was obtained from the
mode profiles by Roman Verba
[68]. Finally, c) the damping
rate Γk of the modes was calcu-
lated according to Eq. 7.5 for a
Gilbert damping of αG = 0.008.
The dispersion data acquired

in Sec. 4.3 was used.

Overall, we see that the coefficient εk is the largest for modes with n = 0. As a
consequence, these modes have larger damping than modes with n > 0, although
being lower in frequency. More counter-intuitively, even for higher order azimuthal
modes m > 10 the damping goes down, as the decrease in the ellipticity coefficient
εk overcompensates the increase in frequency. These observations illustrate, that the
assumption of Γk = αGωk would be insufficient. One has to add, that mechanical
imperfections of the sample, which could lead to an increased Gilbert damping at the
edge of the disk [68], were ignored in this discussion.

7.2 Pumping by external microwave fields

Before discussing the announced thermal spin-waves, we will discuss the effect of
external microwave fields, because we can use this knowledge to model thermal
spin-waves in the next section.

To drive spin-wave dynamics into the nonlinear regime, the modes need to be
driven by an external stimulus which, in our case, is an out-of-plane RF field bRF(r, t)
acting on the magnetization M(r, t). The following will give an overview how the
effect of such a field is included in the rate equations. The curious reader can find the
detailed derivation, which has been performed for this thesis, in Appx. A.2.
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7.2.1 Determination of the mode coupling

The coupling to a certain spin-wave mode ck(t) within the classical Hamiltonian
formalism can be retrieved by evaluating the Zeemann energy functional (in units of
frequency)

UZ = − γ

MsV

∫
V

d3r bRF(r, t) ·M(r, t). (7.6)

Following the classical Hamiltonian formalism, this is achieved by accurately convert-
ing the magnetization M(r, t) into spin-wave amplitudes cnm(t) = ck(t) and finally
performing the integral over the whole sample volume. We will write out the mode
indices (n, m) explicitly as they will be important for the coupling to RF fields. We
have already pointed out before that the azimuthal modes with m 6= 0 do not exhibit
a net magnetic moment and, as a consequence, do not couple to a homogeneous
OOP field. One needs an external field with the same azimuthal symmetry as the
respective mode – a fact that was used e.g. in Sec. 4.3 to calculate the dispersion
relation of the vortex modes. If we take such a field with azimuthal index m′,

bRF(φ, t) = bRFeiωRFt cos
(
m′φ

)
· ez (7.7)

and perform all the conversion steps, the Zeemann Hamiltonian can be written as

UZ = −bRFeiωRFt ∑
nm

Pnmm′cnm(t) + c.c. (7.8)

The coupling Pnmm′ is in its essence retrieved by integrating the product of the external
field and the respective mode profile over the sample volume,

Pnmm′ =
γ

πR2

∫
A

dr dφ r Ψnm(r)eimφ cos
(
m′φ

)
=

γ

2πR2

∫
A

dr dφ r Ψnm(r)eimφ
(

eim′φ + e−im′φ
)

=
γ

R2

∫ R

0
dr r Ψnm(r)(δm,−m′ + δm,m′).

(7.9)

Here, A is the base area of the disk, Ψnm is again the radial profile of the respective
modes, that was introduced in Sec. 4.1 and δij is the Kronecker delta. It becomes clear
that the mode coupling to an azimuthal field is only nonzero if m′ = ±m, and we can
confirm that an azimuthal field given by Eq. 7.7 couples to both modes of a duplet.
Moreover, it couples to all radial indices n. This allows us to omit the primes and
rewrite the Zeemann term as

UZ = −bRFeiωRFt ∑
n

Pnm(cn,−m(t) + cnm(t)) + c.c. (7.10)

The rate equation of a particular mode cnm is then retrieved by taking

dcnm

dt
= −(iωnm + Γnm)cnm + iPnme−iωRFt. (7.11)

Notably, this includes the case of homogeneous pumping (m = 0). Again, concrete
values for the coupling Pnm can be obtained by integrating over the radial profiles. In
the following analysis, we shall only use effective values. For example, in the rate
equation calculations, we will gauge the coupling P0 = Pn0 of the directly excited
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mode to be in consistence with the numerically determined threshold field b(sim)
crit

from Sec. 5.2. However, an approximate dependence of Pnm on the radial n has been
obtained for this thesis to explain the alternating intensity of the branches obtained
by simulation in Sec. 4.3 and can be found in Appx. A.2.

7.2.2 Implementation of pulse modulation

In order to allow for the RF field to be turned on and off at certain times in the rate
equation calculations, we replace the constant field magnitude

bRF → bRF · w(t) (7.12)

by introducing a (real-valued) windowing function w(t). This windowing function is
borrowed from the mathematical field of differential geometry [97],

w(t) = s(u) · s(tPW/tr − u) where u = (t− t0)/tr (7.13)

with the auxiliary functions

s(u) =
q(u)

q(u) + q(1− u)
and q(u) =

{
0 for u ≤ 0
exp(−1/u) for u > 0.

(7.14)

The parameters which enter are the offset time t0, the width of the pulse tPW as
well as the rise/fall time tr. This definition might look over-complicated, but in fact,
this windowing function has the advantage of truly vanishing to zero outside of
the window defined by t0 and tPW and being infinitely differentiable everywhere.
It might not accurately model the experimental reality but is very well suited for
numerical applications. Fig. 7.2 illustrates the shape of the pulse as well as the role
of the different parameters. Here, the rise/fall time tr is chosen to be very large for
illustration purposes. In all following calculations, a more realistic value of tr = 2 ns
is used.

FIGURE 7.2: Windowing function w(t) for the external field pulse
with starting time t0 = 10 ns, ramp time tr = 20 ns and pulse width

tPW = 100 ns.
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7.3 Modeling of thermal magnons

At finite temperatures, all spin-wave modes in a magnetic systems are excited
to a small degree, even in the absence of an external magnetic field. Quantum-
mechanically speaking, all the magnon states are occupied according the Bose-
Einstein-distribution. In the classical continuum approximation, spin-wave statistics
may be described by the Rayleigh-Jeans distribution |ck,th|2 ∝ T/ωk. The existence
of a thermal spin-wave bath prohibits the spin-wave numbers Nk from vanishing
to zero. They will rather relax to their corresponding average thermal level Nk,th
according to

dNk

dt
= −2Γk (Nk − Nk,th) . (7.15)

with the analytical solution

Nk(t) = (Nk(0)− Nk,th)e−2Γkt + Nk,th. (7.16)

Even though the spin-wave amplitudes necessary for nonlinear interactions are far
greater than the thermal level, the latter still plays a crucial role in the phenomena
observed:

(i) In order for three-magnon scattering to take place, the secondary modes must
possess a finite amplitude already, otherwise they will not couple to the directly
excited mode.

(ii) When a spin-wave mode is excited by means of a scattering process, its intensity
departs exponentially from the thermal level. As a consequence, the point in
time when this mode reaches a detectable spin-wave number or itself starts to
undergo nonlinear processes, will directly depend on the thermal level.

The inclusion of thermal fluctuations into an oscillator equation is usually done by
adding a Langevin force ηk(t) to the right side,

dck

dt
= −iωkck − Γkck + ηk(t). (7.17)

Typically, such a random fluctuating force has a Gaussian profile, with a variance
proportional to the temperature of the thermal (magnon) bath. This approach, how-
ever, will render the rate equations to stochastic differential equations, which recover
the thermodynamic behavior described by Eq. 7.15 if treated on average. For a single
spin-wave mode, this problem has been solved in the theory of nonlinear spin-torque
oscillators [17]. Treating a larger set of spin-wave modes with thermal fluctuations
as a function of time is not an easy task – and numerically, a very time-consuming
one. For our purpose, it is not necessary to treat this problem in a stochastic manner
because spin-wave numbers in the nonlinear regime are typically far above the ther-
mal level. The main objective here is rather to examine the time-dependence of the
nonlinear dynamics.

For this purpose, a useful approximation was found by the author that treats the
thermal magnons as a coherent noise. In the following, this approximation will be
derived and verified for different thermal levels and relaxation rates. In reminiscence
of the previous section, we write the thermal noise as an external magnetic field

ηk(t) = Fkei(φth−ωkt) with Fk = Γk
√

Nk,th. (7.18)
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which has the same frequency as the corresponding spin-wave mode itself. The
assumption is that only the resonant Fourier component of the thermal noise will
couple to the mode, although it can inherit a random phase φth. The prefactor Fk was
chosen, such that a relaxation to the correct thermal level is reached. By including the
field given by Eq. 7.18 in the rate equation and averaging over all possible thermal
phases, one can recover the correct macroscopic behavior described by Eq. 7.16. This
can be seen in Fig. 7.3a, in which exemplary relaxation curves for different thermal
phases are plotted together with their ensemble average.

FIGURE 7.3: a) Relaxation curves of a single spin-wave mode for
different phases φth of the thermal field. The mean is aquired by
averaging the results of the rate equations over 100 phases between 0
and 2π. The analytical curve follows Eq. 7.16. Finally, b) shows the
time-accumulated difference of the rate equation solution for each φth

to the analytical curve.

The average curve "mean" – that is, the average of the modulus square of all rate
equation solutions – completely coincides with the analytic solution Eq. 7.16. In
fact, there are two thermal phases, namely φth = π

2 and φth = 3π
2 , for which the

respective rate equations themselves recover the correct thermodynamic behavior.
One can verify this by taking the accumulated difference of the rate equations to
correct average at each point in time (see Fig. 7.3). This difference is minimized for
the aforementioned phases. Without loss of generality, the phase φth = π

2 will be
fixed, allowing the rate equations to be written in the compact form,

dck

dt
= −iωkck − Γk(ck − ck,th) with ck,th =

√
Nk,thie−iωkt. (7.19)

To verify this approximation, various relaxation curves of a single mode can be
seen for different damping rates and thermal levels in Fig. 7.4. Here again, the
modulus square Nk = |ck|2 of the solution of each rate equation is compared with
the corresponding analytical solution. One can see, that the agreement is very good
even for large thermal levels.

The last step in this implementation is inclusion of realistic values for the thermal
level Nk,th. As already mentioned, the thermal level is determined by the Rayleigh-
Jeans-distribution

Nk,th =
kBT
νωk

, (7.20)

with the temperature T and the Boltzmann constant kB. The factor ν depends on
the normalization of the spin-wave modes ck. It is a remnant of the conversion
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FIGURE 7.4: Verification of the approximation made for the thermal
magnons for a) different damping rates Γk and b) different thermal
levels Nk,th. The rate-equation results were obtained by numerical
integration of Eq. 7.19, whereas the analytical curve follows Eq. 7.16.

of the spin-wave Hamiltonian to frequency units. Thus, in our case ν = MsV/γ.
The dispersion ω(k) was found for different disks in Sec. 4.3. Finally, the thermal
distribution for the vortex modes in a 5.1 µm diameter disk at room temperature can
be seen in Fig. 7.5.

FIGURE 7.5: Thermal distribution Nk,th for the spin-wave modes in a
permalloy disk with 5.1 µm diameter and 50 nm thickness. The curves
were calculated by means of Eq. 7.20 using a temperature of T = 293 K

and the dispersion law that was numerically acquired in Sec. 4.3.

In wave-vector space, the modes with n = 0 are the most populated ones, as they
inhibit the lowest frequencies. For all integrations of the rate equations, it makes
sense to set ck(0) = ck,th. In other words, the modes will always start at the thermal
spin-wave numbers.

Just to bring the order of magnitude in the thermal level into perspective, recall
from Sec. 2.3.3 that the micromagnetic spin-wave number Nk,th can be related to the
quantum-mechanical magnon particle number by N(qm)

k,th ≈ MsVNk,th/(γh̄). Inserting
the material parameters for a 5.1 µm permalloy disk, one obtains thermal-magnon
particle numbers in the order of N(qm)

k,th & 2500.
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7.4 Nonlinear interactions

7.4.1 Three-magnon scattering

Up to this point, we have included all the necessary linear behavior, namely damp-
ing, interaction with external microwave fields, as well as coupling to the thermal
spin-wave bath. By including nonlinear interactions, the rate equations for the dif-
ferent modes will become coupled and need to be treated as a system of differential
equations. The lowest order of nonlinear spin-wave interactions in a magnetic vortex
is the three-magnon scattering, which can be retrieved from the corresponding part
of the spin-wave Hamiltonian,

U (3) = ∑
012

(V0,12c1c2c∗0 + c.c.) δm1+m2,m0 . (7.21)

The Kronecker-δ represents conservation of the canonical angular momentum kφ. For
the sake of brevity, we again use the short form "0" for k0 =̂ (n0, m0) and so forth.
We have already discussed in Sec. 5.0, that the decay of a radial mode obeys certain
selection rules. Let the following channel be the one with the lowest threshold:

A) (n0, 0)→ (n1, m) + (n2,−m) with n1 6= n2

In the previous discussion, not much attention has been given to the fact, that there is
indeed a second resonant process with the exact same threshold, namely the one, for
which the azimuthal indices of the secondary modes is exchanged (pay attention to
the signs!),

B) (n0, 0)→ (n1,−m) + (n2, m) with n1 6= n2.

