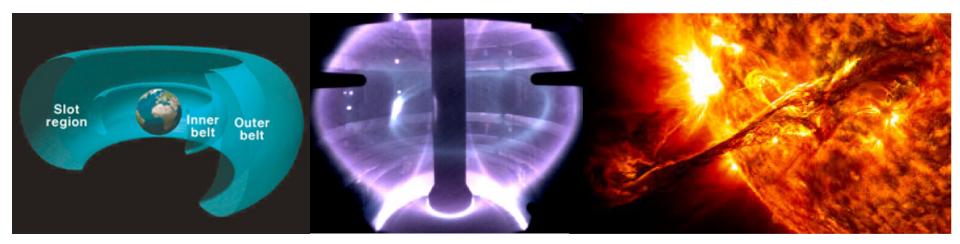
Plasma Physics

TU Dresden Lecturer: Dr. Katerina Falk

Lecture 9: Laser plasmas & ICF



Plasma Physics: lecture 9

- Inverse Bremsstrahlung
- Laser Ablation
- The Lawson criterion revisited
- Inertial Confinement Fusion (ICF)
- Different technological approaches to ICF
- Big laser ZOO

The critical surface

- When a laser hits a solid target, the surface is heated, and a plasma is formed.
- This plasma expands into the vacuum, and its density drops.

The critical surface

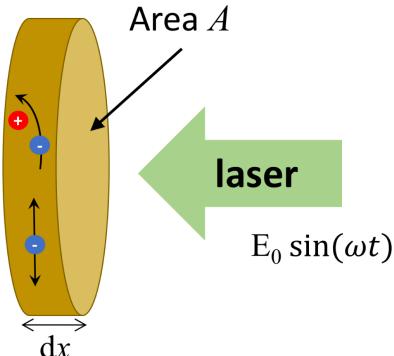
- In lecture 3 we derived the relationships for the propagation of electromagnetic radiation in plasma.
- We have derived the refractive index in plasma:

$$\mu = \sqrt{\varepsilon(\omega)} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \qquad n_e$$
And the critical density:
$$n_c = \frac{\omega^2 \varepsilon_0 m}{e^2}$$

Laser light is absorbed at lower densities and reflected at the critical density n_c.

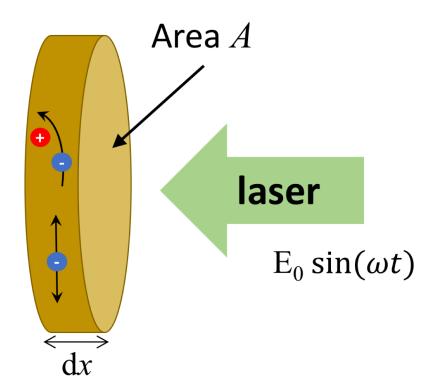
Inverse Bremsstrahlung

- The incident laser light (oscillating EM field) causes the electrons to oscillate.
- In the absence of collisions, these electrons re-radiate at the original laser frequency, so no energy is lost from the light.



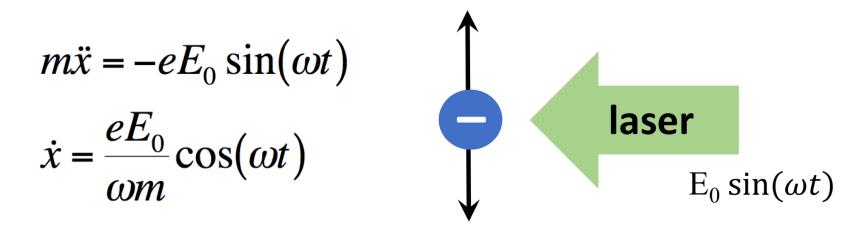
Inverse Bremsstrahlung

- However, the electrons also have some random thermal velocity, and in reality they collide with ions. Thus the oscillatory energy is converted to thermal energy.
- We will estimate the absorption coefficient.



Oscillatory energy

- Incident laser with frequency ω , intensity I and peak electric field E_0 :
- Equation of motion for electron:



Time averaged kinetic energy:

$$\overline{\frac{1}{2}m\dot{x}^2} = \frac{e^2 E_0^2}{4m\omega^2}$$

Total oscillatory energy

• For electron density n_e in a given volume, the total oscillatory energy:

$$U_e = n_e \left(\frac{e^2 E_0^2}{4m\omega^2}\right) A \mathrm{d}x$$

Area
$$A$$

 $U_{L} = IAt$
 I_{aser}
 $E_{0} \sin(\omega t)$

- The collision time between ions and electrons is τ_{ei} and fraction of the oscillatory energy that is converted to thermal energy to be $\approx t/\tau_{ei}$
- Oscillatory energy gained in time t is equivalent to change in laser field energy:

$$\mathrm{d}U_e = \mathrm{d}U_\mathrm{L} = -\frac{t}{\tau_\mathrm{ei}} n_e \left(\frac{e^2 E_0^2}{4m\omega^2}\right) A \mathrm{d}x$$

• The absorption coefficient κ is defined such that for light of intensity I: $I = I \exp(-\kappa r)$

$$I = I_0 \exp(-\kappa x)$$
$$dI = -\kappa I_0 \exp(-\kappa x) dx$$

Thus: $\kappa = -\frac{1}{I} \frac{\mathrm{d}I}{\mathrm{d}x}$ $= -\frac{1}{U_{\mathrm{L}}} \frac{\mathrm{d}U_{\mathrm{L}}}{\mathrm{d}x}$ $= \frac{1}{IAt} \frac{t}{\tau_{\mathrm{ei}}} n_e \left(\frac{e^2 E_0^2}{4m\omega^2}\right) A$ $= \frac{1}{I} \frac{1}{\tau_{\mathrm{ei}}} n_e \left(\frac{e^2 E_0^2}{4m\omega^2}\right)$

