Ekman boundary layers in a fluid filled precessing cylinder

F. Pizzi, A. Giesecke, F. Stefani

Astro MHD 29th September 2020

Member of the Helmholtz Association

F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

Outline

1 Scope of the study

- 2 Ekman layer theory
- 3 Application to precessing cylinder endwall and results from simulation
- **4** Extrapolation and connection with former results

Research questions and problems

• What is the behaviour of the boundary layer on the cylnder endcaps

- How it evolves in the phase space of Ek (cylinder rotations) and Po (precession force strenght) numbers? → Instabilities, turbulence...
- Does the endwall boundary layers interact/adapt with the bulk flow?

Problem: finding reference scales for the study of boundary layer (thickness, reference velocity). The precession driven flows are intrinsecally 3D

Math formulation and tools

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\boldsymbol{\nabla}p - 2 \operatorname{Po}\hat{\boldsymbol{k}} \times \boldsymbol{u} + Ek\nabla^2 \boldsymbol{u}$$
$$\nabla \cdot \boldsymbol{u} = 0$$
$$\operatorname{Po} = \frac{\Omega_p}{\Omega_c} \quad Ek = \frac{\nu}{\Omega_c R^2} \quad \Gamma = \frac{H}{R}$$

↓ Numerical

Solving through DNS code SEMTEX http://users.monash.edu.au/~bburn/semtex.html

F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

General theory of Ekman layer

- Ekman boundary layer: type of boundary layer developed in rotating systems, characterized by the balance between Coriolis and viscous forces
- Study methods: math (stability analysis), DNS, lab experiment, atmospheric measurements. Linear laminar theory: scaling with \sqrt{Ek}

Caldwell, Van Atta, J. Fluid Mech. (1970), 44

Main parameter to classify the					Experiment			
Ekman layer:	Type of instability	7 Quantity	Faller & Kaylor Lilly		Faller, Faller & Kaylor	Tatro et al. 1	Present work	
$Res = \frac{U_{ref}\delta_{Ek}}{\delta_{Ek}}$	(class A)	Critical Reynolds number	55	55	< 70	56·3+	56.7	
U_{ref} is the reference velocity (geostrophic) at the BL edge	(,	Wavelength, in Ekman depths	24	21	22 to 33	27.8 ± 2.0	(Frequency 61% of that	
		6† Velocity divided by geostrophic	- 15° 0·50	-20° 0.57	$+5^{\circ} \text{ to} - 20^{\circ}$	$\begin{array}{c} 0 \text{ to } -8^{\circ} \\ 0.16 \end{array}$	predicted by Lilly)	
	Type I	Critical	118	110	125 ± 5	$124 \cdot 5 +$		
	(class B)	Reynolds number Wavelength, in Ekman depths	11	11.9	10.9	7-32Ro 11-8	-	
		ε† Velocity divided by geostrophic	10°-12° 0·33(11°)	8° 0∙094	$^{+14\cdot5\pm2\cdot0^{\circ}}_{0\cdot023(14\cdot5^{\circ})}$	$+14.8^{\circ} \pm 0.8$ 0.034	3° —	
δ_{Fk} the thickness	$\epsilon \dagger$ is the angle between wavefront and geostrophic wind.							
$\approx \sqrt{Ek} = \sqrt{\nu/(\Omega L^2)}$	TABLE 1. Summary of Ekman layer instabilities							

Fully turbulent Ekman layer for $Re_{\delta} > 150$

Idea for precession problem (weak regime)

First step: decomposing and filtering the DNS.

