Contact

Prof. Dr. Anton Wallner

Head Accelerator Mass Spectrometry and Isotope Research
Head
anton.wallnerAthzdr.de
Phone: +49 351 260 3274

Further reading - FWIR

For further information have a look at the following papers:

Further reading particularly with respect to terrestrial produced cosmogenic radionuclides

  • Reviews

P. R. Bierman, Rock to sediment – slope to sea with 10Be – rates of landscape change, Ann. Rev. Earth Planet. Sci. 32 (2004) 215-225.

T. E. Cerling, H. Craig. Geomorphology & in-situ cosmogenic isotopes, Ann. Rev. Earth Planet. Sci. 22 (1994) 273-317.

R. Golser, W. Kutschera, Twenty Years of VERA: Toward a Universal Facility for Accelerator Mass Spectrometry, Nuclear Physics News 27 (2017) 
29-34.

J. C. Gosse, F. M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Science Review 20 (2001) 1475-1560.

S. Ivy-Ochs, M. Schaller, Examining Processes and Rates of Landscape Change with Cosmogenic Radionuclides, In: Radioactivity in the Environment, Chapter 6, 16 (2009) 231-294.

W. Kutschera, Progress in isotope analysis at ultra-trace level by AMS, International Journal of Mass Spectrometry 242 (2005) 145-160.

W. Kutschera, Accelerator mass spectrometry: state of the art and perspectives, Advances in Physics: X 1 (2016) 570-595.

A. E. Litherland, X-L. Zhao, W. E. Kieser, Mass spectrometry with accelerators, Mass Spectrometry Reviews 30 (2011) 1037-1072.

P. Muzikar, D. Elmore, D.E. Granger, Accelerator mass spectrometry in geologic research, GSA Bulletin 115 (2003) 643-654.

  • Chemical separation: 10Be und 26Al

E. T. Brown, J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, E. J. Brook, Examination of surface exposure ages of Antarctic moraines using in-situ produced 10Be and 26Al, Geochim. Cosmochim. Acta 55 (1991) 2269-2283.

R. G. Ditchburn. N. E. Whitehead, The separation of 10Be from silicates, 3rd Workshop of the South Pacific Environmental Radioactivity Association (1994) 4-7. / expanded description on http://depts.washington.edu/cosmolab/chem.shtml

C. P. Kohl, K. Nishiizumi, Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Acta 56 (1992) 3583-3587.

S. Merchel, S. Beutner, T. Opel, G. Rugel, A. Scharf, C. Tiessen, S. Weiß, S. Wetterich, Attempts to understand potential deficiencies in chemical procedures for AMS, Nucl. Instr. and Meth. in Phys. Res. B 456 (2019) 186-192.
Download-Button

S. Merchel, A. Gärtner, S. Beutner, B. Bookhagen, A. Chabilan, Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for 10Be and 26Al analysis, Nucl. Instr. and Meth. in Phys. Res. B 455 (2019) 293-299.
Download-Button

S. Merchel, U. Herpers, An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry, Radiochim. Acta 84 (1999) 215-219.
Download-Button

V.A. Sulaymonova, M.C. Fuchs, R. Gloaguen, R. Möckel, S. Merchel, M. Rudolph, M.R. Krbetschek, Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: A case study of fluvial sediments from the Pamir, MethodsX 5 (2018) 717-726.
Download

  • Chemical separation: 36Cl

S. Jiang, Y. Lin, H. Zhang, Improvement of the sample preparation method for AMS measurement of 36Cl in natural environment, Nucl. Instr. and Meth. in Phys. Res. B223-224 (2004) 318-322.

S. Merchel, U. Herpers, An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry, Radiochim. Acta 84 (1999) 215-219.
Download-Button

S. Merchel, R. Braucher, V. Alfimov, M. Bichler, D.L. Bourlès, J.M. Reitner, The potential of historic rock avalanches and man-made structures as chlorine-36 production rate calibration sites, Quat. Geochron. 18 (2013) 54-62.
Download

J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60 (1996) 679-692. / expanded description on http://depts.washington.edu/cosmolab/chem.shtml

  • Accelerator mass spectrometry

R. C. Finkel, M. Suter, AMS in the Earth Sciences: Technique and Applications, Advances in Analytical Geochemistry 1 (1993) 1-114.

S. Merchel, M. Arnold, G. Aumaître, L. Benedetti, D. L. Bourlès, R. Braucher, V. Alfimov, S. P. H. T. Freeman, P. Steier, A. Wallner, Towards more precise 10Be and 36Cl data from measurements at the 10-14 level: Influence of sample preparation, Nucl. Instr. and Meth. in Phys. Res. B266 (2008) 4921-4926.
Download

C. Tuniz, J. R. Bird, D. Fink, G. F. Herzog, Accelerator Mass Spectrometry, CRC Press (1998).

  • Production rates

J.M. Licciardi, C.L. Denoncourt, R.C. Finkel, Cosmogenic 36Cl production rates from Ca spallation in Iceland, Earth Planet. Sci. Lett. 267 (2008) 365-377.

J. Masarik, K. J. Kim, R. C. Reedy, Numerical simulation of in situ production of terrestrial cosmogenic nuclides, Nucl. Instr. and Meth. in Phys. Res. B259 (2007) 642-645.

K. Nishiizumi, E. L. Winterer, C. P. Kohl, J. Klein, R. Middleton, D. Lal, J. R. Arnold, Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res. 94 (1989) 17907-17915.

F. M. Phillips, W. D. Stone, J. T. Fabryka-Martin, An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface, Chemical Geology 175 (2001) 689-701.