The electric field of the laser E₀, is related to the intensity I via the Poynting vector:

$$I = N = \frac{1}{2}\sqrt{\varepsilon_{\rm r}}\varepsilon_0 E_0^2 c$$

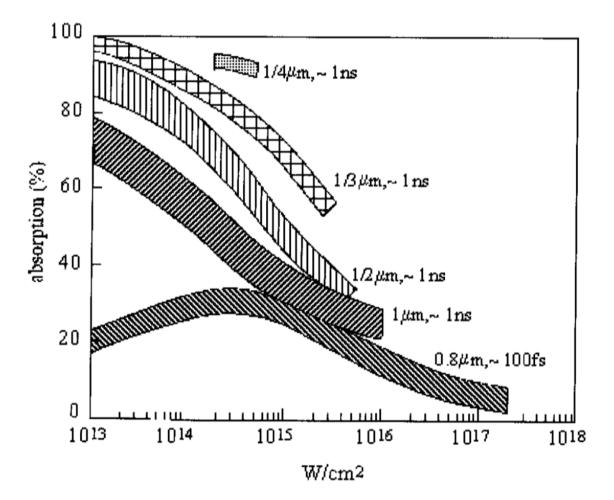
By substituting for intensity:

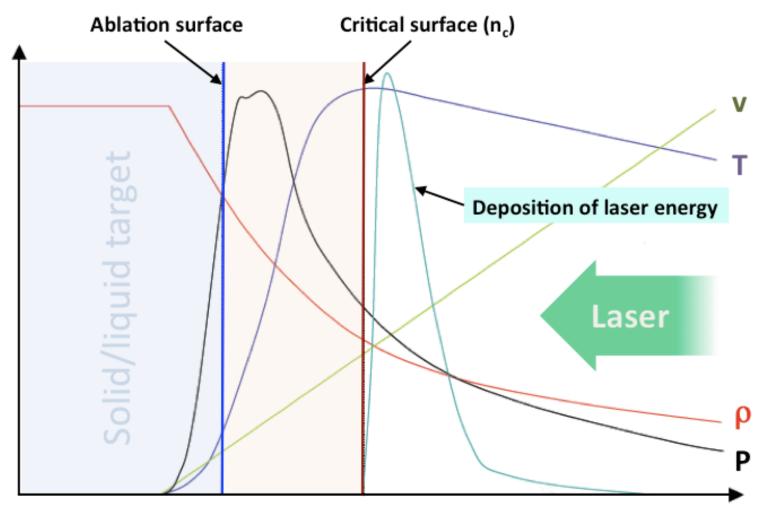
$$\kappa = \frac{1}{2\tau_{\rm ei}} \left(\frac{n_e e^2}{\varepsilon_0 m \omega^2}\right) \frac{1}{c \sqrt{\varepsilon_{\rm r}}}$$

Substituting for plasma frequency:

$$\kappa = \frac{1}{2c\tau_{\rm ei}} \left(\frac{\omega_{\rm p}^2}{\omega^2}\right) \left(1 - \frac{\omega_{\rm p}^2}{\omega^2}\right)^{-1/2}$$

- Thermalisation of the laser-induced oscillatory energy by electron-ion collisions that gives rise to the absorption mechanism, referred to as "inverse Bremsstrahlung".
- We expect denser plasmas to absorb more efficiently.
- Shorter wavelength can propagate to higher density, thus should be better absorbed.
- At high irradiances, the plasma has higher temperature during the pulse, and thus the absorption drops.
- Note: a more rigorous method to derive the absorption coefficient would provide a factor of 2 grater value for κ, but the general approach is correct.





Distance

- Laser energy is deposited up to critical surface.
- Region outside critical surface is known as the corona, and is approximately isothermal.
- Laser energy flows down the temperature gradient to the target. Material is ablated away at the ablation surface.
- Pressure increases towards the ablation surface, as temperature is dropping, the density increases.
- As the plasma expands away from the target, the velocity increases (mass flow approximately constant).

Assuming a steady-state situation, the mass flow at the ablation and critical surfaces must be constant:

$$ho_{\mathbf{a}} u_{\mathbf{a}} =
ho_{\mathbf{c}} u_{\mathbf{c}}$$

The momentum flux is also constant:

$$P_{\mathrm{a}} + \rho_{\mathrm{a}} u_{\mathrm{a}}^2 = P_{\mathrm{c}} + \rho_{\mathrm{c}} u_{\mathrm{c}}^2$$

 Plasma expansion looks like isenthalphic throttling process. We need to account for the kinetic energy flow in the plasma as well as the heat flow W between critical and ablation surfaces:

$$\frac{1}{2}\rho_{\rm a}u_{\rm a}^{3} + H_{\rm a}\rho_{\rm a}u_{\rm a} + W = \frac{1}{2}\rho_{\rm c}u_{\rm c}^{3} + H_{\rm c}\rho_{\rm c}u_{\rm c}$$

