The connection of the Busse solution in spheroids with the precession-driven fluid flow in a cylinder

André Giesecke
Helmholtz-Zentrum Dresden-Rossendorf
astroMHD 2020,
Dresden, July 7, 2020

Precession in celestial bodies, spheroids and cylinders

- motivation for precession dynamo: magnetic field generation
in planets and/or moons
\Rightarrow spheres, spheroids, ellipsoids
- technical challenges:
- liquid sodium
- mechanical demands
\Rightarrow cylindrical container
- nevertheless:
experiments with water in a precessing spheroid show qualitative similarities with the fluid flow evolution in the precession water experiment at HZDR (Goto 2014, 2017, 2019)

- different scaling for transition to turbulent regime \Rightarrow change ellipticity $\eta=(a-b) / a$?
- no asymptotic behavior in spheroidal geometry (Re to small?)

- flow measurements with UDV at down-scaled water experiment ($R=0.163 \mathrm{~m}$)
- simulations with SEMTEX Blackburn \& Sherwin 2004 maximum $\operatorname{Re}=10^{4}$
- behaviour of gas bubbles as auxiliary quantity for flow state
- accumulation along minimum pressure line
- supposed to be representative for fluid rotation axis

- structure of forcing:
$\boldsymbol{F}_{\mathrm{p}}=-\Omega_{\mathrm{p}} \Omega_{\mathrm{c}} r \sin \alpha \cos \left(\Omega_{\mathrm{c}} t+\varphi\right) \boldsymbol{e}_{z}$
\Rightarrow antisymmetric w.r.t. equatorial plane
\Rightarrow inertial modes with $m=1$ and k odd
\Rightarrow standing waves in turntable frame
- fundamental $m=1$ mode reflects fluid's tendency to align axis of rotation and axis of precession (like a gyroscope)
- turntable reference frame:
superimposition of $m=1$ mode and (modified) solid body rotation
\Rightarrow fluid rotates around axis different from Ω_{p} and $\boldsymbol{\Omega}_{\mathrm{c}} \Rightarrow$ uniform vorticity solution

■ assume ellipsoidal fluid state with spatially constant vorticity and non-penetrating boundary conditions $\boldsymbol{q}=\boldsymbol{\omega}_{\mathrm{f}} \times r$

$$
\begin{aligned}
\frac{\partial}{\partial t} \omega_{\mathrm{f}}^{x}-\frac{a^{2}-c^{2}}{a^{2}+c^{2}} \omega_{\mathrm{f}}^{x} \omega_{\mathrm{f}}^{y}-\frac{2 a^{2}}{a^{2}+c^{2}} \omega_{\mathrm{f}}^{y} \Omega_{x} & =0 \\
\frac{\partial}{\partial t} \omega_{\mathrm{f}}^{y}+\frac{a^{2}-c^{2}}{a^{2}+c^{2}} \omega_{\mathrm{f}}^{x} \omega_{\mathrm{f}}^{z}-\omega_{\mathrm{f}} \Omega_{x}+\frac{2 a^{2}}{a^{2}+c^{2}} \omega_{\mathrm{f}}^{x} \Omega_{z} & =0 \\
\frac{\partial}{\partial t} \omega_{\mathrm{f}}^{z}+\frac{2 c^{2}}{a^{2}+c^{2}} \omega_{\mathrm{f}}^{y} \Omega_{x} & =0
\end{aligned}
$$

- solution for small Po is rotation about axis slightly rotated away from z-axis
- viscous coupling tries to generate constant vorticity flow aligned with rotation axis of container but container axis is continually moving due to precession \Rightarrow alignment never reached

The Busse solution

■ spheroidal solution derived by Busse 1968 based on torque balance, steady flow, no spin up condition and small deviation from solid body rotation (see also Noir et al GJI 2003):

$$
2 \int \boldsymbol{r} \times(\Omega \times \boldsymbol{q}) d \mathcal{V}=-\oint p \boldsymbol{r} \times \hat{\boldsymbol{n}} d \mathcal{S}+\mathrm{Ek} \int \boldsymbol{r} \times \nabla^{2} \boldsymbol{q} d \mathcal{V} \quad \text { with } \quad \boldsymbol{q}=\boldsymbol{\omega}_{\mathrm{f}} \times \boldsymbol{r}
$$

$$
\boldsymbol{\omega}_{\mathrm{f}}=\omega_{\mathrm{f}}^{2}\left(\hat{\boldsymbol{e}}_{z}+\frac{\left[0.259\left(\mathrm{Ek} / \omega_{\mathrm{f}}\right)^{1 / 2}+\eta \omega_{\mathrm{f}}^{2}+\Omega \cos \alpha\right] \hat{\boldsymbol{e}}_{z} \times\left(\boldsymbol{\Omega} \times \hat{\boldsymbol{e}}_{z}\right)+2.62\left(\mathrm{Ek} \omega_{\mathrm{f}}\right)^{1 / 2}\left(\hat{\boldsymbol{e}}_{z} \times \boldsymbol{\Omega}\right)}{2.62^{2} \mathrm{Ek} \omega_{\mathrm{f}}+\left[0.259\left(\mathrm{Ek} / \omega_{\mathrm{f}}\right)^{1 / 2}+\eta \omega_{\mathrm{f}}^{2}+\Omega \cos \alpha\right]^{2}}\right)
$$

