Problem sheet 2

Plasma Physics course TU Dresden Lecturer: Katerina Falk Summer semester April – July 2021

Question 1:

Compute r_L when v_{\parallel} is negligible for the following cases:

- a) A 10-keV electron in Earth's magnetic field 5×10^{-5} T.
- b) A solar wind proton with streaming velocity 300 km/sec, $B = 5 \times 10^{-9} T$.
- c) A l-keV He⁺ ion in the solar atmosphere near a sunspot, where $B = 5 \times 10^{-2} T$.
- d) A 3.5-MeV He⁺ ash particle in a 8-Tesla tokamak during DT fusion experiment.

Question 2:

Suppose the Earth's magnetic field is 3×10^{-5} at the equator and falls off as $1/r^2$, as for a perfect dipole. Let there be an isotropic population of $1 \cdot eV$ protons and $30 \cdot keV$ electrons, each with density $n = 10^{-7} m^{-3}$ r at r = 5 Earth radii in the equatorial plane.

- a) Compute the ion and electron ∇B drift velocities.
- b) Does an electron drift Eastward or Westward?
- c) How long does it take for an electron to encircle the Earth?
- d) Compute the ring current density in A/m^2 .

Note: The curvature drift is not negligible and will affect the numerical answer, but ignore it anyway.