Laser ablation model assumptions

For simplicity we assume the ideal gas equation of state, thus enthalpy is given by: Normal ratio of heat capacities (=5/3)

$$H = \left(\frac{\gamma}{\gamma - 1}\right) \frac{P}{\rho}$$

- Plasma at ablation surface is denser: $ho_{
 m a} \gg
 ho_{
 m c}$
- Assume that the thermal flux W is dominant:

$$W \gg \frac{1}{2}\rho_{\rm a}u_{\rm a}^3 + H_{\rm a}\rho_{\rm a}u_{\rm a}$$

• Assume plasma flow velocity at the critical surface is Mach ~ 1, i.e. sound velocity: $(\gamma P_{c})^{1/2}$

$$u_{\rm c} = \left(\frac{\gamma P_{\rm c}}{\rho_{\rm c}}\right)^{1/2}$$

We can now construct the ablation model:

$$W = rac{1}{2}
ho_{\mathrm{c}}u_{\mathrm{c}}^{3} + H_{\mathrm{c}}
ho_{\mathrm{c}}u_{\mathrm{c}}$$

Substituting the previous expressions:

$$W = \frac{\rho_{\rm c}}{2} \left(\frac{\gamma P_{\rm c}}{\rho_{\rm c}}\right)^{3/2} + \left(\frac{\gamma}{\gamma - 1}\right) P_{\rm c} \left(\frac{\gamma P_{\rm c}}{\rho_{\rm c}}\right)^{1/2}$$
$$W = \frac{1}{\sqrt{\rho_{\rm c}}} P_{\rm c}^{3/2} \sqrt{\gamma} \left(\frac{\gamma}{2} + \frac{\gamma}{\gamma - 1}\right)$$

• For $\gamma = 5/3$, rearrange: $P_c \approx 4\rho_c^{1/3}W^{2/3}$

predicted pressure at the critical surface

At the ablation surface the velocity tends to zero, and thus:

$$P_{\rm a} = P_{\rm c} + \rho_{\rm c} u_{\rm c}^2$$

• Substitute for u_c :

$$P_{\rm a} = (1+\gamma)P_{\rm c} = rac{8}{3}P_{\rm c}$$

Therefore the ablation pressure:

$$P_{\rm a} \approx \frac{32}{3} \rho_{\rm c}^{1/3} W^{2/3}$$

There is a critical density for a specific laser wavelength:

$$\omega^2 = \frac{n_{\rm c} e^2}{\varepsilon_0 m_e}$$

• Assume fully ionised atoms of mass $M = 2Zm_p$ (nuclei with roughly equal numbers of protons and neutrons):

$$\rho_c = 2n_c m_p = 2m_p \left(\frac{\varepsilon_0 m_e \omega^2}{e^2}\right)$$

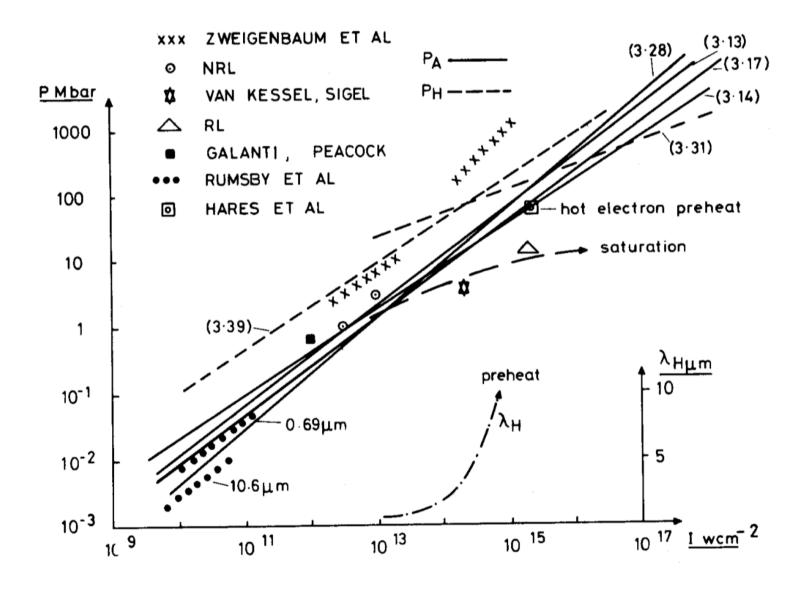
• Substitute into the expression for P_a :

Laser intensity in W/cm²

$$P_{\rm a} \approx \frac{32}{3} \left(\frac{2\varepsilon_0 m_e m_p \omega^2}{e^2} \right)^{1/3} W^{2/3}$$

For laser intensity in W/cm² we have:

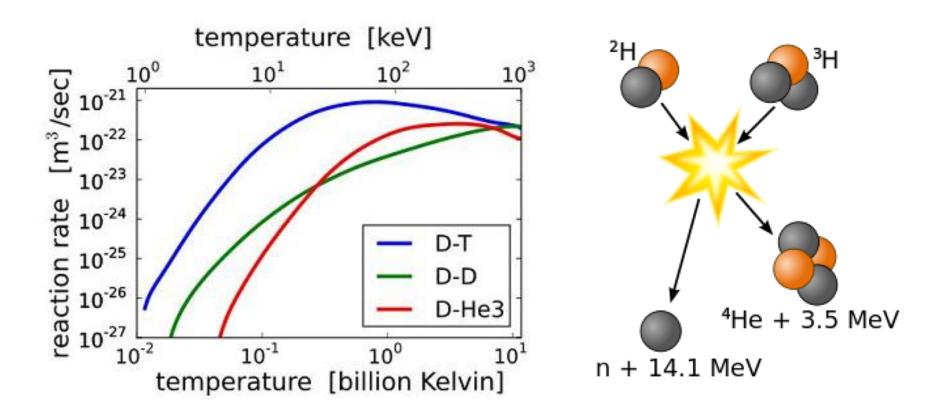
$$P_a \approx 2.8 \times 10^{-9} \times W^{2/3}$$
 Mbar