In fact, every resonant channel found in Sec. 5.1 in fact consists of two channels,
which is why |m| was used at that point. The origin of this symmetry is the fact that
the modes within one duplet ±m share the same mode profile and, as a consequence,
contribute to the three-magnon efficiency V0,12 in the same way. This leads to the
emergence of standing waves at the frequencies of the secondary modes, which
is observed both in micromagnetic simulation as well as in BLS experiments. The
relation between all of these modes is additionally illustrated in Fig. 7.6.

ω

c0(n0, 0)

c1(n1,+m)

c2(n2,−m)

c3(n1,−m)

c4(n2,+m)

ωRF

ω+

ω−

ωRF/2

process A process B

c0(n0, 0)

FIGURE 7.6: Visualization of the two equivalent three-magnon de-
cay processes A and B of a radial mode c0 with (n0, 0) at excitation

frequency ωRF.

In summary, one ends up with five rate equations modeling the directly excited
mode at ωRF as well as the two degenerate duplets at ω1,3 and ω2,4. For the sake of
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readability, we rename

ω1,3 ≡ ω+ ≈ ωRF/2 + ∆ω and ω2,4 ≡ ω− ≈ ωRF/2− ∆ω (7.22)

for the duplets higher and lower in frequency.2

∂c0

∂t
= −iωRFc0 − Γ0(c0 − c0,th) + iP∗0 h∗⊥,0(t)− iV0,12(c1c2 + c3c4) (7.23)

∂c1

∂t
= −iω+c1 − Γ+(c1 − c1,th)− iV∗0,12c∗2c0 (7.24)

∂c2

∂t
= −iω−c2 − Γ−(c2 − c2,th)− iV∗0,12c∗1c0 (7.25)

∂c3

∂t
= −iω+c3 − Γ+(c3 − c3,th)− iV∗0,12c∗4c0 (7.26)

∂c4

∂t
= −iω−c4 − Γ−(c4 − c4,th)− iV∗0,12c∗3c0 (7.27)

in which we included the interaction of the directly excited mode c0(t) with the
external pumping field as well as the thermal magnons ck,th(t) for all modes from the
previous sections.

In principle, this set of rate equations could now be integrated and compared with
the experimental data. Again, in the case of a non-degenerate system the number
of photons detected in a µBLS experiment is proportional to the spin-wave number
Nk = |ck|2. However, in our case, we have degenerate duplets and the focused laser-
beam of the µBLS system cannot distinguish between +m and−m. As a consequence,
we observe standing waves produced by the interference of the modes in one duplet
which are exactly in phase. The spin-wave number of these standing waves is then

N+ = |c1 + c3|2

N− = |c2 + c4|2.
(7.28)

These standing spin-wave numbers N+ and N− together with the spin-wave number
of the directly excited mode N0 = |c0|2 are the three quantities, which we will
compare with experiments in the following analysis.

7.4.2 Amplitude limitation

By comparing our results with experimental data, we find that there is a second class
of nonlinear interactions which has a crucial effect on the time-dependence of the
mode amplitudes, even for excitation powers not far above threshold. More specific,
it is an effect which limits the spin-wave numbers. Once the secondary modes exhibit
a certain spin-wave number, they will undergo four-magnon scattering with each
other. This leads to a nonlinear frequency shift of these modes and thereby their
decoherence with the directly excited mode. Ultimately, this limits the energy flux of
the pumping to the secondary modes. Such an amplitude limitation is very common
in parallel parametric pumping [4], and therefore, it is not surprising that we observe
a similar behavior of the secondary modes in three-magnon scattering.

2Do not confuse this convention with the sign of azimuthal index ±m.
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To include this dephasing effect into the rate equations, one can consider the following
four-magnon terms in the Hamiltonian which is diagonal in pairs,

U (4)
S = ∑

kk′
Wkk′c∗kckc∗k′ck′ +

1
2 ∑

kk′
Skk′c∗kck′c∗−kc−k′ , (7.29)

with Wkk′ = Wkk′,kk′ and Skk′ = Wk,−k,k′,−k′ . In our case, −k =̂ (n,−m). The theory
of these parametric interactions is called S-theory [4].

7.5 Comparison with experiment

FIGURE 7.7: a) Time-resolved BLS mea-
surement of the scattering channel at
6.1 GHz, compared with the results
of the corresponding rate equations c)
without and d) with amplitude limita-
tion. The RF-field pulse used for the

rate equations is illustrated in b).

The results of the rate equations (with and with-
out dephasing) will be compared with time-
resolved µBLS experiments (see Fig. 7.7a)3 for
the channel (1, 0) → (0,±12) + (1,∓12) at an
excitation frequency of fRF = 6.1 GHz. The fre-
quencies of the secondary modes according to
the micromagnetic simulations (Sec. 4.3) are

f+ = 3.73 GHz
f− = 2.41 GHz.

(7.30)

These frequencies are close to the experimen-
tally observed ones [20]. Accordingly, the linear
damping of the modes is Γ = αGεω (see Sec.
7.1) and the effective coupling of the directly ex-
cited mode is set to P0 = 11.7 radGHz/T. This
value is chosen such that the growth rate of the
secondary modes departs from zero when the
pumping field is equal to the threshold field
b(sim)

crit = 1.26 mT found in Sec. 5.2.4 A condi-
tional equation for this coupling will be found
later in Sec. 8.1. The theoretical value for the
three-magnon efficiency for this channel is

V0,12/2π = 5.67 GHz. (7.31)

In the experiments the RF field was applied in
pulses of 100 ns. As already mentioned, it is
difficult to measure the magnitude of this field
experimentally. However, a value of bRF =
1.79 mT provides some agreement of the rate
equations with the measurement at hand.

First, we consider the case of only three-
magnon scattering being present. We see in Fig.
7.7c), that the rate equation theory can model
the time-dependence of the experimental data
already quite well. After the directly excited mode has reached a certain amplitude,
the secondary modes appear and, in return, reduce the amplitude of the directly

3These experiments were performed by Toni Hache and the author.
4We will find the rigorous definition used for this calibration later in Sec. 8.1.
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excited mode. However, in the rate equations, the secondary modes stay at a higher
spin-wave number than the directly excited mode after this overshoot. This is in
contrast to the experimental observations and means that we have to include the four-
magnon terms from Eq. 7.29 which lead to the amplitude limitation of the secondary
modes. For simplicity, we choose Wkk′/2π = Skk′/2π = 300 GHz which gives good
agreement with the experimental results (see Fig. 7.7d). The spin-wave numbers of
the secondary modes now stay below the directly excited mode. To guide the eye, this
level is indicated with a gray dashed line. The oscillations in the equilibrium level
of the modes is a result of the detuning from the resonance condition of the three-
magnon scattering – in fact they are very sensitive to the detuning and disappear
in the case of resonance. Accordingly, these oscillations change if the nonlinear
frequency shift is introduced, which arises due to the four-magnon scattering among
the secondary modes. Because of these two points, one should take the period of these
oscillations with a grain of salt and not try to compare them with experimental results.
The good match in this particular case is possibly a coincidence, yet a welcome one.
Furthermore, calculating the real values of Tkk′ and Skk′ is a rather complicated task
and would go beyond the scope of this thesis.5

One can argue, that the reduced BLS intensity of the secondary modes is due to
the decreased sensitivity of BLS for larger wave vectors or that the probing laser spot
was at a location of the disk, where the secondary modes have nodal lines (standing
waves). Although there might be a contribution of this matter, this does not negate
an amplitude limitation due to the dephasing mechanism. In fact, we observe this
ratio of spin-wave numbers also in the spectra of micromagnetic simulations, where
we only look at the frequency-sensitive response of the system. For example, take
again a look at the spectrogram in Fig. 5.6a, in which the secondary modes are always
much lower in spectral density than the directly excited mode.

5See for example the humongeous expressions in Eq. 63, 64, 65 and 70 in [39].



61

Chapter 8

Power dependence

Nonlinear spin-wave dynamics inherit an intrinsic power dependence. Not only a
certain power of the excitation field is needed to reach the nonlinear regime, but
the dynamics can change considerably when increasing the power even further. For
example, the frequencies of the secondary modes will be shifted with increasing
excitation field power. Furthermore, in BLS experiments, it has been observed that
for larger powers, different secondary modes appear than for lower powers. In this
chapter, we will shed light on these phenomena by exploring the nonlinear dynamics
further above threshold. It has to be noted, that we will stay in the nonlinear regime
that is dominated by three-magnon scattering. The transition to four-magnon scatter-
ing dominated dynamics at even larger powers has been studied experimentally by
Tobias Hula [23].

After we have established the rate equations of nonlinear dynamics in the previous
chapter, we will use them to study the temporal evolution of the three-magnon
scattering with increasing excitation field powers. Following up, the nonlinear
frequency shift as well as the change in modes will be studied by micromagnetic
simulation.

8.1 Change of time scales

As has already been indicated before, it takes less and less time for the secondary
modes to appear when the power of the excitation field is increased. Again, this
behavior is very characteristic for parametric processes such as the three-magnon
scattering in a magnetic vortex. We will take the opportunity to study the different
landmarks in the temporal evolution of the mode amplitudes which reveal themselves
when changing excitation power. Only saying that the secondary modes appear earlier
is a rather superficial observation. In fact, there are three different time scales that,
with increasing field, change in a seemingly independent manner from each other.
The important landmarks of the three-magnon scattering are (in chronological order)

(i) the opening of the three-magnon channel with the lowest threshold (tcrit),

(ii) the overshoot of the directly excited mode (tOS), and

(iii) the secondary modes reaching their quasi-equilibrium level (tsec).

In the following two sections, these points will be discussed with respect to their
power dependence. All considerations will be made for the case of a 6.1 GHz excita-
tion in a permalloy disk with 5.1 µm diameter and 50 nm thickness.
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8.1.1 Critical time of instability

The time delay tcrit of the opening of the first three-magnon channel with respect to
application of an external RF field can be defined by the time that the directly excited
mode needs to reach its critical amplitude. Everything before this point in time is
below threshold. Thus, in order to discuss the aforementioned time delay, we only
need to consider the linear dynamics of the directly excited mode,

dc0

dt
= −iωRFc0 − Γ0(c0 − c0,th) + iP0bRFe−iωRFt (8.1)

Of course, this assumption is only valid for the channel of the excitation frequency
at hand which appears first. Otherwise we would have to consider feedback of the
secondary modes with the directly excited mode. Above the critical amplitude of the
directly excited mode, Eq. 8.1 is not valid anymore. But for now, we can solve this
ordinary differential equation analytically (see Appx. A.4). Taken that the external
field is turned on at t = 0 and with the initial condition c0(0) = i

√
N0,th, we obtain

N0(t) = |c0(t)|2 =

[√
N0,th +

P0bRF

Γ0

(
1− e−Γ0t

)]2

. (8.2)

In Fig. 8.1a, we see the spin-wave number N0(t) of the direclty excited mode below
its cricital amplitude for various excitation field magnitudes.

FIGURE 8.1: a) Growth of the directly excited mode for different
excitation fields, calculated according to Eq. 8.2. The direct mode
reaches the nonlinear regime at b) the critical time tcrit, which decreases
with increasing excitation power. c) shows integrations of the rate
equations for two different excitation fields. For the sake of visibility,
only the direct mode and the duplet, which is higher in frequency, are

plotted.

Again, the first channel is opened – in other words, the secondary modes will start to
rise from their thermal level – when N0(tcrit) = N0,crit. From this condition, we can
write the critical time as

tcrit = −
1
Γ0

ln

(
1−

Γ0
(√

N0,crit −
√

N0,th
)

P0bRF

)
(8.3)

with the critical spin-wave number of the directly excited mode from Sec. 5.2.1,

N0,crit = |c0,crit|2 =
Γ1Γ2

|V0,12|2

(
1 +

∆Ω2

(Γ1 + Γ2)
2

)
. (8.4)



8.1. Change of time scales 63

One could use Eq. 8.3 as a conditional equation for the effective coupling P0 of the
directly excited mode to an external field. Directly at threshold, the critical time
tcrit has to diverge as the argument of the natural logarithm approaches zero (below
threshold it is undefined – as it should be). In fact, the effective coupling which is
used since the end of the previous chapter in Sec. 7.5 was determined that way.