$$
\begin{aligned}
\cos \theta & =\frac{\hat{\boldsymbol{e}}_{z} \cdot \boldsymbol{\omega}_{f}}{\omega_{f}} \\
\cos \varphi & =-\frac{\hat{\boldsymbol{e}}_{x} \cdot\left[\hat{\boldsymbol{e}}_{z} \times\left(\hat{\boldsymbol{e}}_{z} \times \boldsymbol{\omega}_{f}\right)\right]}{\omega_{f} \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\Omega}=\operatorname{Po}(0,0,1) \\
& \hat{\boldsymbol{e}}_{x}=(\cos \alpha, 0, \sin \alpha) \\
& \hat{\boldsymbol{e}}_{z}=(\sin \alpha, 0, \cos \alpha)
\end{aligned}
$$

$$
\omega_{\mathrm{f}}=\omega_{\mathrm{f}}^{2}\left(\hat{\boldsymbol{e}}_{z}+\frac{X}{X^{2}+Y^{2}} \hat{\mathbf{e}}_{z} \times\left(\Omega \times \hat{\mathbf{e}}_{z}\right)+\frac{Y}{X^{2}+Y^{2}}\left(\hat{\boldsymbol{e}}_{z} \times \boldsymbol{\Omega}\right)\right)
$$

with $X=0.259\left(\mathrm{Ek} / \omega_{\mathrm{f}}\right)^{1 / 2}+\eta \omega_{\mathrm{f}}^{2}+\mathrm{Po} \cos \alpha \quad$ and $Y=2.62\left(\mathrm{Ek} \omega_{\mathrm{f}}\right)^{1 / 2}$

Simulations in cylinder

- simulations performed at $\mathrm{Ek}=1 \times 10^{-4}, \alpha=90^{\circ}, \mathrm{Po} \in[0.001,0.2]$
- calculate time averaged velocity in precession frame and corresponding vorticity

$$
\langle\boldsymbol{u}(\boldsymbol{r})\rangle=\frac{1}{T} \int \boldsymbol{u}(\boldsymbol{r}) d t \quad\langle\boldsymbol{\omega}(\boldsymbol{r})\rangle=\nabla \times\langle\boldsymbol{u}(\boldsymbol{r})\rangle
$$

- calculate uniform vorticity applying integration over sphere embedded within cylinder origin at $r=0, z=0$, radius $R=0.3$

$$
\left\langle\omega_{x, y, z}\right\rangle=\frac{1}{\mathcal{V}} \int \omega_{x, y, z} d \mathcal{V}
$$

- orientation of fluid rotation axis is calculated as

$$
\begin{aligned}
\cos \theta & =\frac{\left\langle\omega_{z}\right\rangle}{\sqrt{\left\langle\omega_{x}\right\rangle^{2}+\left\langle\omega_{y}\right\rangle^{2}+\left\langle\omega_{z}\right\rangle^{2}}} \\
\cos \varphi & =\frac{\omega_{x}}{\sqrt{\omega_{y}^{2}+\omega_{z}^{2}}}
\end{aligned}
$$

$\mathrm{Po}=0.001$

$$
\mathrm{Po}=0.01
$$

Results and comparison with Busse solution

$$
\mathrm{Po}=0.094, \operatorname{Re} \sim 10^{6}
$$

$$
\mathrm{Po}=0.200, \operatorname{Re}=10^{4}
$$

Busse Solution Ek=10-4 $\alpha=90^{\circ}$

- inconsistent behavior: θ points out similarity with spheroid with small ellipticity η whereas behavior of azimuthal angle $\cos \varphi$ points out similarty with spheroids with large ellipticity η
- sharp change in "favored" regime around $\mathrm{Po}=0.1$
- no relation to Busse solution in spheroids for $\mathrm{Po} \gtrsim 0.1$

Summary

- fluid rotation axis for cylindrical precession can be estimated from simulations for $\mathrm{Po} \lesssim 0.09$
- angle between cylinder rotation axis and fluid rotation axis can become larger than 90°
- more difficult for $\mathrm{Po} \approx 0.1$ and above because only weak flow in bulk \Rightarrow goes along with small values for vorticity components (sometimes difficult to estimate sign)
- in this regime the prerequisites for Busse solution are no longer given
- 2 different solutions resemble Busse model but quantitatively behavior differs
- different torque balance in cylinder may require consideration of additional pressure torques from corners which prevents application of "simple" spheroidal model
- relevance for dynamo action is not obvious:
- flow is dominated by large velocities (and high gradients) adjacent the side walls
- fluid motion in the bulk is weak (for sufficiently large Po)
- but: emergence of instability must consider rotation profile in fluid rotation frame