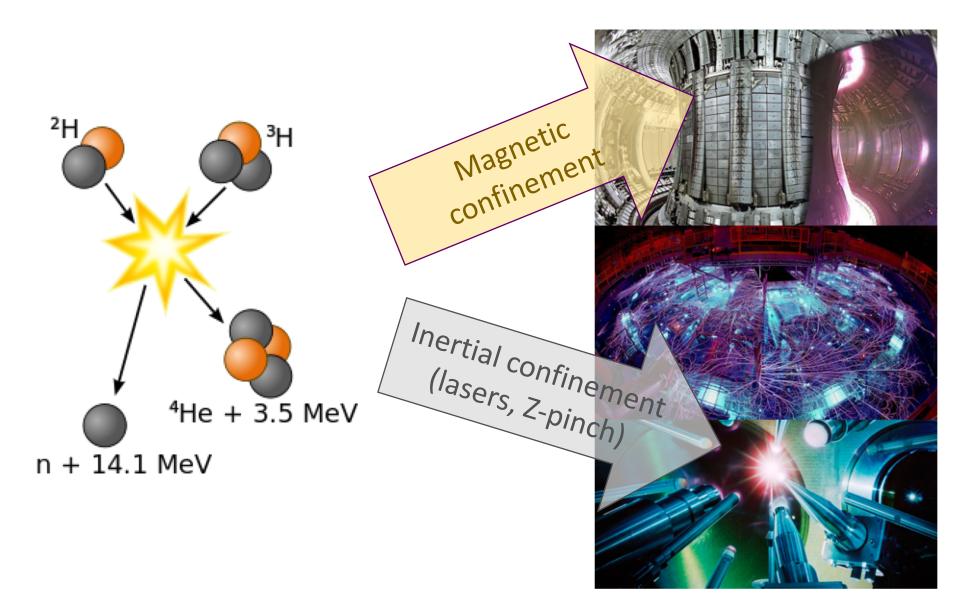
Thermonuclear fusion

D-T reaction rate is ~ 10⁻²² m³s⁻¹ at a temperature of 10 keV.

 $D + T \Rightarrow \alpha(3.5 \text{MeV}) + n(14.1) \text{MeV}$



Approaches to fusion research



The Lawson criterion

For D-T fusion energy gain, the energy out must exceed the energy in. The energy out per volume is given by:

Energy per reaction

$$E_{f} = n_{D} n_{T} \sigma W \tau = \frac{n^{2} \sigma W \tau}{4}$$
Assuming: $n_{D} = n_{T} = \frac{n}{2}$
Reaction rate

This must exceed the energy required to heat the plasma to the temperature required for fusion:

$$E_t = 2 \times \frac{3}{2} n k_B T$$

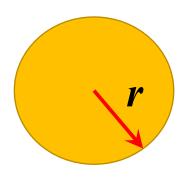
Thus:

$$\frac{n^2 \sigma W \tau}{4} > 3nk_B T$$

The Lawson criterion

We define the Lawson criterion:

$$n\tau > \frac{12k_BT}{\sigma W}$$



• For a T = 10 keV, $\sigma \sim 10^{-22}$ m³s⁻¹, $W \sim 17$ MeV:

$$n\tau > \frac{12 \times 10^4}{10^{-22} \times 17 \times 10^6} \sim 10^{20} \text{ sm}^{-3}$$

Plasma of radius r and temperature T is confined by its own inertial for a time of order its initial radius divided by the sound speed.

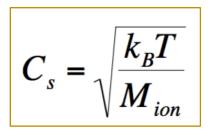
$$\tau \approx \frac{r}{4C_s}$$

The Lawson criterion

Derive the Lawson criterion for ICF:

$$n\tau = \frac{\rho r}{4C_{\rm s}M} > 10^{20} ~{\rm s~m^{-3}}$$

Where the sound speed is:



• If we use the mass of a deuterium atom and $T \sim 10$ keV:

$$ho r > 0.6 \,\mathrm{g/cm^2}$$

How much laser energy is needed?

Combining:

$$\frac{n^2 \sigma W \tau}{4} > 3k_B T \quad \text{and} \quad \tau \approx \frac{r}{4C_s}$$

• We get:
$$\frac{n^2 \sigma W r}{16C_s} > 3nk_B T$$

Thus radius needed to satisfy the Lawson criterion:

$$r = \frac{48k_BTC_s}{n\sigma W}$$

How much laser energy is needed?

The fusion energy released per unit volume E_f in a D-T reaction can be written as:
Energy per unit volume

$$E_{\rm f} = \frac{n^2 \sigma W r}{16C_{\rm s}} \approx E_{\rm t} = 3nk_{\rm B}T$$

Therefore total energy U required to heat a sphere of radius r to fusion conditions is:

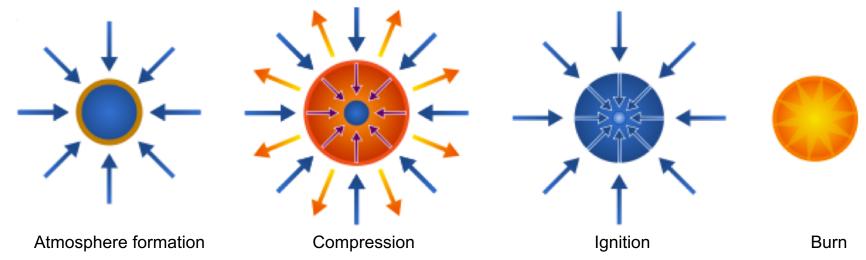
$$U = \frac{4\pi r^3}{3} E_f = 4\pi \left(\frac{48k_B TC_s}{n\sigma W}\right)^3 nk_B T$$

At 10 keV this is:

$$U \approx 4 \times 10^{68} \frac{1}{n^2} \text{ J}$$

Inertial confinement fusion (ICF)

- The idea of laser fusion is to compress a small frozen (solid) hollow D-T pellet into a very high density up to 1000 g/cm³ ≈ 10²⁶ cm⁻³ and heat it to extreme temperatures reaching 10 keV (10⁷ K) using laser ablation.
- There are several approaches to laser fusion, next slides.
- An alternative approach to ICF is using Z-pinches (discussed in the previous lecture).