We see in Fig. 8.1, that the critical time already decreases rather rapidly for fields
just above the threshold field bcrit. Already at 2bcrit, it takes only about a nanosecond
for the direct mode to reach instability. However, if we look at integrations of the
full set of rate equations including nonlinear interactions for comparable fields (Fig.
8.1c), we find that the secondary modes appear – that is, they reach a considerable
spin-wave number – much later. Moreover, the overshoot of the directly excited mode
appears long after it has reached instability (compare the orders of magnitude of the
spin-wave numbers in Fig. 8.1a and c).

8.1.2 Timescale of overshoot and mode growth

The reason for these different and seemingly independent time scales is that the
growth rates of the secondary modes crucially depend on the population of the
directly excited mode, i.e.

N± ∝ eνt with ν = ν(N0(t), . . .). (8.5)

At N0 = N0,crit, the growth rate is zero. Just above threshold bRF & bcrit, the secondary
modes will need a large amount of time to appear and lead to a considerable feedback
on the direct mode. This can take up to 1 µs if the excitation field is only a tiny bit
above threshold. Again, this was the reason why a down-sweep of the RF field was
performed for determination of the threshold fields in Sec. 5.2. The growth-rate of
the secondary modes will increase faster if the direct mode grows faster – that is, for
larger RF field powers. Finally, at the point of overshoot tOS, the pumping of the
direct mode is equal to the losses due to the three-magnon scattering (and damping,
of course). After that, it is overcompensated, and the secondary modes appear more
rapidly until tsec. Accordingly, the overshoot becomes more narrow in time with
increasing power. This last time delay tsec is the most relevant for applications. After
this delay, the secondary modes are at their quasi-equilibrium level. Finding nice
analytical expressions like Eq. 8.3 for these larger time delays tOS and tsec is not trivial
and we have to rely on integrations of the rate equations (see Fig. 8.2a).

From the solutions for different excitation field magnitudes, the overshoot time
was extracted as the point in time when N0 is at its maximum. In a similar fashion,
the delay of the secondary modes was extracted as the point in time of most negative
curvature in the spin-wave number of the secondary modes mint

[
∂2N±

/
∂t2 ] (see

Fig. 8.2b). This is the point, when the growth rate of the secondary modes decreases
the fastest, indicating the onset of quasi-equilibrium. For tsec, the theoretical values
show a good agreement with data extracted from time-resolved BLS measurements
for the same conditions (see. 8.2c). From the measurements, this time delay was
approximately found by fitting the time-dependence of a charging capacitor to the
direct mode and a sigmoid function to the secondary modes. Moreover, observing
the overshoot in experiments is often not easy, as it tends to become very narrow in
time. Again, it is difficult to relate bRF directly to the output power of the microwave
generator. That is why the experimental results are plotted as a function of microwave
power level. However, one finds agreement in the overall trend as well as the values
of tsec. Similar to the critical time tcrit, the overshoot time tOS as well as the time when



64 Chapter 8. Power dependence

the secondary modes reach quasi-equilibrium tsec decrease rapidly with increasing
power, but are overall larger. It has to be noted that none of the time delays can follow
a simple exponential law, such as e−λbRF , because no such law – even scaled or shifted
– could diverge at finite times. The closer to the threshold, the further apart the time
delays are from each other. For excitation field powers further above threshold, other
effects have to be taken into account and we will not be able to restrict our discussion
to only one channel.

FIGURE 8.2: The power dependence of the different time scales were
obtained from a) solutions of the rate equations with increasing ex-
citation field (only direct mode and upper duplet are plotted). The
time of overshoot (dots) and of the secondary modes reaching quasi-
equilibrium (triangles) were extracted from theses curves and plotted
in b). There is a good agreement with the experimentally obtain data

in c).

8.2 Activation of higher-threshold channels and frequency
shift

The situation for excitation field powers which are further above threshold is more
complicated. Within micromagnetic simulations, one can observe a change pro-
nounced in the frequency of the secondary modes (see Fig. 8.3a), which was also
found experimentally by means of BLS (see Fig. 8.3b). The numerical data was
acquired by calculating the power spectrum of CW simulations for different excita-
tion field magnitudes bRF at 6.1 GHz. The experimental data was acquired by Katrin
Schultheiß [20]. We can see that, with increasing power, the secondary modes come
closer in frequency and then depart again. There are a couple of effects which can
contribute to this behavior. First of all, with increasing excitation field power, more
and more channels with higher threshold fields will be activated. In the frequency
spectra of the micromagnetic simulations in Fig. 8.3a, we can sometimes even see four
peaks at the same time (e.g. for bRF = 3.5 mT). When more than one pair of azimuthal
duplets is excited, we cannot simply take the inverse FFT at the frequencies of the
secondary modes and count the periods in azimuthal direction. We have shown in
Sec. 4.3, that the inter-mode distance between modes of neighboring |m| can be very
small, especially at the bottom of each radial branch. As a consequence, multiple
azimuthal modes can appear in a single Fourier component when performing the
discrete FFT, and the mode indices have to be analyzed more carefully. For this, we
calculate the angular Fourier transform Gm of the mode profiles of lower frequency
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peaks (for which we expect radial index n = 0) approximately by

Am = 〈mz(r, ω−) · cos(mφ)〉
Bm = 〈mz(r, ω−) · sin(mφ)〉

Gm =
√
A2

m + B2
m.

(8.6)

As expected (in agreement with Chap. 5), for excitation field powers not far above the
threshold field bcrit = 1.26 mT, we see that only azimuthal modes with |m| = 12 are
present (see Fig. 8.3b). With increasing power, more and more channels with different
azimuthal indices are activated, leading to a shift in the frequency spectrum.

FIGURE 8.3: a) Numerical as well as b) experimental spectra of a
50 nm thick permalloy disk with 5.1 µm diameter pumped at 6.1 GHz
for different excitation field magnitudes / power levels. c) shows
the result of the angular FFT performed on the numerical data as a

function of applied field magnitude.
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FIGURE 8.4: Prove-of-concept so-
lution of the rate equations in-
cluding two channels with dif-

ferent thresholds.

An additional contribution to the shift in frequency
can be due to the cross-frequency shift of the sec-
ondary modes in the presence of the very strongly
excited direct mode. Such a shift can happen due to
four-wave processes of the form (0, k)→ (0, k) (with
the direct mode 0 and the respective secondary mode
k). However, a concise analysis of this contribution
would go beyond the scope as the calculation of the
four-magnon coefficients is cumbersome using the
present methods. In order to study the temporal evo-
lution of the modes further above threshold, one has
to include the additional spin-wave amplitudes in the
set of rate equations. This means, for each additional
|m|, one has to include four more rate equations. A
qualitative examination of what happens when more
than one channels is activated is shown in Fig. 8.4. The data was acquired using only
the five initial rate equations and boldly setting different efficiencies for process A and
process B (recall Sec. 7.4.1, there are two equivalent processes with equal probability).
However, a proper treatment of the situation further above threshold requires a much
more elaborate extension of the rate-equation model developed for this thesis. For
this reason, the well-disposed reader is directed to the outlook in Chap. 10 at this
point.
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Chapter 9

Towards application: Stimulated
three-magnon scattering

Up to now, the majority of this thesis has dealt with the fundamental properties of
nonlinear spin-wave dynamics in magnetic vortices. We have learned about the origin
of the three-magnon-scattering channels in magnetic vortices and their influence on
external fields. A model was developed to study the nonlinear temporal evolution of
the spin-wave amplitudes and studied the power dependence of the three-magnon
scattering. In order to round off this thesis, its last chapter will put the acquired
knowledge to use and explore a possible technical application, i.e., the integration of
three-magnon scattering within magnonic circuits.

In recent years, nonlinear networks have been given great attention for novel
computing techniques such as neural networks [98] or more specifically reservoir
computing [99]. In the first case, the nonlinear activation functions of individual
neurons play an important role in the training success of a network [100] – thresholds
are important. On the other hand, the second case completely relies on the nonlinear
digestion of a particular input signal – for example frequency conversion. Until now,
most implementations of the aforementioned paradigms are software-based. It is
not groundless that the nonlinear system studied in this thesis could be suited for a
hardware-based implementation. We have already discussed in the previous sections
that the three-magnon scattering in a magnetic vortex inherits a rich set of discrete
and well defined channels of mode conversion which can be tuned e.g. by changing
the nanodisk dimension (Sec. 5.1), the input power (Chap. 8) or by application of a
static in-plane magnetic field (Sec. 6.2), to begin with. Without skating on thin ice by
attempting to give a concise proposal for a possible implementation of three-magnon
scattering within a nonlinear network, we will use this chapter to explore one of the
basic ingredients necessary for it.

In order to built a nonlinear network, one has to find a way to trigger the three-
magnon scattering more flexible than just with a large enough RF field. We have
already discussed in Sec. 8.1, that the time delay tsec until the secondary modes
have reached their quasi-equilibrium level can vary drastically, depending on the
input power. Furthermore, information has to be carried to the disk and away from
it. The following sections will show using micromagnetic simulation as well as the
rate equations developed in Chap. 7, that it is possible to solve these problems by
coupling a vortex disk to a magnonic waveguide and using a mechanism to explicitly
stimulate three-magnon scattering. The simulations were designed as a prove of
principle, however, specifically with experimental realization in mind (which is – to
the date of submission of this thesis – in progress). Parts of the following results have
been presented at the Magnonics Conference 2019 [101].
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9.1 Motivation of stimulation and design

When studying the time-dependence of the three-magnon scattering as a function
of excitation field power in Sec. 8.3, we have learned, that the time delay of the
secondary modes depends on the growth rate of the directly excited mode. Vice
versa, a rapid growth of the secondary modes leads to a considerable feedback on
the directly excited mode, as observed in the modulation of the overshoot. This
interconnection raises the question of what would happen if we were to excite one of
the secondary mode duplets directly (e.g. at ω−), taken that the direct mode at ωRF is
excited below threshold. Can we expect a response at ω+?

To answer this question, we will need to find a way to excite the secondary modes
directly. Recall, that these modes are azimuthal modes which do not inherit a net
magnetic moment. As a consequence, there is no coupling to the homogeneous
out-of-plane field which is used to excite the direct mode. Using an out-of-plane field
with an azimuthal dependence proportional to cos(m′φ) is useful for numerics (e.g. to
calculate the dispersion, see again Sec. 4.3), but can hardly be realized experimentally
– at least not for large |m|.

A way out of this misery is to use a magnonic waveguide right next to the disk
(see. Fig 9.1). Spin waves propagating in this stripe will produce a dipolar field with a
broad spectrum of m-components at the site of the disk. The disk and the waveguide
were modeled in a 10 µm× 10 µm grid (roughly keeping the cell size used for previous
simulations). The stripe was chosen to be 2 µm wide and, for simplicity, to be of
the same thickness and material as the disk (50 nm thick permalloy). Furthermore,
the distance between disk and stripe was set to 100 nm. The magnetization within
the waveguide was initialized to be longitudinal. In order to mimique an infinitely
long waveguide, before relaxation, the magnetization was additionally stabilized by
employing a 300 nm wide region of frozen magnetization, housed in a 500 nm wide
region of increased damping (αG = 0.5).1

FIGURE 9.1: a) Schematics of a vortex disk coupled to a magnonic
waveguide and b) mode profiles at the frequency of the direct excita-
tion as well as of the secondary modes for when the disk is excited
in the nonlinear regime, showing a successfull coupling of the vortex

modes into the waveguide.

1This is done to absorb possible spin waves arriving at the end of the waveguide.
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Of course, this particular design could be optimized (e.g. stripe width, materials,
artificial anisotropies2 and so forth), but it will serve its purpose for this prove of
concept.

In order to verify that the modes in the waveguide can indeed couple to the
azimuthal modes in the disk, the inverse effect was shown. In a first simulation,
the disk was pumped above threshold and the dynamics within the waveguide at
the frequencies of the secondary modes were probed by means of Fourier analysis.
The mode profiles in Fig. 9.1b confirm that the secondary modes produced by three-
magnon scattering can couple back into a waveguide.

Finally, to inject spin-waves into the waveguide, an RF field with a spatial depen-
dence of sinc(kcx) centered with respect to the stripe (see again Fig. 9.1a) is used to
excite all wave-vectors with maximum efficiency. The cut-off wave vector kc is set to
correspond to twice the cell size of the simulation. This is, of course, not very close
to experimental reality, but was done to achieve more spin-wave amplitude directly
next to the disk. In a real, but also prove-of-concept experiment, one could use a
microwave antenna on either end of the waveguide to excite standing waves.

