Problem sheet 1

Plasma Physics course TU Dresden Lecturer: Katerina Falk Summer semester April – July 2021

Question 1:

Compute λ_D and N_D for the following cases:

- a) A glow discharge, with $n = 10^{16} m^{-3}$, $k_B T_e = 2 eV$.
- b) The Earth's ionosphere, with $n = 10^{12} m^{-3}$, $k_B T_e = 0.1 eV$.
- c) A pinch plasma, with $n = 10^{23} m^{-3}$, $k_B T_e = 800 eV$.

Question 2:

In a strictly steady state situation, both the ions and the electrons will follow the Boltzmann relation:

$$n_{e,i} = n_0 \exp\left(q_{e,i}\phi/k_B T_{e,i}\right)$$

For the case of an infinite, transparent grid charged to a potential ϕ , who that the shielding sitance is then given approximately by:

$$\lambda_D^{-2} = \frac{ne^2}{\varepsilon_0} \left(\frac{1}{k_B T_e} + \frac{1}{k_B T_i} \right)$$

Show that λ_D is determined. By the temperature of the colder species.