Compression requirements

 If we could compress the D-T by, say a factor of 100, the heating laser would only need to contain ~ 100 kJ, (detailed calculations show we need a factor of ten more). However, to produce such high densities a large pressure is required. Assuming electrons are degenerate in the compressed plasma: Fermi energy

$$P_{\rm F} = \frac{2}{5} n E_{\rm F} = \frac{2}{5} \frac{\hbar^2 n}{2m} \left(3\pi^2 n\right)^{2/3}$$

• For $n = 100 \times 6 \times 10^{29}$, we find $E_F \sim 550 \text{ eV}$, $P \sim 2 \times 10^4$ Mbar. Thus we need pressures of order 200 times typical ablation pressures (more detailed calculations show factors of ~ 50).

Pressure Amplification

- Spherical compression amplifies the pressure.
- Initial acceleration of the imploding shell gives:

$$F=P_{
m a}4\pi r_0^2=
ho_04\pi r_0^2\Delta ra$$
 $ho_{
m 0}$ = initial density

Assuming constant acceleration, the final velocity is:

$$v^2=2as$$
 s = distance travelled

• The final radius is small, so assume $s = r_0$ and estimate the final kinetic energy: $\frac{1}{2}mv^2 = mas$

$$egin{aligned} & mv^2 = mas \ & = mrac{P_{
m a}}{
ho_0\Delta r}r_0 \ & = VP_{
m a}\left(rac{r_0}{\Delta r}
ight) \end{aligned}$$

Pressure Amplification

 As pressure is energy per unit volume, if this kinetic energy is converted into energy of compression adiabatically, then the stagnation pressure P_s is:

$$P_{\rm s} = \frac{1}{V} \frac{1}{2} m v^2 = P_a \left(\frac{r_0}{\Delta r}\right)$$

- In spherical compression, the ablation pressure is magnified by the aspect ratio.
- Note: these are just rough order of magnitude estimates. Further we must consider losses and the impact of plasma instabilities (to be discussed in the following lecture).

Approaches to laser ICF

- 60 200 laser beams reaching total power: 10¹² W (TW)
- Reach high densities and temperatures

(b) Direct drive

• 3 standard approaches:

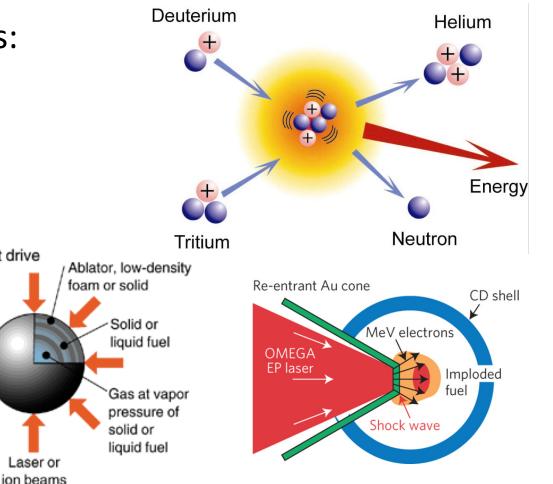
Capsule with

ablator and fuel

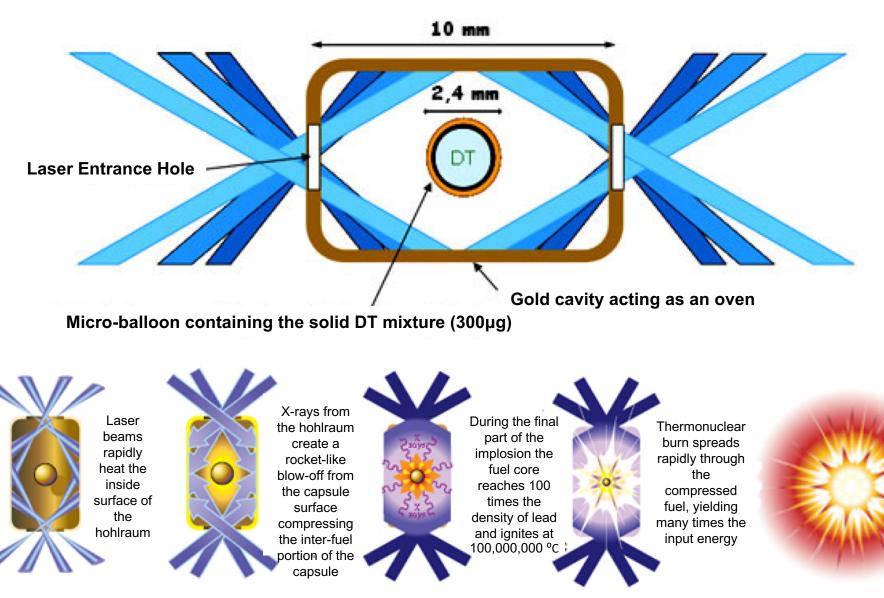
- Indirect drive
- Direct drive
- Fast ignition