9.2 Stimulation and channel selection below threshold

To stimulate the three-magnon scattering, the RF field at the frequency of the directly
excited mode fRF = 6.1 GHz is applied to to the disk at a magnitude of bRF,0 = 1.2 mT,
which is just below threshold. Spin waves in the waveguide will be injected at
f− = 2.4 GHz with a much higher magnitude of bRF,− = 15 mT to ensure a strong
enough dipolar field at the site of the disk, which is caused by the propagating spin
waves in the waveguide.

FIGURE 9.2: Stimulated scattering in micromagnetic simulation, show-
ing the power spectrum within the disk for when a) only the disk is
pumped at fRF, b) only the waveguide is pumped at f−, and c) both

combined, resulting in an additional signal at f+.

2With an in-plane uniaxial anisotropy transversal to the stripe, propagating spin-waves would have
a higher group velocity. Such an anisotropy can be achieved e.g. by focused ion beam irradiation [102].



70 Chapter 9. Towards application: Stimulated three-magnon scattering

If we only apply the homogeneous RF field bRF,0 to the disk and look at the power
spectrum (see Fig. 9.2a) of the disk, we only see a response at the frequency of the
directly excited mode.3 On the other hand, if we only excite with bRF,0 = 1.2 mT in the
waveguide and look at the power spectrum in the disk, we indeed also see a signal
at f− (see Fig. 9.2b). This means, that spin waves also couple from the waveguide
into the disk. This is not very surprising, as we have observed the inverse effect in
the previous section. Additionally, we see a signal at 2 f− which originates from the
second harmonic of the mode excited in the waveguide. It is a consequence of the
strong excitation, but will not perturb the three-magnon dynamics within the disk.

Finally, when both the lower duplet at f− as well as the direct mode at fRF are
excited by combining the two excitation schemes, we observe an additional peak at
the frequency of the upper duplet f+ (see Fig. 9.2c). Additionally, one can see that the
signal at f− is now also much stronger than in the previous case, whereas the directly
excited mode at fRF is weaker. This is already a strong hint, that a three-magnon
channel has been activated and that energy is being transferred from the directly
excited to the secondary modes.

In order to solidify this hypothesis, we will model the same procedure using the
rate-equation theory. To include the effect of the waveguide, we will write the dipolar
field of the spin waves propagating in the stripe as an external field bRF,− acting on
the duplet modes with frequency f−. In other words, we have to add the term

+ iP2,4bRF,−e−iω−t (9.1)

to the rate equations of the amplitudes c2(t) and c4(t), respectively. The exact value
of the product P2,4bRF,− is not important and will be estimated such that the duplet is
excited with a lower power than the direct mode at fRF, similar to the simulation.4 To
have a clearer understanding of what is happening, the second RF field bRF,− will be
slightly delayed to the first RF field bRF,0.

FIGURE 9.3: Verification of stimulation below threshold using the
rate equations. The RF field to couple to the lower duplet N− in b) is
slightly delayed to the RF field which couples to the direct mode N0
in a). When both are on in c), we see the upper duplet N+ appearing

as well.

In Fig. 9.3, we find confirmation that stimulated scattering is also observed when
probed with the rate equations. One can see in Fig. 9.3c that as soon as the second RF

3For time-consumption reasons, the simulation for this sanity check (seen in Fig. 9.2 was conducted
using only a disk without a stripe next to it.

4Although the fact that the duplets are being pumped with a lower power than the direct mode is
not crucial for stimulation in any way.
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field bRF,− is applied in addition to bRF,0, the spin-wave number of the direct mode
drops down whereas the secondary modes rapidly reach quasi-equilibrium and even
show the oscillations which we attributed to the detuning of the channel from the
resonance condition (in Sec. 7.5). In agreement with the results of micromagnetic
simulation, the spin-wave number of the pumped duplet N− is greater when the
direct mode N0 is pumped, too. This confirms the assumption, that a three-magnon
channel has been opened. Moreover, the response to the stimulation is almost instant
– compared with the very large time delays tsec � 10 ns for regular three-magnon
scattering just above threshold.

Turning back to the micromagnetic simulation, we can extract the mode profiles
at f− and f+ to confirm, that the signals truely belong to azimuthal modes (see Fig.
9.4a). As expected, these modes satisfy the selection rules (same |m| and different n)
of the decay of a radial mode. By bringing all of the aforementioned observations
to the table, we can conclude that we have successfully stimulated a three-magnon
scattering channel below its threshold.

Up to this point, there is no reason, why stimulation should be restricted to only
this particular channel. Indeed, if we change the excitation frequency of bRF,− in the
waveguide, we obtain an accordingly mirrored response in the disk (see Fig. 9.4b).
Lowering the input frequency f− will raise the output frequency f+. In fact, changing
the input frequency one can excite different azimuthal modes which belong to a
different three-magnon channel (see Fig. 9.4). This corresponds to an activation of
one of the silent channels which we encountered in Sec. 5.1.

FIGURE 9.4: a) Mode snapshots (mz) reveal, that signals at f+ and f−
correspond to real azimuthal modes, satisfying the selection rules. b)
Stimulation can also performed at different frequencies, which results

in a possible activation of c) all resonant channels.

In conclusion, not only can the additional excitation of one secondary duplet stimu-
late three-magnon scattering below threshold and with an almost instant response.
Stimulation also provides a tool to harness the full set of resonant scattering channels.
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9.3 Stimulation above threshold

FIGURE 9.5: Stimulated scattering above
threshold by applying a short RF pulse to
one secondary duplet. The transparent lines
show the regular scattering above threshold

and without stimulation.

The situation above threshold is slightly
different but also quite interesting. We
will study this case using the rate equa-
tions. Of course, above threshold, the sec-
ondary modes are already present after
a certain time delay tsec – which we have
shown to be dependent on the magnitude
of the excitation field bRF,0 in Sec. 8.1. Be-
low threshold, the response to the sim-
ulation was almost instant. We can use
this fact to almost completely overcome
the time delay above threshold. Quite
interestingly, even a very short RF pulse
bRF,− at the frequency of one of the du-
plets is enough to activate a channel in a
sustainable manner – taken that this par-
ticular channel is the one with the lowest
threshold.

Consider an excitation of the direct
mode at 6.1 GHz with bRF,0 = 1.5 mT,
which is sightly above threshold. Accord-
ing to Sec. 8.1, we expect the secondary modes to reach quasi-equilibrium after a
delay of tsec = 38 ns with respect to the application of the excitation field (see Fig. 9.5).
If we additionally apply the second RF field bRF,− at f− even for only a short period
of 5 ns the secondary modes will appear almost instantly. In Fig. 9.5, the extreme
case is shown for when the second RF field as applied at the same time as the first RF
field. The secondary modes reach their quasi-equilibrium after approximately 10 ns
and remain there even after the second RF pulse has been switched of long before. In
conclusion, one can prematurely trigger the secondary modes above threshold with
only a short auxiliary RF pulse.

In contrast, if we were to stimulate a silent channel above threshold – which is of
course different from the preferred channel with the lowest threshold – the system
will only retain in this state as long as the second RF field is applied. As soon as it is
switched off, the proper channel with the lowest threshold will be activated again.
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Chapter 10

Summary and outlook

Using micromagnetic simulations as well as the classical Hamiltonian formalism for
spin waves, this thesis shed light on the nonlinear dynamics in magnetic vortices,
with special focus on three-magnon scattering in soft-magnetic permalloy disks.
The results were compared with experimental data obtained by means of Brillouin
light-scattering microscopy (µBLS). In particular, the following objectives were dealt
with:

(i) What is the origin of the three-magnon-scattering channels in magnetic vortex
disks? Can we predict them and how are they influenced by external perturba-
tions?

(ii) How can we describe the temporal evolution of the nonlinearly interacting
spin-wave modes and how does this evolution depend on the excitation power?

(iii) Can we control and actively trigger (stimulate) nonlinear spin-wave dynamics?

The purpose of this chapter is to highlight the major achievements of this thesis
regarding the aforementioned objectives as well as to discuss possible extensions.

In order to predict the possible three-magnon-scattering channels, first the mode
profiles as well as the dispersion of the spin-wave modes in a magnetic vortex was
numerically calculated for large azimuthal wave vectors while being in agreement
with the semi-analytical results of Roman Verba. For this, a method was found
to obtain the full dispersion (up to degeneration) from micromagnetic simulations.
It was found, that the spin-wave spectrum in a vortex disk favors three-magnon
scattering, more specifically the decay of radial modes, as they are well above the
azimuthal modes in frequency. The resonant channels were predicted by applying
the selection rules of three-magnon scattering to the dispersion and are in agreement
with experimental data. Moreover, the secondary modes, which appear first when
increasing the excitation power, were obtained from micromagnetic simulations and
are in agreement with experiment and theory. For this, a lightweight approach, the
total magnetic energy spectrogram, was conceived in order to qualitatively obtain
the temporal evolution of the spin-wave intensities from micromagnetic simulations.

The three-magnon scattering was found to be suppressed if a static OOP field is
applied which induces a Berry phase to the azimuthal modes and lifts their degen-
eracy. On the other side, applying a static homogeneous IP field, which displaces
the magnetic vortex from the disk center does not suppress three-magnon scattering.
Surprisingly, it rather leads to the appearance of additional secondary modes, termed
butterfly modes, which inherit a qualitatively different mode profile than the ordinary
vortex modes. After the prediction by means of micromagnetic simulation, the author
suggested µBLS experiments which confirmed the existence of these modes.

In order to study the temporal evolution of the magnon modes, the author learned
nonlinear spin-wave theory which was utilized to develop rate equations, that can
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predict the time-dependence of three-magnon scattering, in agreement with exper-
iments. Within this context, an approximation was achieved to include thermal
spin waves. This nonlinear theory was applied to study the power-dependence and
uncover the different time-scales of three-magnon scattering. Micromagnetic simula-
tions confirmed a frequency shift of the secondary modes as well as the activation of
additional resonant channels with increasing excitation power.

Finally, stimulated three-magnon scattering below and above threshold was
demonstrated using micromagnetic simulations and the developed rate equations.
It was found, that three-magnon scattering channels can be selected and activated
below their natural threshold. This was achieved by coupling the vortex disk to a
magnonic waveguide which allows to excite one of the secondary modes next to
the direct mode. Moreover, above threshold, the time delay of the secondary modes
can be overcome. The possibility to control three-magnon scattering provides means
to implement these nonlinear dynamics into magnonic circuits and other possible
technical applications.

All in all, the author of this thesis hopes to have provided a broad analysis of
the three-magnon scattering in magnetic vortices while leaving room for possible
in-depth extensions and follow-up projects, both of a scientific and of a methodi-
cal nature. A general extension could be the usage of a different material such as
CoFe which has a lower Gilbert damping than permalloy. This, in return, could
reduce the input power needed for nonlinear interactions. Furthermore, one could
include spin-transfer-torque which leads to an additional amplification of nonlin-
ear behavior by introducing anti-damping. Finally, asymmetric interactions such
as the Dzyaloshinskii–Moriya interaction which for example leads to a nonrecipro-
cal nonlinear frequency shift [53] and may strongly influence the selection rules of
three-magnon scattering.

The parametric excitation of spin waves in a displaced magnetic vortex opened
the route to exotic vortex modes. Understanding the transition in the scattering
channels as well as the nature of the butterfly modes requires the calculation of the
field-dependent mode spectrum e.g. by means of a dynamic matrix approach.

In order to study the power-dependence of three-magnon scattering in greater
detail, the four-magnon scattering efficiencies are necessarily to be calculated, for
example using the newly developed vector Hamiltonian formalism. Thinking even
further, as the spin waves in a magnetic vortex inherit a discrete mode spectrum, one
could write a program which calculates the spin-wave modes using an eigensolver,
computes the necessary interaction coefficients and solves the corresponding rate
equations for all possible modes below a certain cut-off frequency. Such an approach
would work without preconceptions about which modes take part in the nonlinear
interactions. It would be a very laborious undertaking but, once implemented, could
be used for general nonlinear spin-wave dynamics in confined magnetic elements. A
similar approach was proposed by Rowlands et al. [103].

The method obtaining the spin-wave intensities from the total magnetic energy
of a micromagnetic simulation needs to be properly formalized but could provide
a direct bridge between simulations and the classical Hamiltonian formalism. A
more proper but more costly approach would be to implement a spatially dependent
short-time Fourier transform (STFT).

Finally, the possibility to stimulate three-magnon scattering needs to be confirmed
by experiments (in progress). Moreover, in the long-term an extended study could be
performed in designing a large network of multiple disks and waveguides in order
to deploy it as a reservoir for nonlinear computing.