 $A_{mnk} = \int_{V} u_{DNS} \cdot u_{mnk}^* dV / N_{mnk}$

				(<i>m</i> , <i>n</i> , <i>k</i>)	A _{mnk}
		axisymmetric non-axisymme	tric	(1.1.1)	6.97×10^{-2}
UDNS	=	$\sum_{k=1}^{N} A_{00k} u_{00k}(r) + \sum_{k=1}^{M} \sum_{k=1}^{N} \frac{1}{2} [A_{m0k} u_{m0k}]$	$(r, \varphi)) + c, c]$	(0, 0, 2)	2.02×10^{-3}
DND		k=1 $m=1$ $k=1$ 2 mon more more more more more more more more	\rightarrow	(0, 2, 1)	1.79×10^{-3}
		Geostrophic		(2,0,1)	1.42×10^{-3}
		N K 1		(1,3,2)	$9.83 imes 10^{-4}$
		$+\sum \sum \frac{1}{2} [A_{0nk} u_{0nk} (z, r) + c.c]$		(1, 1, 2)	$6.58 imes 10^{-4}$
		<u>n=1 k=1</u>		$(1, 1, 1)^{-}$	6.26×10^{-4}
		axisymmetric oscillation		(1, 5, 1)	$5.89 imes 10^{-4}$
		$+\sum_{m=1}^{M}\sum_{n=1}^{N}\sum_{k=1}^{2K}\frac{1}{2}\left[A_{mnk} u_{mnk}(z,r,\varphi)+c.c\right]$	$]+u^{BI}$	$Ek = 3.3 \times 10^{-10}$	10^{-5} $Po = 10^{-3}$
		inertial waves	í J	Yee.	
u ⁸¹ [-]	0.02 0.00 -0.02 -0.04 -0.06 -0.08				
u ⁸ [-]	0.02 0.00 -0.02 -0.04 -0.06 -0.08	Gans Ek-3.3x10 ⁴ DNS Ek-3.3x10 ⁴ Gans Ek-1.0x10 ³ DNS Ek-1.0x10 ³	DNS		Linear analytical theor
	0	5 10 15 20 ζ[-]			

Member of the Helmholtz Association F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

Page 5/15

Thickness in weak precession

Precession driven flows in cylinder present Ekman layers on the endwalls. (Meunier, Gans, Zhang, Kong...)

Checking the scale $Po/\sqrt{Ek} \ll 1$

Particular features of precessing Ekman layer

Precession Ekman layer has the scaling of pure rotating flows but... there are different behaviours: Ekman Spiral.

Spalart et al. Phys. of Fluids (2008), **20**, 101507

General study (up to Po)

Emergence of an axisymmetric-geostrophic current for large *Po*.

Amplitude A_{00} with azimuthal and axial wave umber (m, n) = (0, 0).

Member of the Helmholtz Association

F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.s

Characterization of Ekman layer

Definition of Re_{δ} in precessing cylinder:

$$Re_{\delta} = \frac{(\Omega_g R^2)\sqrt{Ek}}{\nu}$$

- Profiles depend by $Ek = \nu/(R^2\Omega_c)$
- Peaks around $Po \approx 0.125$ for small Ek
- no cross of B-mode instability and no fully turbulent boundary layer (on the endwalls)

Other quantities

- NO turbulent phenomena.
- Flow follow the viscous sub-layer but not achievement of log-law
- fluctuations strenght small

Member of the Helmholtz Associatio

Connection with previous experiments

Member of the Helmholtz Association F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

Discussions

Summary

- characterization of the bulk flow structure through A_{mnk}
- Geostrophic-axisymmetric flow dominance for strong precession
- characterization of Ekman (endwalls) layer in precessing cylinder f(Ek, Po)
- Appearence of instabilities but no fully turbulent Ekman layer (in the range of our simultaions)
- Reasonable prediction of turbulence onset (consistency with asymptotic profile shown by experiments)

Limitations of this study:

- results valid for large precession angle α and not extreme Ek.
- turbulent study requires finer mash (e.g 10 grid points $0 < y^+ < 10$).
- no insights to decouple bulk mechanism and Ekman mechanism: what causes what?

Possible future study

Experiments on the Ekman layer (PIV ??).

Theoretical connection with bulk flows phenomena

Deeper analalysis on the connection of (m, n) = (0, 2) with the Ekman suction (average thickness could increase around $Po \approx 0.10$)

Ekman (endwall) layers phenomena in MHD context

The end

Thank you for your attention

Member of the Helmholtz Association F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de

Appendix

Member of the Helmholtz Association

F. Pizzi | Institute of Fluid Dynamics | http://www.hzdr.de