Hohlraum

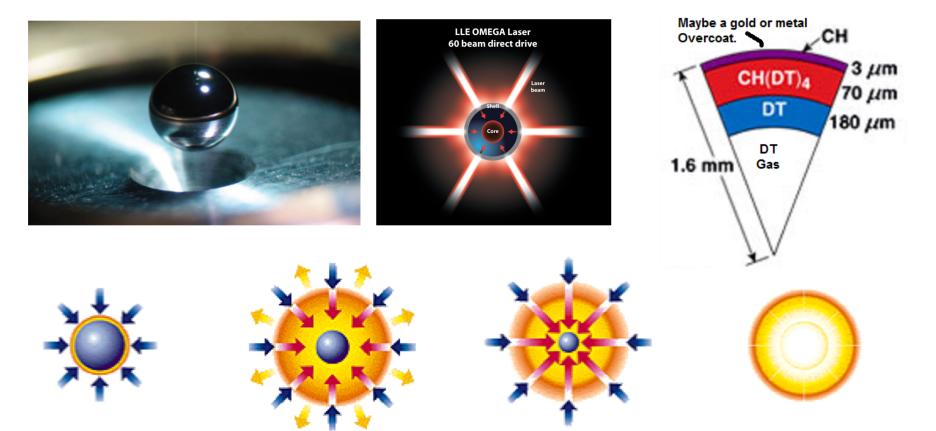
(a) Indirect drive



Indirect drive



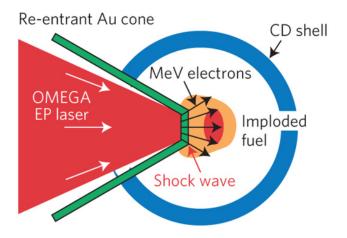
Direct drive

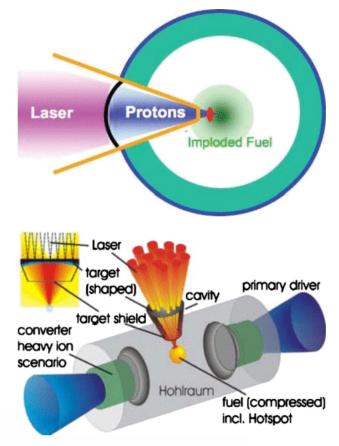


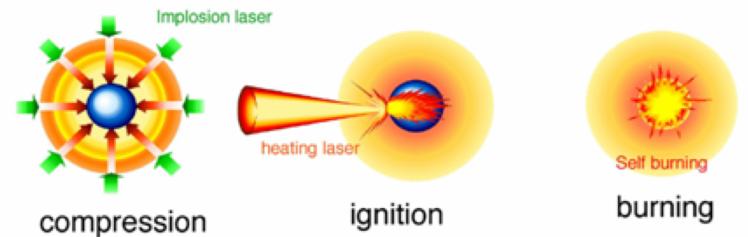
1) Atmosphere formation: Laser beams rapidly heat the surface of the fusion target forming a surrounding plasma envelope.

2) Compression: Fuel is compressed by the rocketlike blow-off of the hot surface material. 3) Ignition: During the final part of the laser pulse, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 degrees Celsius. Burn: Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