75

Own publications and given talks

[20] K. Schultheiss, R Verba, F Wehrmann, K Wagner, L Körber, T Hula, T Hache,
A Kákay, A. A. Awad, V Tiberkevich, A. N. Slavin, J Fassbender, and H
Schultheiss, “Excitation of Whispering Gallery Magnons in a Magnetic Vortex”,
Physical Review Letters, vol. 122, no. 9, p. 097 202, 2019, ISSN: 0031-9007. DOI:
10.1103/PhysRevLett.122.097202.

[101] L. Körber, K. Schultheiss, T. Hula, R. Verba, T. Hache, and H. Schultheiss,
“Control and stimulation of three-magnon scattering in a magnetic vortex”, in
Magnonics Conference 2019, 2019.

[112] L Körber, K Wagner, A Kákay, and H Schultheiss, “Spin-Wave Reciprocity in
the Presence of Néel Walls”, IEEE Magnetics Letters, vol. 8, pp. 1–4, 2017, ISSN:
1949-307X. DOI: 10.1109/LMAG.2017.2762642.

[113] N Sato, K Schultheiss, L Körber, N Puwenberg, T Mühl, A. A. Awad, S. Areka-
pudi, O Hellwig, J Fassbender, and H Schultheiss, “Domain Wall Based Spin-
Hall Nano-Oscillators”, Physical review letters, vol. 123, no. 5, p. 57 204, 2019.
DOI: 10.1103/PhysRevLett.123.057204.

http://dx.doi.org/10.1103/PhysRevLett.122.097202
http://dx.doi.org/10.1109/LMAG.2017.2762642
http://dx.doi.org/10.1103/PhysRevLett.123.057204




77

Bibliography

[1] https://doi.org/10.1242/jcs.033340 Schwartz, Martin A.Schwartz, M. A.
(2008). The importance of stupidity in scientific research. Journal of Cell
Science, 121(11), “The importance of stupidity in scientific research”, Jour-
nal of Cell Science, vol. 121, no. 11, pp. 1771–1771, 2008, ISSN: 0021-9533. DOI:
10.1242/jcs.033340.

[2] J. S. Russell, “Report on waves”, in 14th meeting of the British Association for the
Advancement of Science, vol. 311, 1844, p. 1844.

[3] M. Laurent and N. Kellershohn, “Multistability: a major means of differentia-
tion and evolution in biological systems”, Trends in biochemical sciences, vol. 24,
no. 11, pp. 418–422, 1999.

[4] V. S. L’vov, Wave turbulence under parametric excitation: applications to magnets.
Springer Science & Business Media, 2012.

[5] H. Poincaré, “Sur le problème des trois corps et les équations de la dy-
namique”, Acta mathematica, vol. 13, no. 1, A3–A270, 1890.

[6] R. D. Richtmyer, “Nonlinear Problems: Fluid Dynamics”, in Principles of Ad-
vanced Mathematical Physics, Berlin, Heidelberg: Springer Berlin Heidelberg,
1978, pp. 364–408. DOI: 10.1007/978-3-642-46378-5_17.

[7] H. A. Dijkstra, Nonlinear climate dynamics. Cambridge University Press, 2013.

[8] D. Christodoulou, “Nonlinear nature of gravitation and gravitational-wave
experiments”, Physical review letters, vol. 67, no. 12, p. 1486, 1991.

[9] J. M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science: Wise
Use of Alternative Therapies. CRC Press, 2018.

[10] V. Makarenko and R. Llinás, “Experimentally determined chaotic phase syn-
chronization in a neuronal system”, Proceedings of the National Academy of
Sciences, vol. 95, no. 26, pp. 15 747–15 752, 1998.

[11] A. Hubert and R. Schäfer, Magnetic domains: the analysis of magnetic microstruc-
tures. Springer Science & Business Media, 2008.

[12] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H. Schultheiss,
“Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale”,
Frontiers in Physics, vol. 3, p. 35, 2015, ISSN: 2296-424X. DOI: 10.3389/fphy.
2015.00035.

[13] N. Bloembergen and R. W. Damon, “Relaxation Effects in Ferromagnetic
Resonance”, Physical Review, vol. 85, no. 4, pp. 699–699, 1952, ISSN: 0031-899X.
DOI: 10.1103/PhysRev.85.699.

[14] R. W. Damon, “Relaxation Effects in the Ferromagnetic Resonance”, Reviews
of Modern Physics, vol. 25, no. 1, pp. 239–245, 1953, ISSN: 0034-6861. DOI: 10.
1103/RevModPhys.25.239.

http://dx.doi.org/10.1242/jcs.033340
http://dx.doi.org/10.1007/978-3-642-46378-5_17
http://dx.doi.org/10.3389/fphy.2015.00035
http://dx.doi.org/10.3389/fphy.2015.00035
http://dx.doi.org/10.1103/PhysRev.85.699
http://dx.doi.org/10.1103/RevModPhys.25.239
http://dx.doi.org/10.1103/RevModPhys.25.239


78 BIBLIOGRAPHY

[15] N. Bloembergen and S. Wang, “Relaxation Effects in <i>Para</i> - and Fer-
romagnetic Resonance”, Physical Review, vol. 93, no. 1, pp. 72–83, 1954, ISSN:
0031-899X. DOI: 10.1103/PhysRev.93.72.

[16] S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine,
“Mutual phase-locking of microwave spin torque nano-oscillators”, Nature,
vol. 437, no. 7057, p. 389, 2005.

[17] A. Slavin and V. Tiberkevich, “Nonlinear Auto-Oscillator Theory of Microwave
Generation by Spin-Polarized Current”, IEEE Transactions on Magnetics, vol. 45,
no. 4, pp. 1875–1918, 2009, ISSN: 0018-9464. DOI: 10.1109/TMAG.2008.2009935.

[18] M. Haidar, A. A. Awad, M. Dvornik, R. Khymyn, A. Houshang, and J. Åker-
man, “A single layer spin-orbit torque nano-oscillator”, Nature Communications,
vol. 10, no. 1, p. 2362, 2019, ISSN: 2041-1723. DOI: 10.1038/s41467-019-10120-
4.

[19] A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, Y. P.
Sharaevskii, and S. A. Nikitov, “Toward nonlinear magnonics: Intensity-
dependent spin-wave switching in insulating side-coupled magnetic stripes”,
Physical Review B, vol. 96, no. 14, p. 144 428, 2017, ISSN: 2469-9950. DOI: 10.
1103/PhysRevB.96.144428.

[20] K. Schultheiss, R Verba, F Wehrmann, K Wagner, L Körber, T Hula, T Hache,
A Kákay, A. A. Awad, V Tiberkevich, A. N. Slavin, J Fassbender, and H
Schultheiss, “Excitation of Whispering Gallery Magnons in a Magnetic Vortex”,
Physical Review Letters, vol. 122, no. 9, p. 097 202, 2019, ISSN: 0031-9007. DOI:
10.1103/PhysRevLett.122.097202.

[21] Y. Kobljanskyj, G. Melkov, K. Guslienko, V. Novosad, S. D. Bader, M. Kostylev,
and A. Slavin, “Nano-structured magnetic metamaterial with enhanced non-
linear properties”, Scientific Reports, vol. 2, no. 1, p. 478, 2012, ISSN: 2045-2322.
DOI: 10.1038/srep00478.

[22] F. Wehrmann, “Nichtlineare Spinwellen in magnetischen Vortexstrukturen”,
Bachelor Thesis, Technical University of Dresden, 2016.

[23] T. Hula, “Nichtlineare Spinwellen unter zeitlich veränderlichen Anregungsbe-
dingungen”, Master Thesis, University of Applied Sciences Zwickau, 2018.

[24] S. Blundell, Magnetism in Condensed Matter. New York: Oxford University
Press Inc., 2001, ISBN: 0 19 850592 2.

[25] D. D. Stancil and A. Prabhakar, Spin waves : theory and applications. Springer,
2009, ISBN: 9780387778655.

[26] A. G.A. G. Gurevich and G. A.G. A. Melkov, Magnetization oscillations and
waves. CRC Press, 1996, p. 445, ISBN: 9780849394607.

[27] H. Bethe, “Zur Theorie der Metalle”, Zeitschrift für Physik, vol. 71, no. 3-4,
pp. 205–226, 1931, ISSN: 1434-6001. DOI: 10.1007/BF01341708.

[28] B. N. Figgis and J. Lewis, “The Magnetic Properties of Transition Metal Com-
plexes”, in, John Wiley & Sons, Ltd, 2007. DOI: 10.1002/9780470166079.ch2.

[29] A. P. G. E.R.P. Novais, “Phase diagram of magnetic configurations for soft
magnetic nanodots of circular and elliptical shape obtained by micromagnetic
simulation”, 2009.

[30] N. Usov and S. Peschany, “Magnetization curling in a fine cylindrical particle”,
Journal of Magnetism and Magnetic Materials, vol. 118, no. 3, pp. L290–L294,
1993, ISSN: 0304-8853. DOI: 10.1016/0304-8853(93)90428-5.

http://dx.doi.org/10.1103/PhysRev.93.72
http://dx.doi.org/10.1109/TMAG.2008.2009935
http://dx.doi.org/10.1038/s41467-019-10120-4
http://dx.doi.org/10.1038/s41467-019-10120-4
http://dx.doi.org/10.1103/PhysRevB.96.144428
http://dx.doi.org/10.1103/PhysRevB.96.144428
http://dx.doi.org/10.1103/PhysRevLett.122.097202
http://dx.doi.org/10.1038/srep00478
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1002/9780470166079.ch2
http://dx.doi.org/10.1016/0304-8853(93)90428-5


BIBLIOGRAPHY 79

[31] J. K. Ha, R. Hertel, and J. Kirschner, “Micromagnetic study of magnetic con-
figurations in submicron permalloy disks”, Physical Review B, vol. 67, no. 22,
p. 224 432, 2003, ISSN: 0163-1829. DOI: 10.1103/PhysRevB.67.224432.

[32] A. Akhiezer, V. Bar’yakhtar, and S. Peletmisky, Spin Waves. North-Holland,
Amsterdam, 1968.

[33] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic mate-
rials”, IEEE Transactions on Magnetics, vol. 40, no. 6, pp. 3443–3449, 2004, ISSN:
00189464. DOI: 10.1109/TMAG.2004.836740.

[34] N. Smith, “Comment on "Adiabatic domain wall motion and Landau-Lifshitz
damping"”, Physical Review B - Condensed Matter and Materials Physics, vol. 78,
no. 21, pp. 1–6, 2008, ISSN: 10980121. DOI: 10.1103/PhysRevB.78.216401.

[35] M. D’Aquino, “Computation of Magnetization Normal Oscillation Modes
in Complex Micromagnetic Systems”, IFAC Proceedings Volumes, vol. 45, no.
2, pp. 504–509, 2012, ISSN: 1474-6670. DOI: 10.3182/20120215-3-AT-3016.
00088.

[36] B. A. Kalinikos and A. N. Slavin, “Theory of dipole-exchange spin wave
spectrum for ferromagnetic films with mixed exchange boundary conditions”,
Journal of Physics C: Solid State Physics, vol. 19, no. 35, pp. 7013–7033, 1986, ISSN:
0022-3719. DOI: 10.1088/0022-3719/19/35/014.

[37] A. M. Ferona and R. E. Camley, “Nonlinear and chaotic magnetization dynam-
ics near bifurcations of the Landau-Lifshitz-Gilbert equation”, Physical Review
B, vol. 95, no. 10, p. 104 421, 2017, ISSN: 2469-9950. DOI: 10.1103/PhysRevB.95.
104421.

[38] A. Ferona and R. Camley, “Nonlinear power-dependent effects in exchange-
coupled magnetic bilayers”, Physical Review B, vol. 99, no. 6, p. 064 405, 2019,
ISSN: 2469-9950. DOI: 10.1103/PhysRevB.99.064405.

[39] P. Krivosik and C. E. Patton, “Hamiltonian formulation of nonlinear spin-
wave dynamics: Theory and applications”, Physical Review B, vol. 82, no. 18,
p. 184 428, 2010, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.82.184428.

[40] D. Slobodianiuk, G. Melkov, K. Schultheiss, H. Schultheiss, and R. Verba,
“Nonlinear ferromagnetic resonance in the presence of 3-magnon scattering in
magnetic nanostructures”, IEEE Magnetics Letters, pp. 1–1, 2019, ISSN: 1949-
307X. DOI: 10.1109/LMAG.2019.2913132.

[41] E. Schlömann, “Technical Report No. R-48”, 1959.

[42] ——, “Fine structure in the decline of the ferromagnetic resonance absorption
with increasing power level”, Physical Review, 1959, ISSN: 0031899X. DOI: 10.
1103/PhysRev.116.828.

[43] V. L’vov, “Scale invariant theory of fully developed hydrodynamic turbulence-
Hamiltonian approach”, Physics Reports, vol. 207, no. 1, pp. 1–47, 1991, ISSN:
0370-1573. DOI: 10.1016/0370-1573(91)90081-V.