I. Schimmelpfennig, Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates, Quaternary Geochronology 4 (2009) 441-461.

J. O. Stone, G. L. Allan, L. K. Fifield, R. G. Cresswell, Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60 (1996) 679-692.

J. O. H. Stone, J. M. Evans, L. K. Fifield, G. L. Allan, R. G. Cresswell, Cosmogenic chlorine-36 production in calcite from muons, Geochim. Cosmochim. Acta 62 (1998) 433-454.

  • Scaling factors

D. Desilets, M. Zreda, Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating, Earth Planet. Sci. Lett. 206 (2003) 21-42.

T. J. Dunai, Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical re-evaluation, Earth Planet. Sci. Lett. 176 (2000) 157-169.  See also comments by Desilets et al. 188 (2001) 283-287 and reply by Dunai 188 (2001) 289-298.

T. J. Dunai, Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides, Earth Planet. Sci. Lett. 193 (2001) 197-212.

D. Lal, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett. 104 (1991) 424-439.

J. Masarik, M. Frank, J. M. Schäfer, R. Wieler, Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variation during the past 800,000 years, Geochim. Cosmochim. Acta 65 (2001) 2995-3003.

N. A. Lifton, J. W. Bieber, J. M. Clem, M. L. Duldig, P. Evenson, J. E. Humble, R. Pyle, Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications, Earth Planet. Sci. Lett. 239 (2005) 140-161.

N. Lifton, D. F. Smart, M. A. Shea, Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model, Earth Planet. Sci. Lett. 268 (2008) 190-201.

J. S. Pigati, N. A. Lifton, Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be, Earth Planet. Sci. Lett. 226 (2004) 193-205.

J. O. Stone, Air pressure and cosmogenic isotope production, J. Geophys. Res. 105 (2000) 23753-23759.

  • Dating of groundwater

IAEA - Isotope methods for dating old groundwater, Vienna: International Atomic Energy Agency, 2013, ISBN 978–92–0–137210–9, 379 pages.

Download

J.A. Corcho Alvarado, R. Purtschert, K. Hinsby, L. Troldborg, M. Hofer, R. Kipfer, W. Aeschbach-Hertig, H. Arno-Synal, 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr): a case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark, Applied Geochemistry 20 (2005) 599-609.

S. N. Davis, S. Moysey, L. DeWayne Cecil, M. Zreda, Chlorine-36 in groundwater of the United States: empirical data, Hydrogeology Journal 11 (2003) 217-227.

V. Lavastre, C. Le Gal La Salle, J. L. Michelot, S. Giannesini, L. Benedetti, J. Lancelot, B..Lavielle, M. Massault, B. Thomas, E. Gilabert, D. Bourlès, N. Clauer, P. Agrinier, Establishing constraints on groundwater ages with 36Cl, 14C, 3H, and noble gases: A case study in the eastern Paris basin, France, Applied Geochemistry 25 (2010) 123-142 (and erratum).

M.J. Lenahan, D.M. Kirste, D.C. McPhail, L.K. Fifield, Cl- AND 36Cl DISTRIBUTION IN A SALINE AQUIFER SYSTEM: CENTRAL NEW SOUTH WALES, AUSTRALIA, In: Roach I.C. ed. 2005. Regolith 2005 – Ten Years of CRC LEME. CRC LEME (2005) 187-190.

C. Münsterer, J. Fohlmeister, M. Christl, A. Schröder-Ritzrau, V. Alfimov, S. Ivy-Ochs, A. Wackerbarth, A. Mangini, Cosmogenic 36Cl in karst waters from Bunker Cave North Western Germany – A tool to derive local evapotranspiration?, Geochim. Cosmochim. Acta 86 (2012) 138-149. 

E. Nolte, P. Krauthan, G. Korschinek, P. Maloszewski, P. Fritz, M. Wolf, Measurements and interpretations of 36Cl in groundwater, Milk River aquifer, Alberta, Canada, Applied Geochemistry 6 (1991) 435-445.

J. Park, C.M. Bethke, T. Torgersen, T.M. Johnson, Transport modeling applied to the interpretation of groundwater 36Cl age, WATER RESOURCES RESEARCH 38 (2002) 1043.

C. Wilske, A. Suckow, U. Mallast, C. Meier, S. Merchel, B. Merkel, S. Pavetich, T. Rödiger, G. Rugel, A. Sachse, S Weise, C. Siebert, A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system, Hydrology and Earth System Sciences 24 (2020) 249-267.

Download

  • 36Cl in Eis

R.J. Delmas, J. Beer, H.-A. Synal, R. Muscheler, J.-R. Petit, M. Pourchet, Bomb‐test 36Cl measurements in Vostok snow (Antarctica) and the use of 36Cl as a dating tool for deep ice cores, Tellus B 56 (2004) 492-498.

D. Elmore, L. E. Tubbs, D. Newman, X. Z. Ma, R. Finkel, K. Nishiizumi, J. Beer, H. Oeschger, M. Andree, 36Cl bomb pulse measured in a shallow ice core from Dye 3, Greenland, Nature 300 (1982) 735-737.

S. Pivot, M. Baroni, E. Bard, X. Giraud, ASTER Team, A Comparison of 36Cl Nuclear Bomb Inputs Deposited in Snow From Vostok and Talos Dome, Antarctica, Using the 36Cl/Cl− ratio, Journal of Geophysical Research:Atmospheres 124 (2019) 10,973–10,988.

H.-A. Synal, J. Beer, G. Bonani, M. Suter, W. Wölfli, Atmospheric transport of bomb‐produced 36Cl, Nucl. Instr. and Meth. in Phys. Res. B 52 (1990) 483-488.