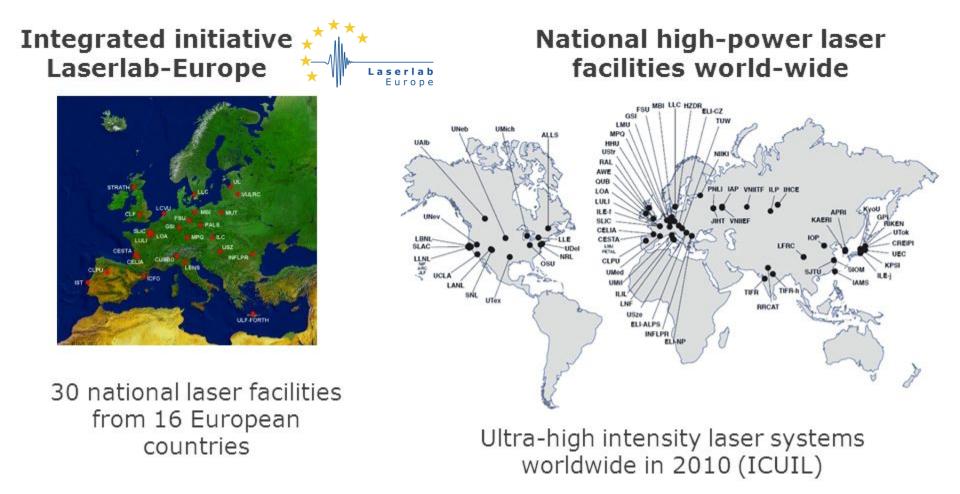
Fast ignition



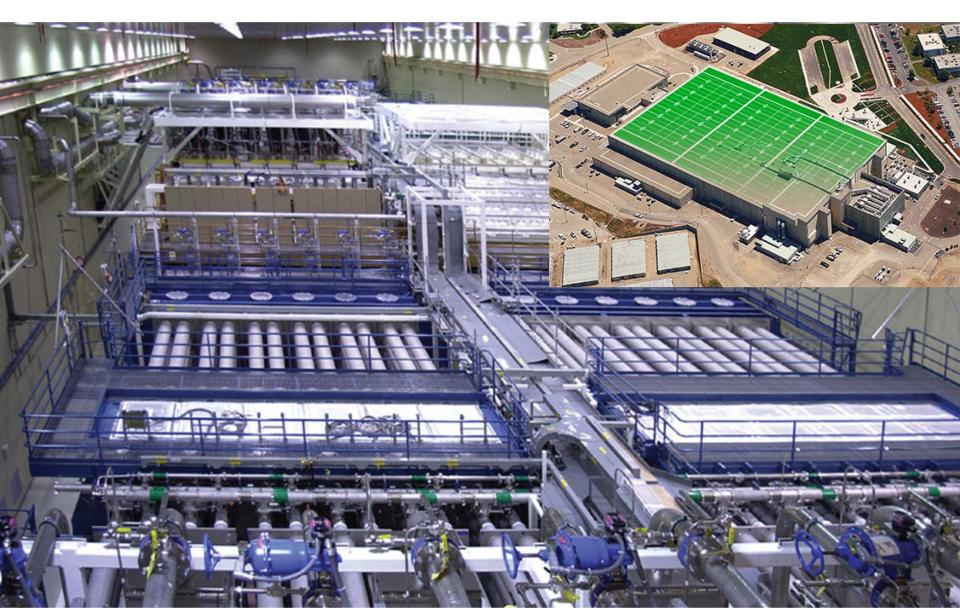




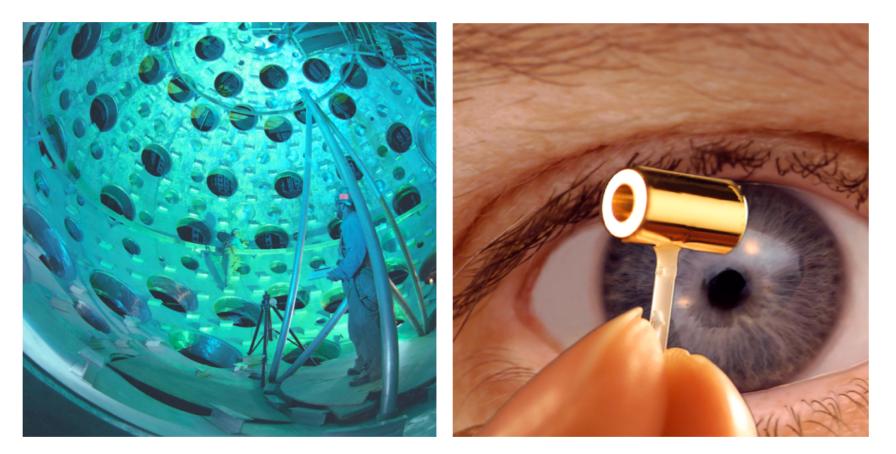
The worlds biggest lasers



National Ignition Facility

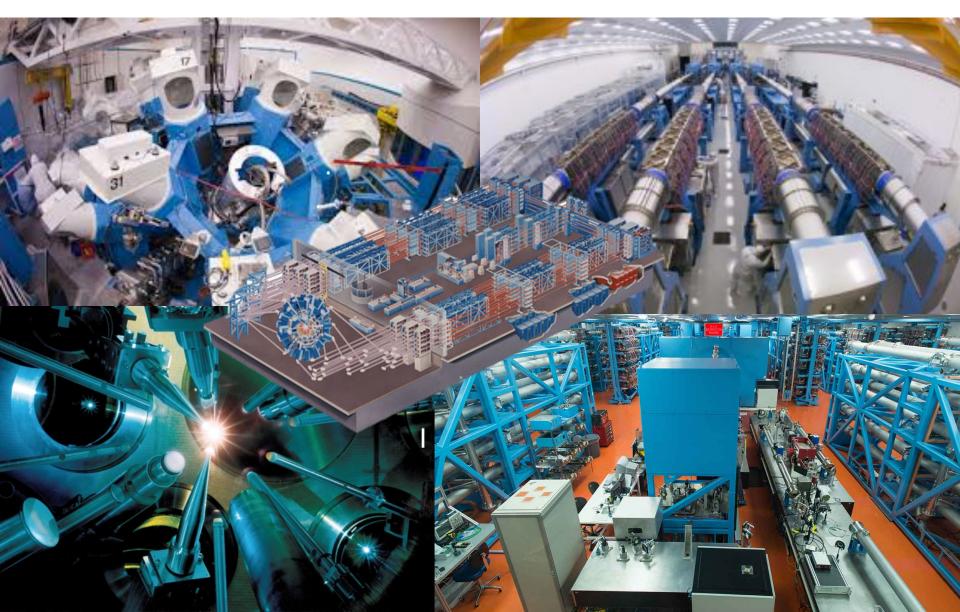


National Ignition Facility

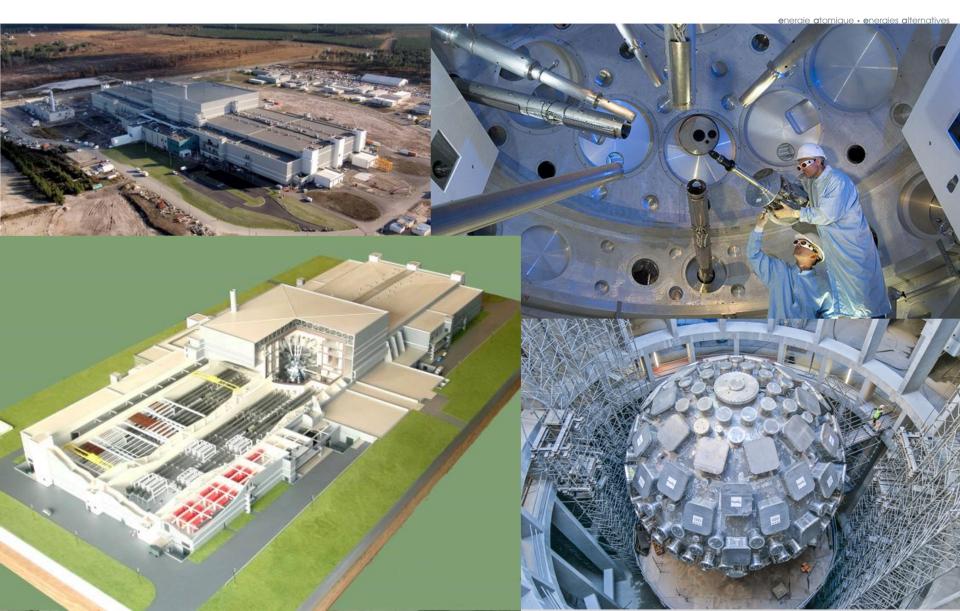


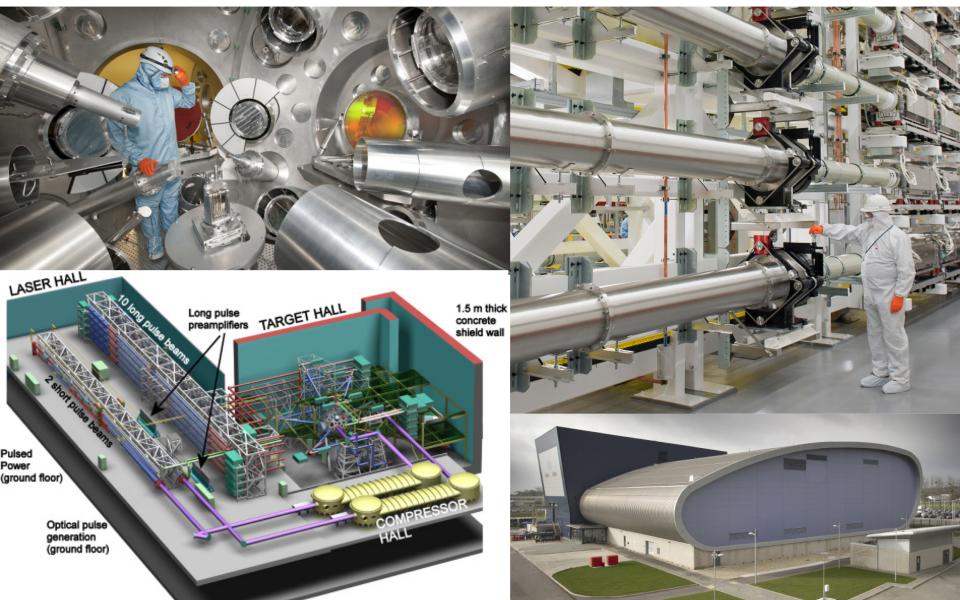
192 laser beams, each nearly a metre in diameter, are focussed with lenses through the holes in the chamber to spots in the centre only a few 100 microns.

Omega laser facility

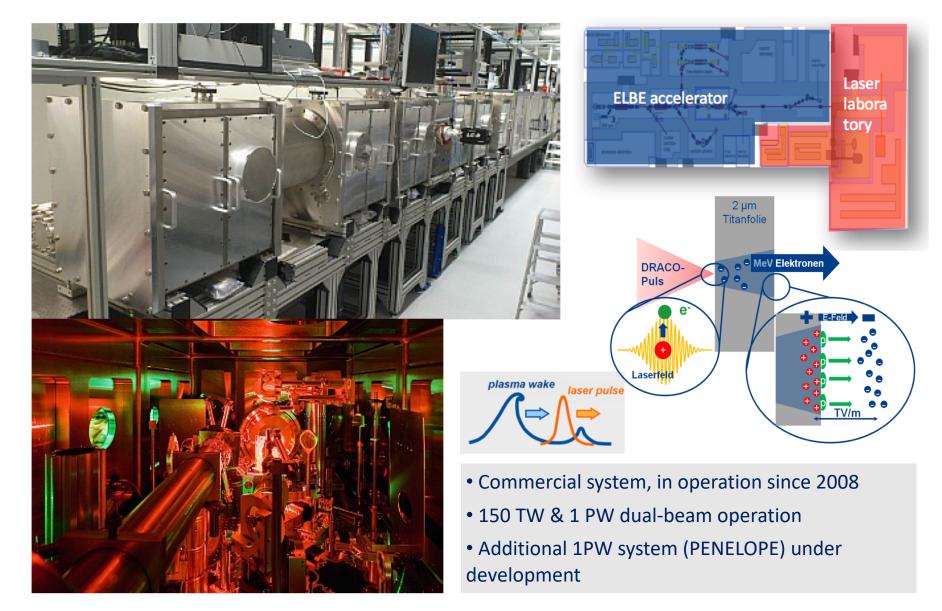


Laser Megajoule (LMJ)





DRACO/PENELOPE laser (HZDR)



Summary of lecture 9

- Inverse bremsstrahlung absorption favours the use of short wavelength lasers.
- Simple models show that the ablation pressure scales as W^{2/3}, giving Mbar pressures at irradiances of 10¹⁴ Wcm⁻²

• The Lawson criterion:
$$n\tau > \frac{12k_BT}{\sigma W}$$

- Plasmas confined by their own inertia require large energies to undergo fusion - but this energy scales inversely with the square of the compression.
- Compression of the fusion fuel can take place by the implosion of spherical targets - the pressure amplification factor being of order the aspect ratio, but we must consider losses and plasma instabilities.