[44] Y. Lvov and E. G. Tabak, “A Hamiltonian formulation for long internal waves”,
Physica D: Nonlinear Phenomena, vol. 195, no. 1-2, pp. 106–122, 2004, ISSN: 0167-
2789. DOI: 10.1016/J.PHYSD.2004.03.010.

[45] G. Falkovich, “Inverse cascade and wave condensate in mesoscale atmospheric
turbulence”, Physical Review Letters, vol. 69, no. 22, pp. 3173–3176, 1992, ISSN:
0031-9007. DOI: 10.1103/PhysRevLett.69.3173.

http://dx.doi.org/10.1103/PhysRevB.67.224432
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1103/PhysRevB.78.216401
http://dx.doi.org/10.3182/20120215-3-AT-3016.00088
http://dx.doi.org/10.3182/20120215-3-AT-3016.00088
http://dx.doi.org/10.1088/0022-3719/19/35/014
http://dx.doi.org/10.1103/PhysRevB.95.104421
http://dx.doi.org/10.1103/PhysRevB.95.104421
http://dx.doi.org/10.1103/PhysRevB.99.064405
http://dx.doi.org/10.1103/PhysRevB.82.184428
http://dx.doi.org/10.1109/LMAG.2019.2913132
http://dx.doi.org/10.1103/PhysRev.116.828
http://dx.doi.org/10.1103/PhysRev.116.828
http://dx.doi.org/10.1016/0370-1573(91)90081-V
http://dx.doi.org/10.1016/J.PHYSD.2004.03.010
http://dx.doi.org/10.1103/PhysRevLett.69.3173


80 BIBLIOGRAPHY

[46] E. A. Kuznetsov, “Weak magnetohydrodynamic turbulence of a magnetized
plasma”, Journal of Experimental and Theoretical Physics, vol. 93, no. 5, pp. 1052–
1064, 2001, ISSN: 1063-7761. DOI: 10.1134/1.1427116.

[47] F. Sahraoui, G. Belmont, and L. Rezeau, “Hamiltonian canonical formulation
of Hall-magnetohydrodynamics: Toward an application to weak turbulence
theory”, Physics of Plasmas, vol. 10, no. 5, pp. 1325–1337, 2003, ISSN: 1070-664X.
DOI: 10.1063/1.1564086.

[48] V. E. Zahkarov, V. S. Lvov, and S. S. Starobinets, “Turbulence of spin waves
beyond the threshold of their parametric excitation”, Uspekhi Fizicheskikh Nauk,
vol. 114, pp. 609–654, 1974.

[49] V. S. L’vov, “Solitons and nonlinear phenomena in parametrically excited spin
waves”, in Modern Problems in Condensed Matter Sciences, vol. 17, Elsevier, 1986,
pp. 241–300.

[50] V. S. L’vov and L. A. Prozorova, “Spin waves above the threshold of parametric
excitations”, Spin waves and magnetic excitations. Borovik-Romanov, AS, Sinha,
SK (eds.), vol. 1, pp. 233–285, 1988.

[51] T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain
magnetization of a ferromagnet”, Physical Review, 1940, ISSN: 0031899X. DOI:
10.1103/PhysRev.58.1098.

[52] Zakharov, “The instability of waves in nonlinear dispersive media”, Sov. Phys.
JETP, vol. 24, no. 4, pp. 740–744, 1967.

[53] R. Verba, V. Tiberkevich, and A. Slavin, “Hamiltonian formalism for nonlin-
ear spin wave dynamics under antisymmetric interactions: Application to
Dzyaloshinskii-Moriya interaction”, Physical Review B, vol. 99, no. 17, p. 174 431,
2019, ISSN: 2469-9950. DOI: 10.1103/PhysRevB.99.174431.

[54] V. S. Tiberkevich, A. N. Slavin, and J.-V. Kim, “Temperature dependence of non-
linear auto-oscillator linewidths: Application to spin-torque nano-oscillators”,
Physical Review B, vol. 78, no. 9, p. 092 401, 2008, ISSN: 1098-0121. DOI: 10.1103/
PhysRevB.78.092401.

[55] J.-V. Kim, V. Tiberkevich, and A. N. Slavin, “Generation Linewidth of an Auto-
Oscillator with a Nonlinear Frequency Shift: Spin-Torque Nano-Oscillator”,
Physical Review Letters, vol. 100, no. 1, p. 017 207, 2008, ISSN: 0031-9007. DOI:
10.1103/PhysRevLett.100.017207.

[56] Y. Zhou, V. Tiberkevich, G. Consolo, E. Iacocca, B. Azzerboni, A. Slavin, and J.
Åkerman, “Oscillatory transient regime in the forced dynamics of a nonlinear
auto oscillator”, Physical Review B, vol. 82, no. 1, p. 012 408, 2010, ISSN: 1098-
0121. DOI: 10.1103/PhysRevB.82.012408.

[57] F. Sanches, V. Tiberkevich, K. Y. Guslienko, J. Sinha, M. Hayashi, O. Prokopenko,
and A. N. Slavin, “Current-driven gyrotropic mode of a magnetic vortex as a
nonisochronous auto-oscillator”, Physical Review B, vol. 89, no. 14, p. 140 410,
2014, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.89.140410.

[58] K. Vogt, O. Sukhostavets, H. Schultheiss, B. Obry, P. Pirro, A. A. Serga, T.
Sebastian, J. Gonzalez, K. Y. Guslienko, and B. Hillebrands, “Optical detection
of vortex spin-wave eigenmodes in microstructured ferromagnetic disks”,
Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 17,
p. 174 401, 2011, ISSN: 10980121. DOI: 10.1103/PhysRevB.84.174401.

http://dx.doi.org/10.1134/1.1427116
http://dx.doi.org/10.1063/1.1564086
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRevB.99.174431
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevLett.100.017207
http://dx.doi.org/10.1103/PhysRevB.82.012408
http://dx.doi.org/10.1103/PhysRevB.89.140410
http://dx.doi.org/10.1103/PhysRevB.84.174401


BIBLIOGRAPHY 81

[59] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and
B. Van Waeyenberge, “The design and verification of MuMax3”, AIP Advances,
vol. 4, no. 10, p. 107 133, 2014, ISSN: 2158-3226. DOI: 10.1063/1.4899186.

[60] A. Kakay, Curvilinear micromagnetism. [Online]. Available: https://www.hzdr.
de/db/Cms?pOid=55944{\&}pNid=107 (visited on 09/17/2019).

[61] J. Sandercock, “A light scattering study of the ferromagnet CrBr3”, Solid State
Communications, vol. 15, no. 10, pp. 1715–1719, 1974, ISSN: 0038-1098. DOI:
10.1016/0038-1098(74)91219-8.

[62] P. Grünberg and F. Metawe, “Light Scattering from Bulk and Surface Spin
Waves in EuO”, Physical Review Letters, vol. 39, no. 24, pp. 1561–1565, 1977,
ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.39.1561.

[63] The Table Stable LTD, “High Contrast Tandem Fabry-Pérot In- terferometer
TFP-2 HC - Operator Manual. 1”, Tech. Rep., 2015.

[64] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae”,
Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980,
ISSN: 0771050X. DOI: 10.1016/0771-050X(80)90013-3.

[65] M Buess, T. P. J. Knowles, R Höllinger, T Haug, U Krey, D Weiss, D Pescia,
M. R. Scheinfein, and C. H. Back, “Excitations with negative dispersion in a
spin vortex”, Physical Review B, vol. 71, no. 10, p. 104 415, 2005. DOI: 10.1103/
PhysRevB.71.104415.

[66] K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S.-K. Kim, “Dynamic Origin
of Azimuthal Modes Splitting in Vortex-State Magnetic Dots”, Physical Review
Letters, vol. 101, no. 24, p. 247 203, 2008. DOI: 10.1103/PhysRevLett.101.
247203.

[67] B. A. Ivanov and C. E. Zaspel, “High Frequency Modes in Vortex-State Nano-
magnets”, Physical Review Letters, vol. 94, no. 2, p. 27 205, 2005. DOI: 10.1103/
PhysRevLett.94.027205.

[68] R. Verba, V. Tiberkevich, and A. Slavin, “Damping of linear spin-wave modes
in magnetic nanostructures: Local, nonlocal, and coordinate-dependent damp-
ing”, Physical Review B, vol. 98, no. 10, p. 104 408, 2018. DOI: 10.1103/PhysRevB.
98.104408.

[69] K. Y. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi,
“Eigenfrequencies of vortex state excitations in magnetic submicron-size
disks”, Journal of Applied Physics, vol. 91, no. 10, p. 8037, 2002, ISSN: 00218979.
DOI: 10.1063/1.1450816.

[70] A. Y. Galkin, B. A. Ivanov, and C. E. Zaspel, “Collective modes for an array of
magnetic dots in the vortex state”, Physical Review B, vol. 74, no. 14, p. 144 419,
2006, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.74.144419.

[71] D. D. Sheka, I. A. Yastremsky, B. A. Ivanov, G. M. Wysin, and F. G. Mertens,
“Amplitudes for magnon scattering by vortices in two-dimensional weakly
easy-plane ferromagnets”, Physical Review B, vol. 69, no. 5, p. 054 429, 2004,
ISSN: 1098-0121. DOI: 10.1103/PhysRevB.69.054429.

[72] B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, “Magnon modes
and magnon-vortex scattering in two-dimensional easy-plane ferromagnets”,
Physical Review B, vol. 58, no. 13, pp. 8464–8474, 1998, ISSN: 0163-1829. DOI:
10.1103/PhysRevB.58.8464.

http://dx.doi.org/10.1063/1.4899186
https://www.hzdr.de/db/Cms?pOid=55944{\&}pNid=107
https://www.hzdr.de/db/Cms?pOid=55944{\&}pNid=107
http://dx.doi.org/10.1016/0038-1098(74)91219-8
http://dx.doi.org/10.1103/PhysRevLett.39.1561
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1103/PhysRevB.71.104415
http://dx.doi.org/10.1103/PhysRevB.71.104415
http://dx.doi.org/10.1103/PhysRevLett.101.247203
http://dx.doi.org/10.1103/PhysRevLett.101.247203
http://dx.doi.org/10.1103/PhysRevLett.94.027205
http://dx.doi.org/10.1103/PhysRevLett.94.027205
http://dx.doi.org/10.1103/PhysRevB.98.104408
http://dx.doi.org/10.1103/PhysRevB.98.104408
http://dx.doi.org/10.1063/1.1450816
http://dx.doi.org/10.1103/PhysRevB.74.144419
http://dx.doi.org/10.1103/PhysRevB.69.054429
http://dx.doi.org/10.1103/PhysRevB.58.8464


82 BIBLIOGRAPHY

[73] B. A. Ivanov and C. E. Zaspel, “Magnon modes for thin circular vortex-state
magnetic dots”, Applied Physics Letters, vol. 81, no. 7, pp. 1261–1263, 2002, ISSN:
0003-6951. DOI: 10.1063/1.1499515.

[74] G. Lv, H. Zhang, X. Cao, F. Gao, and Y. Liu, “Micromagnetic simulations
of magnetic normal modes in elliptical nanomagnets with a vortex state”,
Applied Physics Letters, vol. 103, no. 25, p. 252 404, 2013, ISSN: 0003-6951. DOI:
10.1063/1.4850537.

[75] I. Neudecker, K. Perzlmaier, F. Hoffmann, G. Woltersdorf, M. Buess, D. Weiss,
and C. H. Back, “Modal spectrum of permalloy disks excited by in-plane
magnetic fields”, Physical Review B, vol. 73, no. 13, p. 134 426, 2006, ISSN:
1098-0121. DOI: 10.1103/PhysRevB.73.134426.

[76] B. Taurel, T. Valet, V. V. Naletov, N. Vukadinovic, G. de Loubens, and O. Klein,
“Complete mapping of the spin-wave spectrum in a vortex-state nanodisk”,
Physical Review B, vol. 93, no. 18, p. 184 427, 2016, ISSN: 2469-9950. DOI: 10.
1103/PhysRevB.93.184427.

[77] M Buess, Y Acremann, A Kashuba, C. H. Back, and D Pescia, “Pulsed pre-
cessional motion on the back of an envelope”, Journal of Physics: Condensed
Matter, vol. 15, no. 24, R1093–R1100, 2003, ISSN: 0953-8984. DOI: 10.1088/0953-
8984/15/24/203.

[78] F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A. N. Slavin, V. S. Tiberkevich,
A. Bischof, D. Weiss, and C. H. Back, “Mode degeneracy due to vortex core
removal in magnetic disks”, Physical Review B, vol. 76, no. 1, p. 014 416, 2007,
ISSN: 1098-0121. DOI: 10.1103/PhysRevB.76.014416.

[79] M. Buess, R. Hollinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M. R.
Scheinfein, D. Weiss, and C. H. Back, “Fourier Transform Imaging of Spin
Vortex Eigenmodes”, Physical Review Letters, vol. 93, no. 12, p. 129 902, 2004,
ISSN: 0031-9007. DOI: 10.1103/physrevlett.93.129902.

[80] X. Zhu, Z. Liu, V. Metlushko, P. Grütter, and M. R. Freeman, “Broadband spin
dynamics of the magnetic vortex state: Effect of the pulsed field direction”,
Physical Review B, vol. 71, no. 18, p. 180 408, 2005, ISSN: 1098-0121. DOI: 10.
1103/PhysRevB.71.180408.

[81] A. Kakay, E. Westphal, and R. Hertel, “Speedup of FEM Micromagnetic Sim-
ulations With Graphical Processing Units”, IEEE Transactions on Magnetics,
vol. 46, no. 6, pp. 2303–2306, 2010, ISSN: 0018-9464. DOI: 10.1109/TMAG.2010.
2048016.

[82] W. Scholz, Magpar, 2010. [Online]. Available: magpar.net (visited on 09/19/2019).

[83] T. Fischbacher, M. Franchin, G. Bordignon, and H. Fangohr, “A Systematic
Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic
Simulations: Nmag”, IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2896–
2898, 2007, ISSN: 0018-9464. DOI: 10.1109/TMAG.2007.893843.

[84] M.-A. Bisotti, M. Beg, W. Wang, M. Albert, D. Chernyshenko, D. Cortés-Ortuño,
R. A. Pepper, M. Vousden, R. Carey, H. Fuchs, A. Johansen, G. Balaban,
L. Breth, T. Kluyver, and H. Fangohr, FinMag: finite-element micromagnetic
simulation tool, 2018. DOI: 10 . 5281 / zenodo .1216011. [Online]. Available:
https://zenodo.org/record/1216011{\#}.XYDDMJMzb1I.

[85] R. Verba, L. Körber, V. Tiberkevich, K. Schultheiss, H. Schultheiss, and A.
Slavin, “CC-05. Three-Magnon Splitting in Vortex-State Magnetic Nanodots”,
in MMM 2019 Las Vegas, Las Vegas, 2019.

http://dx.doi.org/10.1063/1.1499515
http://dx.doi.org/10.1063/1.4850537
http://dx.doi.org/10.1103/PhysRevB.73.134426
http://dx.doi.org/10.1103/PhysRevB.93.184427
http://dx.doi.org/10.1103/PhysRevB.93.184427
http://dx.doi.org/10.1088/0953-8984/15/24/203
http://dx.doi.org/10.1088/0953-8984/15/24/203
http://dx.doi.org/10.1103/PhysRevB.76.014416
http://dx.doi.org/10.1103/physrevlett.93.129902
http://dx.doi.org/10.1103/PhysRevB.71.180408
http://dx.doi.org/10.1103/PhysRevB.71.180408
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2048016
magpar.net
http://dx.doi.org/10.1109/TMAG.2007.893843
http://dx.doi.org/10.5281/zenodo.1216011
https://zenodo.org/record/1216011{\#}.XYDDMJMzb1I


BIBLIOGRAPHY 83

[86] L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D Glenn, A. Trifonov, P.
Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, and Others, “Magnetic field
imaging with nitrogen-vacancy ensembles”, New Journal of Physics, vol. 13, no.
4, p. 45 021, 2011.

[87] H Kraus, V. A. Soltamov, F Fuchs, D Simin, A Sperlich, P. G. Baranov, G. V.
Astakhov, and V. Dyakonov, “Magnetic field and temperature sensing with
atomic-scale spin defects in silicon carbide”, Scientific reports, vol. 4, p. 5303,
2014.

[88] H. B. Braun and D. Loss, “Berry’s phase and quantum dynamics of ferromag-
netic solitons”, Physical Review B - Condensed Matter and Materials Physics, vol.
53, no. 6, pp. 3237–3255, 1996, ISSN: 1550235X. DOI: 10.1103/PhysRevB.53.
3237. arXiv: 9601153 [cond-mat].

[89] R. Hertel, W. Wulfhekel, and J. Kirschner, “Domain-wall induced phase shifts
in spin waves”, Physical Review Letters, vol. 93, no. 25, 2004, ISSN: 00319007.
DOI: 10.1103/PhysRevLett.93.257202.

[90] V. K. Dugaev, P Bruno, B Canals, and C Lacroix, “Berry phase of magnons in
textured ferromagnets”, Physical Review B, vol. 72, no. 2, p. 24 456, 2005. DOI:
10.1103/PhysRevB.72.024456.

[91] L. Giovannini, F. Montoncello, F. Nizzoli, G. Gubbiotti, G. Carlotti, T. Okuno,
T. Shinjo, and M. Grimsditch, “Spin excitations of nanometric cylindrical dots
in vortex and saturated magnetic states”, Physical Review B, vol. 70, no. 17,
p. 172 404, 2004, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.70.172404.

[92] F. G. Aliev, J. F. Sierra, A. A. Awad, G. N. Kakazei, D.-S. Han, S.-K. Kim, V.
Metlushko, B. Ilic, and K. Y. Guslienko, “Spin waves in circular soft magnetic
dots at the crossover between vortex and single domain state”, Physical Review
B, vol. 79, no. 17, p. 174 433, 2009, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.79.
174433.

[93] M. Grimsditch, L. Giovannini, F. Montoncello, F. Nizzoli, G. K. Leaf, and H. G.
Kaper, “Magnetic normal modes in ferromagnetic nanoparticles: A dynamical
matrix approach”, Physical Review B, vol. 70, no. 5, p. 054 409, 2004, ISSN:
1098-0121. DOI: 10.1103/PhysRevB.70.054409.

[94] M. D’Aquino, C. Serpico, G. Miano, and C. Forestiere, “A novel formulation
for the numerical computation of magnetization modes in complex micromag-
netic systems”, Journal of Computational Physics, vol. 228, no. 17, pp. 6130–6149,
2009, ISSN: 10902716. DOI: 10.1016/j.jcp.2009.05.026.

[95] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[96] G. Van Rossum and F. L. Drake, Introduction To Python 3: Python Documentation
Manual Part 1. CreateSpace, 2009.

[97] L. W. Tu, An Introduction to Manifolds. Springer-Verlag GmbH, 2010, ch. 13,
pp. 140–146, ISBN: 1441973990.

[98] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity”, The bulletin of mathematical biophysics, vol. 5, no. Dec, pp. 115–
133, 1943. DOI: 10.1007/BF02478259.

[99] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of reser-
voir computing: theory, applications and implementations”, in Proceedings of
the 15th european symposium on artificial neural networks., 2007, pp. 471–482.

http://dx.doi.org/10.1103/PhysRevB.53.3237
http://dx.doi.org/10.1103/PhysRevB.53.3237
http://arxiv.org/abs/9601153
http://dx.doi.org/10.1103/PhysRevLett.93.257202
http://dx.doi.org/10.1103/PhysRevB.72.024456
http://dx.doi.org/10.1103/PhysRevB.70.172404
http://dx.doi.org/10.1103/PhysRevB.79.174433
http://dx.doi.org/10.1103/PhysRevB.79.174433
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1016/j.jcp.2009.05.026
http://dx.doi.org/10.1007/BF02478259


84 BIBLIOGRAPHY

[100] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function”, Neural networks, vol. 6, no. 6, pp. 861–867, 1993.

[101] L. Körber, K. Schultheiss, T. Hula, R. Verba, T. Hache, and H. Schultheiss,
“Control and stimulation of three-magnon scattering in a magnetic vortex”, in
Magnonics Conference 2019, 2019.
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A.1 Total energy spectogram

A.1.1 Motivation

A spectrogram is a representation used to visualize the time-varying frequency
spectrum of a certain signal u(t). Spectrograms are commonly used in electrical
engineering, music and speech processing, among other fields. There are many
different and sophisticated ways to calculate the spectrogram of a signal, such as
the Wigner-distribution [104] or the wavelet transform [105]. Probably, the most
rudimentary one is the STFT, for which the signal is divided into small chunks
before calculating the Fourier transform for each individual chunk. These chunks are
addressed using a time-window function w(t). The STFT of the signal u(t) is then
defined by

STFT[u](t, ω) =
1√
2π

∫ ∞

−∞
dτ u(τ)w(τ − t)e−iωτ.

For this thesis, this method was utilized to acquire the time-dependent spectrum
of (possibly long) micromagnetic simulations in a light-weight manner, resolving
modes without a net magnetic moment but without having to calculate the full
spatially resolved FFT in each time chunk and without producing large amounts of
data. It has to be noted, that this method is yet to be properly formalized, as it is in
its infancy. There is probably great potential for optimization (e.g. by employing
Wigner-distributions and so forth). Here, only a short description will be given.

Next to the full spatially resolved snapshots of the magnetization M(r, t), also the
spatially averaged quantity 〈M〉 (t) can be saved during a micromagnetic simulation.
By performing Fourier analysis of the average magnetization, one can already obtain
a superficial insight into the spectrum of that simulation (e.g. the frequency of the
k = 0 mode). However, only modes with a net magnetic moment will appear in
such a spectrum, because all other modes will have 〈mk〉 (t) ≡ 0. Without having to
change the code of the micromagnetic software, one can utilize another quantity – the
total magnetic energy E(t) – which is usually provided in most micromagnetic codes.
By analyzing the frequency components of this spatially independent quantity one
can recover the qualitative time-evolution of the spin-wave modes in the system.

We will first express the idea for a non-varying oscillatory signal for which a
Fourier transform over the whole simulation time can be applied. We will find that a
resonantly pumped spin-wave mode appears at twice its frequency in the spectrum
of the total magnetic energy. The following discussion is then easily be transferred to
a discrete STFT of time chunks.
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A.1.2 Derivation

The total magnetic energy of a sample with volume V can be written as

H(t) = −
∫

V
d3r Bext(r, t) ·M(r, t)− 1

2

∫
V

d3r Bint(r, t) ·M(r, t). (A.1)

The internal field Bint is produced by the magnetization itself (exchange, dipolar
interaction, crystal anisotropy, and so forth) and can itself be written as a linear
functional

Bint(r, t) = −µ0N̂(r) ·M(r, t). (A.2)

Here, N̂ is a linear tensor operator describing the magnetic self-interactions [39, 53,
106].1 It becomes apparent, that the total magnetic energy contains a part which is
linear (external) and a part which is quadratic (internal) in M(r, t).

Let us assume that, in the linear regime, we can split the magnetization into a
static and a dynamic part according to

M(r, t) = Meq(r) + m(r, t). (A.3)

For now, we will discuss the case of a single mode excited at resonance, m(r, t) =
mk(r)eiωRFt. For simplicity, we will assume that the external field only has an oscillat-
ing component, Bext(r, t) = bRF(r)eiωRFt. We can insert all expressions into the total
magnetic energy and perform the integrals,

H̃(t) = C0 + C1eiωRFt + C2ei2ωRFt, H = Re(H̃) (A.4)

with

C0 = −
∫

V
d3r

(
BstatMeq + MeqN̂Meq

)
C1 = −

∫
V

d3r
(
Bstatmk + MeqbRF + MeqN̂mk + mkN̂Meq

)
C2 = −

∫
V

d3r
(
bRFmk + mkN̂mk

)
.

(A.5)

The explicit computation of these constants is not necessary for a qualitative evalu-
ation. In the frequency domain, the constant C0 will only lead to a zero-frequency
contribution and, therefore, is not important for further analysis. Although there are
exceptions, the constant C1 is usually very small for most of the simulations in this
thesis. First, Bstat = 0 and second Meq ⊥ bRF almost everywhere except in the very
small vortex core region. The discussion of the remaining two terms in C1 has to wait
until this method has been properly formalized. In most simulations in this thesis
(except for Chap. 6, one can set

H̃(t) ≈ C2ei2ωRFt. (A.6)

This means, that a resonantly excited mode will appear at twice its frequency in the
spectrum of the total magnetic energy. Thus, we have to associate 2ωRF → ω̃RF. In
fact, in order to avoid confusion for the reader, the frequency axis in all spectrograms

1In the cited publications, the integral kernel of this distributive operator is denoted by N̂ and the
operator itself is denoted by Ĝ. However, in the humble opinion of the author, it makes more sense
to switch the two names as the integral kernel is similar to a Green’s function, which are commonly
referred to by G. In the part of the tensor operator describing the dipolar interaction, the integral kernel
is widely even referred to as the magnetostatic Green’s function.
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shown in this thesis was tacitly divided by a factor of two. In Sec. 6.1, there are
cases for which C1 is significant. As the static OOP field increases and with it the
product Meq · bRF (the vortex transforms to a cone-state vortex), there is an increasing
contribution at ωRF → ω̃RF/2.

A.1.3 Example

In Fig. A.1, we see the total energy spectrogram of a CW simulation, for a permalloy
disk with 5.1 µm diameter and 50 nm thickness, which was excited with 5 mT at
6.1 GHz. The damping in this simulation is with a value of αG = 0.007 sightly lower
than in the rest of the thesis (αG = 0.008).2 The frequency axis has already been
divided by a factor of two. As a sanity check, the full time-independent power
spectrum, which was acquired by performing the proper FFT of the magnetization at
each grid point, is put next to the spectrogram and shows a satisfactory agreement.
Of course, the peaks in the spectrogram are much broader, because the division in
small time chunks leads to a reduced frequency resolution.

FIGURE A.1: Comparison of the a) total magnetic energy spectrogram
with the b) full spatially resolved power spectrum of a CW simulation
at 6.1 GHz and 5 mT of a 5.1 µm permalloy disk with slightly lower
damping (αG = 0.007, compared to αG = 0.008 in the rest of this

thesis).

A.2 Calculation of the mode coupling to external fieds

Evaluation of the Zeemann energy

To drive spin-wave dynamics in the nonlinear regime, pumping of the modes by an
external field has to be included, as well. This coupling is given by the Zeemann
energy. In a magnetic vortex, the magnetization lies in-plane with the exception of
a small region near the vortex core. In the following analysis we will neglect this
region since it will only contribute by a very small amount to the Zeemann energy
functional

UZ = − γ

MsV

∫
V

d3r Bext(r, t) ·M(r, t). (A.7)

2This is because the simulation was conducted before having all the correct material parameters.
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Recall, that the prefactor of ν = γ/MsV comes from the conversion to frequency
units. We express all quantities in a cylindrical coordinate system. For a thin thin disk
with R/L� 1 (with radius R and thickness L) the magnetization will not depend on
the out-of-plane coordinate z. Consequently, we can perform this integration right
away (and use the two dimensional vector ρ = (r, φ)T from thereon),

UZ = − γ

MsV

∫
V

dρ dφ dz r Bext(r, φ, z, t) ·M(r, φ, z, t)

= − γ

MsπR2

∫
A

dρ dφ r Bext(ρ, t) ·M(ρ, t).
(A.8)

Following [39], both magnetization and external field are now carried over to complex
variables M̂ and B̂ by

M̂ =

M⊥
M∗⊥
M3

 B̂ =


1√
2

B⊥
1√
2

B∗⊥
H3

, (A.9)

with M⊥ = iM1 + M2 and B⊥ = iB1 + B2. In fact, the Zeemann Hamiltonian retains
its form in these variables

UZ = − γ

MsπR2

∫
A

dρ dφ r B̂(ρ, t) · M̂(ρ, t). (A.10)

Here, M1 and M2 are again perpendicular and M3 is parallel to the local magneti-
zation (the components of the external field Bi, respectively). This is important for
decomposing the magnetization into canonical variables. Far from the vortex core
(r � Rc) the components are

M1 = −Mz M2 = −Mρ M3 = Mφ. (A.11)

Writing the Zeemann energy in terms of M̂ and B̂ proves convenient because the mag-
netization can now easily be connected to the canonical variables by the Schlömann
transformation

M⊥
Ms

= a(ρ, t)
√

2− a(ρ, t)a∗(ρ, t)

'
√

2a(ρ, t)
(

1− 1
4

a(ρ, t)a∗(ρ, t)
)

M3

Ms
= 1− a(ρ, t)a∗(ρ, t).

(A.12)

To simplify further analysis, we will restrict ourselves to transverse pumping only,
since parallel pumping in vortex structures does not coincide with the experimental
reality. We can therefore set B3 = 0 and write

B̂ · M̂
Ms

=
1√
2Ms

B⊥ ·M⊥ + c.c.

= B⊥ · a
(

1− 1
4

a∗a
)
+ c.c.

(A.13)
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with c.c. denoting the complex conjugate of the term before. The Hamiltonian is now

UZ = − γ

πR2

∫
A

dρ dφ r B⊥(ρ, t) · a(ρ, t)
(

1− 1
4

a(ρ, t)a∗(ρ, t)
)
+ c.c.

= − γ

πR2

∫
A

dρ dφ r B⊥(ρ, t)a(ρ, t) + c.c.︸ ︷︷ ︸
Up

+
γ

4πR2

∫
A

dρ dφ r B⊥(ρ, t)a(ρ, t)a(ρ, t)a∗(ρ, t) + c.c.

(A.14)

In canonical variables the Zeemann Hamiltonian can be divided into two parts. The
first part describes the linear response of the magnetic system to a transversal field.
We will call this here the pumping Hamiltonian Up. The latter part describes processes
of three magnons interacting with the field [39]. In the following analysis this last
term will be omitted, as it is generally much smaller than the first one. For this reason,
in the main thesis, we identify UZ ≈ Up. To proceed, the canonical variables can be
expanded into normal modes,

a(ρ, t) =
∞

∑
n=0

∞

∑
m=−∞

cnm(t)Ψnm(ρ)eimφ. (A.15)

Here, cnm(t) = ck(t) are the complex spin-wave amplitudes of the normal modes,
but we will write out the mode indices explicitly as they will be important for the
coupling RF fields. Again, the radial dependence of these modes is given by Ψnm(ρ)
(as introduced in Sec. 4.1). By evaluating the pumping Hamiltonian in these modes
and taking the canonical equations, one can find the rate equations for the spin-wave
modes of the form [

∂

∂t
+ iωnm + Γnm

]
cnm(t) = iPnmb∗RF(t) (A.16)

with Pnm denoting the coupling of a mode to the field.

Homogeneous transversal fields

In the vast majority of this thesis, the excitation field is spatially homogeneous and has
no bias, i.e. B⊥(ρ, t) = bRF(t). Therefore, we can evaluate the pumping Hamiltonian
as

Up = −b⊥(t)∑
nm

Pnmcnm(t) + c.c. (A.17)

with the coupling coefficient

Pnm =
γ

πR2

∫
A

dρ dφ ρ Ψnm(ρ)eimφ

=
γ

πR2

∫ R

0
dρ ρ Ψnm(ρ)

2 sin(πm)

m
.

(A.18)

Since m can only take integer values, this coefficient will only survive if m = 0,
otherwise sin(πm) = 0. In the case of m = 0, we have

lim
m→0

2 sin(πm)

m
= 2π. (A.19)
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In fact, we can treat this as a Kronecker-δ as long as m is a principal number.,

sin(πm)

πm
= δ0m. (A.20)

This shows that a homogeneous transversal field cannot couple to azimuthal modes
with m 6= 0. Therefore we will write Pn instead of Pn0 with

Pn =
2γ

R2

∫ R

0
dρ ρ Ψn0(ρ). (A.21)

Fields with cylindrical spatial symmetry

After examining homogeneous fields, it makes sense to have a look at magnetic
fields that exploit the symmetry of the magnetic system and, therefore, the spin-wave
modes. In Sec. 4.3, this was utilized to calculate the dispersion of the modes in a
vortex. Here, a brief substantiation will be presented. We look again at the case of
a field with an azimuthal dependence of ∝ cos(m′φ), with the principal number m′

that counts the azimuthal periods of the field. By expressing the cosine in the spatial
profile of the RF field as exponential functions, we can calculate the mode coupling to

Pnmm′ =
γ

πR2

∫
A

dρ dφ r Ψnm(ρ)eimφ cos
(
m′φ

)
=

γ

2πR2

∫
A

dρ dφ r Ψnm(ρ)eimφ
(

eim′φ + e−im′φ
)

=
γ

R2

∫ R

0
dρ r Ψnm(ρ)(δm,−m′ + δm,m′).

(A.22)

We see, that now two indices survive, namely m = m′ and m = −m′. In other
words, a transversal field with a sinusoidal polar dependence will excite both modes
of a duplets ±m′ at the same time and with the same efficiency. Moreover, as for
the homogeneous case, all radial indices n can be excited. This is illustrated in the
pumping term of the Hamiltonian which now reads (for the sake for readability the
primes are omitted here)

Up = −hm(t)∑
n

Pnm(cn,−m(t) + cnm(t)) + c.c. (A.23)

Of course, we could also have started with general fields of this nature and then
recover the homogeneous case as the edge case of m′ = 0. In this case, the last line of
Eq. A.22 exactly becomes Eq. A.21.

Qualitative estimate

In order to achieve a qualitative estimate of the coupling coefficients of radial modes
to an homogeneous OOP field, one can use the radial profiles found by Buess et al. in
[65], which only consider the dipolar interaction,

Ψn($) = κn J1(knρ) with κn =
1√

2RJ2(j1n)
. (A.24)

Here J1 and J2 are the first and second Bessel function of the first kind, j1n is the nth
zero of J1 and kn is determined by knR = j1n. The calculation of the coupling coeffi-
cient Pn can be simplified introducing the dimensionless radius r = ρ/R. Inserting
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the radial profile into Eq. A.21, one arrives at

Pn =

√
2γ

RJ2(j1n)

1∫
0

dr rJ1(j1nr)

=

√
2γj1n

6RJ2(j1n)
1F2

({
3
2

}
;
{

2,
5
2

}
;− j21n

4

)
,

(A.25)

with the generalized hypergeometric function pFq(
{

a1, . . . , ap
}

,
{

b1, . . . , bq
}

, z) [107].
If we take a look at the normalized coupling Pn/P0, one can see that the pumping
efficiency rapidly decreases with increasing radial mode index n. Moreover, the
coupling does not decrease monotonously, but the coupling for odd radial indices is
lower than the one for neighboring even indices. This observation also appears in
the power spectra used to calculate the dispersion in Sec. 4.3, Fig. 4.6, in which the
spectral intensity is lower for the odd radial modes.

FIGURE A.2: Normalized coupling Pn/P0 of a vortex mode to an
homogeneous OOP field for different radial mode indices n, according

to Eq. A.25.

A.3 Implementation of the rate equations in Python

The numerical solution of the rate equations derived in Chap. 7 was carried out in
Python3.7 using the following external software packages:

• NumPy 1.16.2 [108]

• odeintw 0.1.2.dev2 [109]

• numba 0.43.1 [110]

• cmath, functools [111]

The core functionality of integrating the set of rate equations was provided by odeintw
which is a wrapper of the integrate.odeint solver provided by the popular SciPy
package. It allows to integrate complex valued systems of first-order ordinary differ-
ential equations (ODEs). When performing mathematical computations on arrays
and lists, such as matrix multiplication or even for-loops, the NumPy package pro-
vides a substantial decrease in run time. However, when solving a system of ODEs,
single-number computations are carried out at each times step. In such a case, NumPy
seizes to provide an advantage and can even lead to a serious increase in run time.
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In order to perform fast single-number computations, the mathematical functions
provided by the cmath packages were used instead. Moreover, it is very beneficial
to reduce the number of function calls, as they can lead to an unnecessary overhead.
For this reason the windowing function introduced in 7.2.2, which includes nested
auxiliary functions, is expanded into a single function using only if-else-clauses.
As an additional performance boost, it is equipped with the njit-decorator provided
by the Numba package, which allows for a translation of Python code into fast mashine
code. The aforementioned optimizations led to a speedup of a factor of 16 compared
to the NumPy-only solution which was initially employed.

A.4 Analytical solution of the rate equation of the direct mode
below threshold

We seek the solution of the initial value problem

dc0

dt
= −iωRFc0 − Γ0(c0 − c0,th) + iP0bRFe−iωRFt, with c0(0) = i

√
N0,th. (A.26)

We will quickly rearrange this by absorbing the thermal spin waves c0,th into the field
term with P = Γ0

√
N0,th + P0bRF, such that

dc0

dt
+ (iωRF + Γ0)c0 = iPe−iωRFt. (A.27)

The general solution is composed by the homogeneous solution (for P) and the
particular solution which is obtained by variation of constants,

c0(t) = c0,hom(t) + c0,part(t) = Ce−Γ0te−iωRFt +
iPe−iωRFt

Γ0
. (A.28)

The integration constant C is obtained from the initial condition,

c0(0) = C +
iP
Γ0

= i
√

N0,th. (A.29)

Thus

c0(t) = ie−iωRFt
[
P
Γ0

+

(√
N0,th −

P
Γ0

)
e−Γ0t

]
= ie−iωRFt

[√
N0,th +

P0bRF

Γ0

(
1− e−Γ0t

)]
.

(A.30)

Now, taking the modulus square, one recovers Eq. 8.2.
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